Detection and Classification of Obstructive Sleep Apnea Using Audio Spectrogram Analysis
Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the diagnostic process will become increasingly widespread in the coming years. This work aims to investigate and compare the performance of machine lea...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 13; p. 2567 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the diagnostic process will become increasingly widespread in the coming years. This work aims to investigate and compare the performance of machine learning-based classifiers for the identification of obstructive sleep apnea–hypopnea (OSAH) events, including apnea/non-apnea status classification, apnea–hypopnea index (AHI) prediction, and AHI severity classification. The dataset considered contains recordings from 192 patients. It is derived from a recently released dataset which contains, amongst others, audio signals recorded with an ambient microphone placed ∼1 m above the studied subjects and apnea/hypopnea accurate events annotations performed by specialized medical doctors. We employ mel spectrogram images extracted from the environmental audio signals as input of a machine-learning-based classifier for apnea/hypopnea events classification. The proposed approach involves a stacked model which utilizes a combination of a pretrained VGG-like audio classification (VGGish) network and a bidirectional long short-term memory (bi-LSTM) network. Performance analysis was conducted using a 5-fold cross-validation approach, leaving out patients used for training and validation of the models in the testing step. Comparative evaluations with recently presented methods from the literature demonstrate the advantages of the proposed approach. The proposed architecture can be considered a useful tool for supporting OSAHS diagnoses by means of low-cost devices such as smartphones. |
---|---|
AbstractList | Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the diagnostic process will become increasingly widespread in the coming years. This work aims to investigate and compare the performance of machine learning-based classifiers for the identification of obstructive sleep apnea–hypopnea (OSAH) events, including apnea/non-apnea status classification, apnea–hypopnea index (AHI) prediction, and AHI severity classification. The dataset considered contains recordings from 192 patients. It is derived from a recently released dataset which contains, amongst others, audio signals recorded with an ambient microphone placed ∼1 m above the studied subjects and apnea/hypopnea accurate events annotations performed by specialized medical doctors. We employ mel spectrogram images extracted from the environmental audio signals as input of a machine-learning-based classifier for apnea/hypopnea events classification. The proposed approach involves a stacked model which utilizes a combination of a pretrained VGG-like audio classification (VGGish) network and a bidirectional long short-term memory (bi-LSTM) network. Performance analysis was conducted using a 5-fold cross-validation approach, leaving out patients used for training and validation of the models in the testing step. Comparative evaluations with recently presented methods from the literature demonstrate the advantages of the proposed approach. The proposed architecture can be considered a useful tool for supporting OSAHS diagnoses by means of low-cost devices such as smartphones. |
Audience | Academic |
Author | Scarpa, Marco Serghini, Omar Serrano, Salvatore Patanè, Luca |
Author_xml | – sequence: 1 givenname: Salvatore orcidid: 0000-0003-0507-5186 surname: Serrano fullname: Serrano, Salvatore – sequence: 2 givenname: Luca orcidid: 0000-0002-5488-9365 surname: Patanè fullname: Patanè, Luca – sequence: 3 givenname: Omar orcidid: 0009-0000-4404-9074 surname: Serghini fullname: Serghini, Omar – sequence: 4 givenname: Marco orcidid: 0000-0002-9560-7504 surname: Scarpa fullname: Scarpa, Marco |
BookMark | eNp9kU1rAjEQhkOxUGv9Bb0EetbmY3U3x8V-guDBCr0t2WQikTXZJmvBf99UC_1AmhxmGN4neWfmEvWcd4DQNSVjzgW5hQZUF7yzKlJOOZtM8zPUZyQXI8EE6_3IL9Awxg1JR1BecNJHr3fQJdx6h6XTeNbIGK2xSh5K3uBFHbuwS4p3wMsGoMVl60DiVbRujcudth4v24ODdZBbXDrZ7KONV-jcyCbC8CsO0Orh_mX2NJovHp9n5XykeCG6UW20qAtKJiqFqSJGAxBdTBjLWV5nsgZdMyPFVCtCKSGFZFmWEaWpFpID5QN0c3y3Df5tB7GrNn4XkolY8dQ2YVk-Ed-qtWygss74Lki1tVFVZUEoT17YNKnGJ1TpathalaZubKr_AvgRUMHHGMBUbbBbGfYVJdXncqoTy0mU-EMp2x0Gnr6zzb_sB7PAml0 |
CitedBy_id | crossref_primary_10_3390_s24237782 crossref_primary_10_1109_ACCESS_2024_3519296 crossref_primary_10_3390_electronics13163313 |
Cites_doi | 10.1093/sleep/16.suppl_8.S59 10.3390/s24072106 10.1109/ACCESS.2021.3112535 10.3389/frobt.2021.580080 10.1109/MSP.2017.2743240 10.1109/JBHI.2018.2823265 10.1109/SURV.2012.100412.00017 10.23919/SoftCOM55329.2022.9911351 10.1038/nature14539 10.1186/s40537-021-00444-8 10.1016/j.patrec.2022.06.009 10.1109/COMST.2019.2916583 10.1046/j.1365-2273.1999.00307.x 10.3390/s21051562 10.1609/aaai.v31i1.11231 10.1155/2020/8864863 10.21437/Interspeech.2017-434 10.1109/TMM.2016.2626969 10.1109/ICASSP.2017.7952132 10.1109/EMBC.2012.6347100 10.5664/jcsm.7634 10.1016/j.amjoto.2023.103964 10.1016/j.comnet.2022.109449 10.1016/j.bspc.2021.103238 10.1007/s13246-016-0507-1 10.1016/j.phycom.2021.101482 10.3390/s19235170 10.7148/2023-0556 10.1007/s11325-020-02037-w 10.1016/j.bspc.2022.104351 10.1109/ICCCS52626.2021.9449255 10.1111/jsr.12770 10.1016/j.amjmed.2018.09.021 10.1038/s41597-021-00977-w 10.1109/ICCNC.2019.8685489 10.1109/JTEHM.2019.2946147 10.1109/ICIIBMS52876.2021.9651598 10.1109/CISP-BMEI.2016.7852851 10.1088/1361-6579/accd43 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics13132567 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A801338926 10_3390_electronics13132567 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c389t-bfd9b8105c9b86c0fdee0d8522727b4abedb2fa96dc011008a24440cd1d9a3e13 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Sat Jul 26 03:21:29 EDT 2025 Tue Jun 17 22:08:30 EDT 2025 Tue Jun 10 21:05:59 EDT 2025 Tue Jul 01 04:08:00 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-bfd9b8105c9b86c0fdee0d8522727b4abedb2fa96dc011008a24440cd1d9a3e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0507-5186 0009-0000-4404-9074 0000-0002-5488-9365 0000-0002-9560-7504 |
OpenAccessLink | https://www.proquest.com/docview/3079024759?pq-origsite=%requestingapplication% |
PQID | 3079024759 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_3079024759 gale_infotracmisc_A801338926 gale_infotracacademiconefile_A801338926 crossref_primary_10_3390_electronics13132567 crossref_citationtrail_10_3390_electronics13132567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Grasso (ref_38) 2022; 219 Bkassiny (ref_35) 2012; 15 Serrano (ref_39) 2022; 160 Luong (ref_34) 2019; 21 Fietze (ref_7) 2019; 28 ref_14 ref_13 ref_12 Arulkumaran (ref_33) 2017; 34 Korompili (ref_15) 2021; 8 ref_10 ref_31 ref_30 ref_19 ref_18 Armstrong (ref_2) 1999; 24 ref_17 ref_37 Alzubaidi (ref_32) 2021; 8 Alharbi (ref_43) 2021; 9 Yang (ref_16) 2016; 19 LeCun (ref_44) 2015; 521 Pavlova (ref_1) 2019; 132 Berry (ref_8) 2012; 176 Mendonca (ref_11) 2018; 23 Serrano (ref_36) 2021; 49 ref_46 ref_23 Song (ref_29) 2023; 44 ref_45 ref_22 ref_21 ref_20 ref_42 Sabil (ref_6) 2019; 15 ref_41 ref_40 Wang (ref_24) 2017; 40 Shen (ref_25) 2020; 2020 Bhutada (ref_9) 2020; 24 ref_27 ref_26 Sun (ref_28) 2023; 44 Gall (ref_3) 1993; 16 Zhu (ref_4) 2019; 7 ref_5 |
References_xml | – volume: 16 start-page: S59 year: 1993 ident: ref_3 article-title: Quality of life in mild obstructive sleep apnea publication-title: Sleep doi: 10.1093/sleep/16.suppl_8.S59 – ident: ref_13 doi: 10.3390/s24072106 – volume: 9 start-page: 131858 year: 2021 ident: ref_43 article-title: Automatic speech recognition: Systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3112535 – ident: ref_12 doi: 10.3389/frobt.2021.580080 – volume: 34 start-page: 26 year: 2017 ident: ref_33 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – ident: ref_40 – volume: 23 start-page: 825 year: 2018 ident: ref_11 article-title: A review of obstructive sleep apnea detection approaches publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2823265 – volume: 15 start-page: 1136 year: 2012 ident: ref_35 article-title: A survey on machine-learning techniques in cognitive radios publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2012.100412.00017 – ident: ref_42 doi: 10.23919/SoftCOM55329.2022.9911351 – volume: 521 start-page: 436 year: 2015 ident: ref_44 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 8 start-page: 53 year: 2021 ident: ref_32 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – ident: ref_23 – volume: 160 start-page: 135 year: 2022 ident: ref_39 article-title: A new fingerprint definition for effective song recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2022.06.009 – ident: ref_21 – volume: 21 start-page: 3133 year: 2019 ident: ref_34 article-title: Applications of deep reinforcement learning in communications and networking: A survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2019.2916583 – volume: 24 start-page: 510 year: 1999 ident: ref_2 article-title: The effect of surgery upon the quality of life in snoring patients and their partners: A between-subjects case-controlled trial publication-title: Clin. Otolaryngol. Allied Sci. doi: 10.1046/j.1365-2273.1999.00307.x – ident: ref_5 doi: 10.3390/s21051562 – ident: ref_20 doi: 10.1609/aaai.v31i1.11231 – volume: 2020 start-page: 8864863 year: 2020 ident: ref_25 article-title: Detection of snore from OSAHS patients based on deep learning publication-title: J. Healthc. Eng. doi: 10.1155/2020/8864863 – ident: ref_17 doi: 10.21437/Interspeech.2017-434 – ident: ref_31 – volume: 19 start-page: 822 year: 2016 ident: ref_16 article-title: Sleep apnea detection via depth video and audio feature learning publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2016.2626969 – ident: ref_45 doi: 10.1109/ICASSP.2017.7952132 – ident: ref_10 doi: 10.1109/EMBC.2012.6347100 – volume: 15 start-page: 285 year: 2019 ident: ref_6 article-title: Comparison of apnea detection using oronasal thermal airflow sensor, nasal pressure transducer, respiratory inductance plethysmography and tracheal sound sensor publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.7634 – ident: ref_46 – volume: 176 start-page: 2012 year: 2012 ident: ref_8 article-title: The AASM manual for the scoring of sleep and associated events publication-title: Rules Terminol. Tech. Specif. Darien Illinois Am. Acad. Sleep Med. – volume: 44 start-page: 103964 year: 2023 ident: ref_29 article-title: AHI estimation of OSAHS patients based on snoring classification and fusion model publication-title: Am. J. Otolaryngol. doi: 10.1016/j.amjoto.2023.103964 – volume: 219 start-page: 109449 year: 2022 ident: ref_38 article-title: H-HOME: A learning framework of federated FANETs to provide edge computing to future delay-constrained IoT systems publication-title: Comput. Netw. doi: 10.1016/j.comnet.2022.109449 – ident: ref_27 doi: 10.1016/j.bspc.2021.103238 – volume: 40 start-page: 127 year: 2017 ident: ref_24 article-title: Automatic snoring sounds detection from sleep sounds via multi-features analysis publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-016-0507-1 – volume: 49 start-page: 101482 year: 2021 ident: ref_36 article-title: Random sampling for effective spectrum sensing in cognitive radio time slotted environment publication-title: Phys. Commun. doi: 10.1016/j.phycom.2021.101482 – ident: ref_37 doi: 10.3390/s19235170 – ident: ref_14 doi: 10.7148/2023-0556 – volume: 24 start-page: 791 year: 2020 ident: ref_9 article-title: Obstructive sleep apnea syndrome (OSAS) and swallowing function—A systematic review publication-title: Sleep Breath. doi: 10.1007/s11325-020-02037-w – ident: ref_30 doi: 10.1016/j.bspc.2022.104351 – ident: ref_19 – ident: ref_18 doi: 10.1109/ICCCS52626.2021.9449255 – volume: 28 start-page: e12770 year: 2019 ident: ref_7 article-title: Prevalence and association analysis of obstructive sleep apnea with gender and age differences—Results of SHIP-Trend publication-title: J. Sleep Res. doi: 10.1111/jsr.12770 – volume: 132 start-page: 292 year: 2019 ident: ref_1 article-title: Sleep disorders publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2018.09.021 – volume: 8 start-page: 1 year: 2021 ident: ref_15 article-title: PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies publication-title: Sci. Data doi: 10.1038/s41597-021-00977-w – ident: ref_41 doi: 10.1109/ICCNC.2019.8685489 – volume: 7 start-page: 1900708 year: 2019 ident: ref_4 article-title: Vision-based heart and respiratory rate monitoring during sleep—A validation study for the population at risk of sleep apnea publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2019.2946147 – ident: ref_22 doi: 10.1109/ICIIBMS52876.2021.9651598 – ident: ref_26 doi: 10.1109/CISP-BMEI.2016.7852851 – volume: 44 start-page: 045003 year: 2023 ident: ref_28 article-title: Automatic identifying OSAHS patients and simple snorers based on Gaussian mixture models publication-title: Physiol. Meas. doi: 10.1088/1361-6579/accd43 |
SSID | ssj0000913830 |
Score | 2.3213856 |
Snippet | Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2567 |
SubjectTerms | Algorithms Analysis Annotations Audio signals Cardiovascular disease Classification Cost analysis Datasets Fourier transforms Low cost Machine learning Neural networks Patients Signal classification Signal processing Sleep apnea Sleep apnea syndromes |
Title | Detection and Classification of Obstructive Sleep Apnea Using Audio Spectrogram Analysis |
URI | https://www.proquest.com/docview/3079024759 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se9GD-MRqLXsQvBiad7Mniba1iK1iLfQW9hUQSlJp9fc7m2xaC8VTFnazhJndmdnZyfcB3KSK2sxhwuKcS33NGFjMx5btea7iVKJH0An90TgcTv3nWTAzCbelKausbGJhqGUudI68g2uRoj_pBvR-8WVp1ih9u2ooNGrQQBMcRXVoPPTHb-_rLItGvYw8u4Qb8vB839mwyywdDVsYFAzzG5e02zAX3mZwBIcmTCRxqddj2FPZCRz8AQ88hVlPrYo6qoywTJKC3VLX_RSiJnlKXrkBh_1RZDJXakHiRaYYKaoESPwtP3Oi6edXZYkWqfBJzmA66H88Di3Dk2AJDDdWFk8l5REGSgIfobBTqZQtI4ysMDjhPuNKcjdlNJSiQIiLGPp03xbSkZR5yvHOoZ7lmboA4gjlpkEouZTC7wqf-l6I8zgcwwicVDXBrUSVCAMirrks5gkeJrR8kx3ybcLd-qVFiaHx__BbrYNE7zCcWzDzowB-ocaqSmJ0qniwpm7YhNbWSNwZYru70mJiduYy2ayjy_-7r2DfxVZZmtuCOmpMXWMAsuJtqEWDpzY04t7oZdI2a-4XdlThCA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6qHtSD-MRq1T0oXgzmbfcgUqy1aqsHFXqL-5iAUNJKq-Kf8jc6u0msgvTmKSG7GcLMZL_Z3dlvAPZT5K7whHKklNpsM0aOCOnODQIfJdeECGZBv3sbtx_D617Uq8BneRbGpFWWY6IdqPVAmTXyY_JFTnhyEvGz4YtjqkaZ3dWyhEbuFjf48U5TttHpVZPse-D7rYuH87ZTVBVwFIHz2JGp5rJOYYWiS6zcVCO6uk5xCEG5DIVELf1U8Fgry6dWF4SAoau0p7kI0AtI7gzMhQEhuTmZ3rr8XtMxHJv1wM3JjajdPZ7Ushl5hiQxsvXsJwD4NwxYbGstw1IRlLJG7kUrUMFsFRZ_UBWuQa-JY5u1lTGRaWZraZosI2tYNkjZnSyoaN-Q3fcRh6wxzFAwm5PAGq_6ecBMsftxnhDGSjaUdXj8F_1twGw2yHATmKfQT6NYS61VeKJCHgYxyfEkBS0kFKvgl6pKVEFZbipn9BOauhj9Jn_otwpH3y8Nc8aO6d0PjQ0S8z-TbCWKYwn0hYYZK2kQhNM0nvtxFWq_etJ_qH43l1ZMinFglEy8dmt68x7Mtx-6naRzdXuzDQs-Pc2TgmswS9bDHQp9xnLX-huDp_928C_8chs5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6FREL0ULU8RNrQ-gDiwir7TnyoUNokCgUC4iHltvgxKyFFm0UJoP61_rqOvbukSIhbTrtaey3LM_Y3Y4-_AdhPkbvCE8qRUmpzzBg5IqQ3Nwh8lFwTIpgN_fNxPLoNf0-iSQ3-VndhTFhltSbahVrPlNkjb5MucsKTTsTbaRkWcdkfHucPjskgZU5aq3QahYqc4p9nct_mP076JOsD3x8Obn6NnDLDgKMIqBeOTDWXXTIxFD1i5aYa0dVdskkI1mUoJGrpp4LHWlluta4gNAxdpT3NRYBeQO2uQaNjvKI6NH4OxpdXLzs8hnGzG7gF1VEQcLe9zGwz9wxlYmSz2y_h8G1QsEg3_AQfSxOV9Qqd-gw1zDbhw3_EhVsw6ePCxnBlTGSa2cyaJubIipnNUnYhS2LaJ2TXU8Sc9fIMBbMRCqz3qO9n7Dq3_TThYaziRtmG25WM4A7Us1mGu8A8hX4axVpqrcKOCnkYxNSOJ8mEoUaxCX41VIkqCcxNHo1pQo6MGd_kjfFtwtHLT3nB3_F-9UMjg8TMbmpbifKSAvXQ8GQlPQJ0cuq5Hzeh9aomzUr1uriSYlKuCvNkqcNf3i_-Duuk3MnZyfj0K2z49LGIEG5BnYSHe2QHLeS3UuEY3K1ax_8BgRIgyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+Classification+of+Obstructive+Sleep+Apnea+Using+Audio+Spectrogram+Analysis&rft.jtitle=Electronics+%28Basel%29&rft.au=Serrano%2C+Salvatore&rft.au=Patan%C3%A8%2C+Luca&rft.au=Serghini%2C+Omar&rft.au=Scarpa%2C+Marco&rft.date=2024-07-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=13&rft.spage=2567&rft_id=info:doi/10.3390%2Felectronics13132567&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13132567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |