Noise Reduction in CT Using Learned Wavelet-Frame Shrinkage Networks
Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 41; no. 8; pp. 2048 - 2066 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2022.3154011 |
Cover
Loading…
Abstract | Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network , or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising. |
---|---|
AbstractList | Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network , or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters ( Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising. Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising.Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising. |
Author | van der Sommen, Fons Rongen, Peter Bescos, Javier Olivan Zavala-Mondragon, Luis A. de With, Peter H. N. |
Author_xml | – sequence: 1 givenname: Luis A. orcidid: 0000-0002-4469-8362 surname: Zavala-Mondragon fullname: Zavala-Mondragon, Luis A. email: l.a.zavala.mondragon@tue.nl organization: Electrical Engineering Department, VCA Laboratory, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands – sequence: 2 givenname: Peter orcidid: 0000-0002-8322-7467 surname: Rongen fullname: Rongen, Peter email: pmjrongen@gmail.com organization: Philips Medical Systems Nederland B.V., Best, PC, The Netherlands – sequence: 3 givenname: Javier Olivan surname: Bescos fullname: Bescos, Javier Olivan email: javier.olivan.bescos@philips.com organization: Philips Medical Systems Nederland B.V., Best, PC, The Netherlands – sequence: 4 givenname: Peter H. N. orcidid: 0000-0002-7639-7716 surname: de With fullname: de With, Peter H. N. organization: Electrical Engineering Department, VCA Laboratory, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands – sequence: 5 givenname: Fons orcidid: 0000-0002-3593-2356 surname: van der Sommen fullname: van der Sommen, Fons email: fvdsommen@tue.nl organization: Electrical Engineering Department, VCA Laboratory, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35201984$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLxDAQxoMouj7ugiAFL1665t3kKOsTVgVd0VvItlONdlNNWsX_3iy7evDgYZg5_L6Zj_k20apvPSC0S_CQEKyPJleXQ4opHTIiOCZkBQ2IECqngj-uogGmhcoxlnQDbcb4gjHhAut1tMEExUQrPkAn162LkN1C1Zeda33mfDaaZPfR-adsDDZ4qLIH-wENdPlZsDPI7p6D86_2CbJr6D7b8Bq30Vptmwg7y76F7s9OJ6OLfHxzfjk6HuclU7rLp5BukikvNIc0kxoXlAoNqQoAKaqyopB8aWAl01aRmrLaKi6VtlaqKdtCh4u9b6F97yF2ZuZiCU1jPbR9NFQypniBhUjowR_0pe2DT-4SpQshJaE8UftLqp_OoDJvwc1s-DI__0mAXABlaGMMUJvSdXb-qC5Y1xiCzTwIk4Iw8yDMMogkxH-EP7v_kewtJA4AfnFdUIILyb4BF-yQBQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1109_TGRS_2022_3214569 crossref_primary_10_13005_bpj_3087 crossref_primary_10_1109_TIM_2023_3346500 crossref_primary_10_3390_s24216849 crossref_primary_10_1002_acm2_14270 crossref_primary_10_1007_s00530_024_01575_7 crossref_primary_10_1016_j_apradiso_2024_111374 crossref_primary_10_1016_j_bspc_2023_104863 crossref_primary_10_1109_TMI_2024_3405024 |
Cites_doi | 10.1109/TMI.2017.2715284 10.1201/9780429299476 10.1109/TCI.2021.3129369 10.1016/b978-0-12-409545-8.00003-0 10.1109/CVPRW.2018.00121 10.1016/j.sigpro.2009.07.009 10.5555/3104322.3104374 10.1109/TMI.2018.2823756 10.1109/CVPR.2013.355 10.1109/ACSSC.2017.8335685 10.1137/17m1141771 10.2307/2337118 10.1109/MLSP.2017.8168176 10.1007/s10278-013-9622-7 10.1109/83.862633 10.1007/978-3-030-32226-7_4 10.1109/TIP.2017.2713099 10.1109/TMI.2020.2998480 10.1109/TIP.2007.906002 10.1016/b978-0-12-405906-1.00006-4 10.1109/TMI.2021.3054167 10.1109/CVPR.2016.308 10.1016/j.image.2017.11.001 10.5005/jp/books/10216 10.1109/ICCV.2019.00913 10.1109/ICIP.2003.1247137 10.1002/mp.14594 10.1109/TPAMI.2020.3012955 10.1109/MLSP49062.2020.9231535 10.1109/TIP.2017.2662206 10.1109/TIP.2003.819861 10.1016/j.jksuci.2016.12.002 10.1109/TCI.2020.3013796 10.1109/TIP.2007.891064 10.1007/978-3-319-24574-4_28 10.1002/cpa.20042 10.1109/TIP.2019.2937734 10.1109/TMI.2018.2823768 10.1016/j.patcog.2004.05.009 10.1109/IVMSPW.2018.8448694 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2022.3154011 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2066 |
ExternalDocumentID | 35201984 10_1109_TMI_2022_3154011 9721076 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: European Union through the Horizon 2020 grantid: 780026 “NEXIS.” funderid: 10.13039/100010661 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c389t-be1981b4794ebe11f072259e2597ee65dcd2e0199e3c39a81f23fa84689aa68b3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Jul 10 20:13:22 EDT 2025 Mon Jun 30 02:07:57 EDT 2025 Wed Feb 19 02:26:40 EST 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 03:16:05 EDT 2025 Wed Aug 27 01:57:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-be1981b4794ebe11f072259e2597ee65dcd2e0199e3c39a81f23fa84689aa68b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3593-2356 0000-0002-8322-7467 0000-0002-7639-7716 0000-0002-4469-8362 |
OpenAccessLink | https://research.tue.nl/en/publications/b694b8f0-3b2d-4e7c-8071-789258d25591 |
PMID | 35201984 |
PQID | 2697566124 |
PQPubID | 85460 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1109_TMI_2022_3154011 crossref_citationtrail_10_1109_TMI_2022_3154011 pubmed_primary_35201984 proquest_journals_2697566124 ieee_primary_9721076 proquest_miscellaneous_2633847055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 Ye (ref20) ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 Toga (ref41) 2002; 1 ref2 ref1 ref17 ref19 ref18 Paszke (ref38) 2019 Radhiana (ref39) 2013; 68 ref24 ref46 ref23 ref45 ref26 ref25 ref42 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 Mahapatra (ref16) 2017 ref7 ref9 ref4 ref3 ref6 ref5 Lyons (ref33) 2004 ref40 |
References_xml | – ident: ref2 doi: 10.1109/TMI.2017.2715284 – ident: ref40 doi: 10.1201/9780429299476 – volume: 1 volume-title: Brain Mapping: The Methods year: 2002 ident: ref41 – ident: ref37 doi: 10.1109/TCI.2021.3129369 – ident: ref31 doi: 10.1016/b978-0-12-409545-8.00003-0 – ident: ref46 doi: 10.1109/CVPRW.2018.00121 – ident: ref27 doi: 10.1016/j.sigpro.2009.07.009 – start-page: 8024 volume-title: Advances in Neural Information Processing Systems year: 2019 ident: ref38 article-title: Pytorch: An imperative style, high-performance deep learning library – ident: ref21 doi: 10.5555/3104322.3104374 – ident: ref9 doi: 10.1109/TMI.2018.2823756 – volume-title: Understanding Digital Signal Processing, 3/E year: 2004 ident: ref33 – ident: ref34 doi: 10.1109/CVPR.2013.355 – ident: ref5 doi: 10.1109/ACSSC.2017.8335685 – ident: ref7 doi: 10.1137/17m1141771 – ident: ref22 doi: 10.2307/2337118 – year: 2017 ident: ref16 article-title: Deep sparse coding using optimized linear expansion of thresholds publication-title: arXiv:1705.07290 – ident: ref10 doi: 10.1109/MLSP.2017.8168176 – ident: ref29 doi: 10.1007/s10278-013-9622-7 – ident: ref23 doi: 10.1109/83.862633 – ident: ref12 doi: 10.1007/978-3-030-32226-7_4 – ident: ref3 doi: 10.1109/TIP.2017.2713099 – ident: ref13 doi: 10.1109/TMI.2020.2998480 – ident: ref18 doi: 10.1109/TIP.2007.906002 – ident: ref32 doi: 10.1016/b978-0-12-405906-1.00006-4 – ident: ref15 doi: 10.1109/TMI.2021.3054167 – ident: ref35 doi: 10.1109/CVPR.2016.308 – ident: ref43 doi: 10.1016/j.image.2017.11.001 – ident: ref42 doi: 10.5005/jp/books/10216 – ident: ref45 doi: 10.1109/ICCV.2019.00913 – ident: ref25 doi: 10.1109/ICIP.2003.1247137 – ident: ref28 doi: 10.1002/mp.14594 – ident: ref14 doi: 10.1109/TPAMI.2020.3012955 – ident: ref8 doi: 10.1109/MLSP49062.2020.9231535 – start-page: 7064 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref20 article-title: Understanding geometry of encoder-decoder cnns – ident: ref30 doi: 10.1109/TIP.2017.2662206 – ident: ref44 doi: 10.1109/TIP.2003.819861 – ident: ref1 doi: 10.1016/j.jksuci.2016.12.002 – ident: ref19 doi: 10.1109/TCI.2020.3013796 – ident: ref36 doi: 10.1109/TIP.2007.891064 – ident: ref6 doi: 10.1007/978-3-319-24574-4_28 – ident: ref17 doi: 10.1002/cpa.20042 – ident: ref26 doi: 10.1109/TIP.2019.2937734 – ident: ref4 doi: 10.1109/TMI.2018.2823768 – volume: 68 start-page: 93 issue: 1 year: 2013 ident: ref39 article-title: Noncontrast computed tomography in acute ischaemic stroke: A pictorial review publication-title: Med. J. Malaysia – ident: ref24 doi: 10.1016/j.patcog.2004.05.009 – ident: ref11 doi: 10.1109/IVMSPW.2018.8448694 |
SSID | ssj0014509 |
Score | 2.4537497 |
Snippet | Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2048 |
SubjectTerms | Computed tomography Convolution Convolutional neural networks Discrete wavelet transforms Encoding Encoding-Decoding Noise reduction Redundancy Shrinkage Signal processing Thresholding (Imaging) wavelet frames |
Title | Noise Reduction in CT Using Learned Wavelet-Frame Shrinkage Networks |
URI | https://ieeexplore.ieee.org/document/9721076 https://www.ncbi.nlm.nih.gov/pubmed/35201984 https://www.proquest.com/docview/2697566124 https://www.proquest.com/docview/2633847055 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BBwQHljdh2ZWRuCCRNnHdND4iditAag9QBLfIdiYCgVK0TS_765nJS4AAcYgUKY7jzIzjbzLjbwCOnMMQM5v6Wkr0lSZdaCOtH6S0WGsnZdrn3cijcXR-oy7v-ncLcNLuhUHEMvkMO3xaxvLTqZvzr7IuM82Q370Ii-S4VXu12oiB6lfpHJIZY4NINiHJQHcnowtyBKUk_5TwScjFYQh2ELaJ1ZvVqCyv8jnSLFec4Q8YNWOtEk0eO_PCdtz_dzSO332ZdViroac4rWxlAxYw34TVV4SEm7A8qkPtW_BnPH2YobhialdWnnjIxdlElCkGomRlxVTcGq5bUfhDTvES1_fUyyN9oMS4Si6fbcPN8O_k7NyvSy74jpBL4VskqYSWaedJu2GYBQOa8BrpGCBG_dSlEklyGnuup00cZrKXGcIwsTYmim1vB5byaY57IDB2HOJMrTJO2SyIFcpMKecya8gcjAfdRvSJq_nIuSzGU1L6JYFOSG8J6y2p9ebBcXvHc8XF8UXbLRZ5266WtgcHjXaTerLOEhnpAaFaQjoeHLaXaZpx7MTkOJ1zG_LlFVMPebBbWUXbd2NM-x8_8yes8MiqrMEDWCr-zfEXIZnC_i5N-AVzAes_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xJrHtYWPAtgzGjMQL0tImrpvGjwhWlY30YRTBW2Q7F4GY0mlNX_jrucsvMQRoD5EixXGcu3P8Xe78HcC-cxhibjNfS4m-0qQLbaT1g4wWa-2kzIa8GzmZRpNz9eNyeLkC37q9MIhYJZ9hj0-rWH42d0v-VdZnphnyu1_AS1r3la53a3UxAzWsEzokc8YGkWyDkoHuz5ITcgWlJA-VEErI5WEIeBC6idU_61FVYOVprFmtOeN3kLSjrVNNbnrL0vbc7QMix_99nXV424BPcVhby3tYwWID3tyjJNyAtaQJtm_C8XR-vUDxi8ldWX3iuhBHM1ElGYiKlxUzcWG4ckXpjznJS5xdUS839IkS0zq9fLEF5-Pvs6OJ3xRd8B1hl9K3SFIJLRPPk37DMA9GNOU10jFCjIaZyySS5DQO3ECbOMzlIDeEYmJtTBTbwQdYLeYFfgKBseMgZ2aVccrmQaxQ5ko5l1tDBmE86LeiT13DSM6FMX6nlWcS6JT0lrLe0kZvHhx0d_yp2TieabvJIu_aNdL2YKfVbtpM10UqIz0iXEtYx4O97jJNNI6emALnS25D3rxi8iEPPtZW0fXdGtPnx5_5FV5NZslpenoy_bkNr3mUdQ7hDqyWf5f4hXBNaXcrc74D9vXujw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+in+CT+Using+Learned+Wavelet-Frame+Shrinkage+Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zavala-Mondragon%2C+Luis+A.&rft.au=Rongen%2C+Peter&rft.au=Bescos%2C+Javier+Olivan&rft.au=de+With%2C+Peter+H.+N.&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=41&rft.issue=8&rft.spage=2048&rft.epage=2066&rft_id=info:doi/10.1109%2FTMI.2022.3154011&rft_id=info%3Apmid%2F35201984&rft.externalDocID=9721076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |