Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: key role of superoxide radicals
[Display omitted] •Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by NixCu-LDHs.•O2•− and 1O2 worked as the main ROSs in Ni15Cu-LDHs/PMS system.•DO or adsorbed oxygen could acquire electron from OVs to generate O...
Saved in:
Published in | Journal of colloid and interface science Vol. 610; pp. 504 - 517 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by NixCu-LDHs.•O2•− and 1O2 worked as the main ROSs in Ni15Cu-LDHs/PMS system.•DO or adsorbed oxygen could acquire electron from OVs to generate O2•−.•Synergy among Mn+/M(n+1)+ and active oxygen species ensured ROS generation.
Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•−) and singlet oxygen (1O2), rather than sulfate radicals (SO4•−) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•−and •OH, and demonstrated that O2•− and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•− mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems. |
---|---|
AbstractList | Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting Ni
Cu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of Ni
Cu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into Ni
Cu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O
) and singlet oxygen (
O
), rather than sulfate radicals (SO
) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni
Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO
and •OH, and demonstrated that O
and
O
concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O
mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni
Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni
Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems. Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NiₓCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NiₓCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NiₓCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O₂•⁻) and singlet oxygen (¹O₂), rather than sulfate radicals (SO₄•⁻) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni₁₅Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO₄•⁻and •OH, and demonstrated that O₂•⁻ and ¹O₂ concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O₂•⁻ mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni₁₅Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni₁₅Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems. Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•-) and singlet oxygen (1O2), rather than sulfate radicals (SO4•-) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•-and •OH, and demonstrated that O2•- and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•- mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems.Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•-) and singlet oxygen (1O2), rather than sulfate radicals (SO4•-) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•-and •OH, and demonstrated that O2•- and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•- mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems. [Display omitted] •Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by NixCu-LDHs.•O2•− and 1O2 worked as the main ROSs in Ni15Cu-LDHs/PMS system.•DO or adsorbed oxygen could acquire electron from OVs to generate O2•−.•Synergy among Mn+/M(n+1)+ and active oxygen species ensured ROS generation. Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting NixCu-LDHs were investigated for peroxymonosulfate (PMS) activation and methyl 4-hydroxybenzoate (MeP) degradation. Compared with that of Ni-LDH, the catalytic performance of NixCu-LDHs were significantly enhanced and increased with increasing OV content in the catalysts, indicating that Cu doping introduced OVs into NixCu-LDHs and greatly improved their catalytic activity with PMS. Quenching experiments and EPR analyses confirmed that oxidation processes dominated by superoxide radicals (O2•−) and singlet oxygen (1O2), rather than sulfate radicals (SO4•−) or hydroxyl radicals (•OH) used by traditional LDH catalysts, were responsible for MeP degradation by Ni15Cu-LDHs. In addition, quenching experiments with different systems showed the fate of reduced SO4•−and •OH, and demonstrated that O2•− and 1O2 concentrations grew with increasing OV content, confirming that the presence of OVs affected the process of PMS activation. Notably, O2•− mainly originated from adsorbed oxygen or dissolved oxygen (DO) by acquiring electrons from OVs in Ni15Cu-LDHs, since OVs possess abundant localized electrons. Consequently, an OV-mediated oxidative mechanism was proposed for Ni15Cu-LDHs/PMS. This study provides new clues for enhancing the catalytic performance of LDH catalysts by introducing OVs via metal doping in PMS-based AOPs systems. |
Author | Zhou, Wenjun Zhu, Jingyi Zhu, Yixin |
Author_xml | – sequence: 1 givenname: Jingyi surname: Zhu fullname: Zhu, Jingyi organization: Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 2 givenname: Yixin surname: Zhu fullname: Zhu, Yixin organization: Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 3 givenname: Wenjun surname: Zhou fullname: Zhou, Wenjun email: wenjunzhou@zju.edu.cn organization: Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34838311$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkbuO1DAUQC20iJ1d-AEK5JImwY8kjhENGh6LNIIGastj3-x4SOLBdgbC5_ClODMLBcWKyrryObe45wpdjH4EhJ5SUlJCmxf7cm9cLBlhtKS0JFI8QCtKZF0ISvgFWpH8U0ghxSW6inFPCKV1LR-hS161vOWUrtCv9VRYfwCLP7pi8-YGf3dph_V2Gq0eE_Y_5lsY8VEbPRoHEXc-YBh3ecrKAGk397gqdrMNGd3C-NPrBNjCbdBWJ-ez6zQ-wPI9-NHHqe8WQpvkjifgJf4KMw6-B-w7HKcT6yzgvMEZ3cfH6GGXH3hy916jL-_efl7fFJtP7z-sX28Kw1uZCiOYqViXB85qJnkr2hqMZZpbaUELAoyLWm_rzjYWKmGIpbwWRBPLmrql_Bo9P-89BP9tgpjU4KKBvtcj-Ckq1vBGCNFK9h8oqapaNlxm9NkdOm0HsOoQ3KDDrP4kyAA7Ayb4GAN0fxFK1NJZ7dXSWS2dFaUqd85S-49kXDqdMwXt-vvVV2cV8i2PDoKKuezS0wUwSVnv7tN_A0DXxko |
CitedBy_id | crossref_primary_10_1039_D3QI00962A crossref_primary_10_1016_j_cej_2023_145267 crossref_primary_10_1016_j_apmt_2025_102640 crossref_primary_10_2139_ssrn_4130244 crossref_primary_10_1002_smll_202401796 crossref_primary_10_1007_s13762_024_05824_0 crossref_primary_10_1016_j_seppur_2024_128023 crossref_primary_10_1016_j_envpol_2023_121811 crossref_primary_10_1016_j_seppur_2023_125311 crossref_primary_10_3390_molecules29194535 crossref_primary_10_1016_j_inoche_2024_113028 crossref_primary_10_1016_j_jclepro_2023_139600 crossref_primary_10_1016_j_ces_2024_119945 crossref_primary_10_1016_j_cej_2023_144323 crossref_primary_10_1016_j_jcis_2023_08_124 crossref_primary_10_1016_j_jece_2023_111771 crossref_primary_10_1039_D4NJ02091J crossref_primary_10_1016_j_jece_2024_113814 crossref_primary_10_1016_j_jece_2024_111872 crossref_primary_10_1039_D3CY00664F crossref_primary_10_1002_ange_202305639 crossref_primary_10_1016_j_apcatb_2024_124433 crossref_primary_10_1016_j_apcatb_2022_121704 crossref_primary_10_1016_j_jenvman_2022_116323 crossref_primary_10_1016_j_inoche_2024_112112 crossref_primary_10_1016_j_jcis_2022_08_193 crossref_primary_10_1016_j_jcis_2024_08_155 crossref_primary_10_1134_S1070363224040236 crossref_primary_10_1016_j_jece_2024_114806 crossref_primary_10_1016_j_jhazmat_2022_130440 crossref_primary_10_1016_j_jece_2023_109422 crossref_primary_10_1016_j_colsurfa_2024_135415 crossref_primary_10_1016_j_clay_2024_107323 crossref_primary_10_3390_cryst12060790 crossref_primary_10_1007_s00604_022_05571_4 crossref_primary_10_1016_j_seppur_2022_123026 crossref_primary_10_1016_j_watres_2023_119843 crossref_primary_10_1016_j_jece_2023_111078 crossref_primary_10_1016_j_apsusc_2023_158202 crossref_primary_10_2139_ssrn_4122750 crossref_primary_10_1016_j_jcis_2022_04_094 crossref_primary_10_3390_catal14120860 crossref_primary_10_3390_w16010121 crossref_primary_10_1016_j_cej_2024_156532 crossref_primary_10_1016_j_cherd_2024_11_024 crossref_primary_10_1016_j_cej_2024_157225 crossref_primary_10_1016_j_jhazmat_2023_130971 crossref_primary_10_1016_j_jcis_2022_07_162 crossref_primary_10_1016_j_chemosphere_2022_135132 crossref_primary_10_1016_j_seppur_2023_125900 crossref_primary_10_1016_j_cej_2023_146157 crossref_primary_10_3390_molecules29133185 crossref_primary_10_1016_j_cej_2023_147525 crossref_primary_10_1016_j_envres_2023_116534 crossref_primary_10_1039_D4RA03366C crossref_primary_10_1021_acs_langmuir_4c02376 crossref_primary_10_1016_j_jwpe_2024_104996 crossref_primary_10_1016_j_jcis_2024_08_171 crossref_primary_10_1016_j_jtice_2024_105695 crossref_primary_10_1016_j_cej_2024_156245 crossref_primary_10_1016_j_jclepro_2022_134514 crossref_primary_10_1002_anie_202305639 crossref_primary_10_1016_j_psep_2023_11_066 crossref_primary_10_1016_j_seppur_2024_126320 crossref_primary_10_1016_j_mcat_2024_114484 crossref_primary_10_1016_j_jclepro_2022_134114 crossref_primary_10_1021_acsestengg_3c00613 crossref_primary_10_3390_catal13020329 crossref_primary_10_1016_j_seppur_2023_125409 crossref_primary_10_1016_j_dwt_2025_101024 crossref_primary_10_2139_ssrn_4045300 crossref_primary_10_1016_j_cej_2022_136483 crossref_primary_10_1016_j_chemosphere_2023_137915 crossref_primary_10_1016_j_cej_2022_138302 crossref_primary_10_1016_j_seppur_2024_128616 crossref_primary_10_1016_j_jhazmat_2023_132219 crossref_primary_10_1016_j_surfin_2023_103390 crossref_primary_10_1016_j_desal_2022_116243 crossref_primary_10_1016_j_seppur_2022_121548 crossref_primary_10_1007_s11356_023_27430_2 crossref_primary_10_1016_j_chemosphere_2023_140150 crossref_primary_10_1016_j_jhazmat_2022_128958 crossref_primary_10_1016_j_cej_2023_141885 crossref_primary_10_1016_j_jece_2024_112557 crossref_primary_10_1016_j_jece_2024_113889 crossref_primary_10_1039_D4CY00482E crossref_primary_10_1016_j_jece_2024_115029 crossref_primary_10_1016_j_jece_2024_114338 crossref_primary_10_1016_j_jallcom_2023_172898 crossref_primary_10_1016_j_jscs_2024_101940 crossref_primary_10_1016_j_jclepro_2023_136631 crossref_primary_10_1016_j_jclepro_2023_139104 crossref_primary_10_1016_j_jclepro_2023_139221 crossref_primary_10_1039_D4EN00859F crossref_primary_10_1016_j_arabjc_2023_105483 crossref_primary_10_1016_j_chemosphere_2024_143152 crossref_primary_10_1016_j_envpol_2023_121990 crossref_primary_10_1039_D3NJ04403C crossref_primary_10_1016_j_jcis_2024_10_003 crossref_primary_10_1016_j_seppur_2024_127341 crossref_primary_10_2139_ssrn_4158285 crossref_primary_10_1016_j_ecoenv_2024_115929 crossref_primary_10_1016_j_cej_2024_156731 crossref_primary_10_1016_j_seppur_2024_126656 crossref_primary_10_1038_s41545_023_00245_x crossref_primary_10_1016_j_cej_2024_149379 crossref_primary_10_1016_j_colsurfa_2023_130958 |
Cites_doi | 10.1016/j.jhazmat.2019.120742 10.1016/j.apcatb.2020.118827 10.1016/j.apcatb.2008.09.026 10.1016/j.scib.2018.02.002 10.1016/j.cej.2018.11.201 10.1016/j.chemosphere.2019.01.049 10.1016/j.cej.2019.123620 10.1016/j.carbon.2019.09.033 10.1016/j.jhazmat.2020.123297 10.1016/j.cej.2020.124371 10.1021/acs.est.0c07274 10.1016/j.scitotenv.2019.133963 10.1039/C8TA04615H 10.1016/j.chemosphere.2008.08.043 10.1016/j.jhazmat.2018.08.028 10.1016/j.apcatb.2015.06.017 10.1039/C8TA08801B 10.1016/j.apcatb.2019.118157 10.1016/j.apcatb.2019.118250 10.1016/j.cej.2017.04.018 10.1021/acssuschemeng.0c00882 10.1016/j.apcatb.2020.119605 10.1016/j.jhazmat.2020.124436 10.1016/j.watres.2020.116246 10.1016/j.jenvman.2018.08.030 10.1021/acs.est.9b07245 10.1021/acs.est.8b03340 10.1016/j.jcis.2018.01.016 10.1016/j.apcatb.2020.118874 10.1016/j.chemosphere.2018.04.023 10.1039/C8RA09841G 10.1016/j.jcis.2020.10.120 10.1016/j.jhazmat.2020.124199 10.1016/j.jhazmat.2020.122051 10.1039/c3cp44363a 10.1016/j.jhazmat.2019.121998 10.1016/j.scitotenv.2019.01.190 10.1016/j.jhazmat.2020.122316 10.1016/j.cej.2019.04.007 10.1039/C4CS00236A 10.1016/j.nanoen.2020.104761 10.1016/j.seppur.2018.09.055 10.1016/j.apcatb.2017.08.088 10.1016/j.cej.2018.09.111 10.1016/j.cej.2018.04.215 10.1021/acs.est.7b04503 10.1021/acs.est.9b01449 10.1016/j.cej.2017.06.067 10.1063/1.555805 10.1021/acs.est.7b00040 10.1021/acscatal.6b02303 10.1016/j.cej.2020.125676 10.1016/j.cej.2020.125915 10.1016/j.jallcom.2020.153757 10.1039/C7TA10351D 10.1016/j.cej.2020.127957 10.1016/j.cej.2018.11.074 10.1016/j.jhazmat.2020.122884 10.1016/j.jhazmat.2018.04.021 10.1016/j.envpol.2020.116092 10.1016/j.cej.2018.08.192 10.1021/acs.jpclett.9b03597 10.1016/j.cej.2020.128392 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.11.097 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 517 |
ExternalDocumentID | 34838311 10_1016_j_jcis_2021_11_097 S0021979721020051 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c389t-c72c42fc383252938785ecd2a3d9dea70e2375ab5fd6de47c0d13570a0d265813 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Tue Aug 05 10:21:41 EDT 2025 Thu Jul 10 19:31:21 EDT 2025 Wed Feb 19 02:28:11 EST 2025 Tue Jul 01 01:19:14 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Fri Feb 23 02:39:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cu-doped Ni-LDH Oxygen vacancies Superoxide radicals Peroxymonosulfate |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-c72c42fc383252938785ecd2a3d9dea70e2375ab5fd6de47c0d13570a0d265813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34838311 |
PQID | 2604459639 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2636777892 proquest_miscellaneous_2604459639 pubmed_primary_34838311 crossref_primary_10_1016_j_jcis_2021_11_097 crossref_citationtrail_10_1016_j_jcis_2021_11_097 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_11_097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wu, Hong, Zhang, Chen, Wang, Dong (b0200) 2020; 385 Guo, Hu, Meng, Sun, Han (b0155) 2020; 260 Zhao, Niu, Zhang, Guo, Wen, Liang, Zeng (b0215) 2018; 204 Zhao, An, Dong, Feng, Wei, Ren, Ma (b0120) 2020; 388 Zhang, Li, Lyu, Hu (b0205) 2020; 270 Yu, Zhao, Zhao, Cui (b0090) 2020; 390 Yan, Li, Peng, Zhang, Zhang, Lai (b0285) 2019; 359 Duan, Su, Miao, Zhong, Shao, Wang, Sun (b0300) 2018; 220 Li, Yan, Jiang, Gao, Xue, Li, Liu, Wang (b0150) 2020; 269 Kohantorabi, Moussavi, Giannakis (b0020) 2021; 411 Yang, Dai, Yao, Chen, Liu, Luo (b0310) 2017; 322 Ye, Wu, Wu, Wang, Niu, Yang, Chen, Rehman, Zhu (b0045) 2020; 185 Li, Shang, Yang, Shen, Ai, Zhang (b0080) 2017; 51 Huang, Su, Han, Zhou, Qian, Gao (b0060) 2020; 389 Huang, Tian, Nie, Yang, Wang (b0115) 2018; 360 Lu, Sui, Yuan, Wang, Lv (b0230) 2019; 357 Zeng, Deng, Shi, Luo, Crittenden (b0250) 2019; 7 Wu, Zhang, Hong, Dong, Wang (b0095) 2019; 221 Hu, Zhu, Zhou (b0025) 2021; 270 Li, Hou, Yan, Shan, Meng, Zhao (b0255) 2020; 398 Guo, Wang, Yang, Fida, You, Zhou (b0195) 2020; 262 Chen, Nengzi, Li, Gao, Zhu, Cheng (b0225) 2019; 695 Glisenti, Pacella, Guiotto, Natile, Canu (b0145) 2016; 180 Yue, Yan, Guo, Qian, Zhao (b0040) 2020; 11 Yue, Qian, Ren, Fang, Jia, Zhao (b0125) 2018; 63 Zhou, Luo, Xie, Wang, Wang, Chen, Xiao, Chen (b0050) 2021; 282 Zeng, Zhang, Deng, Luo, Zhou, Liu, Pei, Shi, Crittenden (b0220) 2018; 515 Zhan, Zhang, Mi, Zhao, Hu, Lyu (b0085) 2020; 54 Zhou, Li, Zhao, Liu, Yu, Jiang, Jiao (b0245) 2019; 30 Hou, Li, Yang, Chen, Wang, Ma, Wu, Zhu, Huang, Wang (b0035) 2019; 663 Huang, Su, Zhou, Shu, Huang, Gao, Qian (b0075) 2017; 328 Yan, Peng, Lai, Ji, Zhang, Lai, Chen, Yao, Chen, Song (b0180) 2018; 52 Fanaei, Moussavi, Srivastava, Sillanpää (b0015) 2019; 371 Zhu, Zhu, Zhang, Lu, Qiu (b0235) 2019; 9 Zhu, Shi, Zhu, Yang (b0130) 2020; 73 Chen, Zhang, Li, Wang, Duan (b0135) 2018; 6 Liang, Huang, Mohanty, Kurakalva (b0140) 2008; 73 Ma, Chen, Yang, Zhong, Shu, Yao, Xie, Li, Wang, Zeng (b0275) 2018; 227 Shahzad, Jawad, Ifthikar, Chen, Chen (b0055) 2019; 155 Lim, Yang, Hoffmann (b0185) 2019; 53 Gholami, Dinpazhoh, Khataee, Hassani, Bhatnagar (b0070) 2020; 381 Zeng, Deng, Zhang, Zhou, Shi (b0165) 2020; 400 Wang, Lan, Peng, Wang (b0290) 2021; 408 Sun, Gao, Lei, Xie (b0105) 2015; 44 Hao, Hu, Xing, Zhou (b0010) 2020; 823 Guo, Nengzi, Chen, Li, Zhang, Cheng (b0240) 2020; 398 G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution, 17 (1988) 375. Wang, Wang (b0280) 2021; 411 Miao, Duan, Li, Dai, Liu, Wang, Zhou, Shao (b0100) 2019; 355 He, Wan, Zhou (b0210) 2021; 405 Xu, Zhong, Yan, Kang, Yao (b0170) 2018; 6 Su, Duan, Miao, Zhong, Zhou, Wang, Shao (b0270) 2017; 7 Shahzad, Ali, Ifthikar, Aregay, Zhu, Chen, Chen (b0065) 2020; 392 Zhu, Chen, Li, Zhou, Lan (b0175) 2019; 209 Qin, Fang, Wang, Zhou (b0315) 2018; 348 Bu, Li, Yu, Pan, Li, Wang, Pu, Ding, Gao, Pan (b0295) 2021; 55 Jin, Tian, Nie, Zhou, Yang, Li, Lu (b0190) 2017; 51 You, Sun, Su, Ao, Liu, Yao, Lai (b0265) 2020; 400 Hong (b0260) 2019; 10 Kuklja, Kotomin, Merkle, Mastrikov, Maier (b0325) 2013; 15 Yue, Guo, Yan, Wang, Fang, Wu, Qian, Zhao (b0030) 2019; 360 Lin, Ferronato, Deng, Wu, Chovelon (b0005) 2009; 88 Yin, Yao, Pi, Zhong, He, Hou, Fu, Chen, Tao, Wang, Li, Yang (b0305) 2021; 586 Lu, Wang, Chen, Yu, Ye, Quan (b0160) 2018; 353 Zhu, Miao, Guan, Zhong, Ran, Wang, Zhou, Shao (b0110) 2020; 8 Yan (10.1016/j.jcis.2021.11.097_b0285) 2019; 359 Hou (10.1016/j.jcis.2021.11.097_b0035) 2019; 663 Guo (10.1016/j.jcis.2021.11.097_b0240) 2020; 398 Shahzad (10.1016/j.jcis.2021.11.097_b0055) 2019; 155 Chen (10.1016/j.jcis.2021.11.097_b0135) 2018; 6 Guo (10.1016/j.jcis.2021.11.097_b0155) 2020; 260 Yan (10.1016/j.jcis.2021.11.097_b0180) 2018; 52 Zhu (10.1016/j.jcis.2021.11.097_b0175) 2019; 209 Wang (10.1016/j.jcis.2021.11.097_b0290) 2021; 408 Bu (10.1016/j.jcis.2021.11.097_b0295) 2021; 55 Lim (10.1016/j.jcis.2021.11.097_b0185) 2019; 53 Zhan (10.1016/j.jcis.2021.11.097_b0085) 2020; 54 Huang (10.1016/j.jcis.2021.11.097_b0075) 2017; 328 Liang (10.1016/j.jcis.2021.11.097_b0140) 2008; 73 He (10.1016/j.jcis.2021.11.097_b0210) 2021; 405 Zhang (10.1016/j.jcis.2021.11.097_b0205) 2020; 270 Zeng (10.1016/j.jcis.2021.11.097_b0165) 2020; 400 Xu (10.1016/j.jcis.2021.11.097_b0170) 2018; 6 Yue (10.1016/j.jcis.2021.11.097_b0125) 2018; 63 Guo (10.1016/j.jcis.2021.11.097_b0195) 2020; 262 Yu (10.1016/j.jcis.2021.11.097_b0090) 2020; 390 Yin (10.1016/j.jcis.2021.11.097_b0305) 2021; 586 Li (10.1016/j.jcis.2021.11.097_b0255) 2020; 398 Lin (10.1016/j.jcis.2021.11.097_b0005) 2009; 88 Zhu (10.1016/j.jcis.2021.11.097_b0235) 2019; 9 Zhou (10.1016/j.jcis.2021.11.097_b0050) 2021; 282 Wang (10.1016/j.jcis.2021.11.097_b0280) 2021; 411 Yang (10.1016/j.jcis.2021.11.097_b0310) 2017; 322 Su (10.1016/j.jcis.2021.11.097_b0270) 2017; 7 Hu (10.1016/j.jcis.2021.11.097_b0025) 2021; 270 Sun (10.1016/j.jcis.2021.11.097_b0105) 2015; 44 Ma (10.1016/j.jcis.2021.11.097_b0275) 2018; 227 Huang (10.1016/j.jcis.2021.11.097_b0060) 2020; 389 Glisenti (10.1016/j.jcis.2021.11.097_b0145) 2016; 180 Li (10.1016/j.jcis.2021.11.097_b0080) 2017; 51 Wu (10.1016/j.jcis.2021.11.097_b0095) 2019; 221 Chen (10.1016/j.jcis.2021.11.097_b0225) 2019; 695 Miao (10.1016/j.jcis.2021.11.097_b0100) 2019; 355 Kuklja (10.1016/j.jcis.2021.11.097_b0325) 2013; 15 Fanaei (10.1016/j.jcis.2021.11.097_b0015) 2019; 371 Zeng (10.1016/j.jcis.2021.11.097_b0250) 2019; 7 Hong (10.1016/j.jcis.2021.11.097_b0260) 2019; 10 Zeng (10.1016/j.jcis.2021.11.097_b0220) 2018; 515 Li (10.1016/j.jcis.2021.11.097_b0150) 2020; 269 Duan (10.1016/j.jcis.2021.11.097_b0300) 2018; 220 Zhu (10.1016/j.jcis.2021.11.097_b0130) 2020; 73 Ye (10.1016/j.jcis.2021.11.097_b0045) 2020; 185 Gholami (10.1016/j.jcis.2021.11.097_b0070) 2020; 381 Jin (10.1016/j.jcis.2021.11.097_b0190) 2017; 51 Zhao (10.1016/j.jcis.2021.11.097_b0120) 2020; 388 Huang (10.1016/j.jcis.2021.11.097_b0115) 2018; 360 You (10.1016/j.jcis.2021.11.097_b0265) 2020; 400 Lu (10.1016/j.jcis.2021.11.097_b0230) 2019; 357 Lu (10.1016/j.jcis.2021.11.097_b0160) 2018; 353 Wu (10.1016/j.jcis.2021.11.097_b0200) 2020; 385 Shahzad (10.1016/j.jcis.2021.11.097_b0065) 2020; 392 Yue (10.1016/j.jcis.2021.11.097_b0030) 2019; 360 Zhou (10.1016/j.jcis.2021.11.097_b0245) 2019; 30 Qin (10.1016/j.jcis.2021.11.097_b0315) 2018; 348 Zhu (10.1016/j.jcis.2021.11.097_b0110) 2020; 8 Zhao (10.1016/j.jcis.2021.11.097_b0215) 2018; 204 Kohantorabi (10.1016/j.jcis.2021.11.097_b0020) 2021; 411 Hao (10.1016/j.jcis.2021.11.097_b0010) 2020; 823 Yue (10.1016/j.jcis.2021.11.097_b0040) 2020; 11 10.1016/j.jcis.2021.11.097_b0320 |
References_xml | – volume: 405 start-page: 124199 year: 2021 ident: b0210 article-title: ZIF-8 derived Fe-N coordination moieties anchored carbon nanocubes for efficient peroxymonosulfate activation via non-radical pathways: role of FeNx sites publication-title: J. Hazard. Mater. – volume: 400 start-page: 123297 year: 2020 ident: b0165 article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation publication-title: J. Hazard. Mater. – volume: 389 start-page: 122051 year: 2020 ident: b0060 article-title: Efficient activation of intercalated persulfate via a composite of reduced graphene oxide and layered double hydroxide publication-title: J. Hazard. Mater. – volume: 51 start-page: 12699 year: 2017 end-page: 12706 ident: b0190 article-title: Oxygen vacancy promoted heterogeneous fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe publication-title: Environ. Sci. Technol. – volume: 270 start-page: 116092 year: 2021 ident: b0025 article-title: Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: mechanistic insight into radical and nonradical evolution publication-title: Environ. Pollut. – volume: 282 start-page: 119605 year: 2021 ident: b0050 article-title: Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: distinguished Radical/Nonradical species and generation pathways publication-title: Appl. Catal. B Environ. – volume: 204 start-page: 11 year: 2018 end-page: 21 ident: b0215 article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate publication-title: Chemosphere. – volume: 270 start-page: 118874 year: 2020 ident: b0205 article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification publication-title: Appl. Catal. B Environ. – volume: 15 start-page: 5443 year: 2013 ident: b0325 article-title: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells publication-title: Phys. Chem. Chem. Phys. – volume: 515 start-page: 92 year: 2018 end-page: 100 ident: b0220 article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: catalytic performance, mechanism and kinetic modeling publication-title: J. Colloid Interface Sci. – volume: 398 start-page: 125676 year: 2020 ident: b0240 article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate publication-title: Chem. Eng. J. – volume: 51 start-page: 5685 year: 2017 end-page: 5694 ident: b0080 article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity publication-title: Environ. Sci. Technol. – volume: 7 start-page: 388 year: 2017 end-page: 397 ident: b0270 article-title: Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: a mechanistic study publication-title: ACS Catal. – volume: 400 start-page: 125915 year: 2020 ident: b0265 article-title: Degradation of bisphenol A by peroxymonosulfate activated with oxygen vacancy modified nano-NiO-ZnO composite oxides: a typical surface-bound radical system publication-title: Chem. Eng. J. – volume: 6 start-page: 5999 year: 2018 end-page: 6006 ident: b0170 article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts publication-title: J. Mater. Chem. A. – volume: 185 start-page: 116246 year: 2020 ident: b0045 article-title: Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: performance and mechanism publication-title: Water Res. – volume: 328 start-page: 66 year: 2017 end-page: 73 ident: b0075 article-title: Novel activation of persulfate by its intercalation into Mg/Al-layered double hydroxide: Enhancement of non-radical oxidation publication-title: Chem. Eng. J. – volume: 392 start-page: 122316 year: 2020 ident: b0065 article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides publication-title: J. Hazard. Mater. – volume: 7 start-page: 342 year: 2019 end-page: 352 ident: b0250 article-title: Heterogeneous degradation of carbamazepine by Prussian blue analogues in the interlayers of layered double hydroxides: performance, mechanism and toxicity evaluation publication-title: J. Mater. Chem. A. – reference: G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution, 17 (1988) 375. – volume: 55 start-page: 2110 year: 2021 end-page: 2120 ident: b0295 article-title: Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants publication-title: Environ. Sci. Technol. – volume: 663 start-page: 453 year: 2019 end-page: 464 ident: b0035 article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: performance and mechanism for organic pollutant degradation publication-title: Sci. Total Environ. – volume: 355 start-page: 721 year: 2019 end-page: 730 ident: b0100 article-title: Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element publication-title: Chem. Eng. J. – volume: 260 start-page: 118157 year: 2020 ident: b0155 article-title: Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: defects facilitating hydroxyl radicals generation publication-title: Appl. Catal. B Environ. – volume: 227 start-page: 406 year: 2018 end-page: 414 ident: b0275 article-title: Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate publication-title: J. Environ. Manage. – volume: 54 start-page: 8333 year: 2020 end-page: 8343 ident: b0085 article-title: Efficient fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides publication-title: Environ. Sci. Technol. – volume: 357 start-page: 140 year: 2019 end-page: 149 ident: b0230 article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals publication-title: Chem. Eng. J. – volume: 408 start-page: 124436 year: 2021 ident: b0290 article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review publication-title: J. Hazard. Mater. – volume: 269 start-page: 118827 year: 2020 ident: b0150 article-title: Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect publication-title: Appl. Catal. B Environ. – volume: 359 start-page: 1097 year: 2019 end-page: 1110 ident: b0285 article-title: Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: Optimization, degradation pathways and toxicity evaluation publication-title: Chem. Eng. J. – volume: 220 start-page: 626 year: 2018 end-page: 634 ident: b0300 article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals publication-title: Appl. Catal. B Environ. – volume: 411 start-page: 127957 year: 2021 ident: b0020 article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants publication-title: Chem. Eng. J. – volume: 360 start-page: 303 year: 2018 end-page: 310 ident: b0115 article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution publication-title: J. Hazard. Mater. – volume: 411 start-page: 128392 year: 2021 ident: b0280 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. – volume: 398 start-page: 122884 year: 2020 ident: b0255 article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways publication-title: J. Hazard. Mater. – volume: 52 start-page: 14302 year: 2018 end-page: 14310 ident: b0180 article-title: Activation CuFe publication-title: Environ. Sci. Technol. – volume: 695 start-page: 133963 year: 2019 ident: b0225 article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide publication-title: Sci. Total Environ. – volume: 88 start-page: 32 year: 2009 end-page: 41 ident: b0005 article-title: Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism publication-title: Appl. Catal. B Environ. – volume: 53 start-page: 6972 year: 2019 end-page: 6980 ident: b0185 article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO publication-title: Environ. Sci. Technol. – volume: 371 start-page: 404 year: 2019 end-page: 413 ident: b0015 article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen publication-title: Chem. Eng. J. – volume: 353 start-page: 401 year: 2018 end-page: 409 ident: b0160 article-title: Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants publication-title: J. Hazard. Mater. – volume: 360 start-page: 97 year: 2019 end-page: 103 ident: b0030 article-title: Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation publication-title: Chem. Eng. J. – volume: 221 start-page: 412 year: 2019 end-page: 422 ident: b0095 article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4–x publication-title: Chemosphere. – volume: 155 start-page: 740 year: 2019 end-page: 755 ident: b0055 article-title: The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation publication-title: Carbon. – volume: 8 start-page: 6033 year: 2020 end-page: 6042 ident: b0110 article-title: Efficient wastewater remediation enabled by self-assembled perovskite oxide heterostructures with multiple reaction pathways publication-title: ACS Sustain. Chem. Eng. – volume: 9 start-page: 2284 year: 2019 end-page: 2291 ident: b0235 article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide publication-title: RSC Adv. – volume: 180 start-page: 94 year: 2016 end-page: 105 ident: b0145 article-title: Largely Cu-doped LaCo1−Cu O3 perovskites for TWC: toward new PGM-free catalysts publication-title: Appl. Catal. B Environ. – volume: 209 start-page: 1007 year: 2019 end-page: 1015 ident: b0175 article-title: Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide publication-title: Sep. Purif. Technol. – volume: 6 start-page: 18378 year: 2018 end-page: 18383 ident: b0135 article-title: Magnesium-regulated oxygen vacancies of nickel layered double hydroxides for electrocatalytic water oxidation publication-title: J. Mater. Chem. A. – volume: 381 start-page: 120742 year: 2020 ident: b0070 article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium publication-title: J. Hazard. Mater. – volume: 63 start-page: 278 year: 2018 end-page: 281 ident: b0125 article-title: Secondary battery inspired α-nickel hydroxide as an efficient Ni-based heterogeneous catalyst for sulfate radical activation publication-title: Sci. Bull. – volume: 44 start-page: 623 year: 2015 end-page: 636 ident: b0105 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. – volume: 586 start-page: 551 year: 2021 end-page: 562 ident: b0305 article-title: Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: structure-function relationship and reaction mechanism publication-title: J. Colloid Interface Sci. – volume: 348 start-page: 526 year: 2018 end-page: 534 ident: b0315 article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: key role of superoxide radicals publication-title: Chem. Eng. J. – volume: 823 start-page: 153757 year: 2020 ident: b0010 article-title: Synergistic degradation of methylparaben on CuFe2O4-rGO composite by persulfate activation publication-title: J. Alloys Compd. – volume: 30 start-page: 19009 year: 2019 end-page: 19019 ident: b0245 article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol publication-title: J. Mater. Sci. – volume: 10 year: 2019 ident: b0260 article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate_ Optimization, degradation pathways and mechanism publication-title: Chem. Eng. J. – volume: 11 start-page: 968 year: 2020 end-page: 973 ident: b0040 article-title: NiFe layered double hydroxide (LDH) nanosheet catalysts with fe as electron transfer mediator for enhanced persulfate activation publication-title: J. Phys. Chem. Lett. – volume: 390 start-page: 121998 year: 2020 ident: b0090 article-title: Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation publication-title: J. Hazard. Mater. – volume: 73 start-page: 1540 year: 2008 end-page: 1543 ident: b0140 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere. – volume: 73 start-page: 104761 year: 2020 ident: b0130 article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction publication-title: Nano Energy. – volume: 262 start-page: 118250 year: 2020 ident: b0195 article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation publication-title: Appl. Catal. B Environ. – volume: 322 start-page: 546 year: 2017 end-page: 555 ident: b0310 article-title: Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst publication-title: Chem. Eng. J. – volume: 388 start-page: 124371 year: 2020 ident: b0120 article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism publication-title: Chem. Eng. J. – volume: 385 start-page: 123620 year: 2020 ident: b0200 article-title: Deciphering highly resistant characteristics to different pHs of oxygen vacancy-rich Fe2Co1-LDH/PS system for bisphenol A degradation publication-title: Chem. Eng. J. – volume: 381 start-page: 120742 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0070 article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120742 – volume: 269 start-page: 118827 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0150 article-title: Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118827 – volume: 88 start-page: 32 issue: 1-2 year: 2009 ident: 10.1016/j.jcis.2021.11.097_b0005 article-title: Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2008.09.026 – volume: 63 start-page: 278 issue: 5 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0125 article-title: Secondary battery inspired α-nickel hydroxide as an efficient Ni-based heterogeneous catalyst for sulfate radical activation publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.02.002 – volume: 360 start-page: 97 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0030 article-title: Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.201 – volume: 221 start-page: 412 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0095 article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4–x publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2019.01.049 – volume: 385 start-page: 123620 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0200 article-title: Deciphering highly resistant characteristics to different pHs of oxygen vacancy-rich Fe2Co1-LDH/PS system for bisphenol A degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123620 – volume: 155 start-page: 740 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0055 article-title: The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation publication-title: Carbon. doi: 10.1016/j.carbon.2019.09.033 – volume: 400 start-page: 123297 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0165 article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123297 – volume: 388 start-page: 124371 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0120 article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124371 – volume: 10 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0260 article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate_ Optimization, degradation pathways and mechanism publication-title: Chem. Eng. J. – volume: 55 start-page: 2110 issue: 3 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0295 article-title: Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07274 – volume: 695 start-page: 133963 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0225 article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133963 – volume: 6 start-page: 18378 issue: 38 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0135 article-title: Magnesium-regulated oxygen vacancies of nickel layered double hydroxides for electrocatalytic water oxidation publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA04615H – volume: 73 start-page: 1540 issue: 9 year: 2008 ident: 10.1016/j.jcis.2021.11.097_b0140 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2008.08.043 – volume: 360 start-page: 303 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0115 article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.08.028 – volume: 180 start-page: 94 year: 2016 ident: 10.1016/j.jcis.2021.11.097_b0145 article-title: Largely Cu-doped LaCo1−Cu O3 perovskites for TWC: toward new PGM-free catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.06.017 – volume: 7 start-page: 342 issue: 1 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0250 article-title: Heterogeneous degradation of carbamazepine by Prussian blue analogues in the interlayers of layered double hydroxides: performance, mechanism and toxicity evaluation publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA08801B – volume: 260 start-page: 118157 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0155 article-title: Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: defects facilitating hydroxyl radicals generation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118157 – volume: 262 start-page: 118250 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0195 article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118250 – volume: 322 start-page: 546 year: 2017 ident: 10.1016/j.jcis.2021.11.097_b0310 article-title: Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.018 – volume: 8 start-page: 6033 issue: 15 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0110 article-title: Efficient wastewater remediation enabled by self-assembled perovskite oxide heterostructures with multiple reaction pathways publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00882 – volume: 282 start-page: 119605 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0050 article-title: Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: distinguished Radical/Nonradical species and generation pathways publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119605 – volume: 408 start-page: 124436 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0290 article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124436 – volume: 185 start-page: 116246 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0045 article-title: Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: performance and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2020.116246 – volume: 227 start-page: 406 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0275 article-title: Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.08.030 – volume: 54 start-page: 8333 issue: 13 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0085 article-title: Efficient fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07245 – volume: 52 start-page: 14302 issue: 24 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0180 article-title: Activation CuFe 2 O 4 by hydroxylamine for oxidation of antibiotic sulfamethoxazole publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03340 – volume: 515 start-page: 92 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0220 article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: catalytic performance, mechanism and kinetic modeling publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.01.016 – volume: 270 start-page: 118874 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0205 article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118874 – volume: 204 start-page: 11 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0215 article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2018.04.023 – volume: 30 start-page: 19009 issue: 20 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0245 article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol publication-title: J. Mater. Sci. – volume: 9 start-page: 2284 issue: 4 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0235 article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide publication-title: RSC Adv. doi: 10.1039/C8RA09841G – volume: 586 start-page: 551 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0305 article-title: Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: structure-function relationship and reaction mechanism publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.10.120 – volume: 405 start-page: 124199 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0210 article-title: ZIF-8 derived Fe-N coordination moieties anchored carbon nanocubes for efficient peroxymonosulfate activation via non-radical pathways: role of FeNx sites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124199 – volume: 389 start-page: 122051 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0060 article-title: Efficient activation of intercalated persulfate via a composite of reduced graphene oxide and layered double hydroxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122051 – volume: 15 start-page: 5443 issue: 15 year: 2013 ident: 10.1016/j.jcis.2021.11.097_b0325 article-title: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44363a – volume: 390 start-page: 121998 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0090 article-title: Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121998 – volume: 663 start-page: 453 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0035 article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: performance and mechanism for organic pollutant degradation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.190 – volume: 392 start-page: 122316 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0065 article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122316 – volume: 371 start-page: 404 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0015 article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.007 – volume: 44 start-page: 623 issue: 3 year: 2015 ident: 10.1016/j.jcis.2021.11.097_b0105 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 73 start-page: 104761 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0130 article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2020.104761 – volume: 209 start-page: 1007 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0175 article-title: Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.09.055 – volume: 220 start-page: 626 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0300 article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.088 – volume: 357 start-page: 140 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0230 article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.111 – volume: 348 start-page: 526 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0315 article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: key role of superoxide radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.215 – volume: 51 start-page: 12699 issue: 21 year: 2017 ident: 10.1016/j.jcis.2021.11.097_b0190 article-title: Oxygen vacancy promoted heterogeneous fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe 3 O 4 @FeOOH nanocomposite publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04503 – volume: 53 start-page: 6972 issue: 12 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0185 article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO 2 nanotubes for the removal of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01449 – volume: 328 start-page: 66 year: 2017 ident: 10.1016/j.jcis.2021.11.097_b0075 article-title: Novel activation of persulfate by its intercalation into Mg/Al-layered double hydroxide: Enhancement of non-radical oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.067 – ident: 10.1016/j.jcis.2021.11.097_b0320 doi: 10.1063/1.555805 – volume: 51 start-page: 5685 issue: 10 year: 2017 ident: 10.1016/j.jcis.2021.11.097_b0080 article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00040 – volume: 7 start-page: 388 issue: 1 year: 2017 ident: 10.1016/j.jcis.2021.11.097_b0270 article-title: Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: a mechanistic study publication-title: ACS Catal. doi: 10.1021/acscatal.6b02303 – volume: 398 start-page: 125676 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0240 article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125676 – volume: 400 start-page: 125915 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0265 article-title: Degradation of bisphenol A by peroxymonosulfate activated with oxygen vacancy modified nano-NiO-ZnO composite oxides: a typical surface-bound radical system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125915 – volume: 823 start-page: 153757 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0010 article-title: Synergistic degradation of methylparaben on CuFe2O4-rGO composite by persulfate activation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153757 – volume: 6 start-page: 5999 issue: 14 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0170 article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA10351D – volume: 411 start-page: 127957 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0020 article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127957 – volume: 359 start-page: 1097 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0285 article-title: Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: Optimization, degradation pathways and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.074 – volume: 398 start-page: 122884 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0255 article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122884 – volume: 353 start-page: 401 year: 2018 ident: 10.1016/j.jcis.2021.11.097_b0160 article-title: Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.04.021 – volume: 270 start-page: 116092 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0025 article-title: Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: mechanistic insight into radical and nonradical evolution publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.116092 – volume: 355 start-page: 721 year: 2019 ident: 10.1016/j.jcis.2021.11.097_b0100 article-title: Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.192 – volume: 11 start-page: 968 issue: 3 year: 2020 ident: 10.1016/j.jcis.2021.11.097_b0040 article-title: NiFe layered double hydroxide (LDH) nanosheet catalysts with fe as electron transfer mediator for enhanced persulfate activation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03597 – volume: 411 start-page: 128392 year: 2021 ident: 10.1016/j.jcis.2021.11.097_b0280 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128392 |
SSID | ssj0011559 |
Score | 2.6474426 |
Snippet | [Display omitted]
•Cu doping facilitated the formation of oxygen vacancies (OVs) in NixCu-LDHs.•OVs introduction enhanced the catalytic activation of PMS by... Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting Ni... Oxygen vacancies (OVs) were introduced into Ni-based layered double hydroxides (LDHs) through Cu doping, and the catalytic performance of the resulting... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 504 |
SubjectTerms | 4-hydroxybenzoic acid catalytic activity Cu-doped Ni-LDH dissolved oxygen oxidation Oxygen Oxygen vacancies Parabens Peroxides Peroxymonosulfate singlet oxygen sulfates Superoxide radicals Superoxides |
Title | Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: key role of superoxide radicals |
URI | https://dx.doi.org/10.1016/j.jcis.2021.11.097 https://www.ncbi.nlm.nih.gov/pubmed/34838311 https://www.proquest.com/docview/2604459639 https://www.proquest.com/docview/2636777892 |
Volume | 610 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMpreVSDxA25jWM7jrlVC9Xy2hOVeosS21FTrZIVu6m6PfTH8EuZyWMFEuyBY6JJZGUm48_2N98w9tYnzktcJ3MvCseVTQW3hSl5YV2UUoCEmOqdv82T2Zn6fK7P99h0rIUhWuWQ-_uc3mXr4c7x8DWPl1VFNb74txlSn4loa6SrYFeGovzodkvzEHTs1tM8cBRoPRTO9ByvS1eRZHcsjkjJk4Sf_j45_Qt8dpPQ6UP2YECPcNIP8BHbC_UBuzsdm7YdsPu_6Qs-Zj-nLffNMniYV_zrhxnQrivkBVV_1GtorjcYPnCVu65F7woQwEKoLzpSAFBv6c0CFL_YeOK6FKG-aRCZgid9ib4VE1xVOZDU-PUGw7lZtYuSLKhYot_qfQ-YJIAojNCUsGo728oHwDdQeKyesLPTj9-nMz40ZeAOsc2aOxM7FZd4IWONWAEdqoPzcS699SEn50qj80KXPvFBGRd5IbWJ8sjHiHaEfMr266YOzxkglBReS-vpKDcXMsWlZuqsVQ5nUJUmEyZGb2RuUCynxhmLbKSmXWbkwYw8iEuZDD04Ye-2zyx7vY6d1np0cvZH1GU4oex87s0YERk6mM5Y8jo0LRolkVIas5rdZSMTY0xq4wl71ofTdqxSpfhlhXjxnyN7ye7FVKBBjEP9iu2vf7ThNcKmdXHY_ReH7M7Jpy-z-S9iOhhf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcEC2PLlAYJG7IbRzbeXCrtlQLbPfUSr1Zie2oqVbJit1UXQ78GH4pM3msQII9cNzVJLIy4_Fn-5tvGHvvIusk7pO5E7nlKk0ET_O44Hlqg4QCxIdU73wxiyZX6su1vt5h46EWhmiVfe7vcnqbrft_TvqvebIoS6rxxdkWk_pMQEcjuAV6oHD6UhuD4x8bnoege7eO54HDQPO-cqYjed3akjS7Q3FMUp6k_PT31elf6LNdhc6fsMc9fITTboT7bMdXB2xvPHRtO2CPfhMYfMp-jhvu6oV3MCv59GwCdOwKWU7lH9UK6vs1xg_cZbbt0bsERLDgq5uWFQDUXHo9B8Vv1o7ILrmvvtcITcGRwETXiwnuygxIa_x-jfFcL5t5QRZULdGd9X4EzBJAHEaoC1g2rW3pPOAbKD6Wz9jV-afL8YT3XRm4RXCz4jYOrQoL_CFDjWABPaq9dWEmXep8Rt6Vsc5yXbjIeRXbwAmp4yALXIhwR8jnbLeqK3_IALGkcFqmju5yMyET3GsmNk2VxSVUJdGIicEbxvaS5dQ5Y24GbtqtIQ8a8iDuZQx6cMQ-bJ5ZdIIdW6314GTzR9gZXFG2PvduiAiDDqZLlqzydYNGUaCUxrSWbrORURzHSRqO2IsunDZjlSrBLyvEy_8c2Vu2N7m8mJrp59nXV-xhSNUaRD_Ur9nu6lvjjxBDrfI37Rz5BZuNGe0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-doped+Ni-LDH+with+abundant+oxygen+vacancies+for+enhanced+methyl+4-hydroxybenzoate+degradation+via+peroxymonosulfate+activation%3A+key+role+of+superoxide+radicals&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhu%2C+Jingyi&rft.au=Zhu%2C+Yixin&rft.au=Zhou%2C+Wenjun&rft.date=2022-03-15&rft.issn=0021-9797&rft.volume=610+p.504-517&rft.spage=504&rft.epage=517&rft_id=info:doi/10.1016%2Fj.jcis.2021.11.097&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |