ELGAR-a European Laboratory for Gravitation and Atom-interferometric Research
Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtai...
Saved in:
Published in | Classical and quantum gravity Vol. 37; no. 22; pp. 225017 - 225051 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
19.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0264-9381 1361-6382 |
DOI | 10.1088/1361-6382/aba80e |
Cover
Abstract | Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1-10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space-time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3×10−22/Hz at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology. |
---|---|
AbstractList | Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology. Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1-10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space-time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3×10−22/Hz at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology. Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3 × 1 0 − 22 / Hz at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology. |
Author | Sopuerta, C F von Klitzing, W Katsanevas, S Peters, A Roura, A Schkolnik, V Beaufils, Q Gaffet, S Viceré, A Chaibi, W Junca, J Amaro-Seoane, P Holynski, M Landragin, A Sorrentino, F Leykauf, B Bongs, K Merlet, S Merzougui, M Bertoldi, A Lien, Y-H Sidorenkov, L Hammerer, K Canuel, B Geiger, R Garrido Alzar, C L Woerner, L Christensen, N Fitzek, F Papadakos, P Abend, S Krutzik, M Klempt, C Zou, X Làzaro Roche, I Rasel, E M Badaracco, F Schlippert, D Tino, G M Guellati-Khelifa, S Struckmann, C Tsagkatakis, G Kozanitis, C Flouris, G Sabulsky, D O Harms, J Prevedelli, M Bouyer, P Rogister, Y Nofrarias, M Plexousakis, D Rosat, S Braxmaier, C Loriani, S Pereira dos Santos, F Gaaloul, N Hinderer, J Siemß, J-N Schubert, C |
Author_xml | – sequence: 1 givenname: B orcidid: 0000-0002-1378-2334 surname: Canuel fullname: Canuel, B email: benjamin.canuel@institutoptique.fr organization: UMR 5298, Univ. Bordeaux, CNRS, IOGS, LP2N, F-33400 Talence, France – sequence: 2 givenname: S orcidid: 0000-0001-9539-3780 surname: Abend fullname: Abend, S organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 3 givenname: P surname: Amaro-Seoane fullname: Amaro-Seoane, P organization: TU Berlin Zentrum für Astronomie und Astrophysik, Hardenbergstraße 36, 10623 Berlin, Germany – sequence: 4 givenname: F orcidid: 0000-0001-8553-7904 surname: Badaracco fullname: Badaracco, F organization: INFN , Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy – sequence: 5 givenname: Q surname: Beaufils fullname: Beaufils, Q organization: Sorbonne Université SYRTE, Observatoire de Paris, Université PSL, CNRS, LNE, 61 avenue de l'Observatoire, 75014 Paris, France – sequence: 6 givenname: A orcidid: 0000-0002-4839-0947 surname: Bertoldi fullname: Bertoldi, A organization: UMR 5298, Univ. Bordeaux, CNRS, IOGS, LP2N, F-33400 Talence, France – sequence: 7 givenname: K surname: Bongs fullname: Bongs, K organization: University of Birmingham Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, Birmingham, B15 2TT, United Kingdom – sequence: 8 givenname: P orcidid: 0000-0003-4458-0089 surname: Bouyer fullname: Bouyer, P organization: UMR 5298, Univ. Bordeaux, CNRS, IOGS, LP2N, F-33400 Talence, France – sequence: 9 givenname: C surname: Braxmaier fullname: Braxmaier, C organization: German Aerospace Center DLR, Linzer Strasse 1, 28359 Bremen, Germany – sequence: 10 givenname: W surname: Chaibi fullname: Chaibi, W organization: Université Côte d'Azur ARTEMIS, Observatoire de la Côte d'Azur, CNRS, F-06304 Nice, France – sequence: 11 givenname: N surname: Christensen fullname: Christensen, N organization: Université Côte d'Azur ARTEMIS, Observatoire de la Côte d'Azur, CNRS, F-06304 Nice, France – sequence: 12 givenname: F surname: Fitzek fullname: Fitzek, F organization: Leibniz University Hannover Institute for Theoretical Physics and Institute for Gravitational Physics (Albert-Einstein-Institute), Appelstrasse 2, 30167 Hannover, Germany – sequence: 13 givenname: G surname: Flouris fullname: Flouris, G organization: Foundation for Research and Technology-Hellas Institute of Computer Science, 70013, Heraklion, Greece – sequence: 14 givenname: N orcidid: 0000-0001-8233-5848 surname: Gaaloul fullname: Gaaloul, N organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 15 givenname: S surname: Gaffet fullname: Gaffet, S organization: Avignon University-La grande combe LSBB, Laboratoire Souterrain Bas Bruit, CNRS, 84400 Rustrel, France – sequence: 16 givenname: C L orcidid: 0000-0003-3616-1845 surname: Garrido Alzar fullname: Garrido Alzar, C L organization: Sorbonne Université SYRTE, Observatoire de Paris, Université PSL, CNRS, LNE, 61 avenue de l'Observatoire, 75014 Paris, France – sequence: 17 givenname: R orcidid: 0000-0003-4678-7139 surname: Geiger fullname: Geiger, R organization: Sorbonne Université SYRTE, Observatoire de Paris, Université PSL, CNRS, LNE, 61 avenue de l'Observatoire, 75014 Paris, France – sequence: 18 givenname: S surname: Guellati-Khelifa fullname: Guellati-Khelifa, S organization: ENS-PSL Research University Laboratoire Kastler Brossel, Sorbonne Université, CNRS, Collège de France, 4 place Jussieu, 75005 Paris, France – sequence: 19 givenname: K surname: Hammerer fullname: Hammerer, K organization: Leibniz University Hannover Institute for Theoretical Physics and Institute for Gravitational Physics (Albert-Einstein-Institute), Appelstrasse 2, 30167 Hannover, Germany – sequence: 20 givenname: J orcidid: 0000-0002-7332-9806 surname: Harms fullname: Harms, J organization: INFN , Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy – sequence: 21 givenname: J surname: Hinderer fullname: Hinderer, J organization: Université de Strasbourg/EOST Institut de Physique du Globe de Strasbourg, UMR 7516, CNRS, 5 rue Descartes, 67084 Strasbourg, France – sequence: 22 givenname: M surname: Holynski fullname: Holynski, M organization: University of Birmingham Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, Birmingham, B15 2TT, United Kingdom – sequence: 23 givenname: J surname: Junca fullname: Junca, J organization: UMR 5298, Univ. Bordeaux, CNRS, IOGS, LP2N, F-33400 Talence, France – sequence: 24 givenname: S surname: Katsanevas fullname: Katsanevas, S organization: European Gravitational Observatory (EGO) , I-56021 Cascina (Pi), Italy – sequence: 25 givenname: C surname: Klempt fullname: Klempt, C organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 26 givenname: C surname: Kozanitis fullname: Kozanitis, C organization: Foundation for Research and Technology-Hellas Institute of Computer Science, 70013, Heraklion, Greece – sequence: 27 givenname: M surname: Krutzik fullname: Krutzik, M organization: Humboldt-Universität zu Berlin , Institut für Physik, Newtonstraße 15,12489 Berlin, Germany – sequence: 28 givenname: A orcidid: 0000-0002-2941-4982 surname: Landragin fullname: Landragin, A organization: Sorbonne Université SYRTE, Observatoire de Paris, Université PSL, CNRS, LNE, 61 avenue de l'Observatoire, 75014 Paris, France – sequence: 29 givenname: I surname: Làzaro Roche fullname: Làzaro Roche, I organization: Avignon University-La grande combe LSBB, Laboratoire Souterrain Bas Bruit, CNRS, 84400 Rustrel, France – sequence: 30 givenname: B orcidid: 0000-0002-4630-0602 surname: Leykauf fullname: Leykauf, B organization: Humboldt-Universität zu Berlin , Institut für Physik, Newtonstraße 15,12489 Berlin, Germany – sequence: 31 givenname: Y-H surname: Lien fullname: Lien, Y-H organization: University of Birmingham Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, Birmingham, B15 2TT, United Kingdom – sequence: 32 givenname: S orcidid: 0000-0001-6660-960X surname: Loriani fullname: Loriani, S organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 33 givenname: S surname: Merlet fullname: Merlet, S organization: Sorbonne Université SYRTE, Observatoire de Paris, Université PSL, CNRS, LNE, 61 avenue de l'Observatoire, 75014 Paris, France – sequence: 34 givenname: M surname: Merzougui fullname: Merzougui, M organization: Université Côte d'Azur ARTEMIS, Observatoire de la Côte d'Azur, CNRS, F-06304 Nice, France – sequence: 35 givenname: M orcidid: 0000-0003-1518-2196 surname: Nofrarias fullname: Nofrarias, M organization: Institute of Space Studies of Catalonia (IEEC), Carrer del Gran Capità, 2-4, Edifici Nexus, despatx 201, 08034 Barcelona, Spain – sequence: 36 givenname: P orcidid: 0000-0001-8926-4229 surname: Papadakos fullname: Papadakos, P organization: Computer Science Department, University of Crete, 70013, Heraklion, Greece – sequence: 37 givenname: F orcidid: 0000-0003-0659-5028 surname: Pereira dos Santos fullname: Pereira dos Santos, F organization: Sorbonne Université SYRTE, Observatoire de Paris, Université PSL, CNRS, LNE, 61 avenue de l'Observatoire, 75014 Paris, France – sequence: 38 givenname: A orcidid: 0000-0001-5538-9250 surname: Peters fullname: Peters, A organization: Humboldt-Universität zu Berlin , Institut für Physik, Newtonstraße 15,12489 Berlin, Germany – sequence: 39 givenname: D surname: Plexousakis fullname: Plexousakis, D organization: Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallès (Barcelona), Spain – sequence: 40 givenname: M orcidid: 0000-0002-3136-2392 surname: Prevedelli fullname: Prevedelli, M organization: Dept. of Physics and Astronomy, Univ. of Bologna, Via Berti-Pichat 6/2, I-40126 Bologna, Italy – sequence: 41 givenname: E M surname: Rasel fullname: Rasel, E M organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 42 givenname: Y surname: Rogister fullname: Rogister, Y organization: Université de Strasbourg/EOST Institut de Physique du Globe de Strasbourg, UMR 7516, CNRS, 5 rue Descartes, 67084 Strasbourg, France – sequence: 43 givenname: S orcidid: 0000-0003-4606-2170 surname: Rosat fullname: Rosat, S organization: Université de Strasbourg/EOST Institut de Physique du Globe de Strasbourg, UMR 7516, CNRS, 5 rue Descartes, 67084 Strasbourg, France – sequence: 44 givenname: A orcidid: 0000-0002-8049-8982 surname: Roura fullname: Roura, A organization: Institute of Quantum Technologies, German Aerospace Center (DLR), Söflinger Str. 100, 89077 Ulm, Germany – sequence: 45 givenname: D O orcidid: 0000-0001-7421-2821 surname: Sabulsky fullname: Sabulsky, D O organization: UMR 5298, Univ. Bordeaux, CNRS, IOGS, LP2N, F-33400 Talence, France – sequence: 46 givenname: V surname: Schkolnik fullname: Schkolnik, V organization: Humboldt-Universität zu Berlin , Institut für Physik, Newtonstraße 15,12489 Berlin, Germany – sequence: 47 givenname: D orcidid: 0000-0003-2168-1776 surname: Schlippert fullname: Schlippert, D organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 48 givenname: C surname: Schubert fullname: Schubert, C organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 49 givenname: L orcidid: 0000-0001-5293-2780 surname: Sidorenkov fullname: Sidorenkov, L organization: Sorbonne Université SYRTE, Observatoire de Paris, Université PSL, CNRS, LNE, 61 avenue de l'Observatoire, 75014 Paris, France – sequence: 50 givenname: J-N orcidid: 0000-0003-3038-3922 surname: Siemß fullname: Siemß, J-N organization: Leibniz University Hannover Institute for Theoretical Physics and Institute for Gravitational Physics (Albert-Einstein-Institute), Appelstrasse 2, 30167 Hannover, Germany – sequence: 51 givenname: C F orcidid: 0000-0002-1779-4447 surname: Sopuerta fullname: Sopuerta, C F organization: Institute of Space Studies of Catalonia (IEEC), Carrer del Gran Capità, 2-4, Edifici Nexus, despatx 201, 08034 Barcelona, Spain – sequence: 52 givenname: F surname: Sorrentino fullname: Sorrentino, F organization: Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Genova, via Dodecaneso 33, Genova, Italy – sequence: 53 givenname: C surname: Struckmann fullname: Struckmann, C organization: Leibniz Universität Hannover , Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany – sequence: 54 givenname: G M orcidid: 0000-0002-7944-9825 surname: Tino fullname: Tino, G M organization: Dipartimento di Fisica e Astronomia and LENS Laboratory, Università di Firenze and INFN-Sezione di Firenze, via Sansone 1, Sesto Fiorentino, Italy – sequence: 55 givenname: G surname: Tsagkatakis fullname: Tsagkatakis, G organization: Computer Science Department, University of Crete, 70013, Heraklion, Greece – sequence: 56 givenname: A orcidid: 0000-0003-0624-6231 surname: Viceré fullname: Viceré, A organization: INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy – sequence: 57 givenname: W orcidid: 0000-0001-6172-8407 surname: von Klitzing fullname: von Klitzing, W organization: Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 70013, Heraklion, Greece – sequence: 58 givenname: L surname: Woerner fullname: Woerner, L organization: German Aerospace Center DLR, Linzer Strasse 1, 28359 Bremen, Germany – sequence: 59 givenname: X orcidid: 0000-0003-3026-2944 surname: Zou fullname: Zou, X organization: UMR 5298, Univ. Bordeaux, CNRS, IOGS, LP2N, F-33400 Talence, France |
BackLink | https://hal.science/hal-02986416$$DView record in HAL |
BookMark | eNp9kEFLw0AQhRepYFu9e8xRwejObrrZHEOprRARip6X6WbXprTZuEkL_fcmpHoQFQYGHu-9Yb4RGZSuNIRcA70HKuUDcAGh4JI94AolNWdk-C0NyJAyEYUJl3BBRnW9oRRAAhuS51k2T5chBrO9d5XBMshw5Tw2zh8D63ww93goGmwKVwZY5kHauF1YlI3x1ni3M40vdLA0tUGv15fk3OK2NlenPSZvj7PX6SLMXuZP0zQLNZdJE2oQQCOGhttIMxtJsDaPOItRRjHTOElyFLlgRsQcLawMJBOKEeeUMYs85mNy2_eucasqX-zQH5XDQi3STHUaZYkUEYgDtF7Re7V3de2NVfr0T-Ox2CqgqgOoOlqqo6V6gG2Q_gh-XfonctNHClepjdv7sqWg9Me74rFirJ0JhVhVuW2td79Y_2z-BB8YkAA |
CODEN | CQGRDG |
CitedBy_id | crossref_primary_10_1116_5_0174258 crossref_primary_10_1142_S0218271822500377 crossref_primary_10_1088_1475_7516_2021_07_055 crossref_primary_10_1103_PhysRevA_105_033302 crossref_primary_10_1364_AO_458361 crossref_primary_10_1103_PhysRevA_110_013310 crossref_primary_10_1088_1402_4896_acbf82 crossref_primary_10_1103_PhysRevD_109_022008 crossref_primary_10_1038_s41598_022_23468_3 crossref_primary_10_1364_OE_534888 crossref_primary_10_1007_s10714_022_03012_4 crossref_primary_10_1103_PhysRevD_110_064025 crossref_primary_10_1103_PhysRevD_111_063056 crossref_primary_10_1140_epjd_s10053_024_00829_3 crossref_primary_10_1140_epjqt_s40507_022_00147_w crossref_primary_10_1038_s41598_021_95334_7 crossref_primary_10_1103_PhysRevD_105_083001 crossref_primary_10_1103_PhysRevLett_128_211101 crossref_primary_10_1103_PhysRevResearch_6_L032028 crossref_primary_10_1088_1402_4896_acd882 crossref_primary_10_1103_PhysRevLett_127_100401 crossref_primary_10_1103_PhysRevA_108_023306 crossref_primary_10_1103_PhysRevD_109_102002 crossref_primary_10_1103_PhysRevA_108_063308 crossref_primary_10_1103_PhysRevLett_127_183401 crossref_primary_10_1116_5_0176666 crossref_primary_10_1103_PhysRevD_105_044005 crossref_primary_10_1103_PhysRevD_105_023006 crossref_primary_10_1103_PhysRevResearch_6_043236 crossref_primary_10_1103_PhysRevD_107_124022 crossref_primary_10_1088_2058_9565_ad9e2e crossref_primary_10_1088_1475_7516_2022_01_042 crossref_primary_10_1140_epjc_s10052_020_08692_3 crossref_primary_10_1103_PhysRevD_102_115026 crossref_primary_10_1103_PhysRevA_102_033709 crossref_primary_10_1103_PhysRevD_111_042002 crossref_primary_10_1103_PhysRevLett_126_170402 crossref_primary_10_1088_1475_7516_2022_10_061 crossref_primary_10_1103_PhysRevD_107_055002 crossref_primary_10_1088_1748_0221_17_01_P01007 crossref_primary_10_1103_PhysRevD_107_082002 crossref_primary_10_1103_PhysRevResearch_6_013139 crossref_primary_10_1088_1367_2630_adbc14 crossref_primary_10_3390_technologies12050064 crossref_primary_10_22331_q_2023_03_30_965 crossref_primary_10_1103_PhysRevD_110_022007 crossref_primary_10_1116_5_0178230 crossref_primary_10_1116_5_0185291 crossref_primary_10_1142_S0218271822500390 crossref_primary_10_1088_2058_9565_ac3385 crossref_primary_10_1103_PhysRevA_110_053309 crossref_primary_10_1116_5_0175683 crossref_primary_10_1103_PhysRevLett_132_213601 crossref_primary_10_1098_rsta_2021_0060 crossref_primary_10_1103_PhysRevA_102_063326 crossref_primary_10_1088_1361_6382_ac0236 crossref_primary_10_1038_s41467_021_22823_8 crossref_primary_10_1103_PhysRevD_107_035029 crossref_primary_10_1088_1402_4896_ad70fc crossref_primary_10_1088_2058_9565_abd83e crossref_primary_10_1103_PhysRevLett_131_033602 crossref_primary_10_1103_PhysRevLett_127_140402 crossref_primary_10_1088_2058_9565_abf719 crossref_primary_10_1116_5_0228398 crossref_primary_10_1126_sciadv_abn8009 crossref_primary_10_1103_PhysRevD_106_115030 crossref_primary_10_1103_PhysRevResearch_7_L012028 crossref_primary_10_1002_qute_202400076 crossref_primary_10_1103_PhysRevA_109_053306 crossref_primary_10_1007_s44214_024_00049_1 crossref_primary_10_1140_epjc_s10052_023_12168_5 crossref_primary_10_1038_s41526_022_00243_2 crossref_primary_10_3847_1538_4357_abe5a7 crossref_primary_10_1103_PhysRevA_110_013317 crossref_primary_10_1140_epjc_s10052_023_11323_2 crossref_primary_10_3390_universe8020103 crossref_primary_10_1088_1475_7516_2021_12_017 crossref_primary_10_1088_2058_9565_ad9050 crossref_primary_10_1007_s00340_022_07815_w crossref_primary_10_1103_PhysRevD_108_083016 crossref_primary_10_1103_PhysRevD_109_064010 crossref_primary_10_1038_s42005_024_01621_w crossref_primary_10_1080_00107514_2023_2239008 crossref_primary_10_1103_PhysRevD_108_035017 crossref_primary_10_1360_SSPMA_2024_0186 crossref_primary_10_1088_0256_307X_41_12_129501 |
Cites_doi | 10.1140/epjqt/s40507-020-0080-0 10.1103/physrevlett.124.083604 10.1103/physrevlett.99.201102 10.1103/physrev.136.b1224 10.1086/588246 10.1093/mnras/stv035 10.1103/physrevlett.121.040402 10.1088/0026-1394/38/1/4 10.1063/1.1144774 10.1093/mnras/stw483 10.1103/physrevlett.111.083001 10.1098/rsta.2017.0126 10.1086/181708 10.1088/0264-9381/32/7/074001 10.1103/physrevlett.100.180405 10.1038/s41467-018-03040-2 10.3847/0004-637X/819/1/70 10.1038/s41598-018-30608-1 10.1103/PhysRevLett.118.160401 10.1088/0004-637x/722/2/1197 10.1103/physreva.99.033619 10.1103/physrevlett.122.043604 10.1103/physrevlett.116.173601 10.1103/PhysRevD.93.044007 10.1103/PhysRevD.94.104022 10.3847/2041-8213/aa91c9 10.1007/bf02105068 10.1038/nphys3366 10.1088/0264-9381/27/19/194002 10.1103/physreva.55.2989 10.1038/nphys4189 10.1103/PhysRevD.98.063018 10.1103/physrevlett.97.010402 10.1088/1361-6633/aae6b5 10.1103/physrevlett.96.111101 10.1103/physrevlett.107.133001 10.1103/revmodphys.71.s253 10.1007/s41114-018-0013-8 10.1103/revmodphys.81.1051 10.1103/physrevlett.116.183003 10.1088/0264-9381/28/9/094013 10.1103/physrevlett.116.093602 10.1088/0953-4075/35/14/307 10.1103/PhysRevLett.123.111101 10.1086/167745 10.1103/physrevd.78.122002 10.1086/505641 10.1103/PhysRevX.9.031040 10.1038/nature13433 10.1016/0550-3213(73)90350-7 10.1088/0264-9381/27/17/173001 10.1088/0004-637x/720/1/953 10.1126/science.aap7706 10.1088/0004-637x/692/1/l50 10.1111/j.1365-2966.2009.15842.x 10.1088/1475-7516/2015/03/042 10.1103/physrevlett.106.080801 10.1038/s42254-019-0117-4 10.1103/revmodphys.90.035005 10.1086/428488 10.1103/physreva.94.033632 10.1142/s021827181730021x 10.1103/PhysRevLett.120.061101 10.1103/physrevx.10.021014 10.1007/s10714-007-0521-4 10.1007/s10714-011-1182-x 10.1016/0375-9601(87)90681-5 10.1140/epjd/e2006-00212-2 10.3847/2041-8213/aa74ce 10.1103/physrevd.99.104026 10.1093/mnras/stz2857 10.1103/physrevlett.98.111102 10.1088/0264-9381/19/7/355 10.1103/PhysRevLett.121.129901 10.1016/j.physrep.2015.09.004 10.3847/2041-8213/ab3800 10.1103/revmodphys.85.1401 10.1088/0264-9381/31/11/115010 10.1103/physrevlett.78.2046 10.1103/PhysRevLett.116.231101 10.1103/physrevlett.112.203002 10.1126/sciadv.aau7948 10.1126/science.256.5055.325 10.1103/physrevlett.85.4498 10.1088/0264-9381/32/1/015014 10.1088/1361-6382/aac608 10.1051/0004-6361/201525830 10.1103/physrevd.80.016002 10.1103/physreva.53.312 10.1088/1361-6382/aaa7e0 10.1103/physrevlett.67.181 10.1103/physrevlett.119.263601 10.1103/PhysRevLett.121.129902 10.1103/PhysRevLett.116.061102 10.1146/annurev-astro-082708-101811 10.3847/0004-637X/832/2/192 10.1109/tim.2007.915148 10.1111/j.1365-2966.2009.14653.x 10.1088/1367-2630/16/9/093046 10.1103/physrevd.97.062003 10.1103/physrevlett.75.2638 10.1086/503295 10.1063/1.1142030 10.1093/mnras/stu1437 10.1088/1361-6382/ab4548 10.1088/1742-6596/610/1/012002 10.1103/physrevlett.120.183604 10.1093/mnras/stw503 10.1103/physrevlett.115.013004 10.1103/physreva.86.011606 10.1088/0264-9381/29/12/124013 10.3847/0004-637x/829/1/55 10.1086/510448 10.1038/s41598-018-32165-z 10.1088/1742-6596/723/1/012050 10.1103/physrevlett.101.230801 10.1103/PhysRevLett.119.161101 10.1088/0264-9381/32/2/024001 10.1088/1361-6382/ab0587 10.1103/physrevlett.123.061102 10.1260/0263-0923.30.1.63 10.1088/0957-0233/20/2/022001 10.1038/23655 10.1051/10.1103/PhysRevLett.98.091101 10.1038/ncomms15529 10.1103/physrevlett.110.171102 10.1103/physreva.77.023609 10.1103/physrevd.5.1021 10.1103/PhysRevD.95.103012 10.3847/1538-4365/aab5b0 10.1051/0004-6361/201219620 10.1117/12.22288251 10.1086/507106 10.1051/jp2:1994103 10.1103/PhysRevLett.119.253201 10.1063/1.4745505 10.1063/1.3250841 10.1088/1742-6596/1468/1/012242 10.1103/physreva.88.053620 10.1103/physrevlett.114.143004 10.1063/1.1583862 10.1093/mnras/stv2395 10.1103/physrevlett.116.231102 10.1088/0264-9381/26/15/153001 10.1103/physrevlett.118.183602 10.1038/nature16176 10.1103/PhysRevD.89.104059 10.1007/s41114-019-0020-4 10.1103/PhysRevD.92.124013 10.1088/1367-2630/ab22d0 10.1103/physrevd.85.062002 10.1086/510405 10.1103/physrevd.93.021101 10.1103/physrevlett.102.240403 10.1088/0264-9381/24/17/r01 |
ContentType | Journal Article |
Copyright | 2020 The Author(s). Published by IOP Publishing Ltd Attribution |
Copyright_xml | – notice: 2020 The Author(s). Published by IOP Publishing Ltd – notice: Attribution |
DBID | O3W TSCCA AAYXX CITATION 1XC VOOES |
DOI | 10.1088/1361-6382/aba80e |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: IOPscience url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
DocumentTitleAlternate | ELGAR-a European Laboratory for Gravitation and Atom-interferometric Research |
EISSN | 1361-6382 |
ExternalDocumentID | oai_HAL_hal_02986416v1 10_1088_1361_6382_aba80e cqgaba80e |
GrantInformation_xml | – fundername: The work was also supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos.∼50WM1556, 50WM1956 and 50WP1706 as well as through the DLR Institutes DLR-SI and DLR-QT. – fundername: PA-S, MN, and CFS acknowledge support from contracts ESP2015-67234-P and ESP2017-90084-P from the Ministry of Economy and Business of Spain (MINECO), and from contract 2017-SGR-1469 from AGAUR (Catalan government). – fundername: RG acknowledges Ville de Paris (Emergence programme HSENS-MWGRAV), ANR (project PIMAI) and the Fundamental Physics and Gravitational Waves (PhyFOG) programme of Observatoire de Paris for support. We also acknowledge networking support by the COST actions GWverse CA16104 and AtomQT CA16221 (Horizon 2020 Framework Programme of the European Union). – fundername: SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC-2123 QuantumFrontiers-390837967 (B2) andCRC1227 'DQ-mat' within projects A05, B07 and B09. – fundername: SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by 'Niedersächsisches Vorab' through the 'Quantum- and Nano-Metrology (QUANOMET)' initiative within the project QT3, and through 'Förderung von Wissenschaft und Technik in Forschung und Lehre' for the initial funding of research in the new DLR-SI Institute, the CRC 1227 DQ-mat within the projects A05 and B07 – fundername: This work was realized with the financial support of the French State through the 'Agence Nationale de la Recherche' (ANR) in the frame of the 'MRSEI' program (Pre-ELGAR ANR-17-MRS5-0004-01) and the 'Investissement d'Avenir' program (Equipex MIGA: ANR-11-EQPX-0028, IdEx Bordeaux-LAPHIA: ANR-10-IDEX-03-02). – fundername: XZ thanks the China Scholarships Council (No. 201806010364) program for financial support. JJ thanks 'AssociationNationale de la Recherche et de la Technologie' for financial support (No. 2018/1565). – fundername: AB acknowledges support from the ANR (project EOSBECMR), IdEx Bordeaux-LAPHIA (project OE-TWR), theQuantERA ERA-NET (project TAIOL) and the Aquitaine Region (projets IASIG3D and USOFF). – fundername: SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grants No. DLR∼50WM1641 (PRIMUS-III), 50WM1952 (QUANTUS-V-Fallturm), and 50WP1700 (BECCAL), 50WM1861 (CAL), 50WM2060 (CARIOQA) as well as 50RK1957 (QGYRO) – fundername: DS gratefully acknowledges funding by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under contract number 13N14875. |
GroupedDBID | -DZ -~X 1JI 29B 4.4 5B3 5GY 5PX 5VS 5ZH 6J9 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 TSCCA UCJ W28 XPP ZMT AAYXX ADEQX CITATION 1XC AEINN VOOES |
ID | FETCH-LOGICAL-c389t-c161042ae3f4c2f481ffd4327a8472ca59da6d62e673af1be1950a433022fa373 |
IEDL.DBID | IOP |
ISSN | 0264-9381 |
IngestDate | Wed Aug 06 18:04:24 EDT 2025 Tue Jul 01 00:32:34 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Wed Aug 21 03:33:30 EDT 2024 Thu Jan 07 14:56:18 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-c161042ae3f4c2f481ffd4327a8472ca59da6d62e673af1be1950a433022fa373 |
Notes | CQG-106848.R1 |
ORCID | 0000-0003-0659-5028 0000-0001-6660-960X 0000-0002-4839-0947 0000-0002-3136-2392 0000-0001-8926-4229 0000-0003-3026-2944 0000-0003-1518-2196 0000-0002-7944-9825 0000-0001-8553-7904 0000-0002-1378-2334 0000-0001-9539-3780 0000-0003-4678-7139 0000-0002-1779-4447 0000-0003-3038-3922 0000-0003-4458-0089 0000-0002-4630-0602 0000-0003-4606-2170 0000-0001-5538-9250 0000-0001-5293-2780 0000-0002-7332-9806 0000-0001-7421-2821 0000-0003-0624-6231 0000-0003-2168-1776 0000-0003-3616-1845 0000-0002-8049-8982 0000-0001-6172-8407 0000-0002-2941-4982 0000-0001-8233-5848 0000-0002-1678-2831 0000-0001-6769-1254 0000-0002-6870-4202 0000-0002-9519-4738 0000-0001-6591-9083 0000-0003-2180-1598 0000-0003-3630-8077 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6382/aba80e |
PageCount | 35 |
ParticipantIDs | iop_journals_10_1088_1361_6382_aba80e hal_primary_oai_HAL_hal_02986416v1 crossref_citationtrail_10_1088_1361_6382_aba80e crossref_primary_10_1088_1361_6382_aba80e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-19 |
PublicationDateYYYYMMDD | 2020-11-19 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Classical and quantum gravity |
PublicationTitleAbbrev | CQG |
PublicationTitleAlternate | Class. Quantum Grav |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Gustavson (cqgaba80ebib18) 1997; 78 Kleinert (cqgaba80ebib74) 2015; 605 Hansen (cqgaba80ebib145) 1972; 5 Gebbe (cqgaba80ebib85) 2019 Pagel (cqgaba80ebib88) 2019 Trimeche (cqgaba80ebib34) 2019; 36 Simeone (cqgaba80ebib70) 2018 Marzlin (cqgaba80ebib72) 1996; 53 Naticchioni (cqgaba80ebib69) 2020; 1468 Moore (cqgaba80ebib130) 2015; 32 Stockton (cqgaba80ebib19) 2011; 107 Lévèque (cqgaba80ebib63) 2010 Schlippert (cqgaba80ebib26) 2014; 112 Penrose (cqgaba80ebib43) 1996; 28 Canuel (cqgaba80ebib65) 2016; 9900 Hogan (cqgaba80ebib73) 2011; 43 Haster (cqgaba80ebib158) 2016; 832 Ménoret (cqgaba80ebib36) 2018; 8 Fan (cqgaba80ebib173) 2015 Fregeau (cqgaba80ebib137) 2006; 646 Kuns (cqgaba80ebib13) 2019 Barrett (cqgaba80ebib39) 2019; 122 Mezcua (cqgaba80ebib132) 2017; 26 Weisberg (cqgaba80ebib113) 2016; 829 Hu (cqgaba80ebib92) 2017; 119 Manchester (cqgaba80ebib114) 2005; 129 MacLeod (cqgaba80ebib157) 2016; 819 Diósi (cqgaba80ebib42) 1987; 120 Hogan (cqgaba80ebib94) 2016; 94 Winterflood (cqgaba80ebib104) 2002; 19 Abbott (cqgaba80ebib111) 2018; 9 Dickerson (cqgaba80ebib55) 2013; 111 El-Neaj (cqgaba80ebib15) 2020; 7 Kormendy (cqgaba80ebib131) 2013; 51 Sesana (cqgaba80ebib10) 2016; 116 Amaro-Seoane (cqgaba80ebib139) 2010; 722 Savoie (cqgaba80ebib20) 2018; 4 Jaffe (cqgaba80ebib31) 2017; 13 Rudolph (cqgaba80ebib96) 2016 Kovachy (cqgaba80ebib90) 2012; 86 Bertone (cqgaba80ebib183) 2019 Chung (cqgaba80ebib41) 2009; 80 Canuel (cqgaba80ebib56) 2020 Peik (cqgaba80ebib80) 1997; 55 Abbott (cqgaba80ebib177) 2018; 121 De Angelis (cqgaba80ebib35) 2009; 20 Arzoumanian (cqgaba80ebib125) 2018; 235 Bongs (cqgaba80ebib33) 2019; 1 Mandel (cqgaba80ebib5) 2018; 35 Bouchendira (cqgaba80ebib60) 2011; 106 Cadoret (cqgaba80ebib81) 2008; 101 Barriga (cqgaba80ebib107) 2009; 80 Parker (cqgaba80ebib98) 2018; 360 Barausse (cqgaba80ebib184) 2014; 89 Denschlag (cqgaba80ebib54) 2002; 35 Abbott (cqgaba80ebib178) 2018; 121 (cqgaba80ebib117) 2017; 848 Abbott (cqgaba80ebib128) 2019; 882 Abbott (cqgaba80ebib1) 2016; 116 Amaro-Seoane (cqgaba80ebib133) 2006; 653 Leigh (cqgaba80ebib156) 2014; 444 Ando (cqgaba80ebib3) 2013; 85 Müller (cqgaba80ebib82) 2008; 100 Zhou (cqgaba80ebib27) 2015; 115 Abbott (cqgaba80ebib4) 2019; 9 Dimopoulos (cqgaba80ebib51) 2008; 78 Sathyaprakash (cqgaba80ebib172) 2019 Barack (cqgaba80ebib175) 2019; 36 Gaffet (cqgaba80ebib68) 2019 Punturo (cqgaba80ebib12) 2010; 27 Bertoldi (cqgaba80ebib78) 2019; 99 Blinnikov (cqgaba80ebib118) 1984; 10 Amaro-Seoane (cqgaba80ebib141) 2015; 610 Peters (cqgaba80ebib50) 2001; 38 Amaro-Seoane (cqgaba80ebib135) 2010; 401 Sopuerta (cqgaba80ebib182) 2010 Lee (cqgaba80ebib150) 2010; 720 Baker (cqgaba80ebib154) 2006; 653 Hong (cqgaba80ebib151) 2015; 448 (cqgaba80ebib166) 2018 Amaro-Seoane (cqgaba80ebib140) 2018; 21 Ahlers (cqgaba80ebib89) 2016; 116 Amaro-Seoane (cqgaba80ebib160) 2018; 98 Brown (cqgaba80ebib143) 2007; 99 Overstreet (cqgaba80ebib29) 2018; 120 Giltner (cqgaba80ebib79) 1995; 75 Seitenzahl (cqgaba80ebib171) 2015; 92 Freier (cqgaba80ebib17) 2016; 723 Kocsis (cqgaba80ebib147) 2006; 648 Christensen (cqgaba80ebib169) 2019; 82 Pezzè (cqgaba80ebib99) 2018; 90 Cox (cqgaba80ebib101) 2016; 116 Gürkan (cqgaba80ebib136) 2006; 640 Bertoldi (cqgaba80ebib53) 2006; 40 Dutta (cqgaba80ebib57) 2016; 116 Abadie (cqgaba80ebib115) 2010; 27 McDonald (cqgaba80ebib59) 2013; 88 Peters (cqgaba80ebib138) 1964; 136 Nielsen (cqgaba80ebib6) 1973; 61 Pfister (cqgaba80ebib46) 2007; 39 Abbott (cqgaba80ebib116) 2017; 119 Garoi (cqgaba80ebib106) 2003; 74 Khan (cqgaba80ebib167) 2016; 93 Rosi (cqgaba80ebib28) 2017; 8 Fiorucci (cqgaba80ebib66) 2018; 97 Chalapathy (cqgaba80ebib109) 2019 Weir (cqgaba80ebib7) 2018; 376 Accadia (cqgaba80ebib103) 2011; 30 Cronin (cqgaba80ebib47) 2009; 81 Campanelli (cqgaba80ebib153) 2006; 96 Müller (cqgaba80ebib86) 2008; 77 Kovachy (cqgaba80ebib97) 2015; 114 Mandel (cqgaba80ebib148) 2008; 681 Rosi (cqgaba80ebib22) 2014; 510 Canuel (cqgaba80ebib58) 2006; 97 Burrage (cqgaba80ebib30) 2015 Abramovici (cqgaba80ebib2) 1992; 256 Müller (cqgaba80ebib87) 2009; 102 Chen (cqgaba80ebib165) 2017 Berry (cqgaba80ebib181) 2019 Jennrich (cqgaba80ebib11) 2009; 26 Seoane (cqgaba80ebib123) 2013 Rodriguez (cqgaba80ebib144) 2012; 85 Ade (cqgaba80ebib168) 2016; 594 Konstantinidis (cqgaba80ebib152) 2013; 557 McGuirk (cqgaba80ebib84) 2000; 85 Hosten (cqgaba80ebib100) 2016; 529 O’Leary (cqgaba80ebib149) 2009; 395 Hulse (cqgaba80ebib112) 1975; 195 Armano (cqgaba80ebib122) 2019; 123 Quinlan (cqgaba80ebib146) 1989; 343 Schubert (cqgaba80ebib75) 2019 Graham (cqgaba80ebib91) 2013; 110 Perera (cqgaba80ebib127) 2019 Hosain (cqgaba80ebib105) 2012; 83 Wieman (cqgaba80ebib52) 1999; 71 Peters (cqgaba80ebib16) 1999; 400 Asenbaum (cqgaba80ebib21) 2017; 118 Dimopoulos (cqgaba80ebib24) 2007; 98 Sabulsky (cqgaba80ebib32) 2019; 123 Junca (cqgaba80ebib67) 2019; 99 Cardoso (cqgaba80ebib179) 2019; 22 Aguilera (cqgaba80ebib25) 2014; 31 Cheinet (cqgaba80ebib62) 2008; 57 Sathyaprakash (cqgaba80ebib129) 2012; 29 Saulson (cqgaba80ebib108) 1994; 65 Bouchendira (cqgaba80ebib23) 2011; 106 Rudolph (cqgaba80ebib93) 2020; 124 Amaro-Seoane (cqgaba80ebib161) 2016; 458 Armano (cqgaba80ebib121) 2018; 120 Storey (cqgaba80ebib48) 1994; 4 Amaro-Seoane (cqgaba80ebib142) 2007; 24 Pikovski (cqgaba80ebib44) 2015; 11 Chen (cqgaba80ebib163) 2016 Hild (cqgaba80ebib159) 2011; 28 Aasi (cqgaba80ebib8) 2015; 32 Kasevich (cqgaba80ebib38) 2006 Caprini (cqgaba80ebib170) 2018; 35 Bidel (cqgaba80ebib37) 2018; 9 Jaffe (cqgaba80ebib83) 2018; 121 Chen (cqgaba80ebib162) 2017; 842 Reitze (cqgaba80ebib174) 2019 Roura (cqgaba80ebib76) 2017; 118 Amaro-Seoane (cqgaba80ebib134) 2009; 692 Desvignes (cqgaba80ebib124) 2016; 458 Kasevich (cqgaba80ebib49) 1991; 67 Graham (cqgaba80ebib71) 2016; 94 Reardon (cqgaba80ebib126) 2016; 455 Rollins (cqgaba80ebib164) 2017 Rocco (cqgaba80ebib61) 2014; 16 Acernese (cqgaba80ebib9) 2014; 32 Loriani (cqgaba80ebib95) 2019; 21 Chaibi (cqgaba80ebib40) 2016; 93 Stephens (cqgaba80ebib102) 1991; 62 Yang (cqgaba80ebib110) 2017 González (cqgaba80ebib155) 2007; 98 Canuel (cqgaba80ebib64) 2018; 8 Amaro-Seoane (cqgaba80ebib119) 2017 D’Amico (cqgaba80ebib77) 2017; 119 Sedda (cqgaba80ebib14) 2019 Sathyaprakash (cqgaba80ebib176) 2019 Babak (cqgaba80ebib180) 2017; 95 Roura (cqgaba80ebib45) 2020; 10 Armano (cqgaba80ebib120) 2016; 116 |
References_xml | – volume: 7 start-page: 6 year: 2020 ident: cqgaba80ebib15 publication-title: EPJ Quantum Technol. doi: 10.1140/epjqt/s40507-020-0080-0 – volume: 124 year: 2020 ident: cqgaba80ebib93 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.124.083604 – volume: 99 year: 2007 ident: cqgaba80ebib143 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.99.201102 – volume: 136 start-page: B1224 year: 1964 ident: cqgaba80ebib138 publication-title: Phys. Rev. doi: 10.1103/physrev.136.b1224 – volume: 681 start-page: 1431 year: 2008 ident: cqgaba80ebib148 publication-title: Astrophys. J. doi: 10.1086/588246 – volume: 448 start-page: 754 year: 2015 ident: cqgaba80ebib151 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stv035 – volume: 121 year: 2018 ident: cqgaba80ebib83 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.121.040402 – volume: 38 start-page: 25 year: 2001 ident: cqgaba80ebib50 publication-title: Metrologia doi: 10.1088/0026-1394/38/1/4 – volume: 65 start-page: 182 year: 1994 ident: cqgaba80ebib108 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1144774 – year: 2010 ident: cqgaba80ebib63 article-title: Development of a high sensitivity cold atom gyroscope based on a folded geometry PhD Thesis – volume: 458 start-page: 3341 year: 2016 ident: cqgaba80ebib124 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stw483 – volume: 111 year: 2013 ident: cqgaba80ebib55 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.111.083001 – year: 2013 ident: cqgaba80ebib123 article-title: The gravitational universe – volume: 376 start-page: 20170126 year: 2018 ident: cqgaba80ebib7 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2017.0126 – volume: 195 start-page: L51 year: 1975 ident: cqgaba80ebib112 publication-title: Astrophys. J. doi: 10.1086/181708 – volume: 32 year: 2015 ident: cqgaba80ebib8 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/7/074001 – volume: 100 year: 2008 ident: cqgaba80ebib82 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.100.180405 – volume: 9 start-page: 65 year: 2018 ident: cqgaba80ebib37 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03040-2 – volume: 819 start-page: 70 year: 2016 ident: cqgaba80ebib157 publication-title: Astrophys. J. doi: 10.3847/0004-637X/819/1/70 – volume: 8 start-page: 12300 year: 2018 ident: cqgaba80ebib36 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30608-1 – volume: 118 year: 2017 ident: cqgaba80ebib76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.160401 – volume: 722 start-page: 1197 year: 2010 ident: cqgaba80ebib139 publication-title: Astrophys. J. doi: 10.1088/0004-637x/722/2/1197 – volume: 99 year: 2019 ident: cqgaba80ebib78 publication-title: Phys. Rev. A doi: 10.1103/physreva.99.033619 – volume: 122 year: 2019 ident: cqgaba80ebib39 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.122.043604 – volume: 116 year: 2016 ident: cqgaba80ebib89 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.116.173601 – volume: 93 year: 2016 ident: cqgaba80ebib167 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.044007 – year: 2019 ident: cqgaba80ebib75 article-title: Scalable, symmetric atom interferometer for infrasound gravitational wave detection – volume: 94 year: 2016 ident: cqgaba80ebib71 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.104022 – volume: 848 start-page: L13 year: 2017 ident: cqgaba80ebib117 article-title: Fermi Gamma-ray Burst Monitor, and INTEGRAL publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/aa91c9 – volume: 28 start-page: 581 year: 1996 ident: cqgaba80ebib43 publication-title: Gen. Relativ. Gravit. doi: 10.1007/bf02105068 – volume: 11 start-page: 668 year: 2015 ident: cqgaba80ebib44 publication-title: Nat. Phys. doi: 10.1038/nphys3366 – volume: 27 year: 2010 ident: cqgaba80ebib12 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/19/194002 – volume: 55 start-page: 2989 year: 1997 ident: cqgaba80ebib80 publication-title: Phys. Rev. A doi: 10.1103/physreva.55.2989 – volume: 13 start-page: 938 year: 2017 ident: cqgaba80ebib31 publication-title: Nat. Phys. doi: 10.1038/nphys4189 – volume: 98 year: 2018 ident: cqgaba80ebib160 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.063018 – year: 2015 ident: cqgaba80ebib173 article-title: Multimessenger astronomy – volume: 97 year: 2006 ident: cqgaba80ebib58 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.97.010402 – volume: 82 year: 2019 ident: cqgaba80ebib169 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aae6b5 – year: 2019 ident: cqgaba80ebib68 article-title: The LSBB underground research laboratory: a unique facility for fundamental and applied low background inter-disciplinary ground and underground science and technology Rencontres scientifiques et techniques RESIF 2019 – volume: 96 year: 2006 ident: cqgaba80ebib153 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.96.111101 – volume: 107 year: 2011 ident: cqgaba80ebib19 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.107.133001 – volume: 71 start-page: S253 year: 1999 ident: cqgaba80ebib52 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.71.s253 – volume: 21 start-page: 4 year: 2018 ident: cqgaba80ebib140 publication-title: Living Rev. Relativ. doi: 10.1007/s41114-018-0013-8 – volume: 81 start-page: 1051 year: 2009 ident: cqgaba80ebib47 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.81.1051 – volume: 116 year: 2016 ident: cqgaba80ebib57 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.116.183003 – volume: 28 year: 2011 ident: cqgaba80ebib159 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/28/9/094013 – volume: 116 year: 2016 ident: cqgaba80ebib101 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.116.093602 – year: 2019 ident: cqgaba80ebib13 article-title: Astrophysics and cosmology with a deci-hertz gravitational-wave detector: TianGO – year: 2017 ident: cqgaba80ebib119 article-title: Laser interferometer space antenna – volume: 35 start-page: 3095 year: 2002 ident: cqgaba80ebib54 publication-title: J. Phys. B: At. Mol. Opt. Phys. doi: 10.1088/0953-4075/35/14/307 – volume: 123 year: 2019 ident: cqgaba80ebib122 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.111101 – year: 2019 ident: cqgaba80ebib176 article-title: Extreme gravity and fundamental physics – volume: 343 start-page: 725 year: 1989 ident: cqgaba80ebib146 publication-title: Astrophys. J. doi: 10.1086/167745 – volume: 78 year: 2008 ident: cqgaba80ebib51 publication-title: Phys. Rev. D doi: 10.1103/physrevd.78.122002 – volume: 648 start-page: 411 year: 2006 ident: cqgaba80ebib147 publication-title: Astrophys. J. doi: 10.1086/505641 – volume: 9 year: 2019 ident: cqgaba80ebib4 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.031040 – volume: 510 start-page: 518 year: 2014 ident: cqgaba80ebib22 publication-title: Nature doi: 10.1038/nature13433 – volume: 61 start-page: 45 year: 1973 ident: cqgaba80ebib6 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(73)90350-7 – start-page: 3 year: 2010 ident: cqgaba80ebib182 – volume: 27 year: 2010 ident: cqgaba80ebib115 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/17/173001 – volume: 720 start-page: 953 year: 2010 ident: cqgaba80ebib150 publication-title: Astrophys. J. doi: 10.1088/0004-637x/720/1/953 – volume: 360 start-page: 191 year: 2018 ident: cqgaba80ebib98 publication-title: Science doi: 10.1126/science.aap7706 – volume: 692 start-page: L50 year: 2009 ident: cqgaba80ebib134 publication-title: Astrophys. J. doi: 10.1088/0004-637x/692/1/l50 – volume: 401 start-page: 2268 year: 2010 ident: cqgaba80ebib135 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2009.15842.x – year: 2015 ident: cqgaba80ebib30 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/03/042 – volume: 106 start-page: 287 year: 2011 ident: cqgaba80ebib23 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.106.080801 – volume: 1 start-page: 731 year: 2019 ident: cqgaba80ebib33 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0117-4 – volume: 90 year: 2018 ident: cqgaba80ebib99 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.90.035005 – volume: 129 start-page: 1993 year: 2005 ident: cqgaba80ebib114 publication-title: Astron. J. doi: 10.1086/428488 – volume: 94 year: 2016 ident: cqgaba80ebib94 publication-title: Phys. Rev. A doi: 10.1103/physreva.94.033632 – volume: 26 start-page: 1730021 year: 2017 ident: cqgaba80ebib132 publication-title: Int. J. Mod. Phys. D doi: 10.1142/s021827181730021x – year: 2017 ident: cqgaba80ebib165 article-title: Distance measures in gravitational-wave astrophysics and cosmology – volume: 120 year: 2018 ident: cqgaba80ebib121 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.061101 – volume: 10 year: 2020 ident: cqgaba80ebib45 publication-title: Phys. Rev. X doi: 10.1103/physrevx.10.021014 – volume: 39 start-page: 1735 year: 2007 ident: cqgaba80ebib46 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-007-0521-4 – volume: 43 start-page: 1953 year: 2011 ident: cqgaba80ebib73 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-011-1182-x – year: 2016 ident: cqgaba80ebib96 article-title: Matter-wave optics with Bose-Einstein condensates in microgravity – year: 2016 ident: cqgaba80ebib163 article-title: Distance tool – year: 2019 ident: cqgaba80ebib85 article-title: Twin-lattice atom interferometry – volume: 120 start-page: 377 year: 1987 ident: cqgaba80ebib42 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(87)90681-5 – volume: 40 start-page: 271 year: 2006 ident: cqgaba80ebib53 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2006-00212-2 – volume: 842 start-page: L2 year: 2017 ident: cqgaba80ebib162 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aa74ce – volume: 99 year: 2019 ident: cqgaba80ebib67 publication-title: Phys. Rev. D doi: 10.1103/physrevd.99.104026 – year: 2019 ident: cqgaba80ebib127 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stz2857 – volume: 98 year: 2007 ident: cqgaba80ebib24 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.98.111102 – volume: 19 start-page: 1639 year: 2002 ident: cqgaba80ebib104 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/19/7/355 – volume: 121 year: 2018 ident: cqgaba80ebib178 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.129901 – volume: 605 start-page: 1 year: 2015 ident: cqgaba80ebib74 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.09.004 – volume: 882 start-page: L24 year: 2019 ident: cqgaba80ebib128 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ab3800 – volume: 85 start-page: 1401 year: 2013 ident: cqgaba80ebib3 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.85.1401 – volume: 31 year: 2014 ident: cqgaba80ebib25 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/31/11/115010 – volume: 78 start-page: 2046 year: 1997 ident: cqgaba80ebib18 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.78.2046 – volume: 116 year: 2016 ident: cqgaba80ebib120 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.231101 – volume: 112 year: 2014 ident: cqgaba80ebib26 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.112.203002 – volume: 4 year: 2018 ident: cqgaba80ebib20 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau7948 – volume: 256 start-page: 325 year: 1992 ident: cqgaba80ebib2 publication-title: Science doi: 10.1126/science.256.5055.325 – volume: 85 start-page: 4498 year: 2000 ident: cqgaba80ebib84 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.85.4498 – volume: 32 year: 2015 ident: cqgaba80ebib130 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/1/015014 – year: 2018 ident: cqgaba80ebib70 article-title: The ARIA project: production of depleted argon for the DarkSide experiment – volume: 35 year: 2018 ident: cqgaba80ebib170 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/aac608 – volume: 594 start-page: A13 year: 2016 ident: cqgaba80ebib168 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201525830 – volume: 80 year: 2009 ident: cqgaba80ebib41 publication-title: Phys. Rev. D doi: 10.1103/physrevd.80.016002 – volume: 53 start-page: 312 year: 1996 ident: cqgaba80ebib72 publication-title: Phys. Rev. A doi: 10.1103/physreva.53.312 – volume: 35 year: 2018 ident: cqgaba80ebib5 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/aaa7e0 – volume: 67 start-page: 181 year: 1991 ident: cqgaba80ebib49 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.67.181 – volume: 9 year: 2018 ident: cqgaba80ebib111 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.031040 – volume: 119 year: 2017 ident: cqgaba80ebib92 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.119.263601 – volume: 121 year: 2018 ident: cqgaba80ebib177 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.129902 – volume: 116 year: 2016 ident: cqgaba80ebib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – volume: 51 start-page: 511 year: 2013 ident: cqgaba80ebib131 publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-082708-101811 – volume: 832 start-page: 192 year: 2016 ident: cqgaba80ebib158 publication-title: Astrophys. J. doi: 10.3847/0004-637X/832/2/192 – year: 2019 ident: cqgaba80ebib14 article-title: The missing link in the gravitational wave astronomy: discoveries waiting in the decihertz range – volume: 57 start-page: 1141 year: 2008 ident: cqgaba80ebib62 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2007.915148 – volume: 395 start-page: 2127 year: 2009 ident: cqgaba80ebib149 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2009.14653.x – volume: 16 year: 2014 ident: cqgaba80ebib61 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/9/093046 – volume: 97 year: 2018 ident: cqgaba80ebib66 publication-title: Phys. Rev. D doi: 10.1103/physrevd.97.062003 – volume: 75 start-page: 2638 year: 1995 ident: cqgaba80ebib79 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.75.2638 – volume: 640 start-page: L39 year: 2006 ident: cqgaba80ebib136 publication-title: Astrophys. J. doi: 10.1086/503295 – volume: 62 start-page: 924 year: 1991 ident: cqgaba80ebib102 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1142030 – volume: 444 start-page: 29 year: 2014 ident: cqgaba80ebib156 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stu1437 – volume: 10 start-page: 177 year: 1984 ident: cqgaba80ebib118 publication-title: Sov. Astron. Lett. – volume: 36 year: 2019 ident: cqgaba80ebib34 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/ab4548 – volume: 610 year: 2015 ident: cqgaba80ebib141 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/610/1/012002 – volume: 120 year: 2018 ident: cqgaba80ebib29 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.120.183604 – volume: 458 start-page: 3075 year: 2016 ident: cqgaba80ebib161 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stw503 – volume: 115 start-page: 3 year: 2015 ident: cqgaba80ebib27 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.115.013004 – volume: 86 year: 2012 ident: cqgaba80ebib90 publication-title: Phys. Rev. A doi: 10.1103/physreva.86.011606 – volume: 29 year: 2012 ident: cqgaba80ebib129 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/29/12/124013 – volume: 829 start-page: 55 year: 2016 ident: cqgaba80ebib113 publication-title: Astrophys. J. doi: 10.3847/0004-637x/829/1/55 – volume: 653 start-page: L93 year: 2006 ident: cqgaba80ebib154 publication-title: Astrophys. J. doi: 10.1086/510448 – volume: 8 start-page: 14064 year: 2018 ident: cqgaba80ebib64 publication-title: Sci. Rep. doi: 10.1038/s41598-018-32165-z – year: 2018 ident: cqgaba80ebib166 – volume: 723 year: 2016 ident: cqgaba80ebib17 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/723/1/012050 – volume: 101 year: 2008 ident: cqgaba80ebib81 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.101.230801 – volume: 119 year: 2017 ident: cqgaba80ebib116 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.161101 – volume: 32 year: 2014 ident: cqgaba80ebib9 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/2/024001 – volume: 36 year: 2019 ident: cqgaba80ebib175 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/ab0587 – year: 2019 ident: cqgaba80ebib88 article-title: Bloch beamsplitters and dual-lattice methods for atom interferometry – volume: 123 year: 2019 ident: cqgaba80ebib32 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.123.061102 – volume: 30 start-page: 63 year: 2011 ident: cqgaba80ebib103 publication-title: J. Low Freq. Noise Vib. Act. Contr. doi: 10.1260/0263-0923.30.1.63 – volume: 20 year: 2009 ident: cqgaba80ebib35 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/2/022001 – volume: 400 start-page: 849 year: 1999 ident: cqgaba80ebib16 publication-title: Nature doi: 10.1038/23655 – volume: 98 year: 2007 ident: cqgaba80ebib155 publication-title: Phys. Rev. Lett. doi: 10.1051/10.1103/PhysRevLett.98.091101 – year: 2019 ident: cqgaba80ebib181 article-title: The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy – volume: 8 start-page: 15529 year: 2017 ident: cqgaba80ebib28 publication-title: Nat. Commun. doi: 10.1038/ncomms15529 – volume: 106 year: 2011 ident: cqgaba80ebib60 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.106.080801 – volume: 110 year: 2013 ident: cqgaba80ebib91 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.110.171102 – volume: 77 year: 2008 ident: cqgaba80ebib86 publication-title: Phys. Rev. A doi: 10.1103/physreva.77.023609 – volume: 5 start-page: 1021 year: 1972 ident: cqgaba80ebib145 publication-title: Phys. Rev. D doi: 10.1103/physrevd.5.1021 – volume: 95 year: 2017 ident: cqgaba80ebib180 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.103012 – volume: 235 start-page: 37 year: 2018 ident: cqgaba80ebib125 publication-title: Astrophys. J. Suppl. doi: 10.3847/1538-4365/aab5b0 – volume: 557 start-page: A135 year: 2013 ident: cqgaba80ebib152 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201219620 – year: 2017 ident: cqgaba80ebib164 article-title: Gw detector inspiral range calculation tools – volume: 9900 year: 2016 ident: cqgaba80ebib65 publication-title: Proc. SPIE doi: 10.1117/12.22288251 – volume: 646 start-page: L135 year: 2006 ident: cqgaba80ebib137 publication-title: Astrophys. J. doi: 10.1086/507106 – year: 2020 ident: cqgaba80ebib56 article-title: Technologies for the ELGAR large scale atom interferometer array – year: 2019 ident: cqgaba80ebib172 article-title: Multimessenger universe with gravitational waves from binaries – volume: 4 start-page: 1999 year: 1994 ident: cqgaba80ebib48 publication-title: J. Physique II doi: 10.1051/jp2:1994103 – volume: 119 year: 2017 ident: cqgaba80ebib77 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.253201 – year: 2019 ident: cqgaba80ebib183 article-title: Gravitational wave probes of dark matter: challenges and opportunities – volume: 83 year: 2012 ident: cqgaba80ebib105 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4745505 – year: 2019 ident: cqgaba80ebib174 article-title: Cosmic explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO – start-page: pp 5447 year: 2017 ident: cqgaba80ebib110 article-title: Deep multimodal representation learning from temporal data – volume: 80 year: 2009 ident: cqgaba80ebib107 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3250841 – volume: 1468 year: 2020 ident: cqgaba80ebib69 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/1468/1/012242 – volume: 88 year: 2013 ident: cqgaba80ebib59 publication-title: Phys. Rev. A doi: 10.1103/physreva.88.053620 – volume: 114 year: 2015 ident: cqgaba80ebib97 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.114.143004 – volume: 74 start-page: 3487 year: 2003 ident: cqgaba80ebib106 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1583862 – year: 2019 ident: cqgaba80ebib109 article-title: Deep learning for anomaly detection: a survey – volume: 455 start-page: 1751 year: 2016 ident: cqgaba80ebib126 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stv2395 – volume: 116 year: 2016 ident: cqgaba80ebib10 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.116.231102 – volume: 26 year: 2009 ident: cqgaba80ebib11 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/26/15/153001 – volume: 118 year: 2017 ident: cqgaba80ebib21 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.118.183602 – volume: 529 start-page: 505 year: 2016 ident: cqgaba80ebib100 publication-title: Nature doi: 10.1038/nature16176 – volume: 89 year: 2014 ident: cqgaba80ebib184 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.104059 – volume: 22 start-page: 4 year: 2019 ident: cqgaba80ebib179 publication-title: Living Rev. Relativ. doi: 10.1007/s41114-019-0020-4 – volume: 92 year: 2015 ident: cqgaba80ebib171 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.124013 – volume: 21 year: 2019 ident: cqgaba80ebib95 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab22d0 – volume: 85 year: 2012 ident: cqgaba80ebib144 publication-title: Phys. Rev. D doi: 10.1103/physrevd.85.062002 – volume: 653 start-page: L53 year: 2006 ident: cqgaba80ebib133 publication-title: Astrophys. J. doi: 10.1086/510405 – volume: 93 year: 2016 ident: cqgaba80ebib40 publication-title: Phys. Rev. D doi: 10.1103/physrevd.93.021101 – volume: 102 year: 2009 ident: cqgaba80ebib87 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.102.240403 – year: 2006 ident: cqgaba80ebib38 article-title: Kinematic sensors employing atom interferometer phases – volume: 24 start-page: R113 year: 2007 ident: cqgaba80ebib142 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/24/17/r01 |
SSID | ssj0011812 |
Score | 2.6490183 |
Snippet | Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to... |
SourceID | hal crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 225017 |
SubjectTerms | Astrophysics cold atoms Earth Sciences gravitational waves gravity matter-wave interferometry Physics research infrastructure Sciences of the Universe |
Title | ELGAR-a European Laboratory for Gravitation and Atom-interferometric Research |
URI | https://iopscience.iop.org/article/10.1088/1361-6382/aba80e https://hal.science/hal-02986416 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS-NAEB6sIngPd56nXPWUvUMf7iFtsrtJtvhURK3Snseh6IOwbDe7d6C0tY3C-eudadKgIiJCCCFMNpuZyc6X3ck3ANthahB3chmknGarsiwMTCh8YCNnfGJj56bVG3q_ks6ZPL6IL-Zgt_oXZjgqh_4GHhZEwYUKy4Q41YxEEgXoNrxp-kaFrgYLVLiS3Pvo5He1hEChq5hgkUEL41K5RvlSC09iUu0fZUTW8O6PAs3BJ7icdbHIL7lq3Ob9hr1_xt74zmdYho8lAGXtQvQzzLnBCnzoVeytkxVYnKaF2skX6O13D9t_AsNmk_asWzjNcPyfIdxlh2NzV7J8MzPIWDvHMZcoKMbeEREC8f-zWXbfKpwd7J_udYKyAENgEcfkaDAEV5IbJ7y03EsVeZ9JwVODMY1bE7cyk2QJd0kqjI_6jmrKGikEAgNvRCrWYH4wHLivwFTqExSJeYgDgDJOScQlNiU6OmGVVHVozkygbdlvKpJxraer5EppUpkmlelCZXX4WV0xKpg5XpH9gVatxIhSu9PuajpHFPQJotK7qA47aC5dvsOTVxr7_kTO3vzVItWc4xbjAKdHmV9_Y1sbsMTpA57yClvfYD4f37pNRDl5f2vqzbg_EecP84TydQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED6tTEzwMG0wRGE_DBoPPIQmtuO4j9VG6UbLJgSCN8t1bHhAbWkLEv_97hK3GtKEJuUhii6W9fnHfTlfvgP4mhYWeSeXScEpWlWWaWJTERKXeRuUy72vqjcMzlTvUv68zq9jndPqX5jxJG79R3hbCwXXEMaEON3KhMoSnDa8ZYdWp741KUMDXudC5SSe_0tcLY8RyH3VQRaZtNE3xXPKf7XyzC81bikrsoE9-MvZdN_B28gSWafu03t45UcbsD5YSqzONmC1yt10s00YHPdPOueJZYvIOuvXIzuePjHkpOxkah-jFDezo5J15rgxkk7ENHhSKyCRfrZIwfsAl93ji2-9JFZJSBySjTmiigxIcutFkI4HqbMQSil4YdHxcGfzdmlVqbhXhbAhG3oq_GqlEOi9gxWF2IKV0Xjkt4HpIig0yXmKq1RbryWSB1eQZpxwWuomtBYYGRf7TZUs7kx1lK21IVQNoWpqVJtwuHxjUstnvGC7j7AvzUj3utfpG3pGOvEKqeNj1oQDHBUTF9rshcb2ntm5-xsjCsM5XjnuQgYnzc5_tvUF3vz-3jX9H2enu7DG6YOb8gDbH2FlPn3wn5CVzIefq5n3B_zo1hE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ELGAR%E2%80%94a+European+Laboratory+for+Gravitation+and+Atom-interferometric+Research&rft.jtitle=Classical+and+quantum+gravity&rft.au=Canuel%2C+B&rft.au=Abend%2C+S&rft.au=Amaro-Seoane%2C+P&rft.au=Badaracco%2C+F&rft.date=2020-11-19&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=37&rft.issue=22&rft.spage=225017&rft_id=info:doi/10.1088%2F1361-6382%2Faba80e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6382_aba80e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon |