Lipid storage and lipophagy regulates ferroptosis

The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosi...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 508; no. 4; pp. 997 - 1003
Main Authors Bai, Yuansong, Meng, Lingjun, Han, Leng, Jia, Yuanyuan, Zhao, Yanan, Gao, Huan, Kang, Rui, Wang, Xiaofeng, Tang, Daolin, Dai, Enyong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosis remains unidentified. Here, we demonstrate that lipophagy, the autophagic degradation of intracellular lipid droplets, promotes RSL3-induced ferroptotic cell death in hepatocytes. Lipid droplet accumulation is increased at the early stage but decreased at the late stage of ferroptosis in mouse or human hepatocytes. Importantly, either genetically enhancing TPD52-dependent lipid storage or blocking ATG5-and RAB7A-dependent lipid degradation prevents RSL3-induced lipid peroxidation and subsequent ferroptosis in vitro and in vivo. These studies support an antioxidant role for lipid droplets in cell death and suggest novel strategies for the inhibition of ferroptosis by targeting the lipophagy pathway.
AbstractList The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosis remains unidentified. Here, we demonstrate that lipophagy, the autophagic degradation of intracellular lipid droplets, promotes RSL3-induced ferroptotic cell death in hepatocytes. Lipid droplet accumulation is increased at the early stage but decreased at the late stage of ferroptosis in mouse or human hepatocytes. Importantly, either genetically enhancing TPD52-dependent lipid storage or blocking ATG5-and RAB7A-dependent lipid degradation prevents RSL3-induced lipid peroxidation and subsequent ferroptosis in vitro and in vivo. These studies support an antioxidant role for lipid droplets in cell death and suggest novel strategies for the inhibition of ferroptosis by targeting the lipophagy pathway.The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosis remains unidentified. Here, we demonstrate that lipophagy, the autophagic degradation of intracellular lipid droplets, promotes RSL3-induced ferroptotic cell death in hepatocytes. Lipid droplet accumulation is increased at the early stage but decreased at the late stage of ferroptosis in mouse or human hepatocytes. Importantly, either genetically enhancing TPD52-dependent lipid storage or blocking ATG5-and RAB7A-dependent lipid degradation prevents RSL3-induced lipid peroxidation and subsequent ferroptosis in vitro and in vivo. These studies support an antioxidant role for lipid droplets in cell death and suggest novel strategies for the inhibition of ferroptosis by targeting the lipophagy pathway.
The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosis remains unidentified. Here, we demonstrate that lipophagy, the autophagic degradation of intracellular lipid droplets, promotes RSL3-induced ferroptotic cell death in hepatocytes. Lipid droplet accumulation is increased at the early stage but decreased at the late stage of ferroptosis in mouse or human hepatocytes. Importantly, either genetically enhancing TPD52-dependent lipid storage or blocking ATG5-and RAB7A-dependent lipid degradation prevents RSL3-induced lipid peroxidation and subsequent ferroptosis in vitro and in vivo. These studies support an antioxidant role for lipid droplets in cell death and suggest novel strategies for the inhibition of ferroptosis by targeting the lipophagy pathway.
The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosis remains unidentified. Here, we demonstrate that lipophagy, the autophagic degradation of intracellular lipid droplets, promotes RSL3-induced ferroptotic cell death in hepatocytes. Lipid droplet accumulation is increased at the early stage but decreased at the late stage of ferroptosis in mouse or human hepatocytes. Importantly, either genetically enhancing TPD52-dependent lipid storage or blocking ATG5-and RAB7A-dependent lipid degradation prevents RSL3-induced lipid peroxidation and subsequent ferroptosis in vitro and in vivo. These studies support an antioxidant role for lipid droplets in cell death and suggest novel strategies for the inhibition of ferroptosis by targeting the lipophagy pathway.
Author Bai, Yuansong
Han, Leng
Tang, Daolin
Meng, Lingjun
Jia, Yuanyuan
Gao, Huan
Kang, Rui
Zhao, Yanan
Wang, Xiaofeng
Dai, Enyong
Author_xml – sequence: 1
  givenname: Yuansong
  surname: Bai
  fullname: Bai, Yuansong
  organization: Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
– sequence: 2
  givenname: Lingjun
  surname: Meng
  fullname: Meng, Lingjun
  organization: Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
– sequence: 3
  givenname: Leng
  surname: Han
  fullname: Han, Leng
  organization: Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
– sequence: 4
  givenname: Yuanyuan
  surname: Jia
  fullname: Jia, Yuanyuan
  organization: Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
– sequence: 5
  givenname: Yanan
  surname: Zhao
  fullname: Zhao, Yanan
  organization: Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
– sequence: 6
  givenname: Huan
  surname: Gao
  fullname: Gao, Huan
  organization: Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
– sequence: 7
  givenname: Rui
  surname: Kang
  fullname: Kang, Rui
  organization: Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
– sequence: 8
  givenname: Xiaofeng
  surname: Wang
  fullname: Wang, Xiaofeng
  email: wangxiaofeng@jlu.edu.cn
  organization: Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
– sequence: 9
  givenname: Daolin
  orcidid: 0000-0002-1903-6180
  surname: Tang
  fullname: Tang, Daolin
  email: daolin.tang@utsouthwestern.edu
  organization: Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
– sequence: 10
  givenname: Enyong
  surname: Dai
  fullname: Dai, Enyong
  email: daienyong@yeah.net
  organization: Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30545638$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFq3DAQQEVJaDZJf6CH4mMudmektVeGXEpo08JCLwnkJsbSeKvFazmStpC_j5dNLjkkh2Eu7w3MOxcnYxhZiK8IFQI237dV10VbSUBdoaxAtZ_EAqGFUiIsT8QCAJpStvhwJs5T2gIgLpv2szhTUC_rRumFwLWfvCtSDpE2XNDoisFPYfpHm6ci8mY_UOZU9BxjmHJIPl2K056GxF9e9oW4__Xz7uZ3uf57--fmx7q0Sre57GzdKwVMIJUmrYl7qKWrZa-Zunlc29VN36KjRreSmKVTHQGSQoDaqQtxdbw7xfC455TNzifLw0Ajh30yUs5fNrjS8DGK9apZIWo5o99e0H23Y2em6HcUn8xrkRnQR8DGkFLk3lifKfsw5kh-MAjmEN9szSG-OcQ3KM0cf1blG_X1-rvS9VHiueV_z9Ek63m07Hxkm40L_j39Gf-ZnLc
CitedBy_id crossref_primary_10_31083_j_fbl2707203
crossref_primary_10_1016_j_biopha_2024_116722
crossref_primary_10_3389_fimmu_2024_1511015
crossref_primary_10_1002_adbi_202100396
crossref_primary_10_1016_j_bbrc_2020_12_066
crossref_primary_10_2147_JHC_S447578
crossref_primary_10_3389_fphar_2023_1220983
crossref_primary_10_3724_abbs_2024016
crossref_primary_10_3390_cells10020365
crossref_primary_10_1016_j_jphotobiol_2024_112948
crossref_primary_10_1038_s41418_020_00728_1
crossref_primary_10_1038_s41418_024_01442_y
crossref_primary_10_1186_s12974_025_03334_5
crossref_primary_10_1016_j_envpol_2024_123958
crossref_primary_10_1007_s00726_023_03301_5
crossref_primary_10_1021_acs_analchem_2c00651
crossref_primary_10_1038_s41417_020_0170_2
crossref_primary_10_1089_dna_2021_0023
crossref_primary_10_1016_j_phrs_2021_105466
crossref_primary_10_1038_s41419_024_07157_9
crossref_primary_10_1016_j_bbcan_2025_189265
crossref_primary_10_3389_fcvm_2021_733229
crossref_primary_10_1016_j_bbrc_2020_07_032
crossref_primary_10_1016_j_bbadis_2024_167101
crossref_primary_10_1038_s41467_022_34096_w
crossref_primary_10_1039_D1TB01654G
crossref_primary_10_1002_jnr_25033
crossref_primary_10_1016_j_molmed_2021_06_014
crossref_primary_10_1038_s41422_020_00441_1
crossref_primary_10_1186_s12964_023_01108_1
crossref_primary_10_17816_RCF567780
crossref_primary_10_2147_JIR_S420676
crossref_primary_10_1002_jat_4670
crossref_primary_10_1016_j_bbamcr_2023_119480
crossref_primary_10_1016_j_freeradbiomed_2023_09_004
crossref_primary_10_4239_wjd_v15_i11_2189
crossref_primary_10_1016_j_envpol_2019_07_105
crossref_primary_10_1080_10715762_2021_1898603
crossref_primary_10_1016_j_freeradbiomed_2021_09_008
crossref_primary_10_1080_21655979_2022_2033381
crossref_primary_10_1089_ars_2024_0672
crossref_primary_10_3389_fmolb_2023_1203269
crossref_primary_10_1080_26895293_2022_2156623
crossref_primary_10_1007_s40620_024_01927_6
crossref_primary_10_1016_j_bbrc_2021_10_054
crossref_primary_10_3389_fimmu_2022_956361
crossref_primary_10_1038_s43018_023_00653_5
crossref_primary_10_1038_s41419_024_07244_x
crossref_primary_10_1093_sexmed_qfad043
crossref_primary_10_12677_acm_2024_1441260
crossref_primary_10_1186_s12964_023_01267_1
crossref_primary_10_1038_s41418_021_00883_z
crossref_primary_10_1080_15548627_2020_1847462
crossref_primary_10_3389_fcell_2020_594203
crossref_primary_10_3389_fimmu_2022_972753
crossref_primary_10_1016_j_jbc_2024_107168
crossref_primary_10_3389_fcell_2023_1210714
crossref_primary_10_1080_15548627_2020_1739447
crossref_primary_10_1007_s12013_024_01468_6
crossref_primary_10_1016_j_prp_2024_155219
crossref_primary_10_1080_08916934_2024_2410192
crossref_primary_10_12677_ACM_2022_12101354
crossref_primary_10_1080_15548627_2021_2008692
crossref_primary_10_3389_fonc_2023_1091118
crossref_primary_10_1016_j_envpol_2022_119449
crossref_primary_10_1016_j_jbc_2022_102637
crossref_primary_10_3389_fendo_2024_1390013
crossref_primary_10_1016_j_bbrc_2019_11_110
crossref_primary_10_1016_j_ejphar_2023_175497
crossref_primary_10_3389_fonc_2023_1119369
crossref_primary_10_1186_s10020_023_00724_4
crossref_primary_10_3389_fonc_2022_798304
crossref_primary_10_3390_cells12081128
crossref_primary_10_1186_s12943_024_01999_9
crossref_primary_10_3390_cells11132040
crossref_primary_10_1016_j_bbrc_2020_01_066
crossref_primary_10_1080_15548627_2022_2111635
crossref_primary_10_1155_2022_4776243
crossref_primary_10_1007_s13402_023_00858_x
crossref_primary_10_2174_0113895575273164231130070920
crossref_primary_10_1016_j_bbrc_2021_12_019
crossref_primary_10_1080_15548627_2023_2165323
crossref_primary_10_1080_15548627_2023_2200554
crossref_primary_10_3389_fimmu_2024_1439191
crossref_primary_10_3390_cells11213349
crossref_primary_10_1021_acschembio_4c00835
crossref_primary_10_1186_s12885_022_09314_9
crossref_primary_10_3892_br_2024_1839
crossref_primary_10_1007_s12035_022_02826_2
crossref_primary_10_1002_smtd_202201406
crossref_primary_10_3389_fphar_2022_905501
crossref_primary_10_1186_s12967_023_04370_6
crossref_primary_10_1038_s41416_022_01998_x
crossref_primary_10_1186_s12943_024_02217_2
crossref_primary_10_3389_fimmu_2023_1137107
crossref_primary_10_3390_ijms252011185
crossref_primary_10_1016_j_heliyon_2023_e19799
crossref_primary_10_3389_fimmu_2023_1118449
crossref_primary_10_3389_fnagi_2022_904152
crossref_primary_10_1002_cbf_3985
crossref_primary_10_1016_j_talanta_2021_122467
crossref_primary_10_1016_j_talanta_2024_126028
crossref_primary_10_1038_s41420_025_02328_9
crossref_primary_10_1016_j_heliyon_2023_e23507
crossref_primary_10_3389_fcell_2021_809955
crossref_primary_10_1038_s41392_020_00216_5
crossref_primary_10_1038_s41417_023_00648_5
crossref_primary_10_1089_ars_2022_0202
crossref_primary_10_1016_j_celrep_2021_108767
crossref_primary_10_1016_j_tibs_2021_07_003
crossref_primary_10_1016_j_trecan_2021_04_005
crossref_primary_10_1177_15353702231191197
crossref_primary_10_3389_fncel_2021_696889
crossref_primary_10_1080_15548627_2021_1911016
crossref_primary_10_1021_jacs_9b09722
crossref_primary_10_1111_febs_16059
crossref_primary_10_3389_fnins_2020_601193
crossref_primary_10_1016_j_cej_2024_155439
crossref_primary_10_1038_s41571_020_00462_0
crossref_primary_10_1089_ars_2023_0340
crossref_primary_10_1016_j_hbpd_2023_10_005
crossref_primary_10_1007_s12975_022_01118_0
crossref_primary_10_1016_j_biopha_2023_116112
crossref_primary_10_3389_fcell_2021_698679
crossref_primary_10_3389_fonc_2021_778492
crossref_primary_10_1016_j_bbamcr_2024_119869
crossref_primary_10_1080_15548627_2023_2218764
crossref_primary_10_1126_sciadv_aaw2238
crossref_primary_10_1021_acs_jafc_1c03751
crossref_primary_10_3389_fmed_2022_1071864
crossref_primary_10_3389_fphar_2022_933732
crossref_primary_10_1038_s41422_019_0164_5
crossref_primary_10_1038_s41467_022_35707_2
crossref_primary_10_1016_j_freeradbiomed_2024_08_026
crossref_primary_10_1080_15548627_2023_2259732
crossref_primary_10_1007_s00204_023_03476_6
crossref_primary_10_1016_j_gendis_2022_02_012
crossref_primary_10_1038_s41392_024_01769_5
crossref_primary_10_3389_fonc_2020_00949
crossref_primary_10_1016_j_biopha_2023_115251
crossref_primary_10_1007_s11033_024_09259_1
crossref_primary_10_3390_nu11040827
crossref_primary_10_1016_j_bbrc_2020_10_035
crossref_primary_10_1038_s41392_021_00613_4
crossref_primary_10_3390_cells10082153
crossref_primary_10_1186_s40364_024_00645_2
crossref_primary_10_1080_08916934_2023_2289362
crossref_primary_10_48130_FIA_2023_0020
crossref_primary_10_1080_0886022X_2024_2379601
crossref_primary_10_4103_1673_5374_332157
crossref_primary_10_1080_07853890_2024_2445774
crossref_primary_10_1089_ars_2022_0110
crossref_primary_10_1016_j_cmet_2020_10_011
crossref_primary_10_1016_j_jcmgh_2024_101440
crossref_primary_10_1080_15548627_2022_2059170
crossref_primary_10_1007_s12035_024_04417_9
crossref_primary_10_1016_j_intimp_2024_113188
crossref_primary_10_1051_medsci_2021108
crossref_primary_10_7717_peerj_14033
crossref_primary_10_1038_s41417_020_0182_y
crossref_primary_10_1166_jbn_2023_3642
crossref_primary_10_1007_s11010_023_04694_3
crossref_primary_10_1186_s12884_022_04423_6
crossref_primary_10_1186_s13045_024_01564_3
crossref_primary_10_1016_j_bioorg_2023_106949
crossref_primary_10_1002_jcp_31093
crossref_primary_10_3389_fcell_2020_590226
crossref_primary_10_1080_17460441_2023_2244409
crossref_primary_10_3389_fncel_2020_577403
crossref_primary_10_3390_ijms22189902
crossref_primary_10_1097_SCS_0000000000009508
crossref_primary_10_7717_peerj_17933
crossref_primary_10_3389_fcell_2023_1104725
crossref_primary_10_1016_j_heliyon_2024_e28959
crossref_primary_10_4251_wjgo_v15_i7_1135
crossref_primary_10_2478_jtim_2023_0099
crossref_primary_10_1021_acssensors_0c02015
crossref_primary_10_1360_SSV_2022_0241
crossref_primary_10_3390_cancers14184526
crossref_primary_10_1021_jacsau_2c00681
crossref_primary_10_3389_fimmu_2024_1455741
crossref_primary_10_3390_ijms231810981
crossref_primary_10_1177_09603271231172915
crossref_primary_10_1038_s41556_024_01360_8
crossref_primary_10_3390_antiox10030387
crossref_primary_10_1039_D1FO01036K
crossref_primary_10_1016_j_phrs_2022_106563
crossref_primary_10_1007_s10495_023_01891_9
crossref_primary_10_1016_j_cellimm_2024_104915
crossref_primary_10_1016_j_tcb_2023_05_003
crossref_primary_10_1038_s41392_023_01606_1
crossref_primary_10_1038_s41419_023_06154_8
crossref_primary_10_3389_fimmu_2022_877634
crossref_primary_10_4196_kjpp_2024_28_3_183
crossref_primary_10_1111_jcmm_18348
crossref_primary_10_1007_s00204_023_03625_x
crossref_primary_10_1007_s10495_024_01966_1
crossref_primary_10_1038_s41467_023_44412_7
crossref_primary_10_1080_21655979_2022_2074768
crossref_primary_10_1016_j_bbrc_2024_150765
crossref_primary_10_1038_s41418_022_00998_x
crossref_primary_10_1152_physrev_00031_2024
crossref_primary_10_1038_s41419_023_05716_0
crossref_primary_10_3389_fimmu_2022_1038225
crossref_primary_10_3389_fcell_2024_1423869
crossref_primary_10_1016_j_jconrel_2024_07_063
crossref_primary_10_1016_j_lfs_2024_122981
crossref_primary_10_1016_j_critrevonc_2023_103964
crossref_primary_10_1080_15548627_2024_2319901
crossref_primary_10_1038_s41418_021_00859_z
crossref_primary_10_1016_j_canlet_2023_216147
crossref_primary_10_1016_j_lfs_2024_122629
crossref_primary_10_1002_advs_202309907
crossref_primary_10_1186_s40164_023_00427_w
crossref_primary_10_1016_j_aquaculture_2021_736760
crossref_primary_10_1016_j_canlet_2024_217046
crossref_primary_10_1007_s00011_021_01463_0
crossref_primary_10_1016_j_bcp_2023_115554
crossref_primary_10_3389_fcell_2023_1177440
crossref_primary_10_1016_j_tcb_2025_01_005
crossref_primary_10_1080_15548627_2020_1810918
crossref_primary_10_1016_j_chembiol_2020_02_005
crossref_primary_10_1016_j_freeradbiomed_2024_04_213
crossref_primary_10_1016_j_heliyon_2024_e27084
crossref_primary_10_1016_j_semcancer_2025_02_013
crossref_primary_10_1007_s00216_022_04307_w
crossref_primary_10_1038_s41698_024_00783_8
crossref_primary_10_1016_j_scitotenv_2024_170724
crossref_primary_10_1080_15548627_2019_1687985
crossref_primary_10_1002_1873_3468_14808
crossref_primary_10_1016_j_intimp_2023_110810
crossref_primary_10_3389_fnins_2022_1068611
crossref_primary_10_3390_cells12071050
crossref_primary_10_1002_cac2_12250
crossref_primary_10_1016_j_cbi_2019_108930
crossref_primary_10_1016_j_phrs_2020_104919
crossref_primary_10_2147_IJGM_S343046
crossref_primary_10_1038_s41392_022_01046_3
crossref_primary_10_1021_acsnano_4c02335
crossref_primary_10_12998_wjcc_v10_i36_13148
crossref_primary_10_1360_SSV_2024_0156
crossref_primary_10_1128_mbio_00159_23
crossref_primary_10_1016_j_biopha_2022_113516
crossref_primary_10_1084_jem_20210518
crossref_primary_10_2174_0929867329666220630144648
crossref_primary_10_1016_j_molcel_2022_03_022
crossref_primary_10_1038_s41419_022_04974_8
crossref_primary_10_1016_j_ijbiomac_2025_140531
crossref_primary_10_1016_j_trecan_2024_01_002
crossref_primary_10_1007_s00432_024_05753_y
crossref_primary_10_1016_j_bbcan_2024_189258
crossref_primary_10_1155_2020_9738143
crossref_primary_10_2147_JIR_S358470
crossref_primary_10_20517_cdr_2024_123
crossref_primary_10_3389_fcell_2020_586578
crossref_primary_10_1007_s12265_025_10590_6
crossref_primary_10_1038_s41419_023_05978_8
crossref_primary_10_1186_s40364_021_00338_0
crossref_primary_10_1515_jcim_2024_0090
crossref_primary_10_20517_cdr_2024_127
crossref_primary_10_1038_s41392_021_00778_y
crossref_primary_10_1016_j_critrevonc_2024_104359
crossref_primary_10_1038_s41420_023_01504_z
crossref_primary_10_1186_s12943_020_01157_x
crossref_primary_10_3389_fonc_2022_1085034
crossref_primary_10_1080_15548627_2021_1872241
crossref_primary_10_1186_s40170_020_00237_2
crossref_primary_10_1038_s41417_022_00477_y
crossref_primary_10_1089_ars_2022_0179
crossref_primary_10_1111_imr_13235
crossref_primary_10_1016_j_biopha_2022_113806
crossref_primary_10_1016_j_jnutbio_2022_109013
crossref_primary_10_1007_s10565_024_09853_w
crossref_primary_10_1016_j_neuropharm_2024_110210
crossref_primary_10_1186_s13045_021_01184_1
crossref_primary_10_3389_fphar_2022_1043344
crossref_primary_10_3389_fimmu_2025_1526961
crossref_primary_10_3389_fcell_2021_739097
crossref_primary_10_1016_j_biopha_2023_115544
crossref_primary_10_1186_s12943_024_02172_y
crossref_primary_10_1016_j_metabol_2024_155905
crossref_primary_10_18231_j_ijirm_2023_026
crossref_primary_10_1016_j_biopha_2023_115419
crossref_primary_10_1002_cac2_12519
crossref_primary_10_1038_s41392_020_00428_9
crossref_primary_10_1038_s41419_021_04306_2
crossref_primary_10_3389_fcell_2021_675617
crossref_primary_10_1021_acssensors_2c01361
crossref_primary_10_3389_fmolb_2022_974156
crossref_primary_10_1186_s12964_025_02126_x
crossref_primary_10_1016_j_jid_2024_11_007
crossref_primary_10_1002_tox_23586
crossref_primary_10_3390_cells12010090
crossref_primary_10_1016_j_biopha_2023_115415
crossref_primary_10_1016_j_phymed_2023_155079
crossref_primary_10_1097_JP9_0000000000000054
crossref_primary_10_1097_HEP_0000000000000390
crossref_primary_10_1007_s11064_022_03697_8
crossref_primary_10_3389_fimmu_2023_1247268
crossref_primary_10_3389_fnins_2020_589042
crossref_primary_10_1016_j_bcp_2021_114584
crossref_primary_10_1016_j_snb_2024_136470
crossref_primary_10_1038_s42003_024_06430_z
crossref_primary_10_1016_j_mcp_2025_102013
crossref_primary_10_1167_iovs_65_14_12
crossref_primary_10_1002_1878_0261_13305
crossref_primary_10_1002_jcp_29727
crossref_primary_10_1097_JP9_0000000000000067
crossref_primary_10_1002_cmdc_202100334
crossref_primary_10_4254_wjh_v13_i1_6
crossref_primary_10_1038_s41388_023_02703_9
crossref_primary_10_1631_jzus_B2300241
crossref_primary_10_1016_j_ccr_2023_215330
crossref_primary_10_3389_fcell_2021_637162
crossref_primary_10_1016_j_molmet_2022_101529
crossref_primary_10_1186_s12967_024_06059_w
crossref_primary_10_1007_s10495_022_01795_0
crossref_primary_10_1016_j_compbiomed_2023_106862
crossref_primary_10_1021_acs_analchem_2c00387
crossref_primary_10_3389_fendo_2022_820939
crossref_primary_10_1038_s41419_024_06939_5
crossref_primary_10_3389_fcell_2020_00431
crossref_primary_10_3389_fimmu_2023_1140791
crossref_primary_10_1016_j_cclet_2024_110620
crossref_primary_10_1212_WNL_0000000000207730
crossref_primary_10_1038_s41419_020_03297_w
crossref_primary_10_1038_s41575_021_00486_6
crossref_primary_10_3390_v16060923
Cites_doi 10.1126/science.290.5497.1717
10.1038/cdd.2015.158
10.1155/2014/360438
10.1016/j.cub.2018.05.094
10.1038/cr.2016.95
10.1007/s00125-016-3940-5
10.1016/j.celrep.2017.07.055
10.1002/hep.27667
10.1016/j.cell.2017.09.021
10.1021/acschembio.5b00245
10.1038/nrgastro.2017.32
10.1080/15548627.2016.1187366
10.1038/cdd.2014.137
10.1016/j.cell.2012.03.042
10.1080/15548627.2015.1124226
10.1038/nrm.2017.76
10.1080/15548627.2018.1513758
10.1016/j.bbrc.2016.08.124
10.1038/nrc1738
10.1038/nature13148
10.1016/j.bbrc.2018.07.078
10.1186/s12944-017-0521-7
10.1097/MCO.0b013e328342991c
10.4161/15548627.2014.984267
10.1038/nature03029
10.1186/s12944-017-0473-y
10.1242/jcs.167692
10.1016/j.tcb.2015.10.014
10.1016/j.cell.2013.12.010
10.1146/annurev-biochem-061009-102430
10.1038/cdd.2012.63
10.1038/nature11866
10.1073/pnas.1319661110
10.1016/j.molcel.2010.09.023
10.1007/s40139-017-0139-5
10.1007/s00018-006-6016-8
10.1038/nchembio.2238
10.1073/pnas.1603244113
10.1038/cdd.2014.143
10.1016/j.tibs.2015.11.012
10.1038/nchembio.2239
10.1146/annurev-genet-102808-114910
10.1083/jcb.200911078
10.1038/s41418-017-0012-4
10.1083/jcb.200412022
10.1038/nature07976
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbrc.2018.12.039
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 1003
ExternalDocumentID 30545638
10_1016_j_bbrc_2018_12_039
S0006291X18326822
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
SEW
SSH
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~KM
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-bc5f330ea0238a88aef052d52f8eab8ead9b56f91da6892aee2d3ba01a31005d3
IEDL.DBID .~1
ISSN 0006-291X
1090-2104
IngestDate Fri Jul 11 08:13:34 EDT 2025
Fri Jul 11 15:49:06 EDT 2025
Mon Jul 21 05:42:42 EDT 2025
Thu Apr 24 23:01:06 EDT 2025
Tue Jul 01 01:43:54 EDT 2025
Fri Feb 23 02:34:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords TPD52
NFE2L2/NRF2
GPX4
Lipid droplets
ALOX15
NCOA4
STAT3
Lipid storage
Ferroptosis
ACSL4
MDA
SLC7A11
Autophagy
RCD
TBA
Lipid degradation
4-HNE
ATG
mHep
LPCAT3
LD
AMPK
PLIN2
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-bc5f330ea0238a88aef052d52f8eab8ead9b56f91da6892aee2d3ba01a31005d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1903-6180
PMID 30545638
PQID 2157671182
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2221061780
proquest_miscellaneous_2157671182
pubmed_primary_30545638
crossref_citationtrail_10_1016_j_bbrc_2018_12_039
crossref_primary_10_1016_j_bbrc_2018_12_039
elsevier_sciencedirect_doi_10_1016_j_bbrc_2018_12_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-22
PublicationDateYYYYMMDD 2019-01-22
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xie, Zhu, Song, Sun, Fan, Liu, Zhong, Yuan, Zhang, Billiar, Lotze, Zeh, Kang, Kroemer, Tang (bib25) 2017; 20
Gluchowski, Becuwe, Walther, Farese (bib26) 2017; 14
Kagan, Mao, Qu, Angeli, Doll, Croix, Dar, Liu, Tyurin, Ritov, Kapralov, Amoscato, Jiang, Anthonymuthu, Mohammadyani, Yang, Proneth, Klein-Seetharaman, Watkins, Bahar, Greenberger, Mallampalli, Stockwell, Tyurina, Conrad, Bayir (bib6) 2017; 13
Dixon, Winter, Musavi, Lee, Snijder, Rebsamen, Superti-Furga, Stockwell (bib8) 2015; 10
Singh, Kaushik, Wang, Xiang, Novak, Komatsu, Tanaka, Cuervo, Czaja (bib23) 2009; 458
Xie, Kang, Sun, Zhong, Huang, Klionsky, Tang (bib12) 2015; 11
Liu, Shoji-Kawata, Sumpter, Wei, Ginet, Zhang, Posner, Tran, Green, Xavier, Shaw, Clarke, Puyal, Levine (bib46) 2013; 110
Bogdan, Miyazawa, Hashimoto, Tsuji (bib4) 2016; 41
Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bib10) 2014; 156
Galluzzi, Vitale, Aaronson, Abrams, Adam, Agostinis, Alnemri, Altucci, Amelio, Andrews, Annicchiarico-Petruzzelli, Antonov, Arama, Baehrecke, Barlev, Bazan, Bernassola, Bertrand, Bianchi, Blagosklonny, Blomgren, Borner, Boya, Brenner, Campanella, Candi, Carmona-Gutierrez, Cecconi, Chan, Chandel, Cheng, Chipuk, Cidlowski, Ciechanover, Cohen, Conrad, Cubillos-Ruiz, Czabotar, D'Angiolella, Dawson, Dawson, De Laurenzi, De Maria, Debatin, DeBerardinis, Deshmukh, Di Daniele, Di Virgilio, Dixit, Dixon, Duckett, Dynlacht, El-Deiry, Elrod, Fimia, Fulda, Garcia-Saez, Garg, Garrido, Gavathiotis, Golstein, Gottlieb, Green, Greene, Gronemeyer, Gross, Hajnoczky, Hardwick, Harris, Hengartner, Hetz, Ichijo, Jaattela, Joseph, Jost, Juin, Kaiser, Karin, Kaufmann, Kepp, Kimchi, Kitsis, Klionsky, Knight, Kumar, Lee, Lemasters, Levine, Linkermann, Lipton, Lockshin, Lopez-Otin, Lowe, Luedde, Lugli, MacFarlane, Madeo, Malewicz, Malorni, Manic, Marine, Martin, Martinou, Medema, Mehlen, Meier, Melino, Miao, Molkentin, Moll, Munoz-Pinedo, Nagata, Nunez, Oberst, Oren, Overholtzer, Pagano, Panaretakis, Pasparakis, Penninger, Pereira, Pervaiz, Peter, Piacentini, Pinton, Prehn, Puthalakath, Rabinovich, Rehm, Rizzuto, Rodrigues, Rubinsztein, Rudel, Ryan, Sayan, Scorrano, Shao, Shi, Silke, Simon, Sistigu, Stockwell, Strasser, Szabadkai, Tait, Tang, Tavernarakis, Thorburn, Tsujimoto, Turk, Vanden Berghe, Vandenabeele, Vander Heiden, Villunger, Virgin, Vousden, Vucic, Wagner, Walczak, Wallach, Wang, Wells, Wood, Yuan, Zakeri, Zhivotovsky, Zitvogel, Melino, Kroemer (bib2) 2018; 25
Galluzzi, Bravo-San Pedro, Vitale, Aaronson, Abrams, Adam, Alnemri, Altucci, Andrews, Annicchiarico-Petruzzelli, Baehrecke, Bazan, Bertrand, Bianchi, Blagosklonny, Blomgren, Borner, Bredesen, Brenner, Campanella, Candi, Cecconi, Chan, Chandel, Cheng, Chipuk, Cidlowski, Ciechanover, Dawson, Dawson, De Laurenzi, De Maria, Debatin, Di Daniele, Dixit, Dynlacht, El-Deiry, Fimia, Flavell, Fulda, Garrido, Gougeon, Green, Gronemeyer, Hajnoczky, Hardwick, Hengartner, Ichijo, Joseph, Jost, Kaufmann, Kepp, Klionsky, Knight, Kumar, Lemasters, Levine, Linkermann, Lipton, Lockshin, Lopez-Otin, Lugli, Madeo, Malorni, Marine, Martin, Martinou, Medema, Meier, Melino, Mizushima, Moll, Munoz-Pinedo, Nunez, Oberst, Panaretakis, Penninger, Peter, Piacentini, Pinton, Prehn, Puthalakath, Rabinovich, Ravichandran, Rizzuto, Rodrigues, Rubinsztein, Rudel, Shi, Simon, Stockwell, Szabadkai, Tait, Tang, Tavernarakis, Tsujimoto, Vanden Berghe, Vandenabeele, Villunger, Wagner, Walczak, White, Wood, Yuan, Zakeri, Zhivotovsky, Melino, Kroemer (bib1) 2015; 22
Onal, Kutlu, Gozuacik, Dokmeci Emre (bib27) 2017; 16
Itabe, Yamaguchi, Nimura, Sasabe (bib28) 2017; 16
Walther, Farese (bib33) 2012; 81
Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib3) 2012; 149
Kroemer, Marino, Levine (bib14) 2010; 40
Liu, Levine (bib15) 2015; 22
Kang, Tang (bib16) 2017; 5
Gao, Monian, Pan, Zhang, Xiang, Jiang (bib17) 2016; 26
Stockwell, Friedmann Angeli, Bayir, Bush, Conrad, Dixon, Fulda, Gascon, Hatzios, Kagan, Noel, Jiang, Linkermann, Murphy, Overholtzer, Oyagi, Pagnussat, Park, Ran, Rosenfeld, Salnikow, Tang, Torti, Torti, Toyokuni, Woerpel, Zhang (bib34) 2017; 171
Yuan, Li, Zhang, Kang, Tang (bib7) 2016; 478
Kuma, Hatano, Matsui, Yamamoto, Nakaya, Yoshimori, Ohsumi, Tokuhisa, Mizushima (bib39) 2004; 432
Kamili, Roslan, Frost, Cantrill, Wang, Della-Franca, Bright, Groblewski, Straub, Hoy, Chen, Byrne (bib29) 2015; 128
Shoji-Kawata, Sumpter, Leveno, Campbell, Zou, Kinch, Wilkins, Sun, Pallauf, MacDuff, Huerta, Virgin, Helms, Eerland, Tooze, Xavier, Lenschow, Yamamoto, King, Lichtarge, Grishin, Spector, Kaloyanova, Levine (bib45) 2013; 494
Hou, Xie, Song, Sun, Lotze, Zeh, Kang, Tang (bib18) 2016; 12
Komatsu, Waguri, Ueno, Iwata, Murata, Tanida, Ezaki, Mizushima, Ohsumi, Uchiyama, Kominami, Tanaka, Chiba (bib40) 2005; 169
Yang, Stockwell (bib36) 2016; 26
Kang, Zhu, Zeh, Klionsky, Tang (bib42) 2018; 14
Jump (bib20) 2011; 14
Schroeder, Schulze, Weller, Sletten, Casey, McNiven (bib31) 2015; 61
Klionsky, Emr (bib11) 2000; 290
Ayala, Munoz, Arguelles (bib30) 2014; 2014
Song, Zhu, Chen, Hou, Wen, Liu, Xie, Liu, Klionsky, Kroemer, Lotze, Zeh, Kang, Tang (bib43) 2018; 28
Doll, Proneth, Tyurina, Panzilius, Kobayashi, Ingold, Irmler, Beckers, Aichler, Walch, Prokisch, Trumbach, Mao, Qu, Bayir, Fullekrug, Scheel, Wurst, Schick, Kagan, Angeli, Conrad (bib5) 2017; 13
Liu, Czaja (bib21) 2013; 20
Gao, Bai, Jia, Zhao, Kang, Tang, Dai (bib37) 2018; 503
Kroemer, Jaattela (bib38) 2005; 5
Jones (bib19) 2016; 59
Xie, Hou, Song, Yu, Huang, Sun, Kang, Tang (bib35) 2016; 23
Kaushik, Cuervo (bib44) 2016; 12
Zechner, Madeo, Kratky (bib22) 2017; 18
Tang, Kang, Livesey, Cheh, Farkas, Loughran, Hoppe, Bianchi, Tracey, Zeh, Lotze (bib24) 2010; 190
He, Klionsky (bib13) 2009; 43
Mancias, Wang, Gygi, Harper, Kimmelman (bib41) 2014; 509
Yang, Kim, Gaschler, Patel, Shchepinov, Stockwell (bib9) 2016; 113
Athenstaedt, Daum (bib32) 2006; 63
Liu (10.1016/j.bbrc.2018.12.039_bib21) 2013; 20
Kroemer (10.1016/j.bbrc.2018.12.039_bib38) 2005; 5
Gao (10.1016/j.bbrc.2018.12.039_bib37) 2018; 503
Shoji-Kawata (10.1016/j.bbrc.2018.12.039_bib45) 2013; 494
Klionsky (10.1016/j.bbrc.2018.12.039_bib11) 2000; 290
Xie (10.1016/j.bbrc.2018.12.039_bib12) 2015; 11
Stockwell (10.1016/j.bbrc.2018.12.039_bib34) 2017; 171
Xie (10.1016/j.bbrc.2018.12.039_bib35) 2016; 23
Kuma (10.1016/j.bbrc.2018.12.039_bib39) 2004; 432
Galluzzi (10.1016/j.bbrc.2018.12.039_bib1) 2015; 22
Kroemer (10.1016/j.bbrc.2018.12.039_bib14) 2010; 40
Singh (10.1016/j.bbrc.2018.12.039_bib23) 2009; 458
Gao (10.1016/j.bbrc.2018.12.039_bib17) 2016; 26
Xie (10.1016/j.bbrc.2018.12.039_bib25) 2017; 20
Dixon (10.1016/j.bbrc.2018.12.039_bib8) 2015; 10
Zechner (10.1016/j.bbrc.2018.12.039_bib22) 2017; 18
Onal (10.1016/j.bbrc.2018.12.039_bib27) 2017; 16
Yang (10.1016/j.bbrc.2018.12.039_bib9) 2016; 113
Jones (10.1016/j.bbrc.2018.12.039_bib19) 2016; 59
Ayala (10.1016/j.bbrc.2018.12.039_bib30) 2014; 2014
Galluzzi (10.1016/j.bbrc.2018.12.039_bib2) 2018; 25
Athenstaedt (10.1016/j.bbrc.2018.12.039_bib32) 2006; 63
Liu (10.1016/j.bbrc.2018.12.039_bib46) 2013; 110
Mancias (10.1016/j.bbrc.2018.12.039_bib41) 2014; 509
Kaushik (10.1016/j.bbrc.2018.12.039_bib44) 2016; 12
Bogdan (10.1016/j.bbrc.2018.12.039_bib4) 2016; 41
Yuan (10.1016/j.bbrc.2018.12.039_bib7) 2016; 478
Jump (10.1016/j.bbrc.2018.12.039_bib20) 2011; 14
Hou (10.1016/j.bbrc.2018.12.039_bib18) 2016; 12
Kagan (10.1016/j.bbrc.2018.12.039_bib6) 2017; 13
Walther (10.1016/j.bbrc.2018.12.039_bib33) 2012; 81
Komatsu (10.1016/j.bbrc.2018.12.039_bib40) 2005; 169
Kang (10.1016/j.bbrc.2018.12.039_bib42) 2018; 14
Dixon (10.1016/j.bbrc.2018.12.039_bib3) 2012; 149
Doll (10.1016/j.bbrc.2018.12.039_bib5) 2017; 13
Schroeder (10.1016/j.bbrc.2018.12.039_bib31) 2015; 61
Yang (10.1016/j.bbrc.2018.12.039_bib10) 2014; 156
Kamili (10.1016/j.bbrc.2018.12.039_bib29) 2015; 128
Liu (10.1016/j.bbrc.2018.12.039_bib15) 2015; 22
Kang (10.1016/j.bbrc.2018.12.039_bib16) 2017; 5
Song (10.1016/j.bbrc.2018.12.039_bib43) 2018; 28
Tang (10.1016/j.bbrc.2018.12.039_bib24) 2010; 190
Gluchowski (10.1016/j.bbrc.2018.12.039_bib26) 2017; 14
He (10.1016/j.bbrc.2018.12.039_bib13) 2009; 43
Itabe (10.1016/j.bbrc.2018.12.039_bib28) 2017; 16
Yang (10.1016/j.bbrc.2018.12.039_bib36) 2016; 26
References_xml – volume: 40
  start-page: 280
  year: 2010
  end-page: 293
  ident: bib14
  article-title: Autophagy and the integrated stress response
  publication-title: Mol. Cell.
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  ident: bib23
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
– volume: 41
  start-page: 274
  year: 2016
  end-page: 286
  ident: bib4
  article-title: Regulators of iron homeostasis: new players in metabolism, cell death, and disease
  publication-title: Trends Biochem. Sci.
– volume: 43
  start-page: 67
  year: 2009
  end-page: 93
  ident: bib13
  article-title: Regulation mechanisms and signaling pathways of autophagy
  publication-title: Annu. Rev. Genet.
– volume: 18
  start-page: 671
  year: 2017
  end-page: 684
  ident: bib22
  article-title: Cytosolic lipolysis and lipophagy: two sides of the same coin
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 432
  start-page: 1032
  year: 2004
  end-page: 1036
  ident: bib39
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
– volume: 13
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib6
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat. Chem. Biol.
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  ident: bib10
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
– volume: 16
  start-page: 83
  year: 2017
  ident: bib28
  article-title: Perilipins: a diversity of intracellular lipid droplet proteins
  publication-title: Lipids Health Dis.
– volume: 128
  start-page: 3223
  year: 2015
  end-page: 3238
  ident: bib29
  article-title: TPD52 expression increases neutral lipid storage within cultured cells
  publication-title: J. Cell Sci.
– volume: 110
  start-page: 20364
  year: 2013
  end-page: 20371
  ident: bib46
  article-title: Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 343
  year: 2017
  end-page: 355
  ident: bib26
  article-title: Lipid droplets and liver disease: from basic biology to clinical implications
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 113
  start-page: E4966
  year: 2016
  end-page: E4975
  ident: bib9
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 432
  year: 2016
  end-page: 438
  ident: bib44
  article-title: AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA
  publication-title: Autophagy
– volume: 81
  start-page: 687
  year: 2012
  end-page: 714
  ident: bib33
  article-title: Lipid droplets and cellular lipid metabolism
  publication-title: Annu. Rev. Biochem.
– volume: 503
  start-page: 1550
  year: 2018
  end-page: 1556
  ident: bib37
  article-title: Ferroptosis is a lysosomal cell death process
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 509
  start-page: 105
  year: 2014
  end-page: 109
  ident: bib41
  article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
  publication-title: Nature
– volume: 171
  start-page: 273
  year: 2017
  end-page: 285
  ident: bib34
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
– volume: 2014
  start-page: 360438
  year: 2014
  ident: bib30
  article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal
  publication-title: Oxid Med Cell Longev
– volume: 25
  start-page: 486
  year: 2018
  end-page: 541
  ident: bib2
  article-title: Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018
  publication-title: Cell Death Differ.
– volume: 63
  start-page: 1355
  year: 2006
  end-page: 1369
  ident: bib32
  article-title: The life cycle of neutral lipids: synthesis, storage and degradation
  publication-title: Cell. Mol. Life Sci.
– volume: 10
  start-page: 1604
  year: 2015
  end-page: 1609
  ident: bib8
  article-title: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death
  publication-title: ACS Chem. Biol.
– volume: 20
  start-page: 3
  year: 2013
  end-page: 11
  ident: bib21
  article-title: Regulation of lipid stores and metabolism by lipophagy
  publication-title: Cell Death Differ.
– volume: 23
  start-page: 369
  year: 2016
  end-page: 379
  ident: bib35
  article-title: Ferroptosis: process and function
  publication-title: Cell Death Differ.
– volume: 22
  start-page: 58
  year: 2015
  end-page: 73
  ident: bib1
  article-title: Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
  publication-title: Cell Death Differ.
– volume: 290
  start-page: 1717
  year: 2000
  end-page: 1721
  ident: bib11
  article-title: Autophagy as a regulated pathway of cellular degradation
  publication-title: Science
– volume: 190
  start-page: 881
  year: 2010
  end-page: 892
  ident: bib24
  article-title: Endogenous HMGB1 regulates autophagy
  publication-title: J. Cell Biol.
– volume: 28
  start-page: 2388
  year: 2018
  end-page: 2399
  ident: bib43
  article-title: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system xc(-) activity
  publication-title: Curr. Biol.
– volume: 26
  start-page: 1021
  year: 2016
  end-page: 1032
  ident: bib17
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res.
– volume: 26
  start-page: 165
  year: 2016
  end-page: 176
  ident: bib36
  article-title: Ferroptosis: death by lipid peroxidation
  publication-title: Trends Cell Biol.
– volume: 11
  start-page: 28
  year: 2015
  end-page: 45
  ident: bib12
  article-title: Posttranslational modification of autophagy-related proteins in macroautophagy
  publication-title: Autophagy
– volume: 478
  start-page: 1338
  year: 2016
  end-page: 1343
  ident: bib7
  article-title: Identification of ACSL4 as a biomarker and contributor of ferroptosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 494
  start-page: 201
  year: 2013
  end-page: 206
  ident: bib45
  article-title: Identification of a candidate therapeutic autophagy-inducing peptide
  publication-title: Nature
– volume: 14
  start-page: 2173
  year: 2018
  end-page: 2175
  ident: bib42
  article-title: BECN1 is a new driver of ferroptosis
  publication-title: Autophagy
– volume: 20
  start-page: 1692
  year: 2017
  end-page: 1704
  ident: bib25
  article-title: The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity
  publication-title: Cell Rep.
– volume: 5
  start-page: 886
  year: 2005
  end-page: 897
  ident: bib38
  article-title: Lysosomes and autophagy in cell death control
  publication-title: Nat. Rev. Canc.
– volume: 169
  start-page: 425
  year: 2005
  end-page: 434
  ident: bib40
  article-title: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
  publication-title: J. Cell Biol.
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  ident: bib3
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 13
  start-page: 91
  year: 2017
  end-page: 98
  ident: bib5
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
– volume: 5
  start-page: 153
  year: 2017
  end-page: 159
  ident: bib16
  article-title: Autophagy and ferroptosis - what's the connection?
  publication-title: Curr Pathobiol Rep
– volume: 59
  start-page: 1098
  year: 2016
  end-page: 1103
  ident: bib19
  article-title: Hepatic glucose and lipid metabolism
  publication-title: Diabetologia
– volume: 16
  start-page: 128
  year: 2017
  ident: bib27
  article-title: Lipid droplets in Health and disease
  publication-title: Lipids Health Dis.
– volume: 22
  start-page: 367
  year: 2015
  end-page: 376
  ident: bib15
  article-title: Autosis and autophagic cell death: the dark side of autophagy
  publication-title: Cell Death Differ.
– volume: 14
  start-page: 115
  year: 2011
  end-page: 120
  ident: bib20
  article-title: Fatty acid regulation of hepatic lipid metabolism
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 12
  start-page: 1425
  year: 2016
  end-page: 1428
  ident: bib18
  article-title: Autophagy promotes ferroptosis by degradation of ferritin
  publication-title: Autophagy
– volume: 61
  start-page: 1896
  year: 2015
  end-page: 1907
  ident: bib31
  article-title: The small GTPase Rab7 as a central regulator of hepatocellular lipophagy
  publication-title: Hepatology
– volume: 290
  start-page: 1717
  year: 2000
  ident: 10.1016/j.bbrc.2018.12.039_bib11
  article-title: Autophagy as a regulated pathway of cellular degradation
  publication-title: Science
  doi: 10.1126/science.290.5497.1717
– volume: 23
  start-page: 369
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib35
  article-title: Ferroptosis: process and function
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.158
– volume: 2014
  start-page: 360438
  year: 2014
  ident: 10.1016/j.bbrc.2018.12.039_bib30
  article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2014/360438
– volume: 28
  start-page: 2388
  year: 2018
  ident: 10.1016/j.bbrc.2018.12.039_bib43
  article-title: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system xc(-) activity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.05.094
– volume: 26
  start-page: 1021
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib17
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.95
– volume: 59
  start-page: 1098
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib19
  article-title: Hepatic glucose and lipid metabolism
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-3940-5
– volume: 20
  start-page: 1692
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib25
  article-title: The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.07.055
– volume: 61
  start-page: 1896
  year: 2015
  ident: 10.1016/j.bbrc.2018.12.039_bib31
  article-title: The small GTPase Rab7 as a central regulator of hepatocellular lipophagy
  publication-title: Hepatology
  doi: 10.1002/hep.27667
– volume: 171
  start-page: 273
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib34
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 10
  start-page: 1604
  year: 2015
  ident: 10.1016/j.bbrc.2018.12.039_bib8
  article-title: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00245
– volume: 14
  start-page: 343
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib26
  article-title: Lipid droplets and liver disease: from basic biology to clinical implications
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.32
– volume: 12
  start-page: 1425
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib18
  article-title: Autophagy promotes ferroptosis by degradation of ferritin
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1187366
– volume: 22
  start-page: 58
  year: 2015
  ident: 10.1016/j.bbrc.2018.12.039_bib1
  article-title: Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.137
– volume: 149
  start-page: 1060
  year: 2012
  ident: 10.1016/j.bbrc.2018.12.039_bib3
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 12
  start-page: 432
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib44
  article-title: AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1124226
– volume: 18
  start-page: 671
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib22
  article-title: Cytosolic lipolysis and lipophagy: two sides of the same coin
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.76
– volume: 14
  start-page: 2173
  year: 2018
  ident: 10.1016/j.bbrc.2018.12.039_bib42
  article-title: BECN1 is a new driver of ferroptosis
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1513758
– volume: 478
  start-page: 1338
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib7
  article-title: Identification of ACSL4 as a biomarker and contributor of ferroptosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.08.124
– volume: 5
  start-page: 886
  year: 2005
  ident: 10.1016/j.bbrc.2018.12.039_bib38
  article-title: Lysosomes and autophagy in cell death control
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc1738
– volume: 509
  start-page: 105
  year: 2014
  ident: 10.1016/j.bbrc.2018.12.039_bib41
  article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
  publication-title: Nature
  doi: 10.1038/nature13148
– volume: 503
  start-page: 1550
  year: 2018
  ident: 10.1016/j.bbrc.2018.12.039_bib37
  article-title: Ferroptosis is a lysosomal cell death process
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.07.078
– volume: 16
  start-page: 128
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib27
  article-title: Lipid droplets in Health and disease
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-017-0521-7
– volume: 14
  start-page: 115
  year: 2011
  ident: 10.1016/j.bbrc.2018.12.039_bib20
  article-title: Fatty acid regulation of hepatic lipid metabolism
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0b013e328342991c
– volume: 11
  start-page: 28
  year: 2015
  ident: 10.1016/j.bbrc.2018.12.039_bib12
  article-title: Posttranslational modification of autophagy-related proteins in macroautophagy
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.984267
– volume: 432
  start-page: 1032
  year: 2004
  ident: 10.1016/j.bbrc.2018.12.039_bib39
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 16
  start-page: 83
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib28
  article-title: Perilipins: a diversity of intracellular lipid droplet proteins
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-017-0473-y
– volume: 128
  start-page: 3223
  year: 2015
  ident: 10.1016/j.bbrc.2018.12.039_bib29
  article-title: TPD52 expression increases neutral lipid storage within cultured cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.167692
– volume: 26
  start-page: 165
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib36
  article-title: Ferroptosis: death by lipid peroxidation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.10.014
– volume: 156
  start-page: 317
  year: 2014
  ident: 10.1016/j.bbrc.2018.12.039_bib10
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 81
  start-page: 687
  year: 2012
  ident: 10.1016/j.bbrc.2018.12.039_bib33
  article-title: Lipid droplets and cellular lipid metabolism
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061009-102430
– volume: 20
  start-page: 3
  year: 2013
  ident: 10.1016/j.bbrc.2018.12.039_bib21
  article-title: Regulation of lipid stores and metabolism by lipophagy
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.63
– volume: 494
  start-page: 201
  year: 2013
  ident: 10.1016/j.bbrc.2018.12.039_bib45
  article-title: Identification of a candidate therapeutic autophagy-inducing peptide
  publication-title: Nature
  doi: 10.1038/nature11866
– volume: 110
  start-page: 20364
  year: 2013
  ident: 10.1016/j.bbrc.2018.12.039_bib46
  article-title: Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1319661110
– volume: 40
  start-page: 280
  year: 2010
  ident: 10.1016/j.bbrc.2018.12.039_bib14
  article-title: Autophagy and the integrated stress response
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2010.09.023
– volume: 5
  start-page: 153
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib16
  article-title: Autophagy and ferroptosis - what's the connection?
  publication-title: Curr Pathobiol Rep
  doi: 10.1007/s40139-017-0139-5
– volume: 63
  start-page: 1355
  year: 2006
  ident: 10.1016/j.bbrc.2018.12.039_bib32
  article-title: The life cycle of neutral lipids: synthesis, storage and degradation
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-006-6016-8
– volume: 13
  start-page: 81
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib6
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2238
– volume: 113
  start-page: E4966
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib9
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1603244113
– volume: 22
  start-page: 367
  year: 2015
  ident: 10.1016/j.bbrc.2018.12.039_bib15
  article-title: Autosis and autophagic cell death: the dark side of autophagy
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.143
– volume: 41
  start-page: 274
  year: 2016
  ident: 10.1016/j.bbrc.2018.12.039_bib4
  article-title: Regulators of iron homeostasis: new players in metabolism, cell death, and disease
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.11.012
– volume: 13
  start-page: 91
  year: 2017
  ident: 10.1016/j.bbrc.2018.12.039_bib5
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 43
  start-page: 67
  year: 2009
  ident: 10.1016/j.bbrc.2018.12.039_bib13
  article-title: Regulation mechanisms and signaling pathways of autophagy
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-102808-114910
– volume: 190
  start-page: 881
  year: 2010
  ident: 10.1016/j.bbrc.2018.12.039_bib24
  article-title: Endogenous HMGB1 regulates autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911078
– volume: 25
  start-page: 486
  year: 2018
  ident: 10.1016/j.bbrc.2018.12.039_bib2
  article-title: Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0012-4
– volume: 169
  start-page: 425
  year: 2005
  ident: 10.1016/j.bbrc.2018.12.039_bib40
  article-title: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200412022
– volume: 458
  start-page: 1131
  year: 2009
  ident: 10.1016/j.bbrc.2018.12.039_bib23
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
  doi: 10.1038/nature07976
SSID ssj0011469
Score 2.6725633
Snippet The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 997
SubjectTerms antioxidants
Autophagy
cell death
droplets
Ferroptosis
hepatocytes
humans
inflammation
Lipid degradation
Lipid droplets
lipid metabolism
lipid peroxidation
Lipid storage
lipids
mice
Title Lipid storage and lipophagy regulates ferroptosis
URI https://dx.doi.org/10.1016/j.bbrc.2018.12.039
https://www.ncbi.nlm.nih.gov/pubmed/30545638
https://www.proquest.com/docview/2157671182
https://www.proquest.com/docview/2221061780
Volume 508
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSmkvpU362D6CCqWX4saSLNk6bpeGbUtzamBvQs92Q2ob7-aQS357NH4sFNo99GCwjQxiZpj5Rv5mBuCdE95EJXjGqCmzIjqeKelS1hqDicI7ZfsOfN_P5fKi-LoSqwNYTLUwSKscff_g03tvPb45HaV52q7XWOObS6boCo1SpjiHFexFiVb-8XZH88Ci2xECywxXj4UzA8fL2g7bGNKqPxLEgeF_D07_Ap99EDp7DI9G9EjmwwafwEGoj-B4XqfM-fcNeU96Pmd_UH4E9z9Ndw8W01S3Y6A4rNoT5EQmT0JM7cnVum3aX-bnDemGwfRhQ2LouqbdNpv15ilcnH3-sVhm49iEzCX0sc2sE5HzPBgMx6aqTIi5YF6wWAVj0-WVFTIq6o2sFDMhMM-tyanBw37h-TM4rJs6vACS8IHznIukZlF4Xykfi4gdvSj3ylk5AzrJS7uxpziOtrjSE3nsUqOMNcpYU6aTjGfwYfdNO3TU2LtaTGrQf9iFTi5_73dvJ53pJGH8C2Lq0FxvdMI4pSwxr9qzhjFMlcsqn8HzQeG7vSYHmUAnr17-585ewcP0hCS1jLHXcLjtrsObBGy29qS33BO4N__ybXl-B-3Y9tg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDSW9lDbpY_tUofRSTCxppbWP26Vh0yR7SmBvQs92S2ob7-aQf1-NLS8U2j30YDC2BGJGfPONNA-Aj1Y4HUrBM0b1NJsEy7NS2ui1Bq-DcLY0XQW-q6Vc3Ey-rcTqAOZDLgyGVSbs7zG9Q-v05TRJ87RZrzHHN5espCvclDLauQdwiNWpxAgOZ-cXi-XuMiGCQWLBMsMJKXemD_MypsVKhrToTgWxZ_jf7dO_-Gdnh86ewONEIMmsX-NTOPDVMZzMqug8_7onn0gX0tmdlR_Dwy_D29F8aOx2AhT7VTuCYZERTIiuHLldN3XzQ3-_J23fm95vSPBtWzfberPePIObs6_X80WWOidkNhKQbWasCJznXqNF1kWhfcgFc4KFwmsTH1caIUNJnZZFybT3zHGjc6rxvF84_hxGVV35l0AiRbCOcxE1LSbOFaULk4BFvSh3pTVyDHSQl7KprDh2t7hVQ_zYT4UyVihjRZmKMh7D592cpi-qsXe0GNSg_tgaKqL-3nkfBp2pKGG8CNGVr-82KtKcqZyia7VnDGPoLU-LfAwveoXv1hoxMvJOXrz6z5W9h6PF9dWlujxfXryGR_EPxqxljL2B0ba9828jz9mad2kf_wZmovmJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid+storage+and+lipophagy+regulates+ferroptosis&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Bai%2C+Yuansong&rft.au=Meng%2C+Lingjun&rft.au=Han%2C+Leng&rft.au=Jia%2C+Yuanyuan&rft.date=2019-01-22&rft.issn=0006-291X&rft.volume=508&rft.issue=4+p.997-1003&rft.spage=997&rft.epage=1003&rft_id=info:doi/10.1016%2Fj.bbrc.2018.12.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon