Surface plasmon-enhanced fluorescence and surface-enhanced Raman scattering dual-readout chip constructed with silver nanowires: Label-free clinical detection of direct-bilirubin
It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the...
Saved in:
Published in | Biosensors & bioelectronics Vol. 213; p. 114440 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the presence of excessive bilirubin in human blood, it has become highly imperative to detect bilirubin in a fast and label-free manner. Herein, we designed and constructed a random-crossed-woodpile nanostructure from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) nanostructure and successfully used it to detect direct bilirubin (D-BIL) in human blood in a label-free manner. The 3D-PHS nanochip provides rich spatial hot spots that are simultaneously responsive to SERS and SPEF effects and consequently, successfully used to measure and characterize D-BIL with a detection limit of ∼10 nM, requiring only 10μL of human serum for rapid screening, which is the first time D-BIL has been detected in a clinically relevant range. This demonstrates a simple, label-free, pretreatment-free potential biosensing technology that can be used in health care units, and further, in the efficient detection of point-of-care testing with a portable spectrometer.
•A crossed-woodpile packing from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) environment.•The 3D-PHS is 3D expansion of LSPR, which can be used to apply for SERS and SPEF simultaneously.•We successfully used 3D-PHS to detect direct bilirubin (D-BIL) with SERS and SPEF effects, simultaneously in human blood.•The D-BIL was directed (1) in a label-free manner (2) requiring only serum (3) with detection limits of ~10 nM.•It is the first-time D-BIL has been detected in the clinically relevant range. (other cases are not from patients). |
---|---|
AbstractList | It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the presence of excessive bilirubin in human blood, it has become highly imperative to detect bilirubin in a fast and label-free manner. Herein, we designed and constructed a random-crossed-woodpile nanostructure from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) nanostructure and successfully used it to detect direct bilirubin (D-BIL) in human blood in a label-free manner. The 3D-PHS nanochip provides rich spatial hot spots that are simultaneously responsive to SERS and SPEF effects and consequently, successfully used to measure and characterize D-BIL with a detection limit of ∼10 nM, requiring only 10μL of human serum for rapid screening, which is the first time D-BIL has been detected in a clinically relevant range. This demonstrates a simple, label-free, pretreatment-free potential biosensing technology that can be used in health care units, and further, in the efficient detection of point-of-care testing with a portable spectrometer. It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the presence of excessive bilirubin in human blood, it has become highly imperative to detect bilirubin in a fast and label-free manner. Herein, we designed and constructed a random-crossed-woodpile nanostructure from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) nanostructure and successfully used it to detect direct bilirubin (D-BIL) in human blood in a label-free manner. The 3D-PHS nanochip provides rich spatial hot spots that are simultaneously responsive to SERS and SPEF effects and consequently, successfully used to measure and characterize D-BIL with a detection limit of ∼10 nM, requiring only 10μL of human serum for rapid screening, which is the first time D-BIL has been detected in a clinically relevant range. This demonstrates a simple, label-free, pretreatment-free potential biosensing technology that can be used in health care units, and further, in the efficient detection of point-of-care testing with a portable spectrometer.It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the presence of excessive bilirubin in human blood, it has become highly imperative to detect bilirubin in a fast and label-free manner. Herein, we designed and constructed a random-crossed-woodpile nanostructure from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) nanostructure and successfully used it to detect direct bilirubin (D-BIL) in human blood in a label-free manner. The 3D-PHS nanochip provides rich spatial hot spots that are simultaneously responsive to SERS and SPEF effects and consequently, successfully used to measure and characterize D-BIL with a detection limit of ∼10 nM, requiring only 10μL of human serum for rapid screening, which is the first time D-BIL has been detected in a clinically relevant range. This demonstrates a simple, label-free, pretreatment-free potential biosensing technology that can be used in health care units, and further, in the efficient detection of point-of-care testing with a portable spectrometer. It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the presence of excessive bilirubin in human blood, it has become highly imperative to detect bilirubin in a fast and label-free manner. Herein, we designed and constructed a random-crossed-woodpile nanostructure from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) nanostructure and successfully used it to detect direct bilirubin (D-BIL) in human blood in a label-free manner. The 3D-PHS nanochip provides rich spatial hot spots that are simultaneously responsive to SERS and SPEF effects and consequently, successfully used to measure and characterize D-BIL with a detection limit of ∼10 nM, requiring only 10μL of human serum for rapid screening, which is the first time D-BIL has been detected in a clinically relevant range. This demonstrates a simple, label-free, pretreatment-free potential biosensing technology that can be used in health care units, and further, in the efficient detection of point-of-care testing with a portable spectrometer. It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the presence of excessive bilirubin in human blood, it has become highly imperative to detect bilirubin in a fast and label-free manner. Herein, we designed and constructed a random-crossed-woodpile nanostructure from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) nanostructure and successfully used it to detect direct bilirubin (D-BIL) in human blood in a label-free manner. The 3D-PHS nanochip provides rich spatial hot spots that are simultaneously responsive to SERS and SPEF effects and consequently, successfully used to measure and characterize D-BIL with a detection limit of ∼10 nM, requiring only 10μL of human serum for rapid screening, which is the first time D-BIL has been detected in a clinically relevant range. This demonstrates a simple, label-free, pretreatment-free potential biosensing technology that can be used in health care units, and further, in the efficient detection of point-of-care testing with a portable spectrometer. •A crossed-woodpile packing from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) environment.•The 3D-PHS is 3D expansion of LSPR, which can be used to apply for SERS and SPEF simultaneously.•We successfully used 3D-PHS to detect direct bilirubin (D-BIL) with SERS and SPEF effects, simultaneously in human blood.•The D-BIL was directed (1) in a label-free manner (2) requiring only serum (3) with detection limits of ~10 nM.•It is the first-time D-BIL has been detected in the clinically relevant range. (other cases are not from patients). |
ArticleNumber | 114440 |
Author | Chou, Dev-Aur Huey-Jen Hsu, Sandy Chang, Cheng-Chung Sahoo, Smruti R. Wang, Gou-Jen |
Author_xml | – sequence: 1 givenname: Smruti R. surname: Sahoo fullname: Sahoo, Smruti R. organization: Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung, 40227, Taiwan – sequence: 2 givenname: Sandy surname: Huey-Jen Hsu fullname: Huey-Jen Hsu, Sandy organization: Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan – sequence: 3 givenname: Dev-Aur surname: Chou fullname: Chou, Dev-Aur organization: Department of General Surgery, Changhua Show Chwan Memorial Hospital, Changhua, 50544, Taiwan – sequence: 4 givenname: Gou-Jen surname: Wang fullname: Wang, Gou-Jen email: gjwang@dragon.nchu.edu.tw organization: Department of Mechanical Engineering, National Chung-Hsing University, Taichung, 40227, Taiwan – sequence: 5 givenname: Cheng-Chung orcidid: 0000-0002-0622-019X surname: Chang fullname: Chang, Cheng-Chung email: ccchang555@dragon.nchu.edu.tw organization: Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung, 40227, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35667289$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcuKFDEYhYOMOD2jL-BCsnRTbW51ibiRQWeEBsHLOqRSf-w06aRNUjP4Wj6hKWoGwcXgKhe-cxbnu0BnIQZA6CUlW0po9-awHV3MW0YY21IqhCBP0IYOPW8E4-0Z2hDZdk3bdfwcXeR8IIT0VJJn6JzXz54NcoN-f52T1Qbwyet8jKGBsNfBwIStn2OCbKC-sA4Tziv5l_iijzrgbHQpkFz4gadZ-yaBnuJcsNm7EzYx5JJmUyp-58oeZ-dvIeGgQ7xztf4t3ukRfGMTADbeBWe0xxMUMMXFgKPFU-VMaUbnXZpHF56jp1b7DC_uz0v0_eOHb1c3ze7z9aer97vG8EFWHoyoF6spcM06K1nHrbCGMsslkVoCkcLKth14Owz9BMISoKNklNiJdpJfotdr7ynFnzPkoo6uzuG9DhDnrFhPByaElP-Bdr0ghLW8r-ire3QejzCpU3JHnX6pByUVGFbApJhzAquMK3oZoyTtvKJELfbVQS321WJfrfZrlP0TfWh_NPRuDUHd8tZBUtm4Rfq6u5qieyz-B_ZjzC0 |
CitedBy_id | crossref_primary_10_1186_s12951_023_02239_w crossref_primary_10_1016_j_electacta_2024_145132 crossref_primary_10_1002_admt_202400344 crossref_primary_10_1016_j_aca_2022_340531 crossref_primary_10_1016_j_ccr_2024_215768 crossref_primary_10_1007_s00604_023_05668_4 crossref_primary_10_1016_j_jcis_2023_05_117 crossref_primary_10_3390_biomimetics8020226 crossref_primary_10_1039_D4NR00817K crossref_primary_10_3390_nano12183127 crossref_primary_10_1063_5_0155256 crossref_primary_10_1039_D3LC01094E crossref_primary_10_1039_D3NR02284F crossref_primary_10_1016_j_inoche_2022_110164 crossref_primary_10_3390_bios13010136 crossref_primary_10_1021_acsanm_2c03782 crossref_primary_10_1109_JSEN_2023_3338640 crossref_primary_10_1002_cnma_202300164 crossref_primary_10_3390_ma15217672 |
Cites_doi | 10.1016/j.snb.2021.129941 10.1016/j.snb.2015.08.123 10.1002/adma.201602603 10.1016/j.bios.2007.09.005 10.1021/acs.analchem.8b04058 10.1021/cr1004452 10.1039/C5CS00644A 10.1364/OE.19.020493 10.1039/C7CS00169J 10.1016/j.procbio.2019.10.034 10.1016/j.ccr.2018.05.007 10.1021/acsnano.1c00957 10.1016/j.bios.2021.112971 10.1016/j.bios.2018.10.055 10.1016/j.bios.2013.11.037 10.1021/la4012108 10.1103/RevModPhys.57.783 10.1152/physrev.00004.2019 10.1021/acs.chemrev.8b00359 10.1002/adma.201501587 10.1016/j.tsf.2013.09.015 10.1080/00387010.2016.1154076 10.1039/D0AY01781G 10.1016/j.siny.2014.12.006 10.1039/C9NJ05477D 10.1111/ijcp.14557 10.2116/analsci.10.95 10.1021/nn506689b 10.1016/j.mattod.2019.08.002 10.1016/j.microc.2020.105799 10.1021/ac502955w 10.3109/10408368009105860 10.1016/j.bios.2019.111713 10.1002/lpor.202100328 10.1021/acs.analchem.0c00275 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2022.114440 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 35667289 10_1016_j_bios_2022_114440 S0956566322004808 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- RIG SBG SCB SCH SEW SSH WUQ NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c389t-bec4389fa1e3a26f9263f4fc12f3909a9e094f955835887de4f0e1b9210fd1693 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Mon Aug 18 12:35:06 EDT 2025 Fri Jul 11 07:57:00 EDT 2025 Thu Apr 03 07:08:25 EDT 2025 Tue Jul 01 01:43:03 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Fri Feb 23 02:40:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluorescence Raman Direct bilirubin Plasmon Hot spot Clinical detection |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-bec4389fa1e3a26f9263f4fc12f3909a9e094f955835887de4f0e1b9210fd1693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0622-019X |
PMID | 35667289 |
PQID | 2674002537 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718244999 proquest_miscellaneous_2674002537 pubmed_primary_35667289 crossref_citationtrail_10_1016_j_bios_2022_114440 crossref_primary_10_1016_j_bios_2022_114440 elsevier_sciencedirect_doi_10_1016_j_bios_2022_114440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ge, Wang, Yang, Xu, Ye, Cai, Zhang, Cai, Jiang, Liu, Liedberg, Mao, Wang (bib11) 2022; 18 Manikandan, Abdelhamid, Talib, Wu (bib23) 2014; 55 Lu, Cheng, Zhang, Wang, Xu, Yu, Li (bib22) 2021; 329 Xu, Duan, Jia, Yang, Gu (bib40) 2021; 161 Ouyang, Yao, Tang, Yang, Zhu (bib27) 2021; 340 Chen, Phang, Lee, Yang, Ling (bib10) 2013; 29 Rahman, Lee, Park, Won, Shim (bib31) 2008; 23 Park, Mun, Lee, Jeon, Shim, Lee, Kwon, Kim, Kim (bib29) 2015; 27 Vu, Jang, Lee, Choi, Chang, Chung (bib38) 2020; 92 Buchler, J.W., Dreher, C., Künzel, F.M., 2007. Berlin, Heidelberg, 1–69. Kartashova, Gonchar (bib17) 2021 Zou, Zhang, Xu, Chen, Huang, Lyu, Duan, Chen, Tan (bib42) 2018; 90 Olds, Oghalai (bib26) 2015; 20 Pan, Li, Lin, Tan, Wang, Liao, Chen, Shan, Chen, Li (bib28) 2019; 145 Gopal, Abdelhamid, Huang, Wu (bib13) 2016; 224 Jeong, Arnob, Baek, Lee, Shih, Jung (bib15) 2016; 28 Jones, Osberg, MacFarlane, Langille, Mirkin (bib16) 2011; 111 Araç, Özel (bib3) 2021; 75 Ahmadivand, Gerislioglu, Ramezani, Kaushik, Manickam, Ghoreishi (bib4) 2021; 177 Rahman, Ahmed, Asiri (bib32) 2019; 43 Shan, Pu, Chen, Liao, Li (bib36) 2018; 371 Ahmadivand, Gerislioglu, Ahuja, Kumar Mishra (bib1) 2020; 32 Bell, Mousavi, Abd El-Rahman, Tan, Homer-Vanniasinkam, Whitesides (bib5) 2019; 126 Celis, Campos-Vallette, Gómez-Jeria, Clavijo, Jara, Garrido (bib9) 2016; 49 Qiu, Gai, Saleh, Tang, Gui, Kullak-Ublick, Wang (bib30) 2021; 15 Taurino, Van Hoof, De Micheli, Carrara (bib37) 2013; 548 Ahmadivand, Gerislioglu (bib2) 2022; 16 Laing, Gracie, Faulds (bib18) 2016; 45 Li, Li, Aroca (bib19) 2017; 46 Li, Lee, Phang, Lee, Ling (bib20) 2014; 86 Rawal, Kharangarh, Dawra, Tomar, Gupta, Pundir (bib34) 2020; 89 Xu, Kvasnička, Idso, Jordan, Gong, Homola, Yu (bib41) 2011; 19 Liu, Zhou (bib21) 1994; 10 Brodersen, Stern (bib6) 1980; 11 Carragher (bib8) 2014 Xiao, Zhi, Pan, Liang, Zhou, Chen (bib39) 2020; 12 Geng, Xu, Song, Wang, Li, Han, Yang, Qu, Ajayan (bib12) 2021; 334 Mejía-Salazar, Oliveira (bib24) 2018; 118 Rao, Li, Wang, Li, Wu (bib33) 2015; 9 Shah, Sumeh, Sheraz, Kavitha, Venmathi Maran, Rodrigues (bib35) 2021; 143 Hansen, Wong, Stevenson (bib14) 2020; 100 Moskovits (bib25) 1985; 57 Rahman (10.1016/j.bios.2022.114440_bib32) 2019; 43 Zou (10.1016/j.bios.2022.114440_bib42) 2018; 90 Lu (10.1016/j.bios.2022.114440_bib22) 2021; 329 Jones (10.1016/j.bios.2022.114440_bib16) 2011; 111 Ouyang (10.1016/j.bios.2022.114440_bib27) 2021; 340 Taurino (10.1016/j.bios.2022.114440_bib37) 2013; 548 Qiu (10.1016/j.bios.2022.114440_bib30) 2021; 15 Rawal (10.1016/j.bios.2022.114440_bib34) 2020; 89 Geng (10.1016/j.bios.2022.114440_bib12) 2021; 334 Liu (10.1016/j.bios.2022.114440_bib21) 1994; 10 Rao (10.1016/j.bios.2022.114440_bib33) 2015; 9 Li (10.1016/j.bios.2022.114440_bib20) 2014; 86 Moskovits (10.1016/j.bios.2022.114440_bib25) 1985; 57 Rahman (10.1016/j.bios.2022.114440_bib31) 2008; 23 Ahmadivand (10.1016/j.bios.2022.114440_bib1) 2020; 32 Shah (10.1016/j.bios.2022.114440_bib35) 2021; 143 Bell (10.1016/j.bios.2022.114440_bib5) 2019; 126 Xiao (10.1016/j.bios.2022.114440_bib39) 2020; 12 Mejía-Salazar (10.1016/j.bios.2022.114440_bib24) 2018; 118 Manikandan (10.1016/j.bios.2022.114440_bib23) 2014; 55 Shan (10.1016/j.bios.2022.114440_bib36) 2018; 371 Gopal (10.1016/j.bios.2022.114440_bib13) 2016; 224 Xu (10.1016/j.bios.2022.114440_bib41) 2011; 19 Brodersen (10.1016/j.bios.2022.114440_bib6) 1980; 11 Pan (10.1016/j.bios.2022.114440_bib28) 2019; 145 Celis (10.1016/j.bios.2022.114440_bib9) 2016; 49 Xu (10.1016/j.bios.2022.114440_bib40) 2021; 161 Hansen (10.1016/j.bios.2022.114440_bib14) 2020; 100 10.1016/j.bios.2022.114440_bib7 Vu (10.1016/j.bios.2022.114440_bib38) 2020; 92 Ge (10.1016/j.bios.2022.114440_bib11) 2022; 18 Carragher (10.1016/j.bios.2022.114440_bib8) 2014 Ahmadivand (10.1016/j.bios.2022.114440_bib2) 2022; 16 Laing (10.1016/j.bios.2022.114440_bib18) 2016; 45 Araç (10.1016/j.bios.2022.114440_bib3) 2021; 75 Jeong (10.1016/j.bios.2022.114440_bib15) 2016; 28 Chen (10.1016/j.bios.2022.114440_bib10) 2013; 29 Li (10.1016/j.bios.2022.114440_bib19) 2017; 46 Olds (10.1016/j.bios.2022.114440_bib26) 2015; 20 Kartashova (10.1016/j.bios.2022.114440_bib17) 2021 Park (10.1016/j.bios.2022.114440_bib29) 2015; 27 Ahmadivand (10.1016/j.bios.2022.114440_bib4) 2021; 177 |
References_xml | – volume: 27 start-page: 4290 year: 2015 end-page: 4295 ident: bib29 publication-title: Adv. Mater. – volume: 334 year: 2021 ident: bib12 publication-title: Sensor. Actuator. B Chem. – volume: 10 start-page: 95 year: 1994 end-page: 99 ident: bib21 publication-title: Anal. Sci. – volume: 90 start-page: 13687 year: 2018 end-page: 13694 ident: bib42 publication-title: Anal. Chem. – volume: 92 start-page: 8159 year: 2020 end-page: 8169 ident: bib38 publication-title: Anal. Chem. – year: 2021 ident: bib17 publication-title: ACS Biomater. Sci. Eng. – volume: 145 year: 2019 ident: bib28 publication-title: Biosens. Bioelectron. – volume: 23 start-page: 857 year: 2008 end-page: 864 ident: bib31 publication-title: Biosens. Bioelectron. – volume: 11 start-page: 307 year: 1980 end-page: 399 ident: bib6 publication-title: Crit. Rev. Clin. Lab Sci. – volume: 16 year: 2022 ident: bib2 publication-title: Laser Photon. Rev. – volume: 32 start-page: 108 year: 2020 end-page: 130 ident: bib1 publication-title: Mater. Today – volume: 18 year: 2022 ident: bib11 publication-title: Small – volume: 28 start-page: 8695 year: 2016 end-page: 8704 ident: bib15 publication-title: Adv. Mater. – volume: 111 start-page: 3736 year: 2011 end-page: 3827 ident: bib16 publication-title: Chem. Rev. – volume: 15 start-page: 7536 year: 2021 end-page: 7546 ident: bib30 publication-title: ACS Nano – volume: 43 start-page: 19298 year: 2019 end-page: 19307 ident: bib32 publication-title: New J. Chem. – volume: 29 start-page: 7061 year: 2013 end-page: 7069 ident: bib10 publication-title: Langmuir – volume: 329 year: 2021 ident: bib22 publication-title: Sensor. Actuator. B Chem. – volume: 75 year: 2021 ident: bib3 publication-title: Int. J. Clin. Pract. – volume: 45 start-page: 1901 year: 2016 end-page: 1918 ident: bib18 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 20493 year: 2011 end-page: 20505 ident: bib41 publication-title: Opt Express – volume: 86 start-page: 10437 year: 2014 end-page: 10444 ident: bib20 publication-title: Anal. Chem. – volume: 9 start-page: 2783 year: 2015 end-page: 2791 ident: bib33 publication-title: ACS Nano – start-page: 484 year: 2014 end-page: 496 ident: bib8 publication-title: Churchill Livingstone – volume: 143 year: 2021 ident: bib35 publication-title: Biomed. Pharmacother. – volume: 177 year: 2021 ident: bib4 publication-title: Biosens. Bioelectron. – volume: 49 start-page: 336 year: 2016 end-page: 342 ident: bib9 publication-title: Spectrosc. Lett. – volume: 118 start-page: 10617 year: 2018 end-page: 10625 ident: bib24 publication-title: Chem. Rev. – volume: 224 start-page: 413 year: 2016 end-page: 424 ident: bib13 publication-title: Sensor. Actuator. B Chem. – volume: 161 start-page: 3 year: 2021 end-page: 9 ident: bib40 publication-title: Microchem. J. – volume: 371 start-page: 11 year: 2018 end-page: 37 ident: bib36 publication-title: Coord. Chem. Rev. – volume: 100 start-page: 1291 year: 2020 end-page: 1346 ident: bib14 publication-title: Physiol. Rev. – volume: 548 start-page: 546 year: 2013 end-page: 550 ident: bib37 publication-title: Thin Solid Films – volume: 20 start-page: 42 year: 2015 end-page: 46 ident: bib26 publication-title: Semin. Fetal Neonatal Med. – volume: 126 start-page: 115 year: 2019 end-page: 121 ident: bib5 publication-title: Biosens. Bioelectron. – reference: Buchler, J.W., Dreher, C., Künzel, F.M., 2007. Berlin, Heidelberg, 1–69. – volume: 46 start-page: 3962 year: 2017 end-page: 3979 ident: bib19 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 783 year: 1985 end-page: 826 ident: bib25 publication-title: Rev. Mod. Phys. – volume: 340 year: 2021 ident: bib27 publication-title: Sensor. Actuator. B Chem. – volume: 55 start-page: 180 year: 2014 end-page: 186 ident: bib23 publication-title: Biosens. Bioelectron. – volume: 89 start-page: 165 year: 2020 end-page: 174 ident: bib34 publication-title: Process Biochem. – volume: 12 start-page: 5691 year: 2020 end-page: 5698 ident: bib39 publication-title: Anal. Methods – start-page: 484 year: 2014 ident: 10.1016/j.bios.2022.114440_bib8 publication-title: Churchill Livingstone – volume: 340 year: 2021 ident: 10.1016/j.bios.2022.114440_bib27 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2021.129941 – volume: 18 year: 2022 ident: 10.1016/j.bios.2022.114440_bib11 publication-title: Small – volume: 224 start-page: 413 year: 2016 ident: 10.1016/j.bios.2022.114440_bib13 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.08.123 – volume: 28 start-page: 8695 issue: 39 year: 2016 ident: 10.1016/j.bios.2022.114440_bib15 publication-title: Adv. Mater. doi: 10.1002/adma.201602603 – volume: 329 year: 2021 ident: 10.1016/j.bios.2022.114440_bib22 publication-title: Sensor. Actuator. B Chem. – volume: 23 start-page: 857 issue: 6 year: 2008 ident: 10.1016/j.bios.2022.114440_bib31 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2007.09.005 – volume: 90 start-page: 13687 issue: 22 year: 2018 ident: 10.1016/j.bios.2022.114440_bib42 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04058 – volume: 111 start-page: 3736 issue: 6 year: 2011 ident: 10.1016/j.bios.2022.114440_bib16 publication-title: Chem. Rev. doi: 10.1021/cr1004452 – volume: 45 start-page: 1901 year: 2016 ident: 10.1016/j.bios.2022.114440_bib18 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00644A – volume: 19 start-page: 20493 issue: 21 year: 2011 ident: 10.1016/j.bios.2022.114440_bib41 publication-title: Opt Express doi: 10.1364/OE.19.020493 – volume: 46 start-page: 3962 year: 2017 ident: 10.1016/j.bios.2022.114440_bib19 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00169J – volume: 89 start-page: 165 year: 2020 ident: 10.1016/j.bios.2022.114440_bib34 publication-title: Process Biochem. doi: 10.1016/j.procbio.2019.10.034 – volume: 371 start-page: 11 year: 2018 ident: 10.1016/j.bios.2022.114440_bib36 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.05.007 – ident: 10.1016/j.bios.2022.114440_bib7 – volume: 15 start-page: 7536 year: 2021 ident: 10.1016/j.bios.2022.114440_bib30 publication-title: ACS Nano doi: 10.1021/acsnano.1c00957 – volume: 177 year: 2021 ident: 10.1016/j.bios.2022.114440_bib4 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.112971 – volume: 126 start-page: 115 issue: 1 year: 2019 ident: 10.1016/j.bios.2022.114440_bib5 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.10.055 – volume: 55 start-page: 180 year: 2014 ident: 10.1016/j.bios.2022.114440_bib23 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.037 – volume: 29 start-page: 7061 issue: 23 year: 2013 ident: 10.1016/j.bios.2022.114440_bib10 publication-title: Langmuir doi: 10.1021/la4012108 – volume: 57 start-page: 783 issue: 3 year: 1985 ident: 10.1016/j.bios.2022.114440_bib25 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.783 – volume: 100 start-page: 1291 issue: 3 year: 2020 ident: 10.1016/j.bios.2022.114440_bib14 publication-title: Physiol. Rev. doi: 10.1152/physrev.00004.2019 – volume: 118 start-page: 10617 issue: 20 year: 2018 ident: 10.1016/j.bios.2022.114440_bib24 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00359 – volume: 143 year: 2021 ident: 10.1016/j.bios.2022.114440_bib35 publication-title: Biomed. Pharmacother. – volume: 27 start-page: 4290 issue: 29 year: 2015 ident: 10.1016/j.bios.2022.114440_bib29 publication-title: Adv. Mater. doi: 10.1002/adma.201501587 – volume: 548 start-page: 546 year: 2013 ident: 10.1016/j.bios.2022.114440_bib37 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.09.015 – volume: 49 start-page: 336 issue: 5 year: 2016 ident: 10.1016/j.bios.2022.114440_bib9 publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2016.1154076 – volume: 12 start-page: 5691 issue: 47 year: 2020 ident: 10.1016/j.bios.2022.114440_bib39 publication-title: Anal. Methods doi: 10.1039/D0AY01781G – volume: 20 start-page: 42 issue: 1 year: 2015 ident: 10.1016/j.bios.2022.114440_bib26 publication-title: Semin. Fetal Neonatal Med. doi: 10.1016/j.siny.2014.12.006 – volume: 43 start-page: 19298 year: 2019 ident: 10.1016/j.bios.2022.114440_bib32 publication-title: New J. Chem. doi: 10.1039/C9NJ05477D – volume: 75 issue: 10 year: 2021 ident: 10.1016/j.bios.2022.114440_bib3 publication-title: Int. J. Clin. Pract. doi: 10.1111/ijcp.14557 – year: 2021 ident: 10.1016/j.bios.2022.114440_bib17 publication-title: ACS Biomater. Sci. Eng. – volume: 10 start-page: 95 issue: 1 year: 1994 ident: 10.1016/j.bios.2022.114440_bib21 publication-title: Anal. Sci. doi: 10.2116/analsci.10.95 – volume: 9 start-page: 2783 issue: 3 year: 2015 ident: 10.1016/j.bios.2022.114440_bib33 publication-title: ACS Nano doi: 10.1021/nn506689b – volume: 32 start-page: 108 year: 2020 ident: 10.1016/j.bios.2022.114440_bib1 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.08.002 – volume: 161 start-page: 3 year: 2021 ident: 10.1016/j.bios.2022.114440_bib40 publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105799 – volume: 86 start-page: 10437 issue: 20 year: 2014 ident: 10.1016/j.bios.2022.114440_bib20 publication-title: Anal. Chem. doi: 10.1021/ac502955w – volume: 11 start-page: 307 year: 1980 ident: 10.1016/j.bios.2022.114440_bib6 publication-title: Crit. Rev. Clin. Lab Sci. doi: 10.3109/10408368009105860 – volume: 334 year: 2021 ident: 10.1016/j.bios.2022.114440_bib12 publication-title: Sensor. Actuator. B Chem. – volume: 145 year: 2019 ident: 10.1016/j.bios.2022.114440_bib28 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111713 – volume: 16 year: 2022 ident: 10.1016/j.bios.2022.114440_bib2 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.202100328 – volume: 92 start-page: 8159 issue: 12 year: 2020 ident: 10.1016/j.bios.2022.114440_bib38 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00275 |
SSID | ssj0007190 |
Score | 2.4788277 |
Snippet | It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114440 |
SubjectTerms | bilirubin biosensors blood serum Clinical detection COVID-19 infection death detection limit Direct bilirubin Fluorescence Hot spot humans liver nanowires Plasmon pneumonia Raman silver spectrometers survival rate |
Title | Surface plasmon-enhanced fluorescence and surface-enhanced Raman scattering dual-readout chip constructed with silver nanowires: Label-free clinical detection of direct-bilirubin |
URI | https://dx.doi.org/10.1016/j.bios.2022.114440 https://www.ncbi.nlm.nih.gov/pubmed/35667289 https://www.proquest.com/docview/2674002537 https://www.proquest.com/docview/2718244999 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUhwQFBe20JlJG4obB5OUnOrKqrl1QOlUm-RY4_VoMVZ7W4OvfRH9Rd2Jk5akGAP3JJ4HFmZ8fgbZ-YzwFuldK1KXUamUBSgYKIjCoPoytmD3GbWaMkFzt9OitmZ_Hyen2_B0VgLw2mVg-8PPr331sOT6fA1p4ummZ4yhR6BEbLIvjCaC36lLNnK31_dpXmUSdhnYb49lh4KZ0KOV920TNmdpkyZK3kD5O-L07_AZ78IHT-GRwN6FIdhgE9gC_0O3A_nSV7uwMPf2AWfwvVpt3TaoFgQQiZri9Bf9P_7hZt37bLncaJW7a1YBck7ie_6l_ZiZXr2TXqb4JKtiACmbbu1MBfNQph2IJ8lcd7NFauGs6yF175lAuTVB_FV1ziP3BJRjBWYwuK6z_7yonUifPyIE3SXHcXoz-Ds-OOPo1k0HNEQGUI61I6Gj093OsFMp4VTaZE56UySukzFSiuk8NGpPCegR-7MonQxJrWiQNNZ5oF5Dtu-9fgShC1SG2dZ7LCmLomr1UFKkuR_rUxKG08gGXVTmYG_nI_RmFdjotrPivVZsT6roM8JvLvtswjsHRul81Hl1R82WNHysrHfm9E-Kpqc_MdFe2w7EipKyagyKzfIEDogjEVAfQIvgnHdjjUjiy0pJN79z5HtwQO-C8mHr2CbrAJfE4ha1_v9LNmHe4efvsxObgBohh7q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJTX8jQSnFDYxHmtkTggoNrSbQ-0lXozTmyrQYuz2myEeuFHwR9kJk5akGAPSL1FyTiyMuPxN87MNwDPhVCFyFUelJnAAMVEKsAwCK-snqQ61qVKqMB5bz-bHiUfj9PjDfg51MJQWmXv-71P77x1f2fcf83xoqrGB0Shh2AELbIrjJ70mZW75vQbxm3Nm533qOQXnG9_OHw3DfrWAkGJO_QqwJlT22-rIhMrnlnBs9gmtoy4jUUolDAY9liRpghQcBlqk9jQRIXAAMlq4i_B916Cywm6C2qb8Or7eV5JHvmDHSL4o-n1lTo-qayoauII55w4ehM6cfn7bvgvtNvtets34UYPV9lb_0VuwYZxW3DFN7A83YLrv9EZ3oYfB-3SqtKwBUJyNO_AuJMuwYDZeVsvO-IofKqcZo2XPJf4pL4qx5qyo_vEtzGqEQsQ0eq6XbHypFqwsu7ZblGcjo9ZU1FaN3PK1cS43LxmM1WYeWCXxrCh5JNps-rSzRyrLfPaDigjeNkWlbsDRxeiuLuw6Wpn7gPTGddhHIfWFDgksoWYcJREh6-TKNfhCKJBN7LsCdOpb8dcDplxXyTpU5I-pdfnCF6ejVl4upC10umgcvmH0Uvcz9aOezbYh0RvQL94lDN1i0JZnhCMjfM1MghHENRhZDCCe964zuYao8XmGIM_-M-ZPYWr08O9mZzt7O8-hGv0xGc-PoJNtBDzGBHcqnjSrRgGny96if4CKKFZ3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+plasmon-enhanced+fluorescence+and+surface-enhanced+Raman+scattering+dual-readout+chip+constructed+with+silver+nanowires%3A+Label-free+clinical+detection+of+direct-bilirubin&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Sahoo%2C+Smruti+R.&rft.au=Huey-Jen+Hsu%2C+Sandy&rft.au=Chou%2C+Dev-Aur&rft.au=Wang%2C+Gou-Jen&rft.date=2022-10-01&rft.issn=0956-5663&rft.volume=213&rft.spage=114440&rft_id=info:doi/10.1016%2Fj.bios.2022.114440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2022_114440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |