Noise Reduction in CT Using Learned Wavelet-Frame Shrinkage Networks

Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 8; pp. 2048 - 2066
Main Authors Zavala-Mondragon, Luis A., Rongen, Peter, Bescos, Javier Olivan, de With, Peter H. N., van der Sommen, Fons
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2022.3154011

Cover

Loading…
Abstract Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network , or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising.
AbstractList Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network , or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (
Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising.
Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising.Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising.
Author van der Sommen, Fons
Rongen, Peter
Bescos, Javier Olivan
Zavala-Mondragon, Luis A.
de With, Peter H. N.
Author_xml – sequence: 1
  givenname: Luis A.
  orcidid: 0000-0002-4469-8362
  surname: Zavala-Mondragon
  fullname: Zavala-Mondragon, Luis A.
  email: l.a.zavala.mondragon@tue.nl
  organization: Electrical Engineering Department, VCA Laboratory, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
– sequence: 2
  givenname: Peter
  orcidid: 0000-0002-8322-7467
  surname: Rongen
  fullname: Rongen, Peter
  email: pmjrongen@gmail.com
  organization: Philips Medical Systems Nederland B.V., Best, PC, The Netherlands
– sequence: 3
  givenname: Javier Olivan
  surname: Bescos
  fullname: Bescos, Javier Olivan
  email: javier.olivan.bescos@philips.com
  organization: Philips Medical Systems Nederland B.V., Best, PC, The Netherlands
– sequence: 4
  givenname: Peter H. N.
  orcidid: 0000-0002-7639-7716
  surname: de With
  fullname: de With, Peter H. N.
  organization: Electrical Engineering Department, VCA Laboratory, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
– sequence: 5
  givenname: Fons
  orcidid: 0000-0002-3593-2356
  surname: van der Sommen
  fullname: van der Sommen, Fons
  email: fvdsommen@tue.nl
  organization: Electrical Engineering Department, VCA Laboratory, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35201984$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLxDAQxoMouj7ugiAFL1665t3kKOsTVgVd0VvItlONdlNNWsX_3iy7evDgYZg5_L6Zj_k20apvPSC0S_CQEKyPJleXQ4opHTIiOCZkBQ2IECqngj-uogGmhcoxlnQDbcb4gjHhAut1tMEExUQrPkAn162LkN1C1Zeda33mfDaaZPfR-adsDDZ4qLIH-wENdPlZsDPI7p6D86_2CbJr6D7b8Bq30Vptmwg7y76F7s9OJ6OLfHxzfjk6HuclU7rLp5BukikvNIc0kxoXlAoNqQoAKaqyopB8aWAl01aRmrLaKi6VtlaqKdtCh4u9b6F97yF2ZuZiCU1jPbR9NFQypniBhUjowR_0pe2DT-4SpQshJaE8UftLqp_OoDJvwc1s-DI__0mAXABlaGMMUJvSdXb-qC5Y1xiCzTwIk4Iw8yDMMogkxH-EP7v_kewtJA4AfnFdUIILyb4BF-yQBQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TGRS_2022_3214569
crossref_primary_10_13005_bpj_3087
crossref_primary_10_1109_TIM_2023_3346500
crossref_primary_10_3390_s24216849
crossref_primary_10_1002_acm2_14270
crossref_primary_10_1007_s00530_024_01575_7
crossref_primary_10_1016_j_apradiso_2024_111374
crossref_primary_10_1016_j_bspc_2023_104863
crossref_primary_10_1109_TMI_2024_3405024
Cites_doi 10.1109/TMI.2017.2715284
10.1201/9780429299476
10.1109/TCI.2021.3129369
10.1016/b978-0-12-409545-8.00003-0
10.1109/CVPRW.2018.00121
10.1016/j.sigpro.2009.07.009
10.5555/3104322.3104374
10.1109/TMI.2018.2823756
10.1109/CVPR.2013.355
10.1109/ACSSC.2017.8335685
10.1137/17m1141771
10.2307/2337118
10.1109/MLSP.2017.8168176
10.1007/s10278-013-9622-7
10.1109/83.862633
10.1007/978-3-030-32226-7_4
10.1109/TIP.2017.2713099
10.1109/TMI.2020.2998480
10.1109/TIP.2007.906002
10.1016/b978-0-12-405906-1.00006-4
10.1109/TMI.2021.3054167
10.1109/CVPR.2016.308
10.1016/j.image.2017.11.001
10.5005/jp/books/10216
10.1109/ICCV.2019.00913
10.1109/ICIP.2003.1247137
10.1002/mp.14594
10.1109/TPAMI.2020.3012955
10.1109/MLSP49062.2020.9231535
10.1109/TIP.2017.2662206
10.1109/TIP.2003.819861
10.1016/j.jksuci.2016.12.002
10.1109/TCI.2020.3013796
10.1109/TIP.2007.891064
10.1007/978-3-319-24574-4_28
10.1002/cpa.20042
10.1109/TIP.2019.2937734
10.1109/TMI.2018.2823768
10.1016/j.patcog.2004.05.009
10.1109/IVMSPW.2018.8448694
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2022.3154011
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2066
ExternalDocumentID 35201984
10_1109_TMI_2022_3154011
9721076
Genre orig-research
Journal Article
GrantInformation_xml – fundername: European Union through the Horizon 2020
  grantid: 780026 “NEXIS.”
  funderid: 10.13039/100010661
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c389t-be1981b4794ebe11f072259e2597ee65dcd2e0199e3c39a81f23fa84689aa68b3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Jul 10 20:13:22 EDT 2025
Mon Jun 30 02:07:57 EDT 2025
Wed Feb 19 02:26:40 EST 2025
Thu Apr 24 23:02:25 EDT 2025
Tue Jul 01 03:16:05 EDT 2025
Wed Aug 27 01:57:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-be1981b4794ebe11f072259e2597ee65dcd2e0199e3c39a81f23fa84689aa68b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3593-2356
0000-0002-8322-7467
0000-0002-7639-7716
0000-0002-4469-8362
OpenAccessLink https://research.tue.nl/en/publications/b694b8f0-3b2d-4e7c-8071-789258d25591
PMID 35201984
PQID 2697566124
PQPubID 85460
PageCount 19
ParticipantIDs crossref_primary_10_1109_TMI_2022_3154011
crossref_citationtrail_10_1109_TMI_2022_3154011
pubmed_primary_35201984
proquest_journals_2697566124
ieee_primary_9721076
proquest_miscellaneous_2633847055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
Ye (ref20)
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
Toga (ref41) 2002; 1
ref2
ref1
ref17
ref19
ref18
Paszke (ref38) 2019
Radhiana (ref39) 2013; 68
ref24
ref46
ref23
ref45
ref26
ref25
ref42
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
Mahapatra (ref16) 2017
ref7
ref9
ref4
ref3
ref6
ref5
Lyons (ref33) 2004
ref40
References_xml – ident: ref2
  doi: 10.1109/TMI.2017.2715284
– ident: ref40
  doi: 10.1201/9780429299476
– volume: 1
  volume-title: Brain Mapping: The Methods
  year: 2002
  ident: ref41
– ident: ref37
  doi: 10.1109/TCI.2021.3129369
– ident: ref31
  doi: 10.1016/b978-0-12-409545-8.00003-0
– ident: ref46
  doi: 10.1109/CVPRW.2018.00121
– ident: ref27
  doi: 10.1016/j.sigpro.2009.07.009
– start-page: 8024
  volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: ref38
  article-title: Pytorch: An imperative style, high-performance deep learning library
– ident: ref21
  doi: 10.5555/3104322.3104374
– ident: ref9
  doi: 10.1109/TMI.2018.2823756
– volume-title: Understanding Digital Signal Processing, 3/E
  year: 2004
  ident: ref33
– ident: ref34
  doi: 10.1109/CVPR.2013.355
– ident: ref5
  doi: 10.1109/ACSSC.2017.8335685
– ident: ref7
  doi: 10.1137/17m1141771
– ident: ref22
  doi: 10.2307/2337118
– year: 2017
  ident: ref16
  article-title: Deep sparse coding using optimized linear expansion of thresholds
  publication-title: arXiv:1705.07290
– ident: ref10
  doi: 10.1109/MLSP.2017.8168176
– ident: ref29
  doi: 10.1007/s10278-013-9622-7
– ident: ref23
  doi: 10.1109/83.862633
– ident: ref12
  doi: 10.1007/978-3-030-32226-7_4
– ident: ref3
  doi: 10.1109/TIP.2017.2713099
– ident: ref13
  doi: 10.1109/TMI.2020.2998480
– ident: ref18
  doi: 10.1109/TIP.2007.906002
– ident: ref32
  doi: 10.1016/b978-0-12-405906-1.00006-4
– ident: ref15
  doi: 10.1109/TMI.2021.3054167
– ident: ref35
  doi: 10.1109/CVPR.2016.308
– ident: ref43
  doi: 10.1016/j.image.2017.11.001
– ident: ref42
  doi: 10.5005/jp/books/10216
– ident: ref45
  doi: 10.1109/ICCV.2019.00913
– ident: ref25
  doi: 10.1109/ICIP.2003.1247137
– ident: ref28
  doi: 10.1002/mp.14594
– ident: ref14
  doi: 10.1109/TPAMI.2020.3012955
– ident: ref8
  doi: 10.1109/MLSP49062.2020.9231535
– start-page: 7064
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref20
  article-title: Understanding geometry of encoder-decoder cnns
– ident: ref30
  doi: 10.1109/TIP.2017.2662206
– ident: ref44
  doi: 10.1109/TIP.2003.819861
– ident: ref1
  doi: 10.1016/j.jksuci.2016.12.002
– ident: ref19
  doi: 10.1109/TCI.2020.3013796
– ident: ref36
  doi: 10.1109/TIP.2007.891064
– ident: ref6
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref17
  doi: 10.1002/cpa.20042
– ident: ref26
  doi: 10.1109/TIP.2019.2937734
– ident: ref4
  doi: 10.1109/TMI.2018.2823768
– volume: 68
  start-page: 93
  issue: 1
  year: 2013
  ident: ref39
  article-title: Noncontrast computed tomography in acute ischaemic stroke: A pictorial review
  publication-title: Med. J. Malaysia
– ident: ref24
  doi: 10.1016/j.patcog.2004.05.009
– ident: ref11
  doi: 10.1109/IVMSPW.2018.8448694
SSID ssj0014509
Score 2.4537497
Snippet Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2048
SubjectTerms Computed tomography
Convolution
Convolutional neural networks
Discrete wavelet transforms
Encoding
Encoding-Decoding
Noise reduction
Redundancy
Shrinkage
Signal processing
Thresholding (Imaging)
wavelet frames
Title Noise Reduction in CT Using Learned Wavelet-Frame Shrinkage Networks
URI https://ieeexplore.ieee.org/document/9721076
https://www.ncbi.nlm.nih.gov/pubmed/35201984
https://www.proquest.com/docview/2697566124
https://www.proquest.com/docview/2633847055
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BBwQHljdh2ZWRuCCRNnHdND4iditAag9QBLfIdiYCgVK0TS_765nJS4AAcYgUKY7jzIzjbzLjbwCOnMMQM5v6Wkr0lSZdaCOtH6S0WGsnZdrn3cijcXR-oy7v-ncLcNLuhUHEMvkMO3xaxvLTqZvzr7IuM82Q370Ii-S4VXu12oiB6lfpHJIZY4NINiHJQHcnowtyBKUk_5TwScjFYQh2ELaJ1ZvVqCyv8jnSLFec4Q8YNWOtEk0eO_PCdtz_dzSO332ZdViroac4rWxlAxYw34TVV4SEm7A8qkPtW_BnPH2YobhialdWnnjIxdlElCkGomRlxVTcGq5bUfhDTvES1_fUyyN9oMS4Si6fbcPN8O_k7NyvSy74jpBL4VskqYSWaedJu2GYBQOa8BrpGCBG_dSlEklyGnuup00cZrKXGcIwsTYmim1vB5byaY57IDB2HOJMrTJO2SyIFcpMKecya8gcjAfdRvSJq_nIuSzGU1L6JYFOSG8J6y2p9ebBcXvHc8XF8UXbLRZ5266WtgcHjXaTerLOEhnpAaFaQjoeHLaXaZpx7MTkOJ1zG_LlFVMPebBbWUXbd2NM-x8_8yes8MiqrMEDWCr-zfEXIZnC_i5N-AVzAes_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xJrHtYWPAtgzGjMQL0tImrpvGjwhWlY30YRTBW2Q7F4GY0mlNX_jrucsvMQRoD5EixXGcu3P8Xe78HcC-cxhibjNfS4m-0qQLbaT1g4wWa-2kzIa8GzmZRpNz9eNyeLkC37q9MIhYJZ9hj0-rWH42d0v-VdZnphnyu1_AS1r3la53a3UxAzWsEzokc8YGkWyDkoHuz5ITcgWlJA-VEErI5WEIeBC6idU_61FVYOVprFmtOeN3kLSjrVNNbnrL0vbc7QMix_99nXV424BPcVhby3tYwWID3tyjJNyAtaQJtm_C8XR-vUDxi8ldWX3iuhBHM1ElGYiKlxUzcWG4ckXpjznJS5xdUS839IkS0zq9fLEF5-Pvs6OJ3xRd8B1hl9K3SFIJLRPPk37DMA9GNOU10jFCjIaZyySS5DQO3ECbOMzlIDeEYmJtTBTbwQdYLeYFfgKBseMgZ2aVccrmQaxQ5ko5l1tDBmE86LeiT13DSM6FMX6nlWcS6JT0lrLe0kZvHhx0d_yp2TieabvJIu_aNdL2YKfVbtpM10UqIz0iXEtYx4O97jJNNI6emALnS25D3rxi8iEPPtZW0fXdGtPnx5_5FV5NZslpenoy_bkNr3mUdQ7hDqyWf5f4hXBNaXcrc74D9vXujw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+in+CT+Using+Learned+Wavelet-Frame+Shrinkage+Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zavala-Mondragon%2C+Luis+A.&rft.au=Rongen%2C+Peter&rft.au=Bescos%2C+Javier+Olivan&rft.au=de+With%2C+Peter+H.+N.&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=41&rft.issue=8&rft.spage=2048&rft.epage=2066&rft_id=info:doi/10.1109%2FTMI.2022.3154011&rft_id=info%3Apmid%2F35201984&rft.externalDocID=9721076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon