Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: key role of superoxide radicals

[Display omitted] •Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by NixCu-LDHs.•O2•− and 1O2 worked as the main ROSs in Ni15Cu-LDHs/PMS system.•DO or adsorbed oxygen could acquire electron from OVs to generate O...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 610; pp. 504 - 517
Main Authors Zhu, Jingyi, Zhu, Yixin, Zhou, Wenjun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by NixCu-LDHs.•O2•− and 1O2 worked as the main ROSs in Ni15Cu-LDHs/PMS system.•DO or adsorbed oxygen could acquire electron from OVs to generate O2•−.•Synergy among Mn+/M(n+1)+ and active oxygen species ensured ROS generation. Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•−) and singlet oxygen (1O2), rather than sulfate radicals (SO4•−) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•−and •OH, and demonstrated that O2•− and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•− mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems.
AbstractList Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting Ni Cu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of Ni Cu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into Ni Cu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O ) and singlet oxygen ( O ), rather than sulfate radicals (SO ) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO and •OH, and demonstrated that O and O concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems.
Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NiₓCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NiₓCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NiₓCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O₂•⁻) and singlet oxygen (¹O₂), rather than sulfate radicals (SO₄•⁻) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni₁₅Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO₄•⁻and •OH, and demonstrated that O₂•⁻ and ¹O₂ concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O₂•⁻ mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni₁₅Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni₁₅Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems.
Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•-) and singlet oxygen (1O2), rather than sulfate radicals (SO4•-) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•-and •OH, and demonstrated that O2•- and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•- mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems.Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•-) and singlet oxygen (1O2), rather than sulfate radicals (SO4•-) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•-and •OH, and demonstrated that O2•- and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•- mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems.
[Display omitted] •Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by NixCu-LDHs.•O2•− and 1O2 worked as the main ROSs in Ni15Cu-LDHs/PMS system.•DO or adsorbed oxygen could acquire electron from OVs to generate O2•−.•Synergy among Mn+/M(n+1)+ and active oxygen species ensured ROS generation. Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•−) and singlet oxygen (1O2), rather than sulfate radicals (SO4•−) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•−and •OH, and demonstrated that O2•− and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•− mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems.
Author Zhou, Wenjun
Zhu, Jingyi
Zhu, Yixin
Author_xml – sequence: 1
  givenname: Jingyi
  surname: Zhu
  fullname: Zhu, Jingyi
  organization: Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
– sequence: 2
  givenname: Yixin
  surname: Zhu
  fullname: Zhu, Yixin
  organization: Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
– sequence: 3
  givenname: Wenjun
  surname: Zhou
  fullname: Zhou, Wenjun
  email: wenjunzhou@zju.edu.cn
  organization: Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34838311$$D View this record in MEDLINE/PubMed
BookMark eNqNkbuO1DAUQC20iJ1d-AEK5JImwY8kjhENGh6LNIIGastj3-x4SOLBdgbC5_ClODMLBcWKyrryObe45wpdjH4EhJ5SUlJCmxf7cm9cLBlhtKS0JFI8QCtKZF0ISvgFWpH8U0ghxSW6inFPCKV1LR-hS161vOWUrtCv9VRYfwCLP7pi8-YGf3dph_V2Gq0eE_Y_5lsY8VEbPRoHEXc-YBh3ecrKAGk397gqdrMNGd3C-NPrBNjCbdBWJ-ez6zQ-wPI9-NHHqe8WQpvkjifgJf4KMw6-B-w7HKcT6yzgvMEZ3cfH6GGXH3hy916jL-_efl7fFJtP7z-sX28Kw1uZCiOYqViXB85qJnkr2hqMZZpbaUELAoyLWm_rzjYWKmGIpbwWRBPLmrql_Bo9P-89BP9tgpjU4KKBvtcj-Ckq1vBGCNFK9h8oqapaNlxm9NkdOm0HsOoQ3KDDrP4kyAA7Ayb4GAN0fxFK1NJZ7dXSWS2dFaUqd85S-49kXDqdMwXt-vvVV2cV8i2PDoKKuezS0wUwSVnv7tN_A0DXxko
CitedBy_id crossref_primary_10_1039_D3QI00962A
crossref_primary_10_1016_j_cej_2023_145267
crossref_primary_10_1016_j_apmt_2025_102640
crossref_primary_10_2139_ssrn_4130244
crossref_primary_10_1002_smll_202401796
crossref_primary_10_1007_s13762_024_05824_0
crossref_primary_10_1016_j_seppur_2024_128023
crossref_primary_10_1016_j_envpol_2023_121811
crossref_primary_10_1016_j_seppur_2023_125311
crossref_primary_10_3390_molecules29194535
crossref_primary_10_1016_j_inoche_2024_113028
crossref_primary_10_1016_j_jclepro_2023_139600
crossref_primary_10_1016_j_ces_2024_119945
crossref_primary_10_1016_j_cej_2023_144323
crossref_primary_10_1016_j_jcis_2023_08_124
crossref_primary_10_1016_j_jece_2023_111771
crossref_primary_10_1039_D4NJ02091J
crossref_primary_10_1016_j_jece_2024_113814
crossref_primary_10_1016_j_jece_2024_111872
crossref_primary_10_1039_D3CY00664F
crossref_primary_10_1002_ange_202305639
crossref_primary_10_1016_j_apcatb_2024_124433
crossref_primary_10_1016_j_apcatb_2022_121704
crossref_primary_10_1016_j_jenvman_2022_116323
crossref_primary_10_1016_j_inoche_2024_112112
crossref_primary_10_1016_j_jcis_2022_08_193
crossref_primary_10_1016_j_jcis_2024_08_155
crossref_primary_10_1134_S1070363224040236
crossref_primary_10_1016_j_jece_2024_114806
crossref_primary_10_1016_j_jhazmat_2022_130440
crossref_primary_10_1016_j_jece_2023_109422
crossref_primary_10_1016_j_colsurfa_2024_135415
crossref_primary_10_1016_j_clay_2024_107323
crossref_primary_10_3390_cryst12060790
crossref_primary_10_1007_s00604_022_05571_4
crossref_primary_10_1016_j_seppur_2022_123026
crossref_primary_10_1016_j_watres_2023_119843
crossref_primary_10_1016_j_jece_2023_111078
crossref_primary_10_1016_j_apsusc_2023_158202
crossref_primary_10_2139_ssrn_4122750
crossref_primary_10_1016_j_jcis_2022_04_094
crossref_primary_10_3390_catal14120860
crossref_primary_10_3390_w16010121
crossref_primary_10_1016_j_cej_2024_156532
crossref_primary_10_1016_j_cherd_2024_11_024
crossref_primary_10_1016_j_cej_2024_157225
crossref_primary_10_1016_j_jhazmat_2023_130971
crossref_primary_10_1016_j_jcis_2022_07_162
crossref_primary_10_1016_j_chemosphere_2022_135132
crossref_primary_10_1016_j_seppur_2023_125900
crossref_primary_10_1016_j_cej_2023_146157
crossref_primary_10_3390_molecules29133185
crossref_primary_10_1016_j_cej_2023_147525
crossref_primary_10_1016_j_envres_2023_116534
crossref_primary_10_1039_D4RA03366C
crossref_primary_10_1021_acs_langmuir_4c02376
crossref_primary_10_1016_j_jwpe_2024_104996
crossref_primary_10_1016_j_jcis_2024_08_171
crossref_primary_10_1016_j_jtice_2024_105695
crossref_primary_10_1016_j_cej_2024_156245
crossref_primary_10_1016_j_jclepro_2022_134514
crossref_primary_10_1002_anie_202305639
crossref_primary_10_1016_j_psep_2023_11_066
crossref_primary_10_1016_j_seppur_2024_126320
crossref_primary_10_1016_j_mcat_2024_114484
crossref_primary_10_1016_j_jclepro_2022_134114
crossref_primary_10_1021_acsestengg_3c00613
crossref_primary_10_3390_catal13020329
crossref_primary_10_1016_j_seppur_2023_125409
crossref_primary_10_1016_j_dwt_2025_101024
crossref_primary_10_2139_ssrn_4045300
crossref_primary_10_1016_j_cej_2022_136483
crossref_primary_10_1016_j_chemosphere_2023_137915
crossref_primary_10_1016_j_cej_2022_138302
crossref_primary_10_1016_j_seppur_2024_128616
crossref_primary_10_1016_j_jhazmat_2023_132219
crossref_primary_10_1016_j_surfin_2023_103390
crossref_primary_10_1016_j_desal_2022_116243
crossref_primary_10_1016_j_seppur_2022_121548
crossref_primary_10_1007_s11356_023_27430_2
crossref_primary_10_1016_j_chemosphere_2023_140150
crossref_primary_10_1016_j_jhazmat_2022_128958
crossref_primary_10_1016_j_cej_2023_141885
crossref_primary_10_1016_j_jece_2024_112557
crossref_primary_10_1016_j_jece_2024_113889
crossref_primary_10_1039_D4CY00482E
crossref_primary_10_1016_j_jece_2024_115029
crossref_primary_10_1016_j_jece_2024_114338
crossref_primary_10_1016_j_jallcom_2023_172898
crossref_primary_10_1016_j_jscs_2024_101940
crossref_primary_10_1016_j_jclepro_2023_136631
crossref_primary_10_1016_j_jclepro_2023_139104
crossref_primary_10_1016_j_jclepro_2023_139221
crossref_primary_10_1039_D4EN00859F
crossref_primary_10_1016_j_arabjc_2023_105483
crossref_primary_10_1016_j_chemosphere_2024_143152
crossref_primary_10_1016_j_envpol_2023_121990
crossref_primary_10_1039_D3NJ04403C
crossref_primary_10_1016_j_jcis_2024_10_003
crossref_primary_10_1016_j_seppur_2024_127341
crossref_primary_10_2139_ssrn_4158285
crossref_primary_10_1016_j_ecoenv_2024_115929
crossref_primary_10_1016_j_cej_2024_156731
crossref_primary_10_1016_j_seppur_2024_126656
crossref_primary_10_1038_s41545_023_00245_x
crossref_primary_10_1016_j_cej_2024_149379
crossref_primary_10_1016_j_colsurfa_2023_130958
Cites_doi 10.1016/j.jhazmat.2019.120742
10.1016/j.apcatb.2020.118827
10.1016/j.apcatb.2008.09.026
10.1016/j.scib.2018.02.002
10.1016/j.cej.2018.11.201
10.1016/j.chemosphere.2019.01.049
10.1016/j.cej.2019.123620
10.1016/j.carbon.2019.09.033
10.1016/j.jhazmat.2020.123297
10.1016/j.cej.2020.124371
10.1021/acs.est.0c07274
10.1016/j.scitotenv.2019.133963
10.1039/C8TA04615H
10.1016/j.chemosphere.2008.08.043
10.1016/j.jhazmat.2018.08.028
10.1016/j.apcatb.2015.06.017
10.1039/C8TA08801B
10.1016/j.apcatb.2019.118157
10.1016/j.apcatb.2019.118250
10.1016/j.cej.2017.04.018
10.1021/acssuschemeng.0c00882
10.1016/j.apcatb.2020.119605
10.1016/j.jhazmat.2020.124436
10.1016/j.watres.2020.116246
10.1016/j.jenvman.2018.08.030
10.1021/acs.est.9b07245
10.1021/acs.est.8b03340
10.1016/j.jcis.2018.01.016
10.1016/j.apcatb.2020.118874
10.1016/j.chemosphere.2018.04.023
10.1039/C8RA09841G
10.1016/j.jcis.2020.10.120
10.1016/j.jhazmat.2020.124199
10.1016/j.jhazmat.2020.122051
10.1039/c3cp44363a
10.1016/j.jhazmat.2019.121998
10.1016/j.scitotenv.2019.01.190
10.1016/j.jhazmat.2020.122316
10.1016/j.cej.2019.04.007
10.1039/C4CS00236A
10.1016/j.nanoen.2020.104761
10.1016/j.seppur.2018.09.055
10.1016/j.apcatb.2017.08.088
10.1016/j.cej.2018.09.111
10.1016/j.cej.2018.04.215
10.1021/acs.est.7b04503
10.1021/acs.est.9b01449
10.1016/j.cej.2017.06.067
10.1063/1.555805
10.1021/acs.est.7b00040
10.1021/acscatal.6b02303
10.1016/j.cej.2020.125676
10.1016/j.cej.2020.125915
10.1016/j.jallcom.2020.153757
10.1039/C7TA10351D
10.1016/j.cej.2020.127957
10.1016/j.cej.2018.11.074
10.1016/j.jhazmat.2020.122884
10.1016/j.jhazmat.2018.04.021
10.1016/j.envpol.2020.116092
10.1016/j.cej.2018.08.192
10.1021/acs.jpclett.9b03597
10.1016/j.cej.2020.128392
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.11.097
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 517
ExternalDocumentID 34838311
10_1016_j_jcis_2021_11_097
S0021979721020051
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c389t-c72c42fc383252938785ecd2a3d9dea70e2375ab5fd6de47c0d13570a0d265813
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Tue Aug 05 10:21:41 EDT 2025
Thu Jul 10 19:31:21 EDT 2025
Wed Feb 19 02:28:11 EST 2025
Tue Jul 01 01:19:14 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cu-doped Ni-LDH
Oxygen vacancies
Superoxide radicals
Peroxymonosulfate
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-c72c42fc383252938785ecd2a3d9dea70e2375ab5fd6de47c0d13570a0d265813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34838311
PQID 2604459639
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2636777892
proquest_miscellaneous_2604459639
pubmed_primary_34838311
crossref_primary_10_1016_j_jcis_2021_11_097
crossref_citationtrail_10_1016_j_jcis_2021_11_097
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_11_097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wu, Hong, Zhang, Chen, Wang, Dong (b0200) 2020; 385
Guo, Hu, Meng, Sun, Han (b0155) 2020; 260
Zhao, Niu, Zhang, Guo, Wen, Liang, Zeng (b0215) 2018; 204
Zhao, An, Dong, Feng, Wei, Ren, Ma (b0120) 2020; 388
Zhang, Li, Lyu, Hu (b0205) 2020; 270
Yu, Zhao, Zhao, Cui (b0090) 2020; 390
Yan, Li, Peng, Zhang, Zhang, Lai (b0285) 2019; 359
Duan, Su, Miao, Zhong, Shao, Wang, Sun (b0300) 2018; 220
Li, Yan, Jiang, Gao, Xue, Li, Liu, Wang (b0150) 2020; 269
Kohantorabi, Moussavi, Giannakis (b0020) 2021; 411
Yang, Dai, Yao, Chen, Liu, Luo (b0310) 2017; 322
Ye, Wu, Wu, Wang, Niu, Yang, Chen, Rehman, Zhu (b0045) 2020; 185
Li, Shang, Yang, Shen, Ai, Zhang (b0080) 2017; 51
Huang, Su, Han, Zhou, Qian, Gao (b0060) 2020; 389
Huang, Tian, Nie, Yang, Wang (b0115) 2018; 360
Lu, Sui, Yuan, Wang, Lv (b0230) 2019; 357
Zeng, Deng, Shi, Luo, Crittenden (b0250) 2019; 7
Wu, Zhang, Hong, Dong, Wang (b0095) 2019; 221
Hu, Zhu, Zhou (b0025) 2021; 270
Li, Hou, Yan, Shan, Meng, Zhao (b0255) 2020; 398
Guo, Wang, Yang, Fida, You, Zhou (b0195) 2020; 262
Chen, Nengzi, Li, Gao, Zhu, Cheng (b0225) 2019; 695
Glisenti, Pacella, Guiotto, Natile, Canu (b0145) 2016; 180
Yue, Yan, Guo, Qian, Zhao (b0040) 2020; 11
Yue, Qian, Ren, Fang, Jia, Zhao (b0125) 2018; 63
Zhou, Luo, Xie, Wang, Wang, Chen, Xiao, Chen (b0050) 2021; 282
Zeng, Zhang, Deng, Luo, Zhou, Liu, Pei, Shi, Crittenden (b0220) 2018; 515
Zhan, Zhang, Mi, Zhao, Hu, Lyu (b0085) 2020; 54
Zhou, Li, Zhao, Liu, Yu, Jiang, Jiao (b0245) 2019; 30
Hou, Li, Yang, Chen, Wang, Ma, Wu, Zhu, Huang, Wang (b0035) 2019; 663
Huang, Su, Zhou, Shu, Huang, Gao, Qian (b0075) 2017; 328
Yan, Peng, Lai, Ji, Zhang, Lai, Chen, Yao, Chen, Song (b0180) 2018; 52
Fanaei, Moussavi, Srivastava, Sillanpää (b0015) 2019; 371
Zhu, Zhu, Zhang, Lu, Qiu (b0235) 2019; 9
Zhu, Shi, Zhu, Yang (b0130) 2020; 73
Chen, Zhang, Li, Wang, Duan (b0135) 2018; 6
Liang, Huang, Mohanty, Kurakalva (b0140) 2008; 73
Ma, Chen, Yang, Zhong, Shu, Yao, Xie, Li, Wang, Zeng (b0275) 2018; 227
Shahzad, Jawad, Ifthikar, Chen, Chen (b0055) 2019; 155
Lim, Yang, Hoffmann (b0185) 2019; 53
Gholami, Dinpazhoh, Khataee, Hassani, Bhatnagar (b0070) 2020; 381
Zeng, Deng, Zhang, Zhou, Shi (b0165) 2020; 400
Wang, Lan, Peng, Wang (b0290) 2021; 408
Sun, Gao, Lei, Xie (b0105) 2015; 44
Hao, Hu, Xing, Zhou (b0010) 2020; 823
Guo, Nengzi, Chen, Li, Zhang, Cheng (b0240) 2020; 398
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution, 17 (1988) 375.
Wang, Wang (b0280) 2021; 411
Miao, Duan, Li, Dai, Liu, Wang, Zhou, Shao (b0100) 2019; 355
He, Wan, Zhou (b0210) 2021; 405
Xu, Zhong, Yan, Kang, Yao (b0170) 2018; 6
Su, Duan, Miao, Zhong, Zhou, Wang, Shao (b0270) 2017; 7
Shahzad, Ali, Ifthikar, Aregay, Zhu, Chen, Chen (b0065) 2020; 392
Zhu, Chen, Li, Zhou, Lan (b0175) 2019; 209
Qin, Fang, Wang, Zhou (b0315) 2018; 348
Bu, Li, Yu, Pan, Li, Wang, Pu, Ding, Gao, Pan (b0295) 2021; 55
Jin, Tian, Nie, Zhou, Yang, Li, Lu (b0190) 2017; 51
You, Sun, Su, Ao, Liu, Yao, Lai (b0265) 2020; 400
Hong (b0260) 2019; 10
Kuklja, Kotomin, Merkle, Mastrikov, Maier (b0325) 2013; 15
Yue, Guo, Yan, Wang, Fang, Wu, Qian, Zhao (b0030) 2019; 360
Lin, Ferronato, Deng, Wu, Chovelon (b0005) 2009; 88
Yin, Yao, Pi, Zhong, He, Hou, Fu, Chen, Tao, Wang, Li, Yang (b0305) 2021; 586
Lu, Wang, Chen, Yu, Ye, Quan (b0160) 2018; 353
Zhu, Miao, Guan, Zhong, Ran, Wang, Zhou, Shao (b0110) 2020; 8
Yan (10.1016/j.jcis.2021.11.097_b0285) 2019; 359
Hou (10.1016/j.jcis.2021.11.097_b0035) 2019; 663
Guo (10.1016/j.jcis.2021.11.097_b0240) 2020; 398
Shahzad (10.1016/j.jcis.2021.11.097_b0055) 2019; 155
Chen (10.1016/j.jcis.2021.11.097_b0135) 2018; 6
Guo (10.1016/j.jcis.2021.11.097_b0155) 2020; 260
Yan (10.1016/j.jcis.2021.11.097_b0180) 2018; 52
Zhu (10.1016/j.jcis.2021.11.097_b0175) 2019; 209
Wang (10.1016/j.jcis.2021.11.097_b0290) 2021; 408
Bu (10.1016/j.jcis.2021.11.097_b0295) 2021; 55
Lim (10.1016/j.jcis.2021.11.097_b0185) 2019; 53
Zhan (10.1016/j.jcis.2021.11.097_b0085) 2020; 54
Huang (10.1016/j.jcis.2021.11.097_b0075) 2017; 328
Liang (10.1016/j.jcis.2021.11.097_b0140) 2008; 73
He (10.1016/j.jcis.2021.11.097_b0210) 2021; 405
Zhang (10.1016/j.jcis.2021.11.097_b0205) 2020; 270
Zeng (10.1016/j.jcis.2021.11.097_b0165) 2020; 400
Xu (10.1016/j.jcis.2021.11.097_b0170) 2018; 6
Yue (10.1016/j.jcis.2021.11.097_b0125) 2018; 63
Guo (10.1016/j.jcis.2021.11.097_b0195) 2020; 262
Yu (10.1016/j.jcis.2021.11.097_b0090) 2020; 390
Yin (10.1016/j.jcis.2021.11.097_b0305) 2021; 586
Li (10.1016/j.jcis.2021.11.097_b0255) 2020; 398
Lin (10.1016/j.jcis.2021.11.097_b0005) 2009; 88
Zhu (10.1016/j.jcis.2021.11.097_b0235) 2019; 9
Zhou (10.1016/j.jcis.2021.11.097_b0050) 2021; 282
Wang (10.1016/j.jcis.2021.11.097_b0280) 2021; 411
Yang (10.1016/j.jcis.2021.11.097_b0310) 2017; 322
Su (10.1016/j.jcis.2021.11.097_b0270) 2017; 7
Hu (10.1016/j.jcis.2021.11.097_b0025) 2021; 270
Sun (10.1016/j.jcis.2021.11.097_b0105) 2015; 44
Ma (10.1016/j.jcis.2021.11.097_b0275) 2018; 227
Huang (10.1016/j.jcis.2021.11.097_b0060) 2020; 389
Glisenti (10.1016/j.jcis.2021.11.097_b0145) 2016; 180
Li (10.1016/j.jcis.2021.11.097_b0080) 2017; 51
Wu (10.1016/j.jcis.2021.11.097_b0095) 2019; 221
Chen (10.1016/j.jcis.2021.11.097_b0225) 2019; 695
Miao (10.1016/j.jcis.2021.11.097_b0100) 2019; 355
Kuklja (10.1016/j.jcis.2021.11.097_b0325) 2013; 15
Fanaei (10.1016/j.jcis.2021.11.097_b0015) 2019; 371
Zeng (10.1016/j.jcis.2021.11.097_b0250) 2019; 7
Hong (10.1016/j.jcis.2021.11.097_b0260) 2019; 10
Zeng (10.1016/j.jcis.2021.11.097_b0220) 2018; 515
Li (10.1016/j.jcis.2021.11.097_b0150) 2020; 269
Duan (10.1016/j.jcis.2021.11.097_b0300) 2018; 220
Zhu (10.1016/j.jcis.2021.11.097_b0130) 2020; 73
Ye (10.1016/j.jcis.2021.11.097_b0045) 2020; 185
Gholami (10.1016/j.jcis.2021.11.097_b0070) 2020; 381
Jin (10.1016/j.jcis.2021.11.097_b0190) 2017; 51
Zhao (10.1016/j.jcis.2021.11.097_b0120) 2020; 388
Huang (10.1016/j.jcis.2021.11.097_b0115) 2018; 360
You (10.1016/j.jcis.2021.11.097_b0265) 2020; 400
Lu (10.1016/j.jcis.2021.11.097_b0230) 2019; 357
Lu (10.1016/j.jcis.2021.11.097_b0160) 2018; 353
Wu (10.1016/j.jcis.2021.11.097_b0200) 2020; 385
Shahzad (10.1016/j.jcis.2021.11.097_b0065) 2020; 392
Yue (10.1016/j.jcis.2021.11.097_b0030) 2019; 360
Zhou (10.1016/j.jcis.2021.11.097_b0245) 2019; 30
Qin (10.1016/j.jcis.2021.11.097_b0315) 2018; 348
Zhu (10.1016/j.jcis.2021.11.097_b0110) 2020; 8
Zhao (10.1016/j.jcis.2021.11.097_b0215) 2018; 204
Kohantorabi (10.1016/j.jcis.2021.11.097_b0020) 2021; 411
Hao (10.1016/j.jcis.2021.11.097_b0010) 2020; 823
Yue (10.1016/j.jcis.2021.11.097_b0040) 2020; 11
10.1016/j.jcis.2021.11.097_b0320
References_xml – volume: 405
  start-page: 124199
  year: 2021
  ident: b0210
  article-title: ZIF-8 derived Fe-N coordination moieties anchored carbon nanocubes for efficient peroxymonosulfate activation via non-radical pathways: role of FeNx sites
  publication-title: J. Hazard. Mater.
– volume: 400
  start-page: 123297
  year: 2020
  ident: b0165
  article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation
  publication-title: J. Hazard. Mater.
– volume: 389
  start-page: 122051
  year: 2020
  ident: b0060
  article-title: Efficient activation of intercalated persulfate via a composite of reduced graphene oxide and layered double hydroxide
  publication-title: J. Hazard. Mater.
– volume: 51
  start-page: 12699
  year: 2017
  end-page: 12706
  ident: b0190
  article-title: Oxygen vacancy promoted heterogeneous fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe
  publication-title: Environ. Sci. Technol.
– volume: 270
  start-page: 116092
  year: 2021
  ident: b0025
  article-title: Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: mechanistic insight into radical and nonradical evolution
  publication-title: Environ. Pollut.
– volume: 282
  start-page: 119605
  year: 2021
  ident: b0050
  article-title: Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: distinguished Radical/Nonradical species and generation pathways
  publication-title: Appl. Catal. B Environ.
– volume: 204
  start-page: 11
  year: 2018
  end-page: 21
  ident: b0215
  article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate
  publication-title: Chemosphere.
– volume: 270
  start-page: 118874
  year: 2020
  ident: b0205
  article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification
  publication-title: Appl. Catal. B Environ.
– volume: 15
  start-page: 5443
  year: 2013
  ident: b0325
  article-title: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells
  publication-title: Phys. Chem. Chem. Phys.
– volume: 515
  start-page: 92
  year: 2018
  end-page: 100
  ident: b0220
  article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: catalytic performance, mechanism and kinetic modeling
  publication-title: J. Colloid Interface Sci.
– volume: 398
  start-page: 125676
  year: 2020
  ident: b0240
  article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 5685
  year: 2017
  end-page: 5694
  ident: b0080
  article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 388
  year: 2017
  end-page: 397
  ident: b0270
  article-title: Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: a mechanistic study
  publication-title: ACS Catal.
– volume: 400
  start-page: 125915
  year: 2020
  ident: b0265
  article-title: Degradation of bisphenol A by peroxymonosulfate activated with oxygen vacancy modified nano-NiO-ZnO composite oxides: a typical surface-bound radical system
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 5999
  year: 2018
  end-page: 6006
  ident: b0170
  article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts
  publication-title: J. Mater. Chem. A.
– volume: 185
  start-page: 116246
  year: 2020
  ident: b0045
  article-title: Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: performance and mechanism
  publication-title: Water Res.
– volume: 328
  start-page: 66
  year: 2017
  end-page: 73
  ident: b0075
  article-title: Novel activation of persulfate by its intercalation into Mg/Al-layered double hydroxide: Enhancement of non-radical oxidation
  publication-title: Chem. Eng. J.
– volume: 392
  start-page: 122316
  year: 2020
  ident: b0065
  article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 342
  year: 2019
  end-page: 352
  ident: b0250
  article-title: Heterogeneous degradation of carbamazepine by Prussian blue analogues in the interlayers of layered double hydroxides: performance, mechanism and toxicity evaluation
  publication-title: J. Mater. Chem. A.
– reference: G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution, 17 (1988) 375.
– volume: 55
  start-page: 2110
  year: 2021
  end-page: 2120
  ident: b0295
  article-title: Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants
  publication-title: Environ. Sci. Technol.
– volume: 663
  start-page: 453
  year: 2019
  end-page: 464
  ident: b0035
  article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: performance and mechanism for organic pollutant degradation
  publication-title: Sci. Total Environ.
– volume: 355
  start-page: 721
  year: 2019
  end-page: 730
  ident: b0100
  article-title: Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element
  publication-title: Chem. Eng. J.
– volume: 260
  start-page: 118157
  year: 2020
  ident: b0155
  article-title: Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: defects facilitating hydroxyl radicals generation
  publication-title: Appl. Catal. B Environ.
– volume: 227
  start-page: 406
  year: 2018
  end-page: 414
  ident: b0275
  article-title: Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate
  publication-title: J. Environ. Manage.
– volume: 54
  start-page: 8333
  year: 2020
  end-page: 8343
  ident: b0085
  article-title: Efficient fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides
  publication-title: Environ. Sci. Technol.
– volume: 357
  start-page: 140
  year: 2019
  end-page: 149
  ident: b0230
  article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals
  publication-title: Chem. Eng. J.
– volume: 408
  start-page: 124436
  year: 2021
  ident: b0290
  article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review
  publication-title: J. Hazard. Mater.
– volume: 269
  start-page: 118827
  year: 2020
  ident: b0150
  article-title: Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect
  publication-title: Appl. Catal. B Environ.
– volume: 359
  start-page: 1097
  year: 2019
  end-page: 1110
  ident: b0285
  article-title: Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: Optimization, degradation pathways and toxicity evaluation
  publication-title: Chem. Eng. J.
– volume: 220
  start-page: 626
  year: 2018
  end-page: 634
  ident: b0300
  article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals
  publication-title: Appl. Catal. B Environ.
– volume: 411
  start-page: 127957
  year: 2021
  ident: b0020
  article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants
  publication-title: Chem. Eng. J.
– volume: 360
  start-page: 303
  year: 2018
  end-page: 310
  ident: b0115
  article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution
  publication-title: J. Hazard. Mater.
– volume: 411
  start-page: 128392
  year: 2021
  ident: b0280
  article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants
  publication-title: Chem. Eng. J.
– volume: 398
  start-page: 122884
  year: 2020
  ident: b0255
  article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways
  publication-title: J. Hazard. Mater.
– volume: 52
  start-page: 14302
  year: 2018
  end-page: 14310
  ident: b0180
  article-title: Activation CuFe
  publication-title: Environ. Sci. Technol.
– volume: 695
  start-page: 133963
  year: 2019
  ident: b0225
  article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide
  publication-title: Sci. Total Environ.
– volume: 88
  start-page: 32
  year: 2009
  end-page: 41
  ident: b0005
  article-title: Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism
  publication-title: Appl. Catal. B Environ.
– volume: 53
  start-page: 6972
  year: 2019
  end-page: 6980
  ident: b0185
  article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO
  publication-title: Environ. Sci. Technol.
– volume: 371
  start-page: 404
  year: 2019
  end-page: 413
  ident: b0015
  article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen
  publication-title: Chem. Eng. J.
– volume: 353
  start-page: 401
  year: 2018
  end-page: 409
  ident: b0160
  article-title: Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants
  publication-title: J. Hazard. Mater.
– volume: 360
  start-page: 97
  year: 2019
  end-page: 103
  ident: b0030
  article-title: Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation
  publication-title: Chem. Eng. J.
– volume: 221
  start-page: 412
  year: 2019
  end-page: 422
  ident: b0095
  article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4–x
  publication-title: Chemosphere.
– volume: 155
  start-page: 740
  year: 2019
  end-page: 755
  ident: b0055
  article-title: The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation
  publication-title: Carbon.
– volume: 8
  start-page: 6033
  year: 2020
  end-page: 6042
  ident: b0110
  article-title: Efficient wastewater remediation enabled by self-assembled perovskite oxide heterostructures with multiple reaction pathways
  publication-title: ACS Sustain. Chem. Eng.
– volume: 9
  start-page: 2284
  year: 2019
  end-page: 2291
  ident: b0235
  article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide
  publication-title: RSC Adv.
– volume: 180
  start-page: 94
  year: 2016
  end-page: 105
  ident: b0145
  article-title: Largely Cu-doped LaCo1−Cu O3 perovskites for TWC: toward new PGM-free catalysts
  publication-title: Appl. Catal. B Environ.
– volume: 209
  start-page: 1007
  year: 2019
  end-page: 1015
  ident: b0175
  article-title: Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: 18378
  year: 2018
  end-page: 18383
  ident: b0135
  article-title: Magnesium-regulated oxygen vacancies of nickel layered double hydroxides for electrocatalytic water oxidation
  publication-title: J. Mater. Chem. A.
– volume: 381
  start-page: 120742
  year: 2020
  ident: b0070
  article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium
  publication-title: J. Hazard. Mater.
– volume: 63
  start-page: 278
  year: 2018
  end-page: 281
  ident: b0125
  article-title: Secondary battery inspired α-nickel hydroxide as an efficient Ni-based heterogeneous catalyst for sulfate radical activation
  publication-title: Sci. Bull.
– volume: 44
  start-page: 623
  year: 2015
  end-page: 636
  ident: b0105
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
– volume: 586
  start-page: 551
  year: 2021
  end-page: 562
  ident: b0305
  article-title: Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: structure-function relationship and reaction mechanism
  publication-title: J. Colloid Interface Sci.
– volume: 348
  start-page: 526
  year: 2018
  end-page: 534
  ident: b0315
  article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: key role of superoxide radicals
  publication-title: Chem. Eng. J.
– volume: 823
  start-page: 153757
  year: 2020
  ident: b0010
  article-title: Synergistic degradation of methylparaben on CuFe2O4-rGO composite by persulfate activation
  publication-title: J. Alloys Compd.
– volume: 30
  start-page: 19009
  year: 2019
  end-page: 19019
  ident: b0245
  article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol
  publication-title: J. Mater. Sci.
– volume: 10
  year: 2019
  ident: b0260
  article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate_ Optimization, degradation pathways and mechanism
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 968
  year: 2020
  end-page: 973
  ident: b0040
  article-title: NiFe layered double hydroxide (LDH) nanosheet catalysts with fe as electron transfer mediator for enhanced persulfate activation
  publication-title: J. Phys. Chem. Lett.
– volume: 390
  start-page: 121998
  year: 2020
  ident: b0090
  article-title: Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation
  publication-title: J. Hazard. Mater.
– volume: 73
  start-page: 1540
  year: 2008
  end-page: 1543
  ident: b0140
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere.
– volume: 73
  start-page: 104761
  year: 2020
  ident: b0130
  article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction
  publication-title: Nano Energy.
– volume: 262
  start-page: 118250
  year: 2020
  ident: b0195
  article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Appl. Catal. B Environ.
– volume: 322
  start-page: 546
  year: 2017
  end-page: 555
  ident: b0310
  article-title: Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst
  publication-title: Chem. Eng. J.
– volume: 388
  start-page: 124371
  year: 2020
  ident: b0120
  article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism
  publication-title: Chem. Eng. J.
– volume: 385
  start-page: 123620
  year: 2020
  ident: b0200
  article-title: Deciphering highly resistant characteristics to different pHs of oxygen vacancy-rich Fe2Co1-LDH/PS system for bisphenol A degradation
  publication-title: Chem. Eng. J.
– volume: 381
  start-page: 120742
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0070
  article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.120742
– volume: 269
  start-page: 118827
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0150
  article-title: Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118827
– volume: 88
  start-page: 32
  issue: 1-2
  year: 2009
  ident: 10.1016/j.jcis.2021.11.097_b0005
  article-title: Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2008.09.026
– volume: 63
  start-page: 278
  issue: 5
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0125
  article-title: Secondary battery inspired α-nickel hydroxide as an efficient Ni-based heterogeneous catalyst for sulfate radical activation
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.02.002
– volume: 360
  start-page: 97
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0030
  article-title: Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.201
– volume: 221
  start-page: 412
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0095
  article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4–x
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2019.01.049
– volume: 385
  start-page: 123620
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0200
  article-title: Deciphering highly resistant characteristics to different pHs of oxygen vacancy-rich Fe2Co1-LDH/PS system for bisphenol A degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123620
– volume: 155
  start-page: 740
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0055
  article-title: The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2019.09.033
– volume: 400
  start-page: 123297
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0165
  article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123297
– volume: 388
  start-page: 124371
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0120
  article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124371
– volume: 10
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0260
  article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate_ Optimization, degradation pathways and mechanism
  publication-title: Chem. Eng. J.
– volume: 55
  start-page: 2110
  issue: 3
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0295
  article-title: Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c07274
– volume: 695
  start-page: 133963
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0225
  article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133963
– volume: 6
  start-page: 18378
  issue: 38
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0135
  article-title: Magnesium-regulated oxygen vacancies of nickel layered double hydroxides for electrocatalytic water oxidation
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA04615H
– volume: 73
  start-page: 1540
  issue: 9
  year: 2008
  ident: 10.1016/j.jcis.2021.11.097_b0140
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2008.08.043
– volume: 360
  start-page: 303
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0115
  article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.08.028
– volume: 180
  start-page: 94
  year: 2016
  ident: 10.1016/j.jcis.2021.11.097_b0145
  article-title: Largely Cu-doped LaCo1−Cu O3 perovskites for TWC: toward new PGM-free catalysts
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.06.017
– volume: 7
  start-page: 342
  issue: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0250
  article-title: Heterogeneous degradation of carbamazepine by Prussian blue analogues in the interlayers of layered double hydroxides: performance, mechanism and toxicity evaluation
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA08801B
– volume: 260
  start-page: 118157
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0155
  article-title: Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: defects facilitating hydroxyl radicals generation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118157
– volume: 262
  start-page: 118250
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0195
  article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118250
– volume: 322
  start-page: 546
  year: 2017
  ident: 10.1016/j.jcis.2021.11.097_b0310
  article-title: Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.018
– volume: 8
  start-page: 6033
  issue: 15
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0110
  article-title: Efficient wastewater remediation enabled by self-assembled perovskite oxide heterostructures with multiple reaction pathways
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00882
– volume: 282
  start-page: 119605
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0050
  article-title: Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: distinguished Radical/Nonradical species and generation pathways
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119605
– volume: 408
  start-page: 124436
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0290
  article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124436
– volume: 185
  start-page: 116246
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0045
  article-title: Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: performance and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116246
– volume: 227
  start-page: 406
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0275
  article-title: Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.08.030
– volume: 54
  start-page: 8333
  issue: 13
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0085
  article-title: Efficient fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07245
– volume: 52
  start-page: 14302
  issue: 24
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0180
  article-title: Activation CuFe 2 O 4 by hydroxylamine for oxidation of antibiotic sulfamethoxazole
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03340
– volume: 515
  start-page: 92
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0220
  article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: catalytic performance, mechanism and kinetic modeling
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.01.016
– volume: 270
  start-page: 118874
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0205
  article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118874
– volume: 204
  start-page: 11
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0215
  article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2018.04.023
– volume: 30
  start-page: 19009
  issue: 20
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0245
  article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol
  publication-title: J. Mater. Sci.
– volume: 9
  start-page: 2284
  issue: 4
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0235
  article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide
  publication-title: RSC Adv.
  doi: 10.1039/C8RA09841G
– volume: 586
  start-page: 551
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0305
  article-title: Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: structure-function relationship and reaction mechanism
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.10.120
– volume: 405
  start-page: 124199
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0210
  article-title: ZIF-8 derived Fe-N coordination moieties anchored carbon nanocubes for efficient peroxymonosulfate activation via non-radical pathways: role of FeNx sites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124199
– volume: 389
  start-page: 122051
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0060
  article-title: Efficient activation of intercalated persulfate via a composite of reduced graphene oxide and layered double hydroxide
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122051
– volume: 15
  start-page: 5443
  issue: 15
  year: 2013
  ident: 10.1016/j.jcis.2021.11.097_b0325
  article-title: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44363a
– volume: 390
  start-page: 121998
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0090
  article-title: Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121998
– volume: 663
  start-page: 453
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0035
  article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: performance and mechanism for organic pollutant degradation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.190
– volume: 392
  start-page: 122316
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0065
  article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122316
– volume: 371
  start-page: 404
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0015
  article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.007
– volume: 44
  start-page: 623
  issue: 3
  year: 2015
  ident: 10.1016/j.jcis.2021.11.097_b0105
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 73
  start-page: 104761
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0130
  article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2020.104761
– volume: 209
  start-page: 1007
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0175
  article-title: Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.09.055
– volume: 220
  start-page: 626
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0300
  article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.08.088
– volume: 357
  start-page: 140
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0230
  article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.111
– volume: 348
  start-page: 526
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0315
  article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: key role of superoxide radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.215
– volume: 51
  start-page: 12699
  issue: 21
  year: 2017
  ident: 10.1016/j.jcis.2021.11.097_b0190
  article-title: Oxygen vacancy promoted heterogeneous fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe 3 O 4 @FeOOH nanocomposite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04503
– volume: 53
  start-page: 6972
  issue: 12
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0185
  article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO 2 nanotubes for the removal of organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01449
– volume: 328
  start-page: 66
  year: 2017
  ident: 10.1016/j.jcis.2021.11.097_b0075
  article-title: Novel activation of persulfate by its intercalation into Mg/Al-layered double hydroxide: Enhancement of non-radical oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.067
– ident: 10.1016/j.jcis.2021.11.097_b0320
  doi: 10.1063/1.555805
– volume: 51
  start-page: 5685
  issue: 10
  year: 2017
  ident: 10.1016/j.jcis.2021.11.097_b0080
  article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00040
– volume: 7
  start-page: 388
  issue: 1
  year: 2017
  ident: 10.1016/j.jcis.2021.11.097_b0270
  article-title: Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: a mechanistic study
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02303
– volume: 398
  start-page: 125676
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0240
  article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125676
– volume: 400
  start-page: 125915
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0265
  article-title: Degradation of bisphenol A by peroxymonosulfate activated with oxygen vacancy modified nano-NiO-ZnO composite oxides: a typical surface-bound radical system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125915
– volume: 823
  start-page: 153757
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0010
  article-title: Synergistic degradation of methylparaben on CuFe2O4-rGO composite by persulfate activation
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.153757
– volume: 6
  start-page: 5999
  issue: 14
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0170
  article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA10351D
– volume: 411
  start-page: 127957
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0020
  article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127957
– volume: 359
  start-page: 1097
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0285
  article-title: Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: Optimization, degradation pathways and toxicity evaluation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.074
– volume: 398
  start-page: 122884
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0255
  article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122884
– volume: 353
  start-page: 401
  year: 2018
  ident: 10.1016/j.jcis.2021.11.097_b0160
  article-title: Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.04.021
– volume: 270
  start-page: 116092
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0025
  article-title: Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: mechanistic insight into radical and nonradical evolution
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116092
– volume: 355
  start-page: 721
  year: 2019
  ident: 10.1016/j.jcis.2021.11.097_b0100
  article-title: Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.192
– volume: 11
  start-page: 968
  issue: 3
  year: 2020
  ident: 10.1016/j.jcis.2021.11.097_b0040
  article-title: NiFe layered double hydroxide (LDH) nanosheet catalysts with fe as electron transfer mediator for enhanced persulfate activation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03597
– volume: 411
  start-page: 128392
  year: 2021
  ident: 10.1016/j.jcis.2021.11.097_b0280
  article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128392
SSID ssj0011559
Score 2.6474426
Snippet [Display omitted] •Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by...
Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting Ni...
Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 504
SubjectTerms 4-hydroxybenzoic acid
catalytic activity
Cu-doped Ni-LDH
dissolved oxygen
oxidation
Oxygen
Oxygen vacancies
Parabens
Peroxides
Peroxymonosulfate
singlet oxygen
sulfates
Superoxide radicals
Superoxides
Title Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: key role of superoxide radicals
URI https://dx.doi.org/10.1016/j.jcis.2021.11.097
https://www.ncbi.nlm.nih.gov/pubmed/34838311
https://www.proquest.com/docview/2604459639
https://www.proquest.com/docview/2636777892
Volume 610
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMpreVSDxA25jWM7jrlVC9Xy2hOVeosS21FTrZIVu6m6PfTH8EuZyWMFEuyBY6JJZGUm48_2N98w9tYnzktcJ3MvCseVTQW3hSl5YV2UUoCEmOqdv82T2Zn6fK7P99h0rIUhWuWQ-_uc3mXr4c7x8DWPl1VFNb74txlSn4loa6SrYFeGovzodkvzEHTs1tM8cBRoPRTO9ByvS1eRZHcsjkjJk4Sf_j45_Qt8dpPQ6UP2YECPcNIP8BHbC_UBuzsdm7YdsPu_6Qs-Zj-nLffNMniYV_zrhxnQrivkBVV_1GtorjcYPnCVu65F7woQwEKoLzpSAFBv6c0CFL_YeOK6FKG-aRCZgid9ib4VE1xVOZDU-PUGw7lZtYuSLKhYot_qfQ-YJIAojNCUsGo728oHwDdQeKyesLPTj9-nMz40ZeAOsc2aOxM7FZd4IWONWAEdqoPzcS699SEn50qj80KXPvFBGRd5IbWJ8sjHiHaEfMr266YOzxkglBReS-vpKDcXMsWlZuqsVQ5nUJUmEyZGb2RuUCynxhmLbKSmXWbkwYw8iEuZDD04Ye-2zyx7vY6d1np0cvZH1GU4oex87s0YERk6mM5Y8jo0LRolkVIas5rdZSMTY0xq4wl71ofTdqxSpfhlhXjxnyN7ye7FVKBBjEP9iu2vf7ThNcKmdXHY_ReH7M7Jpy-z-S9iOhhf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcEC2PLlAYJG7IbRzbeXCrtlQLbPfUSr1Zie2oqVbJit1UXQ78GH4pM3msQII9cNzVJLIy4_Fn-5tvGHvvIusk7pO5E7nlKk0ET_O44Hlqg4QCxIdU73wxiyZX6su1vt5h46EWhmiVfe7vcnqbrft_TvqvebIoS6rxxdkWk_pMQEcjuAV6oHD6UhuD4x8bnoege7eO54HDQPO-cqYjed3akjS7Q3FMUp6k_PT31elf6LNdhc6fsMc9fITTboT7bMdXB2xvPHRtO2CPfhMYfMp-jhvu6oV3MCv59GwCdOwKWU7lH9UK6vs1xg_cZbbt0bsERLDgq5uWFQDUXHo9B8Vv1o7ILrmvvtcITcGRwETXiwnuygxIa_x-jfFcL5t5QRZULdGd9X4EzBJAHEaoC1g2rW3pPOAbKD6Wz9jV-afL8YT3XRm4RXCz4jYOrQoL_CFDjWABPaq9dWEmXep8Rt6Vsc5yXbjIeRXbwAmp4yALXIhwR8jnbLeqK3_IALGkcFqmju5yMyET3GsmNk2VxSVUJdGIicEbxvaS5dQ5Y24GbtqtIQ8a8iDuZQx6cMQ-bJ5ZdIIdW6314GTzR9gZXFG2PvduiAiDDqZLlqzydYNGUaCUxrSWbrORURzHSRqO2IsunDZjlSrBLyvEy_8c2Vu2N7m8mJrp59nXV-xhSNUaRD_Ur9nu6lvjjxBDrfI37Rz5BZuNGe0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-doped+Ni-LDH+with+abundant+oxygen+vacancies+for+enhanced+methyl+4-hydroxybenzoate+degradation+via+peroxymonosulfate+activation%3A+key+role+of+superoxide+radicals&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhu%2C+Jingyi&rft.au=Zhu%2C+Yixin&rft.au=Zhou%2C+Wenjun&rft.date=2022-03-15&rft.issn=0021-9797&rft.volume=610+p.504-517&rft.spage=504&rft.epage=517&rft_id=info:doi/10.1016%2Fj.jcis.2021.11.097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon