Detection and Classification of Obstructive Sleep Apnea Using Audio Spectrogram Analysis

Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the diagnostic process will become increasingly widespread in the coming years. This work aims to investigate and compare the performance of machine lea...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 13; p. 2567
Main Authors Serrano, Salvatore, Patanè, Luca, Serghini, Omar, Scarpa, Marco
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the diagnostic process will become increasingly widespread in the coming years. This work aims to investigate and compare the performance of machine learning-based classifiers for the identification of obstructive sleep apnea–hypopnea (OSAH) events, including apnea/non-apnea status classification, apnea–hypopnea index (AHI) prediction, and AHI severity classification. The dataset considered contains recordings from 192 patients. It is derived from a recently released dataset which contains, amongst others, audio signals recorded with an ambient microphone placed ∼1 m above the studied subjects and apnea/hypopnea accurate events annotations performed by specialized medical doctors. We employ mel spectrogram images extracted from the environmental audio signals as input of a machine-learning-based classifier for apnea/hypopnea events classification. The proposed approach involves a stacked model which utilizes a combination of a pretrained VGG-like audio classification (VGGish) network and a bidirectional long short-term memory (bi-LSTM) network. Performance analysis was conducted using a 5-fold cross-validation approach, leaving out patients used for training and validation of the models in the testing step. Comparative evaluations with recently presented methods from the literature demonstrate the advantages of the proposed approach. The proposed architecture can be considered a useful tool for supporting OSAHS diagnoses by means of low-cost devices such as smartphones.
AbstractList Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the diagnostic process will become increasingly widespread in the coming years. This work aims to investigate and compare the performance of machine learning-based classifiers for the identification of obstructive sleep apnea–hypopnea (OSAH) events, including apnea/non-apnea status classification, apnea–hypopnea index (AHI) prediction, and AHI severity classification. The dataset considered contains recordings from 192 patients. It is derived from a recently released dataset which contains, amongst others, audio signals recorded with an ambient microphone placed ∼1 m above the studied subjects and apnea/hypopnea accurate events annotations performed by specialized medical doctors. We employ mel spectrogram images extracted from the environmental audio signals as input of a machine-learning-based classifier for apnea/hypopnea events classification. The proposed approach involves a stacked model which utilizes a combination of a pretrained VGG-like audio classification (VGGish) network and a bidirectional long short-term memory (bi-LSTM) network. Performance analysis was conducted using a 5-fold cross-validation approach, leaving out patients used for training and validation of the models in the testing step. Comparative evaluations with recently presented methods from the literature demonstrate the advantages of the proposed approach. The proposed architecture can be considered a useful tool for supporting OSAHS diagnoses by means of low-cost devices such as smartphones.
Audience Academic
Author Scarpa, Marco
Serghini, Omar
Serrano, Salvatore
Patanè, Luca
Author_xml – sequence: 1
  givenname: Salvatore
  orcidid: 0000-0003-0507-5186
  surname: Serrano
  fullname: Serrano, Salvatore
– sequence: 2
  givenname: Luca
  orcidid: 0000-0002-5488-9365
  surname: Patanè
  fullname: Patanè, Luca
– sequence: 3
  givenname: Omar
  orcidid: 0009-0000-4404-9074
  surname: Serghini
  fullname: Serghini, Omar
– sequence: 4
  givenname: Marco
  orcidid: 0000-0002-9560-7504
  surname: Scarpa
  fullname: Scarpa, Marco
BookMark eNp9kU1rAjEQhkOxUGv9Bb0EetbmY3U3x8V-guDBCr0t2WQikTXZJmvBf99UC_1AmhxmGN4neWfmEvWcd4DQNSVjzgW5hQZUF7yzKlJOOZtM8zPUZyQXI8EE6_3IL9Awxg1JR1BecNJHr3fQJdx6h6XTeNbIGK2xSh5K3uBFHbuwS4p3wMsGoMVl60DiVbRujcudth4v24ODdZBbXDrZ7KONV-jcyCbC8CsO0Orh_mX2NJovHp9n5XykeCG6UW20qAtKJiqFqSJGAxBdTBjLWV5nsgZdMyPFVCtCKSGFZFmWEaWpFpID5QN0c3y3Df5tB7GrNn4XkolY8dQ2YVk-Ed-qtWygss74Lki1tVFVZUEoT17YNKnGJ1TpathalaZubKr_AvgRUMHHGMBUbbBbGfYVJdXncqoTy0mU-EMp2x0Gnr6zzb_sB7PAml0
CitedBy_id crossref_primary_10_3390_s24237782
crossref_primary_10_1109_ACCESS_2024_3519296
crossref_primary_10_3390_electronics13163313
Cites_doi 10.1093/sleep/16.suppl_8.S59
10.3390/s24072106
10.1109/ACCESS.2021.3112535
10.3389/frobt.2021.580080
10.1109/MSP.2017.2743240
10.1109/JBHI.2018.2823265
10.1109/SURV.2012.100412.00017
10.23919/SoftCOM55329.2022.9911351
10.1038/nature14539
10.1186/s40537-021-00444-8
10.1016/j.patrec.2022.06.009
10.1109/COMST.2019.2916583
10.1046/j.1365-2273.1999.00307.x
10.3390/s21051562
10.1609/aaai.v31i1.11231
10.1155/2020/8864863
10.21437/Interspeech.2017-434
10.1109/TMM.2016.2626969
10.1109/ICASSP.2017.7952132
10.1109/EMBC.2012.6347100
10.5664/jcsm.7634
10.1016/j.amjoto.2023.103964
10.1016/j.comnet.2022.109449
10.1016/j.bspc.2021.103238
10.1007/s13246-016-0507-1
10.1016/j.phycom.2021.101482
10.3390/s19235170
10.7148/2023-0556
10.1007/s11325-020-02037-w
10.1016/j.bspc.2022.104351
10.1109/ICCCS52626.2021.9449255
10.1111/jsr.12770
10.1016/j.amjmed.2018.09.021
10.1038/s41597-021-00977-w
10.1109/ICCNC.2019.8685489
10.1109/JTEHM.2019.2946147
10.1109/ICIIBMS52876.2021.9651598
10.1109/CISP-BMEI.2016.7852851
10.1088/1361-6579/accd43
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13132567
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A801338926
10_3390_electronics13132567
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c389t-bfd9b8105c9b86c0fdee0d8522727b4abedb2fa96dc011008a24440cd1d9a3e13
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sat Jul 26 03:21:29 EDT 2025
Tue Jun 17 22:08:30 EDT 2025
Tue Jun 10 21:05:59 EDT 2025
Tue Jul 01 04:08:00 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-bfd9b8105c9b86c0fdee0d8522727b4abedb2fa96dc011008a24440cd1d9a3e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0507-5186
0009-0000-4404-9074
0000-0002-5488-9365
0000-0002-9560-7504
OpenAccessLink https://www.proquest.com/docview/3079024759?pq-origsite=%requestingapplication%
PQID 3079024759
PQPubID 2032404
ParticipantIDs proquest_journals_3079024759
gale_infotracmisc_A801338926
gale_infotracacademiconefile_A801338926
crossref_primary_10_3390_electronics13132567
crossref_citationtrail_10_3390_electronics13132567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Grasso (ref_38) 2022; 219
Bkassiny (ref_35) 2012; 15
Serrano (ref_39) 2022; 160
Luong (ref_34) 2019; 21
Fietze (ref_7) 2019; 28
ref_14
ref_13
ref_12
Arulkumaran (ref_33) 2017; 34
Korompili (ref_15) 2021; 8
ref_10
ref_31
ref_30
ref_19
ref_18
Armstrong (ref_2) 1999; 24
ref_17
ref_37
Alzubaidi (ref_32) 2021; 8
Alharbi (ref_43) 2021; 9
Yang (ref_16) 2016; 19
LeCun (ref_44) 2015; 521
Pavlova (ref_1) 2019; 132
Berry (ref_8) 2012; 176
Mendonca (ref_11) 2018; 23
Serrano (ref_36) 2021; 49
ref_46
ref_23
Song (ref_29) 2023; 44
ref_45
ref_22
ref_21
ref_20
ref_42
Sabil (ref_6) 2019; 15
ref_41
ref_40
Wang (ref_24) 2017; 40
Shen (ref_25) 2020; 2020
Bhutada (ref_9) 2020; 24
ref_27
ref_26
Sun (ref_28) 2023; 44
Gall (ref_3) 1993; 16
Zhu (ref_4) 2019; 7
ref_5
References_xml – volume: 16
  start-page: S59
  year: 1993
  ident: ref_3
  article-title: Quality of life in mild obstructive sleep apnea
  publication-title: Sleep
  doi: 10.1093/sleep/16.suppl_8.S59
– ident: ref_13
  doi: 10.3390/s24072106
– volume: 9
  start-page: 131858
  year: 2021
  ident: ref_43
  article-title: Automatic speech recognition: Systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3112535
– ident: ref_12
  doi: 10.3389/frobt.2021.580080
– volume: 34
  start-page: 26
  year: 2017
  ident: ref_33
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2743240
– ident: ref_40
– volume: 23
  start-page: 825
  year: 2018
  ident: ref_11
  article-title: A review of obstructive sleep apnea detection approaches
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2823265
– volume: 15
  start-page: 1136
  year: 2012
  ident: ref_35
  article-title: A survey on machine-learning techniques in cognitive radios
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.100412.00017
– ident: ref_42
  doi: 10.23919/SoftCOM55329.2022.9911351
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_44
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 53
  year: 2021
  ident: ref_32
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– ident: ref_23
– volume: 160
  start-page: 135
  year: 2022
  ident: ref_39
  article-title: A new fingerprint definition for effective song recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.06.009
– ident: ref_21
– volume: 21
  start-page: 3133
  year: 2019
  ident: ref_34
  article-title: Applications of deep reinforcement learning in communications and networking: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2916583
– volume: 24
  start-page: 510
  year: 1999
  ident: ref_2
  article-title: The effect of surgery upon the quality of life in snoring patients and their partners: A between-subjects case-controlled trial
  publication-title: Clin. Otolaryngol. Allied Sci.
  doi: 10.1046/j.1365-2273.1999.00307.x
– ident: ref_5
  doi: 10.3390/s21051562
– ident: ref_20
  doi: 10.1609/aaai.v31i1.11231
– volume: 2020
  start-page: 8864863
  year: 2020
  ident: ref_25
  article-title: Detection of snore from OSAHS patients based on deep learning
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/8864863
– ident: ref_17
  doi: 10.21437/Interspeech.2017-434
– ident: ref_31
– volume: 19
  start-page: 822
  year: 2016
  ident: ref_16
  article-title: Sleep apnea detection via depth video and audio feature learning
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2016.2626969
– ident: ref_45
  doi: 10.1109/ICASSP.2017.7952132
– ident: ref_10
  doi: 10.1109/EMBC.2012.6347100
– volume: 15
  start-page: 285
  year: 2019
  ident: ref_6
  article-title: Comparison of apnea detection using oronasal thermal airflow sensor, nasal pressure transducer, respiratory inductance plethysmography and tracheal sound sensor
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.7634
– ident: ref_46
– volume: 176
  start-page: 2012
  year: 2012
  ident: ref_8
  article-title: The AASM manual for the scoring of sleep and associated events
  publication-title: Rules Terminol. Tech. Specif. Darien Illinois Am. Acad. Sleep Med.
– volume: 44
  start-page: 103964
  year: 2023
  ident: ref_29
  article-title: AHI estimation of OSAHS patients based on snoring classification and fusion model
  publication-title: Am. J. Otolaryngol.
  doi: 10.1016/j.amjoto.2023.103964
– volume: 219
  start-page: 109449
  year: 2022
  ident: ref_38
  article-title: H-HOME: A learning framework of federated FANETs to provide edge computing to future delay-constrained IoT systems
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2022.109449
– ident: ref_27
  doi: 10.1016/j.bspc.2021.103238
– volume: 40
  start-page: 127
  year: 2017
  ident: ref_24
  article-title: Automatic snoring sounds detection from sleep sounds via multi-features analysis
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-016-0507-1
– volume: 49
  start-page: 101482
  year: 2021
  ident: ref_36
  article-title: Random sampling for effective spectrum sensing in cognitive radio time slotted environment
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2021.101482
– ident: ref_37
  doi: 10.3390/s19235170
– ident: ref_14
  doi: 10.7148/2023-0556
– volume: 24
  start-page: 791
  year: 2020
  ident: ref_9
  article-title: Obstructive sleep apnea syndrome (OSAS) and swallowing function—A systematic review
  publication-title: Sleep Breath.
  doi: 10.1007/s11325-020-02037-w
– ident: ref_30
  doi: 10.1016/j.bspc.2022.104351
– ident: ref_19
– ident: ref_18
  doi: 10.1109/ICCCS52626.2021.9449255
– volume: 28
  start-page: e12770
  year: 2019
  ident: ref_7
  article-title: Prevalence and association analysis of obstructive sleep apnea with gender and age differences—Results of SHIP-Trend
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12770
– volume: 132
  start-page: 292
  year: 2019
  ident: ref_1
  article-title: Sleep disorders
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2018.09.021
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-00977-w
– ident: ref_41
  doi: 10.1109/ICCNC.2019.8685489
– volume: 7
  start-page: 1900708
  year: 2019
  ident: ref_4
  article-title: Vision-based heart and respiratory rate monitoring during sleep—A validation study for the population at risk of sleep apnea
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2019.2946147
– ident: ref_22
  doi: 10.1109/ICIIBMS52876.2021.9651598
– ident: ref_26
  doi: 10.1109/CISP-BMEI.2016.7852851
– volume: 44
  start-page: 045003
  year: 2023
  ident: ref_28
  article-title: Automatic identifying OSAHS patients and simple snorers based on Gaussian mixture models
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/accd43
SSID ssj0000913830
Score 2.3213856
Snippet Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2567
SubjectTerms Algorithms
Analysis
Annotations
Audio signals
Cardiovascular disease
Classification
Cost analysis
Datasets
Fourier transforms
Low cost
Machine learning
Neural networks
Patients
Signal classification
Signal processing
Sleep apnea
Sleep apnea syndromes
Title Detection and Classification of Obstructive Sleep Apnea Using Audio Spectrogram Analysis
URI https://www.proquest.com/docview/3079024759
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se9GD-MRqLXsQvBiad7Mniba1iK1iLfQW9hUQSlJp9fc7m2xaC8VTFnazhJndmdnZyfcB3KSK2sxhwuKcS33NGFjMx5btea7iVKJH0An90TgcTv3nWTAzCbelKausbGJhqGUudI68g2uRoj_pBvR-8WVp1ih9u2ooNGrQQBMcRXVoPPTHb-_rLItGvYw8u4Qb8vB839mwyywdDVsYFAzzG5e02zAX3mZwBIcmTCRxqddj2FPZCRz8AQ88hVlPrYo6qoywTJKC3VLX_RSiJnlKXrkBh_1RZDJXakHiRaYYKaoESPwtP3Oi6edXZYkWqfBJzmA66H88Di3Dk2AJDDdWFk8l5REGSgIfobBTqZQtI4ysMDjhPuNKcjdlNJSiQIiLGPp03xbSkZR5yvHOoZ7lmboA4gjlpkEouZTC7wqf-l6I8zgcwwicVDXBrUSVCAMirrks5gkeJrR8kx3ybcLd-qVFiaHx__BbrYNE7zCcWzDzowB-ocaqSmJ0qniwpm7YhNbWSNwZYru70mJiduYy2ayjy_-7r2DfxVZZmtuCOmpMXWMAsuJtqEWDpzY04t7oZdI2a-4XdlThCA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6qHtSD-MRq1T0oXgzmbfcgUqy1aqsHFXqL-5iAUNJKq-Kf8jc6u0msgvTmKSG7GcLMZL_Z3dlvAPZT5K7whHKklNpsM0aOCOnODQIfJdeECGZBv3sbtx_D617Uq8BneRbGpFWWY6IdqPVAmTXyY_JFTnhyEvGz4YtjqkaZ3dWyhEbuFjf48U5TttHpVZPse-D7rYuH87ZTVBVwFIHz2JGp5rJOYYWiS6zcVCO6uk5xCEG5DIVELf1U8Fgry6dWF4SAoau0p7kI0AtI7gzMhQEhuTmZ3rr8XtMxHJv1wM3JjajdPZ7Ushl5hiQxsvXsJwD4NwxYbGstw1IRlLJG7kUrUMFsFRZ_UBWuQa-JY5u1lTGRaWZraZosI2tYNkjZnSyoaN-Q3fcRh6wxzFAwm5PAGq_6ecBMsftxnhDGSjaUdXj8F_1twGw2yHATmKfQT6NYS61VeKJCHgYxyfEkBS0kFKvgl6pKVEFZbipn9BOauhj9Jn_otwpH3y8Nc8aO6d0PjQ0S8z-TbCWKYwn0hYYZK2kQhNM0nvtxFWq_etJ_qH43l1ZMinFglEy8dmt68x7Mtx-6naRzdXuzDQs-Pc2TgmswS9bDHQp9xnLX-huDp_928C_8chs5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6FREL0ULU8RNrQ-gDiwir7TnyoUNokCgUC4iHltvgxKyFFm0UJoP61_rqOvbukSIhbTrtaey3LM_Y3Y4-_AdhPkbvCE8qRUmpzzBg5IqQ3Nwh8lFwTIpgN_fNxPLoNf0-iSQ3-VndhTFhltSbahVrPlNkjb5MucsKTTsTbaRkWcdkfHucPjskgZU5aq3QahYqc4p9nct_mP076JOsD3x8Obn6NnDLDgKMIqBeOTDWXXTIxFD1i5aYa0dVdskkI1mUoJGrpp4LHWlluta4gNAxdpT3NRYBeQO2uQaNjvKI6NH4OxpdXLzs8hnGzG7gF1VEQcLe9zGwz9wxlYmSz2y_h8G1QsEg3_AQfSxOV9Qqd-gw1zDbhw3_EhVsw6ePCxnBlTGSa2cyaJubIipnNUnYhS2LaJ2TXU8Sc9fIMBbMRCqz3qO9n7Dq3_TThYaziRtmG25WM4A7Us1mGu8A8hX4axVpqrcKOCnkYxNSOJ8mEoUaxCX41VIkqCcxNHo1pQo6MGd_kjfFtwtHLT3nB3_F-9UMjg8TMbmpbifKSAvXQ8GQlPQJ0cuq5Hzeh9aomzUr1uriSYlKuCvNkqcNf3i_-Duuk3MnZyfj0K2z49LGIEG5BnYSHe2QHLeS3UuEY3K1ax_8BgRIgyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+Classification+of+Obstructive+Sleep+Apnea+Using+Audio+Spectrogram+Analysis&rft.jtitle=Electronics+%28Basel%29&rft.au=Serrano%2C+Salvatore&rft.au=Patan%C3%A8%2C+Luca&rft.au=Serghini%2C+Omar&rft.au=Scarpa%2C+Marco&rft.date=2024-07-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=13&rft.spage=2567&rft_id=info:doi/10.3390%2Felectronics13132567&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13132567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon