Influence of complex LCF and dwell load regimes on fatigue of Ti–6Al–4V

Real components are usually subjected to variable amplitude fatigue, and yet the deformation micromechanisms that occur due to such load changes have barely been the subject of study. Here, unidirectionally rolled equiaxed Ti–6Al–4V plate was subjected to mixed dwell and variable amplitude low cycle...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 103; pp. 77 - 88
Main Authors Tympel, P.O., Lindley, T.C., Saunders, E.A., Dixon, M., Dye, D.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real components are usually subjected to variable amplitude fatigue, and yet the deformation micromechanisms that occur due to such load changes have barely been the subject of study. Here, unidirectionally rolled equiaxed Ti–6Al–4V plate was subjected to mixed dwell and variable amplitude low cycle fatigue (LCF), with the finding that overloads near the yield stress were found to retard subsequent fatigue crack growth, whilst elastic underloads were found to accelerate subsequent growth. Dwell intervals were found to be especially damaging, to a far greater extent than either dwell or LCF alone. Dwell facets were found to initiate subsurface and to be smoother than LCF facets, but were otherwise similar in orientation (∼30° to the loading axis) and crystallographic plane, 2–13° from (0002). However, no alteration of the slip bands underlying striations was observed at the point of load changes using TEM. In failure investigation, striation counting is an important tool; the loading changes used were not found to affect the number of striations formed. Dislocation networks were found between similarly oriented grains in the as-received material, which disintegrated under dwell loading and at high stresses. [Display omitted]
AbstractList Real components are usually subjected to variable amplitude fatigue, and yet the deformation micromechanisms that occur due to such load changes have barely been the subject of study. Here, unidirectionally rolled equiaxed Ti-6Al-4V plate was subjected to mixed dwell and variable amplitude low cycle fatigue (LCF), with the finding that overloads near the yield stress were found to retard subsequent fatigue crack growth, whilst elastic underloads were found to accelerate subsequent growth. Dwell intervals were found to be especially damaging, to a far greater extent than either dwell or LCF alone. Dwell facets were found to initiate subsurface and to be smoother than LCF facets, but were otherwise similar in orientation (30 degree to the loading axis) and crystallographic plane, 2-13 degree from (0002). However, no alteration of the slip bands underlying striations was observed at the point of load changes using TEM. In failure investigation, striation counting is an important tool; the loading changes used were not found to affect the number of striations formed. Dislocation networks were found between similarly oriented grains in the as-received material, which disintegrated under dwell loading and at high stresses.
Real components are usually subjected to variable amplitude fatigue, and yet the deformation micromechanisms that occur due to such load changes have barely been the subject of study. Here, unidirectionally rolled equiaxed Ti–6Al–4V plate was subjected to mixed dwell and variable amplitude low cycle fatigue (LCF), with the finding that overloads near the yield stress were found to retard subsequent fatigue crack growth, whilst elastic underloads were found to accelerate subsequent growth. Dwell intervals were found to be especially damaging, to a far greater extent than either dwell or LCF alone. Dwell facets were found to initiate subsurface and to be smoother than LCF facets, but were otherwise similar in orientation (∼30° to the loading axis) and crystallographic plane, 2–13° from (0002). However, no alteration of the slip bands underlying striations was observed at the point of load changes using TEM. In failure investigation, striation counting is an important tool; the loading changes used were not found to affect the number of striations formed. Dislocation networks were found between similarly oriented grains in the as-received material, which disintegrated under dwell loading and at high stresses. [Display omitted]
Author Lindley, T.C.
Dye, D.
Tympel, P.O.
Saunders, E.A.
Dixon, M.
Author_xml – sequence: 1
  givenname: P.O.
  surname: Tympel
  fullname: Tympel, P.O.
  email: peter.tympel10@imperial.ac.uk
  organization: Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK
– sequence: 2
  givenname: T.C.
  surname: Lindley
  fullname: Lindley, T.C.
  organization: Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK
– sequence: 3
  givenname: E.A.
  orcidid: 0000-0002-8340-0530
  surname: Saunders
  fullname: Saunders, E.A.
  organization: Rolls Royce plc, Materials – Failure Investigation, Bristol BS34 7QE, UK
– sequence: 4
  givenname: M.
  surname: Dixon
  fullname: Dixon, M.
  organization: Rolls Royce plc, Elton Road, Derby DE24 8BJ, UK
– sequence: 5
  givenname: D.
  orcidid: 0000-0002-8756-3513
  surname: Dye
  fullname: Dye, D.
  email: david.dye@imperial.ac.uk
  organization: Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK
BookMark eNqFkL9OwzAQhy1UJNrCIyB5ZEmwGztOxICqikJFJZbCajm2U7ly4mIn_Nl4B96QJ8GlnVi63O-G-0533wgMWtdqAC4xSjHC-fUmFbITjejSCcI0RWWKMDkBQ1ywLJkQmg1in9EyyQklZ2AUwgYhPGEEDcHjoq1tr1upoauhdM3W6g-4nM2haBVU79paaJ1Q0Ou1aXSAroW16My6_wNW5ufrO5_aWMnLOTithQ364pBj8Dy_W80ekuXT_WI2XSYyK8oukUTUSGFRFUzIKmc5rURZ5FWmClZkuYxBhCI6qytdUEoURQxXqqwIrRSTNBuDq_3erXevvQ4db0yQ8VLRatcHjlmRTxBhJYqjdD8qvQvB65pvvWmE_-QY8Z08vuEHeXwnj6OSR3mRu_nHSdPFt13beWHsUfp2T-to4c1oz4M0O8fKeC07rpw5suEXzfKRnQ
CitedBy_id crossref_primary_10_1007_s11837_022_05400_2
crossref_primary_10_3390_jmse12081419
crossref_primary_10_1016_j_engfailanal_2023_107201
crossref_primary_10_1016_j_msea_2022_142700
crossref_primary_10_1016_j_msea_2023_145419
crossref_primary_10_1016_j_jmrt_2024_01_287
crossref_primary_10_1007_s10853_022_07019_9
crossref_primary_10_1007_s10008_024_06083_2
crossref_primary_10_1016_j_ijfatigue_2022_106784
crossref_primary_10_1016_j_ijfatigue_2025_108924
crossref_primary_10_1016_j_surfcoat_2023_129696
crossref_primary_10_1134_S0031918X24600271
crossref_primary_10_1007_s40195_024_01677_1
crossref_primary_10_1016_j_ijfatigue_2024_108203
crossref_primary_10_1016_j_ijplas_2023_103604
crossref_primary_10_1016_j_actamat_2022_117691
crossref_primary_10_1016_j_ijplas_2022_103449
crossref_primary_10_1016_j_ijmecsci_2023_108135
crossref_primary_10_1038_s41467_020_19470_w
crossref_primary_10_1016_j_jmst_2020_12_026
crossref_primary_10_1016_j_jmst_2024_08_025
crossref_primary_10_1016_j_msea_2021_142031
crossref_primary_10_1016_j_scriptamat_2020_03_031
crossref_primary_10_1016_j_ijplas_2023_103816
crossref_primary_10_1007_s11661_023_07198_3
crossref_primary_10_1134_S0031918X24600611
crossref_primary_10_1016_j_dib_2018_01_086
crossref_primary_10_1134_S0031918X24600775
crossref_primary_10_1016_j_jmrt_2023_10_001
crossref_primary_10_1016_j_matchar_2021_110896
crossref_primary_10_1016_j_ijfatigue_2021_106158
crossref_primary_10_1016_j_jmst_2022_05_034
crossref_primary_10_31857_S0015323024060063
crossref_primary_10_1016_j_engfailanal_2024_108797
crossref_primary_10_1088_1402_4896_ad63e1
crossref_primary_10_1016_j_jallcom_2022_167856
crossref_primary_10_1016_j_mtla_2022_101401
crossref_primary_10_1016_j_matchar_2019_109829
crossref_primary_10_1016_j_ijfatigue_2023_107854
crossref_primary_10_1016_j_ijplas_2024_104033
crossref_primary_10_1016_j_jmrt_2023_01_063
crossref_primary_10_1016_j_jmrt_2024_10_239
crossref_primary_10_1016_j_corsci_2023_111545
crossref_primary_10_1016_j_ijfatigue_2023_108068
crossref_primary_10_1016_j_ijoes_2024_100749
crossref_primary_10_2355_isijinternational_ISIJINT_2021_245
crossref_primary_10_1007_s11661_016_3869_9
crossref_primary_10_1016_j_actamat_2025_120878
crossref_primary_10_1016_j_ijfatigue_2022_107098
crossref_primary_10_1016_j_intermet_2020_107058
crossref_primary_10_1016_j_matdes_2020_108909
crossref_primary_10_1016_j_ijplas_2024_103986
crossref_primary_10_1016_j_jmrt_2022_07_094
crossref_primary_10_1016_j_surfin_2022_102490
crossref_primary_10_1016_j_actamat_2022_118560
crossref_primary_10_1016_j_ijfatigue_2019_02_033
crossref_primary_10_1016_j_msea_2023_144654
crossref_primary_10_1088_2053_1591_ab0160
crossref_primary_10_1016_j_jmst_2024_03_065
crossref_primary_10_1016_j_actamat_2016_03_080
crossref_primary_10_1016_j_ijplas_2024_103938
crossref_primary_10_1016_j_marstruc_2024_103639
crossref_primary_10_1016_j_apsusc_2017_08_064
crossref_primary_10_1016_j_msea_2023_145906
crossref_primary_10_2139_ssrn_3919747
crossref_primary_10_1016_j_engfracmech_2024_110214
crossref_primary_10_1016_j_actamat_2022_117967
crossref_primary_10_1016_j_actamat_2021_117227
crossref_primary_10_1016_j_ijfatigue_2024_108610
crossref_primary_10_1007_s11661_024_07665_5
crossref_primary_10_1007_s11837_022_05463_1
crossref_primary_10_1016_j_msea_2020_140643
crossref_primary_10_2355_tetsutohagane_TETSU_2020_109
crossref_primary_10_1016_j_jmrt_2023_09_052
crossref_primary_10_1016_j_engfracmech_2020_107129
crossref_primary_10_1016_j_ijfatigue_2019_105341
Cites_doi 10.1007/s10853-006-7828-5
10.1016/0142-1123(88)90001-1
10.1016/S0254-0584(03)00168-8
10.1007/s12206-011-0132-6
10.1007/s11661-007-9105-x
10.1016/j.ijfatigue.2011.11.017
10.1080/01418619608242969
10.1016/j.actamat.2007.07.032
10.1016/S0966-9795(99)00090-4
10.1016/0921-5093(89)90521-2
10.1016/j.msea.2006.06.119
10.1016/j.ijfatigue.2011.11.004
10.1016/j.matchar.2014.02.014
10.1002/9781118013373.ch21
10.1007/s11661-006-0144-5
10.1016/j.engfailanal.2008.06.023
10.1016/0142-1123(94)90194-5
10.1007/s11661-010-0407-z
10.1016/0956-7151(93)90139-J
10.1016/j.ijfatigue.2008.03.036
10.1016/j.actamat.2010.09.048
10.1007/s11661-010-0507-9
10.1016/j.scriptamat.2012.10.041
10.1016/S0142-1123(97)00047-9
10.1016/j.proeng.2013.12.086
10.1007/BF02644025
10.1016/j.msea.2014.09.115
10.1111/j.1460-2695.2008.01284.x
10.1016/0013-7944(89)90195-1
10.1016/0001-6160(88)90131-9
10.1016/j.actamat.2009.04.018
10.1016/S0142-1123(03)00145-2
10.1016/j.actamat.2010.09.049
10.1134/S1063783408060115
10.1016/j.msea.2011.06.079
10.1007/s10853-006-0252-z
ContentType Journal Article
Copyright 2015 Acta Materialia Inc.
Copyright_xml – notice: 2015 Acta Materialia Inc.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.actamat.2015.09.014
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 88
ExternalDocumentID 10_1016_j_actamat_2015_09_014
S1359645415006801
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
R2-
SEW
SSH
T9H
ZY4
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c389t-c4af0d1ab87acb6765ba986b3d87836cd874ad4e3fbe8554d5071bd9b45bd7c53
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Thu Jul 10 22:08:05 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Tue Jul 01 01:20:33 EDT 2025
Fri Feb 23 02:41:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dislocation structures
Titanium alloys
Fatigue
Facets
TEM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-c4af0d1ab87acb6765ba986b3d87836cd874ad4e3fbe8554d5071bd9b45bd7c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8756-3513
0000-0002-8340-0530
OpenAccessLink http://hdl.handle.net/10044/1/28667
PQID 1786204790
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1786204790
crossref_primary_10_1016_j_actamat_2015_09_014
crossref_citationtrail_10_1016_j_actamat_2015_09_014
elsevier_sciencedirect_doi_10_1016_j_actamat_2015_09_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-15
PublicationDateYYYYMMDD 2016-01-15
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Acta materialia
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Sun, Hong (bib0040) 2015; 622
Kar’kina, Yakovenkova (bib0205) 2008; 50
Song, Hoeppner (bib0020) 1988; 10
Sinha, Mills, Williams (bib0115) 2006; 37A
Pilchak, Williams (bib0120) 2010
Wang, Jahazi, Yue (bib0170) 2006; 434
Caton, John, Porter, Burba (bib0060) 2012; 38
Venkateswara Rao, Ritchie (bib0080) 1988; 36
Zhang, Gu, Zhou, Zhang, Laird (bib0180) 1989; 119
Wang, Vo, Jahazi, Yue (bib0175) 2007; 38
Suresh (bib0045) 1998
Wang, Huang (bib0100) 2003; 81
Agrawal, Sargent, Conrad (bib0165) 1974; 5
Dore, Maddox (bib0140) 2013; 66
Rolls-Royce (bib0010) 1996
Pilchak (bib0130) 2013; 68
Jha, Szczepanski, Golden, Porter, John (bib0035) 2012; 42
Pilchak, Bhattacharjee, Rosenberger, Williams (bib0125) 2009; 31
Bache (bib0015) 2003; 25
Sinha, Mills, Williams (bib0105) 2007; 42
Kang, Dong, Liu, Jiang (bib0185) 2014; 92
Lee, Liaw, Choo, Rogge (bib0090) 2011; 59
Mine, Ando, Takashima (bib0055) 2011; 528
Farenc, Caillard, Couret (bib0155) 1993; 41
Humphreys, Hatherly (bib0160) 2004
Hall (bib0025) 1997; 19
Legros, Couret, Caillard (bib0195) 2006; 41
Evans, Bache (bib0065) 1994; 16
Bantounas, Dye, Lindley (bib0135) 2009; 57
Koizumi, Nakano, Umakoshi (bib0190) 2000; 8
Milella (bib0050) 2012
Brandes, Mills, Williams (bib0070) 2010; 41A
Ward-Close, Blom, Ritchie (bib0085) 1989; 32
Castany, Pettinari-Sturmel, Crestou, Douin, Coujou (bib0150) 2007; 55
Pilchak, Williams (bib0030) 2011; 42A
Lee, Choo, Liaw, An, Hubbard (bib0095) 2011; 59
Legros, Couret, Caillard (bib0200) 1996; 73
Toribio, Alvarez, Gonzalez, Matos (bib0110) 2009; 16
Singh, Parry, Sinclair (bib0145) 2011; 25
Dunne, Rugg (bib0075) 2008; 31
Bache (10.1016/j.actamat.2015.09.014_bib0015) 2003; 25
Sinha (10.1016/j.actamat.2015.09.014_bib0115) 2006; 37A
Caton (10.1016/j.actamat.2015.09.014_bib0060) 2012; 38
Sinha (10.1016/j.actamat.2015.09.014_bib0105) 2007; 42
Pilchak (10.1016/j.actamat.2015.09.014_bib0130) 2013; 68
Lee (10.1016/j.actamat.2015.09.014_bib0090) 2011; 59
Wang (10.1016/j.actamat.2015.09.014_bib0175) 2007; 38
Lee (10.1016/j.actamat.2015.09.014_bib0095) 2011; 59
Ward-Close (10.1016/j.actamat.2015.09.014_bib0085) 1989; 32
Wang (10.1016/j.actamat.2015.09.014_bib0100) 2003; 81
Evans (10.1016/j.actamat.2015.09.014_bib0065) 1994; 16
Agrawal (10.1016/j.actamat.2015.09.014_bib0165) 1974; 5
Pilchak (10.1016/j.actamat.2015.09.014_bib0030) 2011; 42A
Pilchak (10.1016/j.actamat.2015.09.014_bib0125) 2009; 31
Pilchak (10.1016/j.actamat.2015.09.014_bib0120) 2010
Castany (10.1016/j.actamat.2015.09.014_bib0150) 2007; 55
Mine (10.1016/j.actamat.2015.09.014_bib0055) 2011; 528
Humphreys (10.1016/j.actamat.2015.09.014_bib0160) 2004
Liu (10.1016/j.actamat.2015.09.014_bib0040) 2015; 622
Suresh (10.1016/j.actamat.2015.09.014_bib0045) 1998
Zhang (10.1016/j.actamat.2015.09.014_bib0180) 1989; 119
Bantounas (10.1016/j.actamat.2015.09.014_bib0135) 2009; 57
Legros (10.1016/j.actamat.2015.09.014_bib0195) 2006; 41
Venkateswara Rao (10.1016/j.actamat.2015.09.014_bib0080) 1988; 36
Milella (10.1016/j.actamat.2015.09.014_bib0050) 2012
Toribio (10.1016/j.actamat.2015.09.014_bib0110) 2009; 16
Wang (10.1016/j.actamat.2015.09.014_bib0170) 2006; 434
Dore (10.1016/j.actamat.2015.09.014_bib0140) 2013; 66
Kang (10.1016/j.actamat.2015.09.014_bib0185) 2014; 92
Farenc (10.1016/j.actamat.2015.09.014_bib0155) 1993; 41
Kar’kina (10.1016/j.actamat.2015.09.014_bib0205) 2008; 50
Jha (10.1016/j.actamat.2015.09.014_bib0035) 2012; 42
Legros (10.1016/j.actamat.2015.09.014_bib0200) 1996; 73
Hall (10.1016/j.actamat.2015.09.014_bib0025) 1997; 19
Rolls-Royce (10.1016/j.actamat.2015.09.014_bib0010) 1996
Dunne (10.1016/j.actamat.2015.09.014_bib0075) 2008; 31
Brandes (10.1016/j.actamat.2015.09.014_bib0070) 2010; 41A
Singh (10.1016/j.actamat.2015.09.014_bib0145) 2011; 25
Koizumi (10.1016/j.actamat.2015.09.014_bib0190) 2000; 8
Song (10.1016/j.actamat.2015.09.014_bib0020) 1988; 10
References_xml – volume: 622
  start-page: 228
  year: 2015
  end-page: 235
  ident: bib0040
  article-title: Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy
  publication-title: Mater. Sci. Eng. A
– year: 1998
  ident: bib0045
  article-title: Fatigue of Materials
– year: 2012
  ident: bib0050
  article-title: Fatigue and Corrosion in Metals
– volume: 41
  start-page: 2701
  year: 1993
  end-page: 2709
  ident: bib0155
  article-title: An in situ study of prismatic glide in
  publication-title: Acta. Metall. Mater
– volume: 81
  start-page: 11
  year: 2003
  end-page: 26
  ident: bib0100
  article-title: Texture analysis in hexagonal materials
  publication-title: Mater. Chem. Phys
– volume: 37A
  start-page: 2015
  year: 2006
  end-page: 2026
  ident: bib0115
  article-title: Crystallography of fracture facets in a near-alpha titanium alloy
  publication-title: Metall. Mater. Trans. A
– volume: 32
  start-page: 613
  year: 1989
  end-page: 638
  ident: bib0085
  article-title: Mechanisms associated with transient fatigue crack-growth under variable-amplitude loading: an experimental and numerical study
  publication-title: Eng. Fract. Mech
– volume: 68
  start-page: 277
  year: 2013
  end-page: 280
  ident: bib0130
  article-title: Fatigue crack growth rates in alpha titanium: faceted vs. striation growth
  publication-title: Scr. Mater
– volume: 38
  start-page: 831
  year: 2007
  end-page: 839
  ident: bib0175
  article-title: Dwell fatigue microstructure in a near-
  publication-title: Metall. Mater. Trans. A
– volume: 434
  start-page: 188
  year: 2006
  end-page: 193
  ident: bib0170
  article-title: Substructure of high temperature compressed titanium alloy IMI 834
  publication-title: Mater. Sci. Eng. A
– volume: 16
  start-page: 443
  year: 1994
  end-page: 452
  ident: bib0065
  article-title: Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium-alloy IMI685
  publication-title: Int. J. Fatigue
– volume: 55
  start-page: 6284
  year: 2007
  end-page: 6291
  ident: bib0150
  article-title: Experimental study of dislocation mobility in a Ti-6Al-4V alloy
  publication-title: Acta. Mater
– volume: 10
  start-page: 211
  year: 1988
  end-page: 218
  ident: bib0020
  article-title: Dwell time effects on the fatigue behavior of titanium alloys
  publication-title: Int. J. Fatigue
– volume: 42
  start-page: 8334
  year: 2007
  end-page: 8341
  ident: bib0105
  article-title: Determination of crystallographic orientation of dwell-fatigue fracture facets in Ti-6242 alloy
  publication-title: J. Mater. Sci
– volume: 41
  start-page: 2647
  year: 2006
  end-page: 2657
  ident: bib0195
  article-title: Comparison of glide mechanisms in hcp Ti and Ti
  publication-title: J. Mater. Sci
– year: 1996
  ident: bib0010
  article-title: The Jet Engine
– volume: 59
  start-page: 485
  year: 2011
  end-page: 494
  ident: bib0090
  article-title: A study on fatigue crack growth behavior subjected to a single tensile overload part I. An overload-induced transient crack growth micromechanism
  publication-title: Acta. Mater
– volume: 66
  start-page: 313
  year: 2013
  end-page: 322
  ident: bib0140
  article-title: Accelerated fatigue crack growth in 6082 T651 aluminium alloy subjected to periodic underloads
  publication-title: Proceedia. Eng
– volume: 59
  start-page: 495
  year: 2011
  end-page: 502
  ident: bib0095
  article-title: A study on fatigue crack growth behavior subjected to a single tensile overload: part II. Transfer of stress concentration and its role in overload-induced transient crack growth
  publication-title: Acta. Mater
– volume: 16
  start-page: 794
  year: 2009
  end-page: 809
  ident: bib0110
  article-title: A critical review of stress intensity factor solutions for surface cracks in round bars subjected to tension loading
  publication-title: Eng. Fail. Anal
– volume: 73
  start-page: 81
  year: 1996
  end-page: 99
  ident: bib0200
  article-title: Prismatic and basal slip in Ti
  publication-title: Philos. Mag. A
– volume: 8
  start-page: 179
  year: 2000
  end-page: 186
  ident: bib0190
  article-title: Dislocation dipoles in cyclically deformed Ti
  publication-title: Intermetallics
– volume: 528
  start-page: 7570
  year: 2011
  end-page: 7578
  ident: bib0055
  article-title: Crystallographic fatigue crack growth in titanium single crystals
  publication-title: Mater. Sci. Eng. A
– volume: 25
  start-page: 663
  year: 2011
  end-page: 673
  ident: bib0145
  article-title: Variable amplitude fatigue crack growth behavior – a short overview
  publication-title: J. Mech. Sci. Technol
– start-page: 91
  year: 2004
  end-page: 119
  ident: bib0160
  article-title: Recrystallisation and Related Annealing Phenomena
– volume: 5
  start-page: 2415
  year: 1974
  end-page: 2422
  ident: bib0165
  article-title: Hexagonal dislocation networks in titanium
  publication-title: Metall. Trans
– volume: 42A
  start-page: 1000
  year: 2011
  end-page: 1027
  ident: bib0030
  article-title: Observations of facet formation in near-
  publication-title: Metall. Mater. Trans. A
– volume: 57
  start-page: 3584
  year: 2009
  end-page: 3595
  ident: bib0135
  article-title: The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V
  publication-title: Acta. Mater
– volume: 92
  start-page: 26
  year: 2014
  end-page: 35
  ident: bib0185
  article-title: Macroscopic and microscopic investigations on uniaxial ratchetting of two-phase Ti-6Al-4V alloy
  publication-title: Mater. Charact
– volume: 119
  start-page: 33
  year: 1989
  end-page: 39
  ident: bib0180
  article-title: Substructures and their changes in high purity titanium during tensile deformation
  publication-title: Mater. Sci. Eng. A
– volume: 50
  start-page: 1061
  year: 2008
  end-page: 1070
  ident: bib0205
  article-title: Nucleation of microcracks during dislocation interactions in a Ti
  publication-title: Phys. Solid. State
– start-page: 327
  year: 2010
  end-page: 337
  ident: bib0120
  article-title: Clarification of the fracture plane of dwell fatigue cracks in titanium alloys
  publication-title: Fatigue. Mater
– volume: 38
  start-page: 36
  year: 2012
  end-page: 45
  ident: bib0060
  article-title: Stress ratio effects on small fatigue crack growth in Ti-6Al-4V
  publication-title: Int. J. Fatigue
– volume: 19
  start-page: 23
  year: 1997
  end-page: 37
  ident: bib0025
  article-title: Fatigue crack initiation in alpha-beta titanium alloys
  publication-title: Int. J. Fatigue
– volume: 36
  start-page: 2849
  year: 1988
  end-page: 2862
  ident: bib0080
  article-title: Mechanisms for the retardation of fatigue cracks following single tensile overloads: behavior in aluminum-lithium alloys
  publication-title: Acta. Metall. Mater
– volume: 31
  start-page: 949
  year: 2008
  end-page: 958
  ident: bib0075
  article-title: On the mechanisms of fatigue facet nucleation in titanium alloys
  publication-title: Fatigue Fract. Eng. M.
– volume: 31
  start-page: 989
  year: 2009
  end-page: 994
  ident: bib0125
  article-title: Low Δ
  publication-title: Int. J. Fatigue
– volume: 25
  start-page: 1079
  year: 2003
  end-page: 1087
  ident: bib0015
  article-title: A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions
  publication-title: Int. J. Fatigue
– volume: 41A
  start-page: 3463
  year: 2010
  end-page: 3472
  ident: bib0070
  article-title: The influence of slip character on the creep and fatigue fracture of an
  publication-title: Metall. Matter. Trans. A
– volume: 42
  start-page: 248
  year: 2012
  end-page: 257
  ident: bib0035
  article-title: Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V
  publication-title: Int. J. Fatigue
– year: 2012
  ident: 10.1016/j.actamat.2015.09.014_bib0050
– volume: 41
  start-page: 2647
  year: 2006
  ident: 10.1016/j.actamat.2015.09.014_bib0195
  article-title: Comparison of glide mechanisms in hcp Ti and Ti3 Al
  publication-title: J. Mater. Sci
  doi: 10.1007/s10853-006-7828-5
– year: 1996
  ident: 10.1016/j.actamat.2015.09.014_bib0010
– volume: 10
  start-page: 211
  year: 1988
  ident: 10.1016/j.actamat.2015.09.014_bib0020
  article-title: Dwell time effects on the fatigue behavior of titanium alloys
  publication-title: Int. J. Fatigue
  doi: 10.1016/0142-1123(88)90001-1
– volume: 81
  start-page: 11
  year: 2003
  ident: 10.1016/j.actamat.2015.09.014_bib0100
  article-title: Texture analysis in hexagonal materials
  publication-title: Mater. Chem. Phys
  doi: 10.1016/S0254-0584(03)00168-8
– volume: 25
  start-page: 663
  year: 2011
  ident: 10.1016/j.actamat.2015.09.014_bib0145
  article-title: Variable amplitude fatigue crack growth behavior – a short overview
  publication-title: J. Mech. Sci. Technol
  doi: 10.1007/s12206-011-0132-6
– volume: 38
  start-page: 831
  year: 2007
  ident: 10.1016/j.actamat.2015.09.014_bib0175
  article-title: Dwell fatigue microstructure in a near-α titanium alloy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-007-9105-x
– volume: 42
  start-page: 248
  year: 2012
  ident: 10.1016/j.actamat.2015.09.014_bib0035
  article-title: Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2011.11.017
– volume: 73
  start-page: 81
  year: 1996
  ident: 10.1016/j.actamat.2015.09.014_bib0200
  article-title: Prismatic and basal slip in Ti3 Al II. Dislocation interactions and cross-slip processes
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619608242969
– volume: 55
  start-page: 6284
  year: 2007
  ident: 10.1016/j.actamat.2015.09.014_bib0150
  article-title: Experimental study of dislocation mobility in a Ti-6Al-4V alloy
  publication-title: Acta. Mater
  doi: 10.1016/j.actamat.2007.07.032
– volume: 8
  start-page: 179
  year: 2000
  ident: 10.1016/j.actamat.2015.09.014_bib0190
  article-title: Dislocation dipoles in cyclically deformed Ti3 Al single crystals
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(99)00090-4
– volume: 119
  start-page: 33
  year: 1989
  ident: 10.1016/j.actamat.2015.09.014_bib0180
  article-title: Substructures and their changes in high purity titanium during tensile deformation
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(89)90521-2
– volume: 434
  start-page: 188
  year: 2006
  ident: 10.1016/j.actamat.2015.09.014_bib0170
  article-title: Substructure of high temperature compressed titanium alloy IMI 834
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.06.119
– volume: 38
  start-page: 36
  year: 2012
  ident: 10.1016/j.actamat.2015.09.014_bib0060
  article-title: Stress ratio effects on small fatigue crack growth in Ti-6Al-4V
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2011.11.004
– volume: 92
  start-page: 26
  year: 2014
  ident: 10.1016/j.actamat.2015.09.014_bib0185
  article-title: Macroscopic and microscopic investigations on uniaxial ratchetting of two-phase Ti-6Al-4V alloy
  publication-title: Mater. Charact
  doi: 10.1016/j.matchar.2014.02.014
– start-page: 327
  year: 2010
  ident: 10.1016/j.actamat.2015.09.014_bib0120
  article-title: Clarification of the fracture plane of dwell fatigue cracks in titanium alloys
  publication-title: Fatigue. Mater
  doi: 10.1002/9781118013373.ch21
– volume: 37A
  start-page: 2015
  year: 2006
  ident: 10.1016/j.actamat.2015.09.014_bib0115
  article-title: Crystallography of fracture facets in a near-alpha titanium alloy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-006-0144-5
– volume: 16
  start-page: 794
  year: 2009
  ident: 10.1016/j.actamat.2015.09.014_bib0110
  article-title: A critical review of stress intensity factor solutions for surface cracks in round bars subjected to tension loading
  publication-title: Eng. Fail. Anal
  doi: 10.1016/j.engfailanal.2008.06.023
– volume: 16
  start-page: 443
  year: 1994
  ident: 10.1016/j.actamat.2015.09.014_bib0065
  article-title: Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium-alloy IMI685
  publication-title: Int. J. Fatigue
  doi: 10.1016/0142-1123(94)90194-5
– volume: 41A
  start-page: 3463
  year: 2010
  ident: 10.1016/j.actamat.2015.09.014_bib0070
  article-title: The influence of slip character on the creep and fatigue fracture of an α Ti-Al alloy
  publication-title: Metall. Matter. Trans. A
  doi: 10.1007/s11661-010-0407-z
– volume: 41
  start-page: 2701
  year: 1993
  ident: 10.1016/j.actamat.2015.09.014_bib0155
  article-title: An in situ study of prismatic glide in α titanium at low temperatures
  publication-title: Acta. Metall. Mater
  doi: 10.1016/0956-7151(93)90139-J
– volume: 31
  start-page: 989
  year: 2009
  ident: 10.1016/j.actamat.2015.09.014_bib0125
  article-title: Low ΔK faceted crack growth in titanium alloys
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2008.03.036
– volume: 59
  start-page: 495
  year: 2011
  ident: 10.1016/j.actamat.2015.09.014_bib0095
  article-title: A study on fatigue crack growth behavior subjected to a single tensile overload: part II. Transfer of stress concentration and its role in overload-induced transient crack growth
  publication-title: Acta. Mater
  doi: 10.1016/j.actamat.2010.09.048
– volume: 42A
  start-page: 1000
  year: 2011
  ident: 10.1016/j.actamat.2015.09.014_bib0030
  article-title: Observations of facet formation in near-α titanium and comments on the role of hydrogen
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-010-0507-9
– volume: 68
  start-page: 277
  year: 2013
  ident: 10.1016/j.actamat.2015.09.014_bib0130
  article-title: Fatigue crack growth rates in alpha titanium: faceted vs. striation growth
  publication-title: Scr. Mater
  doi: 10.1016/j.scriptamat.2012.10.041
– volume: 19
  start-page: 23
  year: 1997
  ident: 10.1016/j.actamat.2015.09.014_bib0025
  article-title: Fatigue crack initiation in alpha-beta titanium alloys
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(97)00047-9
– volume: 66
  start-page: 313
  year: 2013
  ident: 10.1016/j.actamat.2015.09.014_bib0140
  article-title: Accelerated fatigue crack growth in 6082 T651 aluminium alloy subjected to periodic underloads
  publication-title: Proceedia. Eng
  doi: 10.1016/j.proeng.2013.12.086
– volume: 5
  start-page: 2415
  year: 1974
  ident: 10.1016/j.actamat.2015.09.014_bib0165
  article-title: Hexagonal dislocation networks in titanium
  publication-title: Metall. Trans
  doi: 10.1007/BF02644025
– volume: 622
  start-page: 228
  year: 2015
  ident: 10.1016/j.actamat.2015.09.014_bib0040
  article-title: Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.09.115
– volume: 31
  start-page: 949
  year: 2008
  ident: 10.1016/j.actamat.2015.09.014_bib0075
  article-title: On the mechanisms of fatigue facet nucleation in titanium alloys
  publication-title: Fatigue Fract. Eng. M.
  doi: 10.1111/j.1460-2695.2008.01284.x
– volume: 32
  start-page: 613
  year: 1989
  ident: 10.1016/j.actamat.2015.09.014_bib0085
  article-title: Mechanisms associated with transient fatigue crack-growth under variable-amplitude loading: an experimental and numerical study
  publication-title: Eng. Fract. Mech
  doi: 10.1016/0013-7944(89)90195-1
– volume: 36
  start-page: 2849
  year: 1988
  ident: 10.1016/j.actamat.2015.09.014_bib0080
  article-title: Mechanisms for the retardation of fatigue cracks following single tensile overloads: behavior in aluminum-lithium alloys
  publication-title: Acta. Metall. Mater
  doi: 10.1016/0001-6160(88)90131-9
– volume: 57
  start-page: 3584
  year: 2009
  ident: 10.1016/j.actamat.2015.09.014_bib0135
  article-title: The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V
  publication-title: Acta. Mater
  doi: 10.1016/j.actamat.2009.04.018
– volume: 25
  start-page: 1079
  year: 2003
  ident: 10.1016/j.actamat.2015.09.014_bib0015
  article-title: A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(03)00145-2
– volume: 59
  start-page: 485
  year: 2011
  ident: 10.1016/j.actamat.2015.09.014_bib0090
  article-title: A study on fatigue crack growth behavior subjected to a single tensile overload part I. An overload-induced transient crack growth micromechanism
  publication-title: Acta. Mater
  doi: 10.1016/j.actamat.2010.09.049
– volume: 50
  start-page: 1061
  year: 2008
  ident: 10.1016/j.actamat.2015.09.014_bib0205
  article-title: Nucleation of microcracks during dislocation interactions in a Ti3 Al single crystal
  publication-title: Phys. Solid. State
  doi: 10.1134/S1063783408060115
– start-page: 91
  year: 2004
  ident: 10.1016/j.actamat.2015.09.014_bib0160
– volume: 528
  start-page: 7570
  year: 2011
  ident: 10.1016/j.actamat.2015.09.014_bib0055
  article-title: Crystallographic fatigue crack growth in titanium single crystals
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.06.079
– year: 1998
  ident: 10.1016/j.actamat.2015.09.014_bib0045
– volume: 42
  start-page: 8334
  year: 2007
  ident: 10.1016/j.actamat.2015.09.014_bib0105
  article-title: Determination of crystallographic orientation of dwell-fatigue fracture facets in Ti-6242 alloy
  publication-title: J. Mater. Sci
  doi: 10.1007/s10853-006-0252-z
SSID ssj0012740
Score 2.4660573
Snippet Real components are usually subjected to variable amplitude fatigue, and yet the deformation micromechanisms that occur due to such load changes have barely...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms Amplitudes
Crack propagation
Dislocation structures
Dwell
Facets
Fatigue
Fatigue (materials)
Fatigue failure
Low cycle fatigue
Striations
TEM
Titanium alloys
Titanium base alloys
Title Influence of complex LCF and dwell load regimes on fatigue of Ti–6Al–4V
URI https://dx.doi.org/10.1016/j.actamat.2015.09.014
https://www.proquest.com/docview/1786204790
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8pk3MbrI5lmJprfZiK70tu9mNtNSk2BY8if_Bf-gvcXaT1AeI4CUhIROWmdnZL5uZbxC6SBjRSrLA0YReOrDewpwTvnZiT4VKKB35liTpdhB0R-R6TMcV1C5rYUxaZRH785huo3Vxp1loszmfTJp3nk8jw0cFkMY0kLAV7CQ0Xt54Wad5ePDVlVcK08gxT39W8TSnMOSlAGBoMryopTv1yG_r049IbZefzg7aLnAjbuVD20UVne6hrS9sgvuo3ysbjuAswTZXXD_jm3YHi1RhZXbp8CwTCptmDI96gbMUJ2CYh5UVGE7eX9-C1gyO5P4AjTpXw3bXKXolODFAjqUTE5G4yhOShSKWQRhQKSIWSF8xU6cRw4kIRbSfSG0y05TBgVJFklCpwpj6h6iaZqk-QlhI4gJsccGMAdEsYoY-wPUSmiSM-UzWECk1xOOCSNz0s5jxMmNsygvFcqNY7kYcFFtDjbXYPGfS-EuAlern31yCQ7T_S_S8NBeH6WL-gYhUZ6sF90JmGPjDyD3-_-tP0CZc2Z0Yj56i6vJppc8Amyxl3TpfHW20ev3u4AMLeuUD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFWU1Uhc0ybETpxjVVG1dLnQot4sO3ZQq5JUtJU4If6BP-RLGGcpi4QqcUmkJBNZM_b42Z55g9B1xIhWknmWJvTGgvkWxpxwtRU6yldC6cBNSZJ6fa81JHcjOiqhRpELY8Iqc9-f-fTUW-dPark2a7PxuHbvuDQwfFQAaUwBCVgCbRAYvqaMQfV1FefhwLIrSxWmgWU-_0rjqU2gzQsByNCEeNGU79Qhf01Qv1x1Ov80d9FODhxxPWvbHirpeB9tf6MTPECddlFxBCcRToPF9QvuNppYxAors02Hp4lQ2FRjeNJznMQ4Ass8LlOBwfjj7d2rT-FKHg7RsHk7aLSsvFiCFQLmWFghEZGtHCGZL0Lp-R6VImCedBUziRoh3IhQRLuR1CY0TRkgKFUgCZXKD6l7hMpxEutjhIUkNuAWG-zoEc0CZvgDbCeiUcSYy2QFkUJDPMyZxE1BiykvQsYmPFcsN4rldsBBsRVUXYnNMiqNdQKsUD__0Sc4uPt1oleFuTiMF3MIImKdLOfc8Zmh4PcD--T_v79Em61Br8u77X7nFG3Bm3RbxqFnqLx4XupzACoLeZF2xE9ZeeaR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+complex+LCF+and+dwell+load+regimes+on+fatigue+of+Ti-6Al-4V&rft.jtitle=Acta+materialia&rft.au=Tympel%2C+PO&rft.au=Lindley%2C+T+C&rft.au=Saunders%2C+E+A&rft.au=Dixon%2C+M&rft.date=2016-01-15&rft.issn=1359-6454&rft.volume=103&rft.spage=77&rft.epage=88&rft_id=info:doi/10.1016%2Fj.actamat.2015.09.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon