Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles
Herein we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitative...
Saved in:
Published in | Polymer (Guilford) Vol. 83; pp. 239 - 245 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
28.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0032-3861 1873-2291 |
DOI | 10.1016/j.polymer.2015.12.014 |
Cover
Loading…
Abstract | Herein we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS. The dye chosen for this study was a cyanine derivative, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.
A dye dequenching assay is used to quantitatively measure the fusion of polymersomes with polymersomes, liposomes, and stealth liposomes. Although polymersome fusion with liquid-phase liposomes was quite efficient, we find that little fusion occurs with gel-phase liposomes. The efficiency is increased however, with the introduction of PEGylated lipids into the gel-phase liposomes, due to the interactions of the PEGylated lipids with the polymersome corona. [Display omitted]
•The fusion of PEO-Pbd polymersomes was characterized using the dequenching of DiR, a cyanine-based fluorescent dye.•Dye-dequenching provided more quantitative information than either microscopy or light scattering.•The fusion of polymersomes with DOPC and DPPC liposomes along with stealth liposomes was investigated.•It was found that the PEO of stealth liposomes aided in the fusion process. |
---|---|
AbstractList | Herein we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS. The dye chosen for this study was a cyanine derivative, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.
A dye dequenching assay is used to quantitatively measure the fusion of polymersomes with polymersomes, liposomes, and stealth liposomes. Although polymersome fusion with liquid-phase liposomes was quite efficient, we find that little fusion occurs with gel-phase liposomes. The efficiency is increased however, with the introduction of PEGylated lipids into the gel-phase liposomes, due to the interactions of the PEGylated lipids with the polymersome corona. [Display omitted]
•The fusion of PEO-Pbd polymersomes was characterized using the dequenching of DiR, a cyanine-based fluorescent dye.•Dye-dequenching provided more quantitative information than either microscopy or light scattering.•The fusion of polymersomes with DOPC and DPPC liposomes along with stealth liposomes was investigated.•It was found that the PEO of stealth liposomes aided in the fusion process. Herein we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS. The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotric arbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion. |
Author | Martinez, Julio A. Collins, Aaron M. Montaño, Gabriel A. Quintana, Hope A. Henderson, Ian M. Paxton, Walter F. |
Author_xml | – sequence: 1 givenname: Ian M. surname: Henderson fullname: Henderson, Ian M. organization: Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA – sequence: 2 givenname: Aaron M. surname: Collins fullname: Collins, Aaron M. organization: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 3 givenname: Hope A. surname: Quintana fullname: Quintana, Hope A. organization: Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA – sequence: 4 givenname: Gabriel A. surname: Montaño fullname: Montaño, Gabriel A. organization: Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA – sequence: 5 givenname: Julio A. surname: Martinez fullname: Martinez, Julio A. organization: Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA – sequence: 6 givenname: Walter F. surname: Paxton fullname: Paxton, Walter F. email: wfpaxto@sandia.gov organization: Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA |
BookMark | eNqFkE1LAzEQhoMoWKs_QcjRg7tmkt10qweR-gkFL3oOu8msTdnd1CSt9N8bab148TQw8z4vzHNCDgc3ICHnwHJgIK-W-cp12x59zhmUOfCcQXFARlBNRMb5FA7JiDHBM1FJOCYnISwZY7zkxYiYuf1YxEDdcE3vt0gNfq5x0As7fFCPG6y7QPftwfVI23WwbqBfNi5-95e0sytraD0YGmIi0mm32WCwusNwSo7aVIRn-zkm748Pb7PnbP769DK7m2daVNOYaajapmFMClZiI1HIApppgQ0Yg4DTRk4qiYWUVamxBc1NbSpTGDFhTYWFFmNysetdeZfeCFH1NmjsunpAtw4KEs8BpJikaLmLau9C8Niqlbd97bcKmPqxqpZq_5_6saqAq2Q1cTd_OG1jHZOT6Gvb_Uvf7mhMFjY2XYO2STca61FHZZz9p-EbdTybwg |
CitedBy_id | crossref_primary_10_3390_ma14247690 crossref_primary_10_1002_anie_201713059 crossref_primary_10_1002_smll_201700467 crossref_primary_10_1002_ange_201713059 crossref_primary_10_1021_acs_chemrev_2c00339 crossref_primary_10_1021_acsanm_2c01407 crossref_primary_10_1002_marc_202100712 crossref_primary_10_2174_1381612829666230601122846 |
Cites_doi | 10.1021/bi002030k 10.1103/PhysRevLett.87.208301 10.1021/bi00174a002 10.1016/j.jconrel.2010.06.002 10.1038/ncomms4599 10.1021/bi00156a034 10.1002/anie.201309433 10.1021/ma971419l 10.1117/1.2364903 10.1021/bm7005938 10.1016/j.jconrel.2013.10.026 10.1002/mabi.200800248 10.1246/cl.130987 10.3390/molecules17011055 10.1002/marc.200800475 10.1002/polb.23650 10.1021/ja0505696 10.1021/bi00319a002 10.1016/j.biomaterials.2014.04.117 10.1016/j.biomaterials.2013.03.097 10.1002/ange.200701125 10.1021/j100259a045 10.1021/ma0112063 10.1021/bm070085x 10.1529/biophysj.105.062539 10.1021/la301608k 10.1007/s00418-008-0411-1 10.1021/la201350r 10.1126/science.284.5417.1143 10.1021/ja069336k 10.1039/c3sm51575c 10.1021/cm402126n 10.1016/S0927-7765(99)00131-9 10.1016/0009-3084(94)90176-7 10.1021/ma961376t 10.2217/17435889.1.3.297 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 8FD F28 FR3 JG9 |
DOI | 10.1016/j.polymer.2015.12.014 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2291 |
EndPage | 245 |
ExternalDocumentID | 10_1016_j_polymer_2015_12_014 S0032386115304274 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SCB SEW SSH T9H WUQ 7SR 8FD F28 FR3 JG9 |
ID | FETCH-LOGICAL-c389t-c18fbb006305eb6e3641b94eb1dde1e9b6786e46685cef1c2dad8d4d370b8e4c3 |
IEDL.DBID | .~1 |
ISSN | 0032-3861 |
IngestDate | Thu Jul 10 23:21:41 EDT 2025 Tue Jul 01 03:35:56 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Fri Feb 23 02:33:30 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dye Polymersome Liposome Polymer Fusion Lipid Quenching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-c18fbb006305eb6e3641b94eb1dde1e9b6786e46685cef1c2dad8d4d370b8e4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0032386115304274 |
PQID | 1786211637 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1786211637 crossref_primary_10_1016_j_polymer_2015_12_014 crossref_citationtrail_10_1016_j_polymer_2015_12_014 elsevier_sciencedirect_doi_10_1016_j_polymer_2015_12_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-28 |
PublicationDateYYYYMMDD | 2016-01-28 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Paxton, Price, Richardson (bib4) 2013; 9 Carmona-Ribeiro, Yoshida, Chaimovich (bib12) 1985; 89 Zhou, Yan (bib19) 2005; 127 Yan, Björnmalm, Caruso (bib24) 2014; 26 Henderson, Paxton (bib25) 2015; 53 Lin, Gao, Hu, Ma, He, Dai, Wang, Wang, Zhang, Zhang (bib31) 2014; 174 Kalchenko, Shivtiel, Malina, Lapid, Haramati, Lapidot, Brill, Harmelin (bib29) 2006; 11 Nallani, de Hoog, Cornelissen, Palmans, van Hest, Nolte (bib9) 2007; 8 Larsson, Bjerregaard, Talts (bib16) 2008; 129 Discher, Won, Ege, Lee, Bates, Discher, Hammer (bib3) 1999; 284 Sawayama, Sakaino, Kabashima, Yoshikawa, Araki (bib18) 2011; 27 Liu, Tucker, Bhalla, Chapman, Weisshaar (bib13) 2005; 89 Haque, McIntosh, Lentz (bib14) 2001; 40 Lentz (bib15) 1994; 73 Arigra, Yamauchi, Gauthier, Qingmin, Yusuke, Wu, Hill (bib23) 2014; 43 Aranda-Espinoza, Bermudez, Bates, Discher (bib1) 2001; 87 Lee, Santore, Bates, Discher (bib5) 2001; 35 Cerritelli, Velluto, Hubbell (bib6) 2007; 8 Ohki, Arnold (bib11) 2000; 18 Smart, Fernyhough, Ryan, Battaglia (bib17) 2008; 29 Lee, Zhou, Meng, Zhang, Otto, Feijen (bib7) 2010; 146 Wang, Gao, Liu, Fan, Kang, Huang, Jin (bib32) 2014; 35 Yu, Eisenberg (bib20) 1998; 31 Alford, Ellens, Bentz (bib27) 1994; 33 L. Zhang, A. Eisenberg. 29 (1996) 8805–8815. Onaca, Enea, Hughes, Meier (bib8) 2009; 9 Hoekstra, De Boer, Klappe, Wilschut (bib26) 1984; 23 Immordino, Dosio, Cattel (bib36) 2006; 1 Kleusch, Hersch, Hoffmann, Merkel, Csiszár (bib34) 2012; 17 Kelley, Murphy, Seppala, Smart, Hann, Sullivan, Epps (bib35) 2014; 5 Henderson, Paxton (bib22) 2014; 53 Puri, Grimaldi, Blumenthal (bib28) 1992; 31 Jaskiewicz, Makowski, Kappl, Landfester, Kroeger (bib2) 2012; 28 Vriezema, Garcia, Sancho Oltra, Hatzakis, Kuiper, Nolte, Rowan, van Hest (bib10) 2007; 119 Chen, Corbin, Li, Cao, Glickson, Zheng (bib30) 2007; 129 Gao, Lv, Li, Tang, Li, Hu, Han (bib33) 2013; 34 Aranda-Espinoza (10.1016/j.polymer.2015.12.014_bib1) 2001; 87 Liu (10.1016/j.polymer.2015.12.014_bib13) 2005; 89 Gao (10.1016/j.polymer.2015.12.014_bib33) 2013; 34 Jaskiewicz (10.1016/j.polymer.2015.12.014_bib2) 2012; 28 Cerritelli (10.1016/j.polymer.2015.12.014_bib6) 2007; 8 Zhou (10.1016/j.polymer.2015.12.014_bib19) 2005; 127 Wang (10.1016/j.polymer.2015.12.014_bib32) 2014; 35 Sawayama (10.1016/j.polymer.2015.12.014_bib18) 2011; 27 Paxton (10.1016/j.polymer.2015.12.014_bib4) 2013; 9 Vriezema (10.1016/j.polymer.2015.12.014_bib10) 2007; 119 Onaca (10.1016/j.polymer.2015.12.014_bib8) 2009; 9 Yu (10.1016/j.polymer.2015.12.014_bib20) 1998; 31 Yan (10.1016/j.polymer.2015.12.014_bib24) 2014; 26 Nallani (10.1016/j.polymer.2015.12.014_bib9) 2007; 8 Haque (10.1016/j.polymer.2015.12.014_bib14) 2001; 40 Hoekstra (10.1016/j.polymer.2015.12.014_bib26) 1984; 23 Discher (10.1016/j.polymer.2015.12.014_bib3) 1999; 284 Lee (10.1016/j.polymer.2015.12.014_bib5) 2001; 35 Arigra (10.1016/j.polymer.2015.12.014_bib23) 2014; 43 Ohki (10.1016/j.polymer.2015.12.014_bib11) 2000; 18 Alford (10.1016/j.polymer.2015.12.014_bib27) 1994; 33 Henderson (10.1016/j.polymer.2015.12.014_bib25) 2015; 53 Kelley (10.1016/j.polymer.2015.12.014_bib35) 2014; 5 Lin (10.1016/j.polymer.2015.12.014_bib31) 2014; 174 Kleusch (10.1016/j.polymer.2015.12.014_bib34) 2012; 17 10.1016/j.polymer.2015.12.014_bib21 Henderson (10.1016/j.polymer.2015.12.014_bib22) 2014; 53 Smart (10.1016/j.polymer.2015.12.014_bib17) 2008; 29 Puri (10.1016/j.polymer.2015.12.014_bib28) 1992; 31 Kalchenko (10.1016/j.polymer.2015.12.014_bib29) 2006; 11 Chen (10.1016/j.polymer.2015.12.014_bib30) 2007; 129 Larsson (10.1016/j.polymer.2015.12.014_bib16) 2008; 129 Carmona-Ribeiro (10.1016/j.polymer.2015.12.014_bib12) 1985; 89 Immordino (10.1016/j.polymer.2015.12.014_bib36) 2006; 1 Lee (10.1016/j.polymer.2015.12.014_bib7) 2010; 146 Lentz (10.1016/j.polymer.2015.12.014_bib15) 1994; 73 |
References_xml | – volume: 8 start-page: 3723 year: 2007 end-page: 3728 ident: bib9 publication-title: Biomacromolecules – volume: 31 start-page: 10108 year: 1992 end-page: 10113 ident: bib28 publication-title: Biochemistry – volume: 23 start-page: 5675 year: 1984 end-page: 5681 ident: bib26 publication-title: Biochemistry – volume: 28 start-page: 12629 year: 2012 end-page: 12636 ident: bib2 publication-title: Langmuir – volume: 53 start-page: 297 year: 2015 end-page: 303 ident: bib25 publication-title: J. Polym. Sci. Part B Polym. Phys. – volume: 11 start-page: 050507-1 year: 2006 end-page: 050507-3 ident: bib29 publication-title: J. Biomed. Opt – volume: 1 start-page: 297 year: 2006 end-page: 315 ident: bib36 publication-title: Int. J. Nanomed. – volume: 89 start-page: 2458 year: 2005 end-page: 2472 ident: bib13 publication-title: Biophys. J. – volume: 35 start-page: 7008 year: 2014 end-page: 7021 ident: bib32 publication-title: Biomaterials – volume: 146 start-page: 400 year: 2010 end-page: 408 ident: bib7 publication-title: J. Control. Release – volume: 26 start-page: 452 year: 2014 end-page: 460 ident: bib24 publication-title: Chem. Mater. – volume: 73 start-page: 91 year: 1994 end-page: 106 ident: bib15 publication-title: Chem. Phys. Lipids – volume: 119 start-page: 7522 year: 2007 end-page: 7526 ident: bib10 publication-title: Angew. Chem. – volume: 53 start-page: 3372 year: 2014 end-page: 3376 ident: bib22 publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 1855 year: 2008 end-page: 1860 ident: bib17 publication-title: Macromol. Rapid Commun. – volume: 87 start-page: 208301 year: 2001 ident: bib1 publication-title: Phys. Rev. Lett. – reference: L. Zhang, A. Eisenberg. 29 (1996) 8805–8815. – volume: 284 start-page: 1143 year: 1999 end-page: 1146 ident: bib3 publication-title: Science – volume: 8 start-page: 1966 year: 2007 end-page: 1972 ident: bib6 publication-title: Biomacromolecules – volume: 40 start-page: 4340 year: 2001 end-page: 4348 ident: bib14 publication-title: Biochemistry – volume: 89 start-page: 2928 year: 1985 end-page: 2933 ident: bib12 publication-title: J. Phys. Chem. – volume: 9 start-page: 129 year: 2009 end-page: 139 ident: bib8 publication-title: Macromol. Biosci. – volume: 18 start-page: 83 year: 2000 end-page: 97 ident: bib11 publication-title: Coll. Surf. B Biointerf. – volume: 31 start-page: 3509 year: 1998 end-page: 3518 ident: bib20 publication-title: Macromolecules – volume: 9 start-page: 11295 year: 2013 end-page: 11302 ident: bib4 publication-title: Soft Matter – volume: 127 start-page: 10468 year: 2005 end-page: 10469 ident: bib19 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 5628 year: 2013 end-page: 5639 ident: bib33 publication-title: Biomaterials – volume: 174 start-page: 161 year: 2014 end-page: 170 ident: bib31 publication-title: J. Control. Release – volume: 35 start-page: 323 year: 2001 end-page: 326 ident: bib5 publication-title: Macromolecules – volume: 43 start-page: 36 year: 2014 end-page: 38 ident: bib23 publication-title: Chem. Lett. – volume: 33 start-page: 1977 year: 1994 end-page: 1987 ident: bib27 publication-title: Biochemistry – volume: 129 start-page: 5798 year: 2007 end-page: 5799 ident: bib30 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 8653 year: 2011 end-page: 8658 ident: bib18 publication-title: Langmuir – volume: 5 start-page: 3599 year: 2014 ident: bib35 publication-title: Nat. Commun. – volume: 129 start-page: 551 year: 2008 end-page: 561 ident: bib16 publication-title: Histochem. Cell Biol. – volume: 17 start-page: 1055 year: 2012 end-page: 1073 ident: bib34 publication-title: Molecules – volume: 40 start-page: 4340 year: 2001 ident: 10.1016/j.polymer.2015.12.014_bib14 publication-title: Biochemistry doi: 10.1021/bi002030k – volume: 87 start-page: 208301 year: 2001 ident: 10.1016/j.polymer.2015.12.014_bib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.208301 – volume: 33 start-page: 1977 year: 1994 ident: 10.1016/j.polymer.2015.12.014_bib27 publication-title: Biochemistry doi: 10.1021/bi00174a002 – volume: 146 start-page: 400 year: 2010 ident: 10.1016/j.polymer.2015.12.014_bib7 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.06.002 – volume: 5 start-page: 3599 year: 2014 ident: 10.1016/j.polymer.2015.12.014_bib35 publication-title: Nat. Commun. doi: 10.1038/ncomms4599 – volume: 31 start-page: 10108 year: 1992 ident: 10.1016/j.polymer.2015.12.014_bib28 publication-title: Biochemistry doi: 10.1021/bi00156a034 – volume: 53 start-page: 3372 year: 2014 ident: 10.1016/j.polymer.2015.12.014_bib22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309433 – volume: 31 start-page: 3509 year: 1998 ident: 10.1016/j.polymer.2015.12.014_bib20 publication-title: Macromolecules doi: 10.1021/ma971419l – volume: 11 start-page: 050507-1 year: 2006 ident: 10.1016/j.polymer.2015.12.014_bib29 publication-title: J. Biomed. Opt doi: 10.1117/1.2364903 – volume: 8 start-page: 3723 year: 2007 ident: 10.1016/j.polymer.2015.12.014_bib9 publication-title: Biomacromolecules doi: 10.1021/bm7005938 – volume: 174 start-page: 161 year: 2014 ident: 10.1016/j.polymer.2015.12.014_bib31 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.10.026 – volume: 9 start-page: 129 year: 2009 ident: 10.1016/j.polymer.2015.12.014_bib8 publication-title: Macromol. Biosci. doi: 10.1002/mabi.200800248 – volume: 43 start-page: 36 year: 2014 ident: 10.1016/j.polymer.2015.12.014_bib23 publication-title: Chem. Lett. doi: 10.1246/cl.130987 – volume: 17 start-page: 1055 year: 2012 ident: 10.1016/j.polymer.2015.12.014_bib34 publication-title: Molecules doi: 10.3390/molecules17011055 – volume: 29 start-page: 1855 year: 2008 ident: 10.1016/j.polymer.2015.12.014_bib17 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200800475 – volume: 53 start-page: 297 year: 2015 ident: 10.1016/j.polymer.2015.12.014_bib25 publication-title: J. Polym. Sci. Part B Polym. Phys. doi: 10.1002/polb.23650 – volume: 127 start-page: 10468 year: 2005 ident: 10.1016/j.polymer.2015.12.014_bib19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0505696 – volume: 23 start-page: 5675 year: 1984 ident: 10.1016/j.polymer.2015.12.014_bib26 publication-title: Biochemistry doi: 10.1021/bi00319a002 – volume: 35 start-page: 7008 year: 2014 ident: 10.1016/j.polymer.2015.12.014_bib32 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.117 – volume: 34 start-page: 5628 year: 2013 ident: 10.1016/j.polymer.2015.12.014_bib33 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.097 – volume: 119 start-page: 7522 year: 2007 ident: 10.1016/j.polymer.2015.12.014_bib10 publication-title: Angew. Chem. doi: 10.1002/ange.200701125 – volume: 89 start-page: 2928 year: 1985 ident: 10.1016/j.polymer.2015.12.014_bib12 publication-title: J. Phys. Chem. doi: 10.1021/j100259a045 – volume: 35 start-page: 323 year: 2001 ident: 10.1016/j.polymer.2015.12.014_bib5 publication-title: Macromolecules doi: 10.1021/ma0112063 – volume: 8 start-page: 1966 year: 2007 ident: 10.1016/j.polymer.2015.12.014_bib6 publication-title: Biomacromolecules doi: 10.1021/bm070085x – volume: 89 start-page: 2458 year: 2005 ident: 10.1016/j.polymer.2015.12.014_bib13 publication-title: Biophys. J. doi: 10.1529/biophysj.105.062539 – volume: 28 start-page: 12629 year: 2012 ident: 10.1016/j.polymer.2015.12.014_bib2 publication-title: Langmuir doi: 10.1021/la301608k – volume: 129 start-page: 551 year: 2008 ident: 10.1016/j.polymer.2015.12.014_bib16 publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-008-0411-1 – volume: 27 start-page: 8653 year: 2011 ident: 10.1016/j.polymer.2015.12.014_bib18 publication-title: Langmuir doi: 10.1021/la201350r – volume: 284 start-page: 1143 year: 1999 ident: 10.1016/j.polymer.2015.12.014_bib3 publication-title: Science doi: 10.1126/science.284.5417.1143 – volume: 129 start-page: 5798 year: 2007 ident: 10.1016/j.polymer.2015.12.014_bib30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja069336k – volume: 9 start-page: 11295 year: 2013 ident: 10.1016/j.polymer.2015.12.014_bib4 publication-title: Soft Matter doi: 10.1039/c3sm51575c – volume: 26 start-page: 452 year: 2014 ident: 10.1016/j.polymer.2015.12.014_bib24 publication-title: Chem. Mater. doi: 10.1021/cm402126n – volume: 18 start-page: 83 year: 2000 ident: 10.1016/j.polymer.2015.12.014_bib11 publication-title: Coll. Surf. B Biointerf. doi: 10.1016/S0927-7765(99)00131-9 – volume: 73 start-page: 91 year: 1994 ident: 10.1016/j.polymer.2015.12.014_bib15 publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(94)90176-7 – ident: 10.1016/j.polymer.2015.12.014_bib21 doi: 10.1021/ma961376t – volume: 1 start-page: 297 year: 2006 ident: 10.1016/j.polymer.2015.12.014_bib36 publication-title: Int. J. Nanomed. doi: 10.2217/17435889.1.3.297 |
SSID | ssj0002524 |
Score | 2.217285 |
Snippet | Herein we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 239 |
SubjectTerms | Circulatory system Conjugation Derivatives Dye Dyes Fusion Iodides Lipid Lipids Liposome Liposomes Polymer Polymersome Quenching Vesicles |
Title | Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles |
URI | https://dx.doi.org/10.1016/j.polymer.2015.12.014 https://www.proquest.com/docview/1786211637 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHIADojwElCIjcSS7m2TiONzQUrQtjxNI3KzYnkiLlmTF7lbi0t_emTzKQ6qQeswkjuzxZF6Z-SzECUUI6DDTgXJREQC4LNAYYZBbh4D8aRacGri5VaN7-PmQPCyJYdcLw2WVre5vdHqtrVtKv-Vmfzoec49vTPZGkUvDIXnKmKAAKUt57_drmUeURA0ScxwF_PRrF0__sTetJi9PyLCgYVJnBUP4l336oKlr83O5KTZav1GeN1P7Ipaw3BKrw-64ti2x_gZZcFv4aw66Z7Iqz-TFC0rfVExzukkyaBMJnWynNaueUBYLzppJzsp29FM5GU_HXuallywKE7rVUH7hrC6m2xH3l9_vhqOgPVAhcOSXzAMX6sLaGmYrQaswVhDaDEhdk5ILMbNkuRSCUjpxWIQu8rnXHnycDqxGcPGuWC6rEveEhJShyihYyvIcYrAaiizHeOAGuS_ILdgX0LHRuBZtnA-9mJiurOzRtMsxzH0TRoa4vy96f4dNG7iNzwbobo_MO7kxZBI-G3rc7amhveIfJXmJ1WJmQmIDBcYqTg_-__VfxRpd1emaSB-K5fnzAr-RAzO3R7WEHomV8x9Xo9s_xnDzGQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8sD2MA3YNNgHnrTHhTaJ4zp7Q91QgdInkHizYvsiFZWkWttJ_PfcJQ4fkxDSXm1d5Jwvv_vI-WeA75QhoMNcR8olZSSlyyONCUaFdSiRP82SSwPnUzW-lKdX2dUGjLqzMNxWGbC_xfQGrcNIP2izv5jN-IxvSv5GUUjDKflQvoJNZqfKerB5dHI2nt4DcpIlLRlzmkQs8HCQp399uKjntzfIzKBx1hQGY_mci_oHrBsPdPwO3obQURy1q9uGDax2YGvU3di2A28ekQvugp9w3r0UdfVT_LpF4dumaa44CeZtIrsTYVnL-gZFuebCmeDCbDf-Q8xni5kXReUFW8OcptqRv7hs-unew-Xx74vROAp3KkSOQpNV5GJdWtswbWVoFaZKxjaXhNiEczHmlpyXQqmUzhyWsUt84bWXPh0OrEbp0g_Qq-oKP4IgVWc550t5UchUWi3LvMB04AaFLyky2APZqdG4QDjO917MTddZdm3C6xjWvokTQ9rfg8N7sUXLuPGSgO72yDwxHUNe4SXRb92eGtor_ldSVFivlyYmNVBurNLh_v8__gC2xhfnEzM5mZ59gtc001RvEv0Zeqs_a_xC8czKfg32egcVTPXK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lights+on%3A+Dye+dequenching+reveals+polymersome+fusion+with+polymer%2C+lipid+and+stealth+lipid+vesicles&rft.jtitle=Polymer+%28Guilford%29&rft.au=Henderson%2C+Ian+M.&rft.au=Collins%2C+Aaron+M.&rft.au=Quintana%2C+Hope+A.&rft.au=Monta%C3%B1o%2C+Gabriel+A.&rft.date=2016-01-28&rft.issn=0032-3861&rft.volume=83&rft.spage=239&rft.epage=245&rft_id=info:doi/10.1016%2Fj.polymer.2015.12.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymer_2015_12_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |