GO-functionalized MXene towards superior anti-corrosion coating
[Display omitted] •A novel GO-Ti3C2Tx nanohybrid was synthesized.•GO-Ti3C2Tx strongly improved adhesion strength of epoxy coating.•GO-Ti3C2Tx endowed epoxy coating with active anti-corrosion property. MXene flakes shows the great potential in corrosion protection area owing to their lamellar structu...
Saved in:
Published in | Journal of colloid and interface science Vol. 642; pp. 595 - 603 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A novel GO-Ti3C2Tx nanohybrid was synthesized.•GO-Ti3C2Tx strongly improved adhesion strength of epoxy coating.•GO-Ti3C2Tx endowed epoxy coating with active anti-corrosion property.
MXene flakes shows the great potential in corrosion protection area owing to their lamellar structure and remarkable mechanical features. However, these flakes are highly susceptible to oxidation, which results in their structure degradation and restrict their application in anti-corrosion field. Herein, graphene oxide (GO) was used to functionalize Ti3C2Tx MXene through TiOC bonding to fabricate GO-Ti3C2Tx nanosheets, which proved by Raman, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). GO-Ti3C2Tx nanosheet inclusion into the epoxy coating and their corrosion performance in 3.5 wt.% NaCl solution with 5 MPa pressure was evaluated through electrochemical techniques including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) along with salt spray. Results indicated that GO-Ti3C2Tx/EP presented superior anti-corrosion capability, the impedance modulus at low frequency (|Z|0.01 Hz) was above 108 Ω cm2 after 8 days’ immersion in 5 MPa environment, which was 2 orders of magnitude higher than that of the pure epoxy coating. Scanning electron microscope (SEM) and salt spray images demonstrated that the epoxy coating loaded with GO-Ti3C2Tx nanosheet could provide robust corrosion protection for Q235 steel via the physical barrier effect. |
---|---|
AbstractList | MXene flakes shows the great potential in corrosion protection area owing to their lamellar structure and remarkable mechanical features. However, these flakes are highly susceptible to oxidation, which results in their structure degradation and restrict their application in anti-corrosion field. Herein, graphene oxide (GO) was used to functionalize Ti3C2Tx MXene through TiOC bonding to fabricate GO-Ti3C2Tx nanosheets, which proved by Raman, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). GO-Ti3C2Tx nanosheet inclusion into the epoxy coating and their corrosion performance in 3.5 wt.% NaCl solution with 5 MPa pressure was evaluated through electrochemical techniques including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) along with salt spray. Results indicated that GO-Ti3C2Tx/EP presented superior anti-corrosion capability, the impedance modulus at low frequency (|Z|0.01 Hz) was above 108 Ω cm2 after 8 days' immersion in 5 MPa environment, which was 2 orders of magnitude higher than that of the pure epoxy coating. Scanning electron microscope (SEM) and salt spray images demonstrated that the epoxy coating loaded with GO-Ti3C2Tx nanosheet could provide robust corrosion protection for Q235 steel via the physical barrier effect.MXene flakes shows the great potential in corrosion protection area owing to their lamellar structure and remarkable mechanical features. However, these flakes are highly susceptible to oxidation, which results in their structure degradation and restrict their application in anti-corrosion field. Herein, graphene oxide (GO) was used to functionalize Ti3C2Tx MXene through TiOC bonding to fabricate GO-Ti3C2Tx nanosheets, which proved by Raman, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). GO-Ti3C2Tx nanosheet inclusion into the epoxy coating and their corrosion performance in 3.5 wt.% NaCl solution with 5 MPa pressure was evaluated through electrochemical techniques including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) along with salt spray. Results indicated that GO-Ti3C2Tx/EP presented superior anti-corrosion capability, the impedance modulus at low frequency (|Z|0.01 Hz) was above 108 Ω cm2 after 8 days' immersion in 5 MPa environment, which was 2 orders of magnitude higher than that of the pure epoxy coating. Scanning electron microscope (SEM) and salt spray images demonstrated that the epoxy coating loaded with GO-Ti3C2Tx nanosheet could provide robust corrosion protection for Q235 steel via the physical barrier effect. MXene flakes shows the great potential in corrosion protection area owing to their lamellar structure and remarkable mechanical features. However, these flakes are highly susceptible to oxidation, which results in their structure degradation and restrict their application in anti-corrosion field. Herein, graphene oxide (GO) was used to functionalize Ti₃C₂Tₓ MXene through TiOC bonding to fabricate GO-Ti₃C₂Tₓ nanosheets, which proved by Raman, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). GO-Ti₃C₂Tₓ nanosheet inclusion into the epoxy coating and their corrosion performance in 3.5 wt.% NaCl solution with 5 MPa pressure was evaluated through electrochemical techniques including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) along with salt spray. Results indicated that GO-Ti₃C₂Tₓ/EP presented superior anti-corrosion capability, the impedance modulus at low frequency (|Z|₀.₀₁ Hz) was above 10⁸ Ω cm² after 8 days’ immersion in 5 MPa environment, which was 2 orders of magnitude higher than that of the pure epoxy coating. Scanning electron microscope (SEM) and salt spray images demonstrated that the epoxy coating loaded with GO-Ti₃C₂Tₓ nanosheet could provide robust corrosion protection for Q235 steel via the physical barrier effect. MXene flakes shows the great potential in corrosion protection area owing to their lamellar structure and remarkable mechanical features. However, these flakes are highly susceptible to oxidation, which results in their structure degradation and restrict their application in anti-corrosion field. Herein, graphene oxide (GO) was used to functionalize Ti C T MXene through TiOC bonding to fabricate GO-Ti C T nanosheets, which proved by Raman, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). GO-Ti C T nanosheet inclusion into the epoxy coating and their corrosion performance in 3.5 wt.% NaCl solution with 5 MPa pressure was evaluated through electrochemical techniques including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) along with salt spray. Results indicated that GO-Ti C T /EP presented superior anti-corrosion capability, the impedance modulus at low frequency (|Z| ) was above 10 Ω cm after 8 days' immersion in 5 MPa environment, which was 2 orders of magnitude higher than that of the pure epoxy coating. Scanning electron microscope (SEM) and salt spray images demonstrated that the epoxy coating loaded with GO-Ti C T nanosheet could provide robust corrosion protection for Q235 steel via the physical barrier effect. [Display omitted] •A novel GO-Ti3C2Tx nanohybrid was synthesized.•GO-Ti3C2Tx strongly improved adhesion strength of epoxy coating.•GO-Ti3C2Tx endowed epoxy coating with active anti-corrosion property. MXene flakes shows the great potential in corrosion protection area owing to their lamellar structure and remarkable mechanical features. However, these flakes are highly susceptible to oxidation, which results in their structure degradation and restrict their application in anti-corrosion field. Herein, graphene oxide (GO) was used to functionalize Ti3C2Tx MXene through TiOC bonding to fabricate GO-Ti3C2Tx nanosheets, which proved by Raman, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). GO-Ti3C2Tx nanosheet inclusion into the epoxy coating and their corrosion performance in 3.5 wt.% NaCl solution with 5 MPa pressure was evaluated through electrochemical techniques including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) along with salt spray. Results indicated that GO-Ti3C2Tx/EP presented superior anti-corrosion capability, the impedance modulus at low frequency (|Z|0.01 Hz) was above 108 Ω cm2 after 8 days’ immersion in 5 MPa environment, which was 2 orders of magnitude higher than that of the pure epoxy coating. Scanning electron microscope (SEM) and salt spray images demonstrated that the epoxy coating loaded with GO-Ti3C2Tx nanosheet could provide robust corrosion protection for Q235 steel via the physical barrier effect. |
Author | Xu, Qian Qiang, Yujie Ran, Boyuan Li, Minjiao Peng, Jian |
Author_xml | – sequence: 1 givenname: Yujie surname: Qiang fullname: Qiang, Yujie email: qiangyujie@ustb.edu.cn organization: National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China – sequence: 2 givenname: Boyuan surname: Ran fullname: Ran, Boyuan organization: National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China – sequence: 3 givenname: Minjiao surname: Li fullname: Li, Minjiao organization: Innovation Center for Chenguang High Performance Fluorine Material, Sichuan University of Science and Engineering, Zigong 643000, China – sequence: 4 givenname: Qian surname: Xu fullname: Xu, Qian email: qianxu@ustb.edu.cn organization: School of Energy and Environmental Engineering, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100083, China – sequence: 5 givenname: Jian surname: Peng fullname: Peng, Jian email: jianpeng@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37028166$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LJDEQhoMoOn78gT0sfdxLt5Vk0p0GQRZx3QXFi4K3kEmqJUNPMiZpZf31Zhi9eNBTXZ6ninrfQ7Lrg0dCflBoKND2dNksjUsNA8Yb4A1tux0yo9CLuqPAd8kMgNG67_rugBymtASgVIh-nxzwDpikbTsj51e39TB5k13wenSvaKubB_RY5fCio01VmtYYXYiV9tnVJsQYUmErE3R2_vGY7A16THjyPo_I_Z_Lu4u_9fXt1b-L39e14bLP9cJYaMtFDWKQwMzAxTAI0THUYNAiSmEXLdeMUc7maFBbsGZYMCbRaDvnR-TXdu86hqcJU1YrlwyOo_YYpqSY5HMm-FzI79Gulx1IIXhBf76j02KFVq2jW-n4X33kUwC5BUx5O0UclHFZb8LKUbtRUVCbKtRSbapQmyoUcFWqKCr7pH5s_1I620pYsnx2GFUyDn2JyEU0WdngvtLfAPDYor4 |
CitedBy_id | crossref_primary_10_1016_j_porgcoat_2024_108595 crossref_primary_10_1016_j_surfin_2024_104057 crossref_primary_10_1016_j_jwpe_2025_107228 crossref_primary_10_1016_j_compscitech_2024_110711 crossref_primary_10_1016_j_corsci_2024_112654 crossref_primary_10_1016_j_porgcoat_2023_108152 crossref_primary_10_1016_j_carbon_2024_119962 crossref_primary_10_1002_sia_7245 crossref_primary_10_1016_j_inoche_2023_111120 crossref_primary_10_1007_s11998_023_00855_7 crossref_primary_10_1016_j_porgcoat_2024_108875 crossref_primary_10_1016_j_jmst_2024_10_027 crossref_primary_10_1016_j_ceramint_2023_10_049 crossref_primary_10_1016_j_porgcoat_2024_108877 crossref_primary_10_1016_j_porgcoat_2024_108436 crossref_primary_10_1016_j_porgcoat_2025_109128 crossref_primary_10_3390_ma18030653 crossref_primary_10_1021_acsami_4c13774 crossref_primary_10_1016_j_colsurfa_2024_134785 crossref_primary_10_1515_corrrev_2024_0009 crossref_primary_10_1016_j_surfin_2025_106154 crossref_primary_10_1007_s11998_024_00952_1 crossref_primary_10_1002_cjce_25310 crossref_primary_10_1016_j_jcis_2024_11_063 crossref_primary_10_1016_j_porgcoat_2023_108163 crossref_primary_10_1016_j_cej_2024_156070 crossref_primary_10_1016_j_porgcoat_2024_108746 crossref_primary_10_1016_j_surfcoat_2023_130281 crossref_primary_10_1016_j_porgcoat_2023_108004 crossref_primary_10_1021_acsami_4c23060 crossref_primary_10_1038_s41529_023_00415_9 crossref_primary_10_1016_j_jmrt_2024_10_189 crossref_primary_10_1016_j_arabjc_2023_105535 crossref_primary_10_1016_j_porgcoat_2024_108948 crossref_primary_10_3390_polym17070847 crossref_primary_10_1016_j_jiec_2024_01_015 crossref_primary_10_1016_j_diamond_2024_111696 crossref_primary_10_1016_j_porgcoat_2025_109225 crossref_primary_10_1016_j_corsci_2024_112395 crossref_primary_10_1016_j_mtcomm_2024_110361 crossref_primary_10_1016_j_jtice_2023_104987 crossref_primary_10_1016_j_corsci_2025_112874 crossref_primary_10_1016_j_porgcoat_2023_108173 crossref_primary_10_1108_ACMM_06_2023_2835 crossref_primary_10_1016_j_jiec_2025_02_016 crossref_primary_10_1021_acs_langmuir_4c01781 crossref_primary_10_1016_j_porgcoat_2023_108139 crossref_primary_10_1002_adem_202402332 crossref_primary_10_1002_app_54959 crossref_primary_10_1016_j_apsusc_2024_161051 crossref_primary_10_1016_j_cis_2023_103055 crossref_primary_10_1016_j_colsurfa_2023_132707 crossref_primary_10_1016_j_diamond_2024_110792 crossref_primary_10_1016_j_corsci_2024_112144 crossref_primary_10_1016_j_porgcoat_2024_108245 crossref_primary_10_1016_j_diamond_2023_110696 crossref_primary_10_1021_acsanm_4c03497 crossref_primary_10_1016_j_est_2025_115341 crossref_primary_10_1016_j_apsusc_2024_161575 crossref_primary_10_1016_j_compositesb_2023_111168 crossref_primary_10_1016_j_ccr_2024_216089 crossref_primary_10_1016_j_compositesa_2024_108152 crossref_primary_10_1016_j_porgcoat_2023_107933 crossref_primary_10_1016_j_porgcoat_2024_108606 crossref_primary_10_1016_j_cej_2023_147859 crossref_primary_10_1021_acs_langmuir_4c01633 crossref_primary_10_1007_s44251_024_00062_5 crossref_primary_10_1016_j_ijoes_2023_100250 crossref_primary_10_1002_adfm_202409675 crossref_primary_10_1016_j_porgcoat_2024_108926 crossref_primary_10_1016_j_cej_2024_158559 crossref_primary_10_1016_j_colsurfa_2024_133687 crossref_primary_10_1016_j_molliq_2024_126180 crossref_primary_10_1016_j_reactfunctpolym_2024_105904 crossref_primary_10_1021_acsanm_4c01347 crossref_primary_10_1016_j_cis_2024_103243 crossref_primary_10_1021_acsami_4c20606 |
Cites_doi | 10.1016/j.porgcoat.2022.107209 10.1016/j.jhazmat.2018.10.040 10.1016/j.jiec.2022.10.030 10.1016/j.corsci.2019.108120 10.1016/j.apsusc.2019.06.190 10.1016/j.jmst.2020.05.002 10.1016/j.cej.2021.132838 10.1016/j.jmrt.2022.08.156 10.1016/j.porgcoat.2019.05.023 10.1016/j.cej.2020.125336 10.1016/j.jcis.2022.08.070 10.1016/j.jmst.2021.11.026 10.1016/j.molliq.2022.118638 10.1016/j.jcis.2021.10.024 10.1039/C4CC01646G 10.1016/j.ceramint.2021.09.277 10.1016/j.porgcoat.2022.107154 10.1038/s41467-020-15991-6 10.1016/j.cherd.2021.01.019 10.1016/j.porgcoat.2022.106971 10.1016/j.jmst.2020.04.005 10.1016/j.porgcoat.2022.107047 10.1016/j.jiec.2022.09.021 10.1016/j.surfcoat.2022.128612 10.1016/j.molliq.2023.121488 10.1016/j.memsci.2022.120443 10.1016/j.porgcoat.2019.06.013 10.1016/j.porgcoat.2022.106765 10.1360/SST-2021-0449 10.1021/cm5043099 10.1016/j.jallcom.2022.165933 10.1016/j.cej.2020.126863 10.1016/j.corsci.2020.109049 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.03.167 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 603 |
ExternalDocumentID | 37028166 10_1016_j_jcis_2023_03_167 S0021979723005325 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SSH VH1 WUQ ZGI ZXP NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-bcd06816a05f802cf35ff5572ea0cedee85db63a221324ecead0dcfb228ecad43 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 15:08:56 EDT 2025 Mon Jul 21 09:18:18 EDT 2025 Thu Apr 03 07:03:24 EDT 2025 Tue Jul 01 04:19:03 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Fri Feb 23 02:33:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GO Anti-corrosion Epoxy coating Pressure Ti3C2Tx TiCT(x) |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-bcd06816a05f802cf35ff5572ea0cedee85db63a221324ecead0dcfb228ecad43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37028166 |
PQID | 2798708553 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2834253458 proquest_miscellaneous_2798708553 pubmed_primary_37028166 crossref_citationtrail_10_1016_j_jcis_2023_03_167 crossref_primary_10_1016_j_jcis_2023_03_167 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_03_167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-15 |
PublicationDateYYYYMMDD | 2023-07-15 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cao, Wang, Wu, Xu, Gerard, Jiang, Zeng, Dai (b0085) 2022; 173 Chen, Yu, Yang, Liao, Peng, Guo, Zhu (b0080) 2022; 172 Yan, Cai, Li, Fan, Zhu (b0125) 2020; 54 Tang, Yan, Zhang, Lin, Wang, Zhang, Lei, Zuo (b0150) 2022; 53 Yan, Li, Li, Fan, Zhu (b0120) 2019; 135 Zhou, Pourhashem, Wang, Sun, Ji, Zhai, Duan, Hou (b0115) 2022; 116 Naguib, Mashtalir, Lukatskaya, Dyatkin, Zhang, Presser, Gogotsi, Barsoum (b0145) 2014; 50 Sun, Wang, Wu, Wang, Yang, Pan, Liu (b0175) 2015; 27 Zhang, Qiang, Ren, Cao, Cui, Zong, Chen, Xiang (b0015) 2022; 170 Qiang, Zhi, Guo, Fu, Xiang, Jin (b0005) 2022; 351 Zhang, Li, Liu, Zhang, Cao, Kong, Wang, Chen (b0105) 2022; 608 Xue, Feng, Huo, Song, Yu, Liu, Wang (b0110) 2020; 397 Mei, Xu, Jiang, Tan (b0090) 2019; 134 Ren, Cui, Chen, Mei, Qiang (b0020) 2022; 628 Wang, Li, Li, Zhang, Lin, Xu, Zhu, Wang, Gong, Wang (b0060) 2020; 176 Guan, Lu, Yao, Wang, Liu, Xia, Zhao (b0165) 2022; 48 Zhang, Kong, Li, Le, Che, Zhang, Lai, Liao (b0070) 2022; 20 Du, Cai, Guo, Zhao, Lin, Huang, Tang, Chen, Fang (b0170) 2022; 920 Qiang, Li, Lan (b0040) 2020; 52 Zhou, Wu, Wang, Tomsia, Li, Saiz, Fang, Baughman, Jiang, Cheng (b0140) 2020; 11 Tabish, Zhao, Wang, Anjum, Qiang, Yang, Mushtaq, Yasin (b0095) 2022; 165 Bai, Ma, Meng, Li (b0055) 2021; 161 M. G.N, H.K. M, Performance studies of GO/PF127 incorporated Polyetherimide Ultrafiltration membranes for the rejection of oil from oil wastewater, Chem. Eng. Res. Des. 168 (2021) 214-226. El-Shamy, Deyab (b0030) 2023; 376 Mao, Liu, Chen, Gao, Qin, Zhou, Jin (b0160) 2022; 652 Cao, Huang, Huang, Liu, Cheng (b0050) 2019; 159 Ye, Zhang, Liu, Liu, Liu, Pu, Chen, Zhao, Li (b0100) 2019; 364 Ding, Zhao, Yu (b0135) 2022; 430 Duan, Lin, Dou, Yang, Zhang, Emori, Gao, Fang (b0065) 2022; 171 Qiang, Zhang, Wang (b0035) 2019; 492 Joseph, Gautham, Akshay, Sajith (b0075) 2022; 443 Wang, Qiang, Zhi, Ran, Zhang (b0010) 2023; 117 Cai, Feng, Yan, Li, Song, Li, Li, Fan, Zhu (b0130) 2022; 116 Qiang, Guo, Li, Lan (b0045) 2021; 406 Sun (10.1016/j.jcis.2023.03.167_b0175) 2015; 27 Qiang (10.1016/j.jcis.2023.03.167_b0035) 2019; 492 Qiang (10.1016/j.jcis.2023.03.167_b0040) 2020; 52 Qiang (10.1016/j.jcis.2023.03.167_b0005) 2022; 351 10.1016/j.jcis.2023.03.167_b0155 Mao (10.1016/j.jcis.2023.03.167_b0160) 2022; 652 Wang (10.1016/j.jcis.2023.03.167_b0010) 2023; 117 Ding (10.1016/j.jcis.2023.03.167_b0135) 2022; 430 Mei (10.1016/j.jcis.2023.03.167_b0090) 2019; 134 Cao (10.1016/j.jcis.2023.03.167_b0085) 2022; 173 El-Shamy (10.1016/j.jcis.2023.03.167_b0030) 2023; 376 Chen (10.1016/j.jcis.2023.03.167_b0080) 2022; 172 Zhang (10.1016/j.jcis.2023.03.167_b0105) 2022; 608 Wang (10.1016/j.jcis.2023.03.167_b0060) 2020; 176 Cai (10.1016/j.jcis.2023.03.167_b0130) 2022; 116 Joseph (10.1016/j.jcis.2023.03.167_b0075) 2022; 443 Duan (10.1016/j.jcis.2023.03.167_b0065) 2022; 171 Ren (10.1016/j.jcis.2023.03.167_b0020) 2022; 628 Xue (10.1016/j.jcis.2023.03.167_b0110) 2020; 397 Qiang (10.1016/j.jcis.2023.03.167_b0045) 2021; 406 Cao (10.1016/j.jcis.2023.03.167_b0050) 2019; 159 Bai (10.1016/j.jcis.2023.03.167_b0055) 2021; 161 Zhou (10.1016/j.jcis.2023.03.167_b0140) 2020; 11 Zhou (10.1016/j.jcis.2023.03.167_b0115) 2022; 116 Zhang (10.1016/j.jcis.2023.03.167_b0015) 2022; 170 Yan (10.1016/j.jcis.2023.03.167_b0120) 2019; 135 Tang (10.1016/j.jcis.2023.03.167_b0150) 2022; 53 Du (10.1016/j.jcis.2023.03.167_b0170) 2022; 920 Yan (10.1016/j.jcis.2023.03.167_b0125) 2020; 54 Naguib (10.1016/j.jcis.2023.03.167_b0145) 2014; 50 Zhang (10.1016/j.jcis.2023.03.167_b0070) 2022; 20 Ye (10.1016/j.jcis.2023.03.167_b0100) 2019; 364 Guan (10.1016/j.jcis.2023.03.167_b0165) 2022; 48 Tabish (10.1016/j.jcis.2023.03.167_b0095) 2022; 165 |
References_xml | – volume: 50 start-page: 7420 year: 2014 end-page: 7423 ident: b0145 article-title: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes publication-title: Chem. Commun. – volume: 173 start-page: 107209 year: 2022 ident: b0085 article-title: A novel self-healing and removable hexagonal boron nitride/epoxy coating with excellent anti-corrosive property based on Diels-Alder reaction publication-title: Prog. Org. Coat. – volume: 27 start-page: 2367 year: 2015 end-page: 2373 ident: b0175 article-title: Inhibiting the corrosion-promotion activity of graphene publication-title: Chem. Mater. – volume: 159 start-page: 108120 year: 2019 ident: b0050 article-title: Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection publication-title: Corros. Sci. – volume: 20 start-page: 4148 year: 2022 end-page: 4160 ident: b0070 article-title: Graphene-reinforced epoxy powder coating to achieve high performance wear and corrosion resistance publication-title: J. Mater. Res. Technol. – volume: 364 start-page: 244 year: 2019 end-page: 255 ident: b0100 article-title: Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets publication-title: J. Hazard. Mater. – volume: 172 start-page: 107154 year: 2022 ident: b0080 article-title: A hydrophobic smart coating based on hexagonal boron nitride/metal-organic frameworks for high-performance corrosion protection publication-title: Prog. Org. Coat. – volume: 608 start-page: 1025 year: 2022 end-page: 1039 ident: b0105 article-title: Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings publication-title: J. Colloid Interface Sci. – volume: 116 start-page: 310 year: 2022 end-page: 320 ident: b0115 article-title: Mxene structure: A key parameter in corrosion barrier performance of organic coatings publication-title: J. Ind. Eng. Chem. – volume: 443 start-page: 128612 year: 2022 ident: b0075 article-title: 2D MoS publication-title: Surf. Coat. Technol. – volume: 170 start-page: 106971 year: 2022 ident: b0015 article-title: Inhibitor loaded functional HNTs modified coatings towards corrosion protection in reinforced concrete environment publication-title: Prog. Org. Coat. – volume: 628 start-page: 384 year: 2022 end-page: 397 ident: b0020 article-title: Comparative study on corrosion inhibition of N doped and N, S codoped carbon dots for carbon steel in strong acidic solution publication-title: J Colloid Interface Sci. – volume: 54 start-page: 144 year: 2020 end-page: 159 ident: b0125 article-title: Amino-functionalized Ti publication-title: J. Mater. Sci. Technol. – volume: 52 start-page: 63 year: 2020 end-page: 71 ident: b0040 article-title: Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment publication-title: J. Mater. Sci. Technol. – volume: 48 start-page: 1926 year: 2022 end-page: 1935 ident: b0165 article-title: Microstructure and tribological behavior of Ti publication-title: Ceram. Int. – volume: 430 start-page: 132838 year: 2022 ident: b0135 article-title: Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings publication-title: Chem. Eng. J. – volume: 406 start-page: 126863 year: 2021 ident: b0045 article-title: Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium publication-title: Chem. Eng. J. – volume: 397 year: 2020 ident: b0110 article-title: Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide publication-title: Chem. Eng. J. – volume: 135 start-page: 156 year: 2019 end-page: 167 ident: b0120 article-title: Ti publication-title: Prog. Org. Coat. – volume: 652 start-page: 120443 year: 2022 ident: b0160 article-title: Polyamide@GO microporous membrane with enhanced permeability for the molecular sieving of nitrogen over VOC publication-title: J. Membr. Sci. – volume: 161 year: 2021 ident: b0055 article-title: The influence of graphene on the cathodic protection performance of zinc-rich epoxy coatings publication-title: Prog. Org. Coat. – volume: 376 year: 2023 ident: b0030 article-title: Eco-friendly biosynthesis of silver nanoparticles and their improvement of anti-corrosion performance in epoxy coatings publication-title: J. Mol. Liq. – volume: 116 start-page: 151 year: 2022 end-page: 160 ident: b0130 article-title: Hierarchical Ti publication-title: J. Mater. Sci. Technol. – reference: M. G.N, H.K. M, Performance studies of GO/PF127 incorporated Polyetherimide Ultrafiltration membranes for the rejection of oil from oil wastewater, Chem. Eng. Res. Des. 168 (2021) 214-226. – volume: 117 start-page: 422 year: 2023 end-page: 433 ident: b0010 article-title: Evaluating the synergistic effect of maple leaves extract and iodide ions on corrosion inhibition of Q235 steel in H publication-title: J. Ind. Eng. Chem. – volume: 492 start-page: 228 year: 2019 end-page: 238 ident: b0035 article-title: Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid publication-title: Appl. Surf. Sci. – volume: 53 start-page: 53 year: 2022 end-page: 70 ident: b0150 article-title: Importance of corrosion protection on steel materials in reducing carbon emissions: Carbon emission measurement throughout the life cycle of steel pipeline as an example publication-title: Sci. Sin. Technologica – volume: 165 start-page: 106765 year: 2022 ident: b0095 article-title: Improving the corrosion protection ability of epoxy coating using CaAl LDH intercalated with 2-mercaptobenzothiazole as a pigment on steel substrate publication-title: Prog. Org. Coat. – volume: 176 start-page: 109049 year: 2020 ident: b0060 article-title: Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments publication-title: Corros. Sci. – volume: 351 start-page: 118638 year: 2022 ident: b0005 article-title: Experimental and molecular modeling studies of multi-active tetrazole derivative bearing sulfur linker for protecting steel from corrosion publication-title: J. Mol. Liq. – volume: 11 start-page: 2077 year: 2020 ident: b0140 article-title: Super-tough MXene-functionalized graphene sheets publication-title: Nat. Commun. – volume: 920 start-page: 165933 year: 2022 ident: b0170 article-title: Synergistic photocatalytic of CO publication-title: J. Alloy. Compd. – volume: 134 start-page: 288 year: 2019 end-page: 296 ident: b0090 article-title: Enhancing corrosion resistance of epoxy coating on steel reinforcement by aminobenzoate intercalated layered double hydroxides publication-title: Prog. Org. Coat. – volume: 171 start-page: 107047 year: 2022 ident: b0065 article-title: Triton X-100 assisted composite of fluorinated graphene and ZIF-8 for epoxy coatings with high corrosion and wear resistance on carbon steel publication-title: Prog. Org. Coat. – volume: 173 start-page: 107209 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0085 article-title: A novel self-healing and removable hexagonal boron nitride/epoxy coating with excellent anti-corrosive property based on Diels-Alder reaction publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2022.107209 – volume: 364 start-page: 244 year: 2019 ident: 10.1016/j.jcis.2023.03.167_b0100 article-title: Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.040 – volume: 117 start-page: 422 year: 2023 ident: 10.1016/j.jcis.2023.03.167_b0010 article-title: Evaluating the synergistic effect of maple leaves extract and iodide ions on corrosion inhibition of Q235 steel in H2SO4 solution publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2022.10.030 – volume: 159 start-page: 108120 year: 2019 ident: 10.1016/j.jcis.2023.03.167_b0050 article-title: Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108120 – volume: 492 start-page: 228 year: 2019 ident: 10.1016/j.jcis.2023.03.167_b0035 article-title: Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.190 – volume: 54 start-page: 144 year: 2020 ident: 10.1016/j.jcis.2023.03.167_b0125 article-title: Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.05.002 – volume: 430 start-page: 132838 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0135 article-title: Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132838 – volume: 161 year: 2021 ident: 10.1016/j.jcis.2023.03.167_b0055 article-title: The influence of graphene on the cathodic protection performance of zinc-rich epoxy coatings publication-title: Prog. Org. Coat. – volume: 20 start-page: 4148 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0070 article-title: Graphene-reinforced epoxy powder coating to achieve high performance wear and corrosion resistance publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.08.156 – volume: 134 start-page: 288 year: 2019 ident: 10.1016/j.jcis.2023.03.167_b0090 article-title: Enhancing corrosion resistance of epoxy coating on steel reinforcement by aminobenzoate intercalated layered double hydroxides publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.05.023 – volume: 397 year: 2020 ident: 10.1016/j.jcis.2023.03.167_b0110 article-title: Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125336 – volume: 628 start-page: 384 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0020 article-title: Comparative study on corrosion inhibition of N doped and N, S codoped carbon dots for carbon steel in strong acidic solution publication-title: J Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.070 – volume: 116 start-page: 151 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0130 article-title: Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.11.026 – volume: 351 start-page: 118638 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0005 article-title: Experimental and molecular modeling studies of multi-active tetrazole derivative bearing sulfur linker for protecting steel from corrosion publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.118638 – volume: 608 start-page: 1025 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0105 article-title: Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.024 – volume: 50 start-page: 7420 issue: 56 year: 2014 ident: 10.1016/j.jcis.2023.03.167_b0145 article-title: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes publication-title: Chem. Commun. doi: 10.1039/C4CC01646G – volume: 48 start-page: 1926 issue: 2 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0165 article-title: Microstructure and tribological behavior of Ti3C2Tx MXene reinforced chemically bonded silicate ceramic coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.09.277 – volume: 172 start-page: 107154 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0080 article-title: A hydrophobic smart coating based on hexagonal boron nitride/metal-organic frameworks for high-performance corrosion protection publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2022.107154 – volume: 11 start-page: 2077 issue: 1 year: 2020 ident: 10.1016/j.jcis.2023.03.167_b0140 article-title: Super-tough MXene-functionalized graphene sheets publication-title: Nat. Commun. doi: 10.1038/s41467-020-15991-6 – ident: 10.1016/j.jcis.2023.03.167_b0155 doi: 10.1016/j.cherd.2021.01.019 – volume: 170 start-page: 106971 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0015 article-title: Inhibitor loaded functional HNTs modified coatings towards corrosion protection in reinforced concrete environment publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2022.106971 – volume: 52 start-page: 63 year: 2020 ident: 10.1016/j.jcis.2023.03.167_b0040 article-title: Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.04.005 – volume: 171 start-page: 107047 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0065 article-title: Triton X-100 assisted composite of fluorinated graphene and ZIF-8 for epoxy coatings with high corrosion and wear resistance on carbon steel publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2022.107047 – volume: 116 start-page: 310 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0115 article-title: Mxene structure: A key parameter in corrosion barrier performance of organic coatings publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2022.09.021 – volume: 443 start-page: 128612 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0075 article-title: 2D MoS2-hBN hybrid coatings for enhanced corrosion resistance of solid lubricant coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128612 – volume: 376 year: 2023 ident: 10.1016/j.jcis.2023.03.167_b0030 article-title: Eco-friendly biosynthesis of silver nanoparticles and their improvement of anti-corrosion performance in epoxy coatings publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.121488 – volume: 652 start-page: 120443 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0160 article-title: Polyamide@GO microporous membrane with enhanced permeability for the molecular sieving of nitrogen over VOC publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.120443 – volume: 135 start-page: 156 year: 2019 ident: 10.1016/j.jcis.2023.03.167_b0120 article-title: Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.06.013 – volume: 165 start-page: 106765 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0095 article-title: Improving the corrosion protection ability of epoxy coating using CaAl LDH intercalated with 2-mercaptobenzothiazole as a pigment on steel substrate publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2022.106765 – volume: 53 start-page: 53 issue: 1 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0150 article-title: Importance of corrosion protection on steel materials in reducing carbon emissions: Carbon emission measurement throughout the life cycle of steel pipeline as an example publication-title: Sci. Sin. Technologica doi: 10.1360/SST-2021-0449 – volume: 27 start-page: 2367 issue: 7 year: 2015 ident: 10.1016/j.jcis.2023.03.167_b0175 article-title: Inhibiting the corrosion-promotion activity of graphene publication-title: Chem. Mater. doi: 10.1021/cm5043099 – volume: 920 start-page: 165933 year: 2022 ident: 10.1016/j.jcis.2023.03.167_b0170 article-title: Synergistic photocatalytic of CO2-to-CO conversion by 2D/1D Ti3C2Tx/p-BN heterojunction with interfacial chemical bonding publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.165933 – volume: 406 start-page: 126863 year: 2021 ident: 10.1016/j.jcis.2023.03.167_b0045 article-title: Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126863 – volume: 176 start-page: 109049 year: 2020 ident: 10.1016/j.jcis.2023.03.167_b0060 article-title: Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.109049 |
SSID | ssj0011559 |
Score | 2.6474419 |
Snippet | [Display omitted]
•A novel GO-Ti3C2Tx nanohybrid was synthesized.•GO-Ti3C2Tx strongly improved adhesion strength of epoxy coating.•GO-Ti3C2Tx endowed epoxy... MXene flakes shows the great potential in corrosion protection area owing to their lamellar structure and remarkable mechanical features. However, these flakes... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 595 |
SubjectTerms | Anti-corrosion corrosion dielectric spectroscopy electrochemistry epoxides Epoxy coating Fourier transform infrared spectroscopy graphene oxide nanosheets oxidation Pressure steel Ti3C2Tx X-ray photoelectron spectroscopy |
Title | GO-functionalized MXene towards superior anti-corrosion coating |
URI | https://dx.doi.org/10.1016/j.jcis.2023.03.167 https://www.ncbi.nlm.nih.gov/pubmed/37028166 https://www.proquest.com/docview/2798708553 https://www.proquest.com/docview/2834253458 |
Volume | 642 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5ED-pBtL7qo6zgTdbu5rGbnkSKtSrqRaG3kM1mYYu0pbYXD_52Z_ZRFLQHj7tMYPgymUySb2YAzq0VxirX8RObGl9YGflKWiI5Rh0nkixURZLY41PUfxX3AzlYgW6dC0O0ysr3lz698NbVn3aFZnuS55Tji6stpq5ZZEmMEs2FiMnKLz8XNI-Qnt1Kmkfok3SVOFNyvIY2p5LdjFOh07DoNf_r5vRX8FlsQr1t2KqiR--6VHAHVtyoAevdumlbAza_1RfchavbZ582rvK-L_9wqfc4QOfmzQqy7Lv3PqdCx-Oph_jmPh5EUS2U9ezYEB16D157Ny_dvl91TPAtBh4zAjyIVBiZQGYqYDbjMsukjJkzAQLqnJJpEnHDGB5ChbNoRkFqs4Qx5axJBd-H1dF45A7B44qZwHAjTeqEFJkyacaopU2SyBSDjCaENVTaVuXEqavFm655Y0NN8GqCVwdcI7xNuFiMmZTFNJZKy3oG9A-T0Ojtl447q6dLI_r0AGJGbjxHobiD7klJyZfIKI5ujAupmnBQzvVCVx5jNBZG0dE_NTuGDfqiq-FQnsDqbDp3pxjTzJJWYbQtWLu-e-g_fQGv0_aC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6VcuhyQFDYpTyDtLdV2MT2pO4JoYpSdttyaaXeLMdxpKxQW_Vx4cBvZyaPapGWHrgmY2n0eTwe29_MAFw6p6zTfhCmLrOhcpiEGh2THJOBV2ke6zJJbDpLxgt1s8RlC4ZNLgzTKmvfX_n00lvXX65rNK83RcE5vrTa-tw1iy1J4CN4rGj5chuDT7-PPI-Y390qnkccsnidOVORvO5cwTW7heRKp3HZbP7B3elf0We5C42ewdM6fAy-VBo-h5ZfdaEzbLq2deHJvQKDL-Dztx8h71zVhV_xy2fBdEneLdiXbNldsDtwpeP1NiCAi5BOoqQWyQZubZkP_RIWo6_z4TisWyaEjiKPPSMeJTpObIS5joTLJeY5Yl94GxGi3mvM0kRaIegUqrwjO4oyl6dCaO9spuQ5tFfrlX8FASFpIyst2swrVLm2WS64p02aYkZRRg_iBirj6nri3Nbip2mIY3eG4TUMr4mkIXh7cHUcs6mqaZyUxmYGzF82Ycjdnxz3sZkuQ-jzC4hd-fWBhPoD8k8aUZ6Q0ZL8mFSoe3BRzfVRV9mncCxOktf_qdkH6Izn04mZfJ_dvoEz_sP3xDG-hfZ-e_DvKMDZp-9LA_4DTsf4EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GO-functionalized+MXene+towards+superior+anti-corrosion+coating&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Qiang%2C+Yujie&rft.au=Ran%2C+Boyuan&rft.au=Li%2C+Minjiao&rft.au=Xu%2C+Qian&rft.date=2023-07-15&rft.issn=0021-9797&rft.volume=642&rft.spage=595&rft.epage=603&rft_id=info:doi/10.1016%2Fj.jcis.2023.03.167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2023_03_167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |