A versatile upconversion-based multimode lateral flow platform for rapid and ultrasensitive detection of microRNA towards health monitoring

MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simult...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 252; p. 116135
Main Authors Chen, Cong, Hu, Songtao, Tian, Lulu, Qi, Manlin, Chang, Zhiyong, Li, Liang, Wang, Lin, Dong, Biao
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays. •Ultrasensitive detection of microRNA-21without extra signal amplification process, spanning from 2 nM to 1 fM.•UCNPs are self-assembled on NC membrane, allowing the advantages of liquid-state and solid-state sensor combined in LFA.•Multi-mode lateral flow assay to achieve colorimetric, fluorescence, and SERS signals on the test line.•A specific fluorescence-Raman detection platform enables rapid and simple acquisition of results simultaneously.•Successfully application in authentic samples, distinguish periodontitis patients from normal individuals in saliva samples.
AbstractList MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF₄: Yb³⁺, Er³⁺) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays.
MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF : Yb , Er ) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays.
MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays.MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays.
MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays. •Ultrasensitive detection of microRNA-21without extra signal amplification process, spanning from 2 nM to 1 fM.•UCNPs are self-assembled on NC membrane, allowing the advantages of liquid-state and solid-state sensor combined in LFA.•Multi-mode lateral flow assay to achieve colorimetric, fluorescence, and SERS signals on the test line.•A specific fluorescence-Raman detection platform enables rapid and simple acquisition of results simultaneously.•Successfully application in authentic samples, distinguish periodontitis patients from normal individuals in saliva samples.
ArticleNumber 116135
Author Dong, Biao
Chen, Cong
Hu, Songtao
Li, Liang
Chang, Zhiyong
Qi, Manlin
Wang, Lin
Tian, Lulu
Author_xml – sequence: 1
  givenname: Cong
  surname: Chen
  fullname: Chen, Cong
  organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
– sequence: 2
  givenname: Songtao
  surname: Hu
  fullname: Hu, Songtao
  organization: State Key Laboratory on Integrated Optoelectronics, Collage of Electronic Science and Engineering, Jilin University, Changchun, 130021, PR China
– sequence: 3
  givenname: Lulu
  surname: Tian
  fullname: Tian, Lulu
  organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
– sequence: 4
  givenname: Manlin
  surname: Qi
  fullname: Qi, Manlin
  organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
– sequence: 5
  givenname: Zhiyong
  surname: Chang
  fullname: Chang, Zhiyong
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, PR China
– sequence: 6
  givenname: Liang
  orcidid: 0000-0002-5117-9739
  surname: Li
  fullname: Li, Liang
  email: lliang@jlu.edu.cn
  organization: State Key Laboratory of Superhard Materials, Collage of Physics, Jilin University, Changchun, 130021, PR China
– sequence: 7
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  email: wanglin1982@jlu.edu.cn
  organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
– sequence: 8
  givenname: Biao
  surname: Dong
  fullname: Dong, Biao
  email: dongb@jlu.edu.cn
  organization: State Key Laboratory on Integrated Optoelectronics, Collage of Electronic Science and Engineering, Jilin University, Changchun, 130021, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38387230$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G31D7iQLN3MNR-TTAbcXEpthaIgug6Z5IzNJTMZk9xb_A3-aTPc6sJF3eRw4HkO5H0v0NkcZ0DoNSVbSqh8t98OPuYtI6zdUiopF8_QhqqONy3j4gxtSC9kI6Tk5-gi5z0hpKM9eYHOueKqY5xs0K8dPkLKpvgA-LDYOK-rj3MzmAwOT4dQ_BQd4GAKJBPwGOIDXuo2xjTh-uBkFu-wmR2ucKranH3xR8AOCthSj-E44snbFL982uESH0xyGd-DCeUeT3H2JSY_f3-Jno8mZHj1OC_Rtw_XX69um7vPNx-vdneN5aovzWBb4yQFZ8dedC0MvOvb1hhphvopOQhq21YOirGxcz01grWCyJGSngoCTvBL9PZ0d0nxxwFy0ZPPFkIwM8RD1pwKLpRSPfsvynredaQjSlb0zSN6GCZwekl-Mumn_pN1BdgJqDnknGD8i1Ci10L1Xq-F6rVQfSq0Suofyfpi1kxr0j48rb4_qVCzPHpIOlsPswXnU61Fu-if0n8D3yq95A
CitedBy_id crossref_primary_10_1016_j_snb_2025_137635
crossref_primary_10_1021_acs_analchem_4c04803
crossref_primary_10_1016_j_cclet_2024_110801
crossref_primary_10_1016_j_microc_2025_113257
crossref_primary_10_1016_j_mseb_2025_118049
crossref_primary_10_3390_s24247902
crossref_primary_10_1021_acs_analchem_4c05401
crossref_primary_10_1007_s00604_025_07031_1
Cites_doi 10.1016/0003-9861(64)90150-X
10.1016/j.aca.2019.12.068
10.1021/acs.analchem.0c02642
10.1021/acsanm.0c03208
10.1016/j.biopha.2021.111528
10.1016/S1002-0721(17)60972-4
10.1016/j.snb.2020.127718
10.1039/D0AN02177F
10.1016/j.bios.2020.112015
10.1021/ja074447k
10.1021/jacs.5b10309
10.1111/jcpe.13361
10.1016/j.cca.2022.02.012
10.1016/j.trac.2016.06.006
10.1021/nn201896m
10.1021/ac502677n
10.1016/j.bios.2008.03.035
10.1016/j.aca.2017.01.025
10.1021/la403707j
10.1002/emmm.201100209
10.1007/s00216-020-03121-6
10.1039/D1AN00116G
10.1104/pp.109.139139
10.1016/j.talanta.2020.120913
10.1039/B9NR00236G
10.1038/nprot.2007.528
10.1016/j.saa.2019.117529
10.1038/nrd.2016.246
10.1016/j.bios.2019.111407
10.1016/j.talanta.2018.11.057
10.1039/c3an01677c
10.1016/j.bios.2020.112559
10.1093/nar/gkq342
10.1016/j.trac.2021.116452
10.1016/j.jhep.2010.02.021
10.1016/j.snb.2020.128621
10.1016/j.bios.2014.07.075
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bios.2024.116135
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
ExternalDocumentID 38387230
10_1016_j_bios_2024_116135
S0956566324001404
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABMYL
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
.HR
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
LX3
M36
R2-
SBG
SCB
SCH
SSH
WUQ
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-bc4ad61edcf9574eb37944aa6ab8726b51c446b822f7d91a524506f109150ed53
IEDL.DBID .~1
ISSN 0956-5663
1873-4235
IngestDate Tue Aug 05 10:24:42 EDT 2025
Fri Jul 11 09:37:13 EDT 2025
Mon Jul 21 05:50:39 EDT 2025
Tue Jul 01 01:43:11 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Sat Mar 16 16:14:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Lateral flow assay
Multimode biosensor
Surface-enhanced Raman scattering
Upconversion nanoparticles
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-bc4ad61edcf9574eb37944aa6ab8726b51c446b822f7d91a524506f109150ed53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5117-9739
PMID 38387230
PQID 2937707086
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153588892
proquest_miscellaneous_2937707086
pubmed_primary_38387230
crossref_primary_10_1016_j_bios_2024_116135
crossref_citationtrail_10_1016_j_bios_2024_116135
elsevier_sciencedirect_doi_10_1016_j_bios_2024_116135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rupaimoole, Slack (bib29) 2017; 16
Schulte, Marschall, Martin, Rosenstiel, Mestdagh, Schlierf, Thor, Vandesompele, Eggert, Schreiber, Rahmann, Schramm (bib32) 2010; 38
Mohammadi, Yammouri, Amine (bib22) 2019; 16
Samal, Polavarapu, Rodal-Cedeira, Liz-Marzán, Pérez-Juste, Pastoriza-Santos (bib31) 2013; 29
Miao, Wang, Yu, Zhao, Tang (bib21) 2015; 63
Li, Xu, Ma, Wu, Sun, Kuang, Wang, Kotov, Xu (bib14) 2016; 138
Wang, Li, Nie, Fan, Han (bib39) 2021; 146
Zhang, Yan, Ru, Zhu, Zou, Gao, Huang, Wang (bib43) 2022; 201
Hosseinzadeh, Ravan, Mohammadi, Pourghadamyari (bib9) 2020; 216
Meng, Jia, An, Wang, Yang, Zhang (bib19) 2020; 323
Sena-Torralba, Ngo, Parolo, Hu, Álvarez-Diduk, Bergua, Rosati, Surareungchai, Merkoçi (bib33) 2020; 168
Zhou, Wu, Ding, Huang, Xiong (bib45) 2021; 145
Chen, Luo, Li, Li, Qin, Zhou, Liu, Gong, Chang (bib4) 2020; 92
Vetrone, Naccache, Fuente, Sanz-Rodríguez, Blazquez-Castro, Rodriguez, Jaque, Solé, Capobianco (bib36) 2010; 2
Fakhri, Abarghoei, Dadmehr, Hosseini, Sabahi, Ganjali (bib7) 2020; 227
Du, Wu, Huang, Sun (bib6) 2021; 4
Bahadır, Sezgintürk (bib2) 2016; 82
Pant, Musialak-Lange, Nuc, May, Buhtz, Kehr, Walther, Scheible (bib26) 2009; 150
Chaiet, Wolf (bib3) 1964; 106
Shin Low, Pan, Ji, Li, Lu, He, Chen, Liu (bib34) 2020; 308
Wang, Wang, Chen, Fu, Lin, Ye, Long, Gao, Zheng (bib40) 2022; 198
Nguyen, Song, Park, Joo (bib23) 2020; 152
Wang, Li, Liu, Zhang, Wu, Diao, Tan, Huang, Cheng, You (bib38) 2022; 42
Ji, Song, Li, Bai, Yang, Peng (bib12) 2007; 129
Lin, Weng, Liu, Lin, Yang, Chen, Feng (bib17) 2024; 399
Meng, X., Pang, X., Yang, J., Zhang, X., Dong, H., n.d. Small n/a, 2307701..
Várallyay, Burgyán, Havelda (bib35) 2008; 3
Li, Ye, Chen, Liu, Guo, Wang (bib15) 2017; 35
Sadighbathi, Mobed (bib30) 2022; 530
Zhang, Li, Pan, Zhang, Zhang, Wang, Yan, Liu, Lu (bib42) 2021; 190
Pothipor, Aroonyadet, Bamrungsap, Jakmunee, Ounnunkad (bib27) 2021; 146
Al-Rawi, Al-Marzooq, Al-Nuaimi, Hachim, Hamoudi (bib1) 2020; 15
Hussen, Hidayat, Salihi, Sabir, Taheri, Ghafouri-Fard (bib10) 2021; 138
Noor, Krull (bib25) 2014; 86
Quesada-González, Stefani, González, de la Escosura-Muñiz, Domingo, Mutjé, Merkoçi (bib28) 2019; 141
Liu, Yu, Yu, Lavker, Cai, Liu, Yang, He, Chen (bib18) 2010; 53
Iorio, Croce (bib11) 2012; 4
Doughan, Uddayasankar, Peri, Krull (bib5) 2017; 962
Wang, Xue, Hao, Miao, Zhang, Zheng, Zheng, Lin, Weng (bib41) 2020; 1103
Fernandes, Gonçalves Fernandes, Morford, Harrison, Kompotiati, Huang, Aukhil, Wallet, Macchion Shaddox (bib8) 2020; 47
Zheng, Chen, Li, Xu, Chen, Chen, Liu, Lin, Weng (bib44) 2021; 413
Jin, Gu, Man, Cheng, Xu, Zhang, Wang, Lee, Cheng, Wong (bib13) 2011; 5
Lin, Yang, Chen, Yang, Chang (bib16) 2008; 24
N. Johnson, Mutharasan (bib24) 2014; 139
Wang, Sun, Pu, Wei (bib37) 2019; 195
Fernandes (10.1016/j.bios.2024.116135_bib8) 2020; 47
Mohammadi (10.1016/j.bios.2024.116135_bib22) 2019; 16
Sena-Torralba (10.1016/j.bios.2024.116135_bib33) 2020; 168
Fakhri (10.1016/j.bios.2024.116135_bib7) 2020; 227
Hosseinzadeh (10.1016/j.bios.2024.116135_bib9) 2020; 216
Li (10.1016/j.bios.2024.116135_bib14) 2016; 138
Rupaimoole (10.1016/j.bios.2024.116135_bib29) 2017; 16
Shin Low (10.1016/j.bios.2024.116135_bib34) 2020; 308
Du (10.1016/j.bios.2024.116135_bib6) 2021; 4
Schulte (10.1016/j.bios.2024.116135_bib32) 2010; 38
N. Johnson (10.1016/j.bios.2024.116135_bib24) 2014; 139
Bahadır (10.1016/j.bios.2024.116135_bib2) 2016; 82
Iorio (10.1016/j.bios.2024.116135_bib11) 2012; 4
Ji (10.1016/j.bios.2024.116135_bib12) 2007; 129
Zhang (10.1016/j.bios.2024.116135_bib43) 2022; 201
Hussen (10.1016/j.bios.2024.116135_bib10) 2021; 138
Miao (10.1016/j.bios.2024.116135_bib21) 2015; 63
Pothipor (10.1016/j.bios.2024.116135_bib27) 2021; 146
10.1016/j.bios.2024.116135_bib20
Nguyen (10.1016/j.bios.2024.116135_bib23) 2020; 152
Zheng (10.1016/j.bios.2024.116135_bib44) 2021; 413
Wang (10.1016/j.bios.2024.116135_bib39) 2021; 146
Zhou (10.1016/j.bios.2024.116135_bib45) 2021; 145
Sadighbathi (10.1016/j.bios.2024.116135_bib30) 2022; 530
Wang (10.1016/j.bios.2024.116135_bib37) 2019; 195
Samal (10.1016/j.bios.2024.116135_bib31) 2013; 29
Wang (10.1016/j.bios.2024.116135_bib41) 2020; 1103
Al-Rawi (10.1016/j.bios.2024.116135_bib1) 2020; 15
Lin (10.1016/j.bios.2024.116135_bib17) 2024; 399
Liu (10.1016/j.bios.2024.116135_bib18) 2010; 53
Wang (10.1016/j.bios.2024.116135_bib38) 2022; 42
Li (10.1016/j.bios.2024.116135_bib15) 2017; 35
Pant (10.1016/j.bios.2024.116135_bib26) 2009; 150
Jin (10.1016/j.bios.2024.116135_bib13) 2011; 5
Noor (10.1016/j.bios.2024.116135_bib25) 2014; 86
Lin (10.1016/j.bios.2024.116135_bib16) 2008; 24
Zhang (10.1016/j.bios.2024.116135_bib42) 2021; 190
Chaiet (10.1016/j.bios.2024.116135_bib3) 1964; 106
Meng (10.1016/j.bios.2024.116135_bib19) 2020; 323
Doughan (10.1016/j.bios.2024.116135_bib5) 2017; 962
Wang (10.1016/j.bios.2024.116135_bib40) 2022; 198
Várallyay (10.1016/j.bios.2024.116135_bib35) 2008; 3
Vetrone (10.1016/j.bios.2024.116135_bib36) 2010; 2
Chen (10.1016/j.bios.2024.116135_bib4) 2020; 92
Quesada-González (10.1016/j.bios.2024.116135_bib28) 2019; 141
References_xml – volume: 42
  year: 2022
  ident: bib38
  publication-title: Bioscience Reports
– volume: 129
  start-page: 13939
  year: 2007
  end-page: 13948
  ident: bib12
  publication-title: J. Am. Chem. Soc.
– volume: 962
  start-page: 88
  year: 2017
  end-page: 96
  ident: bib5
  publication-title: Anal. Chim. Acta
– volume: 16
  start-page: 203
  year: 2017
  end-page: 222
  ident: bib29
  publication-title: Nat. Rev. Drug Discov.
– volume: 413
  start-page: 1605
  year: 2021
  end-page: 1614
  ident: bib44
  publication-title: Anal. Bioanal. Chem.
– volume: 146
  start-page: 2679
  year: 2021
  end-page: 2688
  ident: bib27
  publication-title: Analyst
– volume: 4
  start-page: 2565
  year: 2021
  end-page: 2574
  ident: bib6
  publication-title: ACS Appl. Nano Mater.
– volume: 63
  start-page: 365
  year: 2015
  end-page: 370
  ident: bib21
  publication-title: Biosens. Bioelectron.
– volume: 150
  start-page: 1541
  year: 2009
  end-page: 1555
  ident: bib26
  publication-title: Plant Physiol.
– volume: 15
  year: 2020
  ident: bib1
  publication-title: PLoS One
– volume: 106
  start-page: 1
  year: 1964
  end-page: 5
  ident: bib3
  publication-title: Arch. Biochem. Biophys.
– volume: 190
  year: 2021
  ident: bib42
  publication-title: Biosens. Bioelectron.
– volume: 138
  start-page: 306
  year: 2016
  end-page: 312
  ident: bib14
  publication-title: J. Am. Chem. Soc.
– reference: Meng, X., Pang, X., Yang, J., Zhang, X., Dong, H., n.d. Small n/a, 2307701..
– volume: 16
  start-page: 96
  year: 2019
  end-page: 105
  ident: bib22
  publication-title: Curr. Opin. Electrochem. Electrochem. Mat. Eng. Sensor. Biosens.
– volume: 201
  year: 2022
  ident: bib43
  publication-title: Biosens. Bioelectron.
– volume: 399
  year: 2024
  ident: bib17
  publication-title: Sensor. Actuator. B Chem.
– volume: 530
  start-page: 27
  year: 2022
  end-page: 38
  ident: bib30
  publication-title: Clin. Chim. Acta
– volume: 92
  start-page: 13336
  year: 2020
  end-page: 13342
  ident: bib4
  publication-title: Anal. Chem.
– volume: 3
  start-page: 190
  year: 2008
  end-page: 196
  ident: bib35
  publication-title: Nat. Protoc.
– volume: 1103
  start-page: 212
  year: 2020
  end-page: 219
  ident: bib41
  publication-title: Anal. Chim. Acta
– volume: 47
  start-page: 1317
  year: 2020
  end-page: 1325
  ident: bib8
  publication-title: J. Clin. Periodontol.
– volume: 29
  start-page: 15076
  year: 2013
  end-page: 15082
  ident: bib31
  publication-title: Langmuir
– volume: 141
  year: 2019
  ident: bib28
  publication-title: Biosens. Bioelectron.
– volume: 24
  start-page: 178
  year: 2008
  end-page: 183
  ident: bib16
  publication-title: Biosens. Bioelectron.
– volume: 138
  year: 2021
  ident: bib10
  publication-title: Biomed. Pharmacother.
– volume: 146
  start-page: 848
  year: 2021
  end-page: 854
  ident: bib39
  publication-title: Analyst
– volume: 2
  start-page: 495
  year: 2010
  end-page: 498
  ident: bib36
  publication-title: Nanoscale
– volume: 86
  start-page: 10331
  year: 2014
  end-page: 10339
  ident: bib25
  publication-title: Anal. Chem.
– volume: 195
  start-page: 506
  year: 2019
  end-page: 515
  ident: bib37
  publication-title: Talanta
– volume: 35
  start-page: 753
  year: 2017
  end-page: 760
  ident: bib15
  publication-title: J. Rare Earths
– volume: 323
  year: 2020
  ident: bib19
  publication-title: Sensor. Actuator. B Chem.
– volume: 227
  year: 2020
  ident: bib7
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 5
  start-page: 7838
  year: 2011
  end-page: 7847
  ident: bib13
  publication-title: ACS Nano
– volume: 82
  start-page: 286
  year: 2016
  end-page: 306
  ident: bib2
  publication-title: TrAC, Trends Anal. Chem.
– volume: 168
  year: 2020
  ident: bib33
  publication-title: Biosens. Bioelectron.
– volume: 38
  start-page: 5919
  year: 2010
  end-page: 5928
  ident: bib32
  publication-title: Nucleic Acids Res.
– volume: 198
  year: 2022
  ident: bib40
  publication-title: Biosens. Bioelectron.
– volume: 139
  start-page: 1576
  year: 2014
  end-page: 1588
  ident: bib24
  publication-title: Analyst
– volume: 152
  year: 2020
  ident: bib23
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 143
  year: 2012
  end-page: 159
  ident: bib11
  publication-title: EMBO Mol. Med.
– volume: 53
  start-page: 98
  year: 2010
  end-page: 107
  ident: bib18
  publication-title: J. Hepatol.
– volume: 145
  year: 2021
  ident: bib45
  publication-title: TrAC, Trends Anal. Chem.
– volume: 216
  year: 2020
  ident: bib9
  publication-title: Talanta
– volume: 308
  year: 2020
  ident: bib34
  publication-title: Sensor. Actuator. B Chem.
– ident: 10.1016/j.bios.2024.116135_bib20
– volume: 106
  start-page: 1
  year: 1964
  ident: 10.1016/j.bios.2024.116135_bib3
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(64)90150-X
– volume: 1103
  start-page: 212
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib41
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.12.068
– volume: 92
  start-page: 13336
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib4
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02642
– volume: 4
  start-page: 2565
  year: 2021
  ident: 10.1016/j.bios.2024.116135_bib6
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c03208
– volume: 399
  year: 2024
  ident: 10.1016/j.bios.2024.116135_bib17
  publication-title: Sensor. Actuator. B Chem.
– volume: 138
  year: 2021
  ident: 10.1016/j.bios.2024.116135_bib10
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2021.111528
– volume: 35
  start-page: 753
  year: 2017
  ident: 10.1016/j.bios.2024.116135_bib15
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(17)60972-4
– volume: 308
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib34
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2020.127718
– volume: 146
  start-page: 848
  year: 2021
  ident: 10.1016/j.bios.2024.116135_bib39
  publication-title: Analyst
  doi: 10.1039/D0AN02177F
– volume: 152
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib23
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112015
– volume: 129
  start-page: 13939
  year: 2007
  ident: 10.1016/j.bios.2024.116135_bib12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074447k
– volume: 138
  start-page: 306
  year: 2016
  ident: 10.1016/j.bios.2024.116135_bib14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10309
– volume: 47
  start-page: 1317
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib8
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/jcpe.13361
– volume: 16
  start-page: 96
  year: 2019
  ident: 10.1016/j.bios.2024.116135_bib22
  publication-title: Curr. Opin. Electrochem. Electrochem. Mat. Eng. Sensor. Biosens.
– volume: 530
  start-page: 27
  year: 2022
  ident: 10.1016/j.bios.2024.116135_bib30
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2022.02.012
– volume: 82
  start-page: 286
  year: 2016
  ident: 10.1016/j.bios.2024.116135_bib2
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2016.06.006
– volume: 5
  start-page: 7838
  year: 2011
  ident: 10.1016/j.bios.2024.116135_bib13
  publication-title: ACS Nano
  doi: 10.1021/nn201896m
– volume: 86
  start-page: 10331
  year: 2014
  ident: 10.1016/j.bios.2024.116135_bib25
  publication-title: Anal. Chem.
  doi: 10.1021/ac502677n
– volume: 24
  start-page: 178
  year: 2008
  ident: 10.1016/j.bios.2024.116135_bib16
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2008.03.035
– volume: 962
  start-page: 88
  year: 2017
  ident: 10.1016/j.bios.2024.116135_bib5
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.01.025
– volume: 29
  start-page: 15076
  year: 2013
  ident: 10.1016/j.bios.2024.116135_bib31
  publication-title: Langmuir
  doi: 10.1021/la403707j
– volume: 4
  start-page: 143
  year: 2012
  ident: 10.1016/j.bios.2024.116135_bib11
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201100209
– volume: 413
  start-page: 1605
  year: 2021
  ident: 10.1016/j.bios.2024.116135_bib44
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-020-03121-6
– volume: 146
  start-page: 2679
  year: 2021
  ident: 10.1016/j.bios.2024.116135_bib27
  publication-title: Analyst
  doi: 10.1039/D1AN00116G
– volume: 150
  start-page: 1541
  year: 2009
  ident: 10.1016/j.bios.2024.116135_bib26
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.139139
– volume: 216
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib9
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.120913
– volume: 42
  year: 2022
  ident: 10.1016/j.bios.2024.116135_bib38
– volume: 190
  year: 2021
  ident: 10.1016/j.bios.2024.116135_bib42
  publication-title: Biosens. Bioelectron.
– volume: 2
  start-page: 495
  year: 2010
  ident: 10.1016/j.bios.2024.116135_bib36
  publication-title: Nanoscale
  doi: 10.1039/B9NR00236G
– volume: 3
  start-page: 190
  year: 2008
  ident: 10.1016/j.bios.2024.116135_bib35
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.528
– volume: 227
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib7
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.117529
– volume: 16
  start-page: 203
  year: 2017
  ident: 10.1016/j.bios.2024.116135_bib29
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.246
– volume: 15
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib1
  publication-title: PLoS One
– volume: 141
  year: 2019
  ident: 10.1016/j.bios.2024.116135_bib28
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111407
– volume: 201
  year: 2022
  ident: 10.1016/j.bios.2024.116135_bib43
  publication-title: Biosens. Bioelectron.
– volume: 195
  start-page: 506
  year: 2019
  ident: 10.1016/j.bios.2024.116135_bib37
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.11.057
– volume: 139
  start-page: 1576
  year: 2014
  ident: 10.1016/j.bios.2024.116135_bib24
  publication-title: Analyst
  doi: 10.1039/c3an01677c
– volume: 168
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib33
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112559
– volume: 198
  year: 2022
  ident: 10.1016/j.bios.2024.116135_bib40
  publication-title: Biosens. Bioelectron.
– volume: 38
  start-page: 5919
  year: 2010
  ident: 10.1016/j.bios.2024.116135_bib32
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq342
– volume: 145
  year: 2021
  ident: 10.1016/j.bios.2024.116135_bib45
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2021.116452
– volume: 53
  start-page: 98
  year: 2010
  ident: 10.1016/j.bios.2024.116135_bib18
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2010.02.021
– volume: 323
  year: 2020
  ident: 10.1016/j.bios.2024.116135_bib19
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2020.128621
– volume: 63
  start-page: 365
  year: 2015
  ident: 10.1016/j.bios.2024.116135_bib21
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.07.075
SSID ssj0007190
Score 2.5017993
Snippet MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116135
SubjectTerms biomarkers
biosensors
early diagnosis
energy transfer
fluorescence
gene expression
immune response
Lateral flow assay
lung neoplasms
microRNA
Multimode biosensor
nanoparticles
periodontitis
prediction
Surface-enhanced Raman scattering
Upconversion nanoparticles
Title A versatile upconversion-based multimode lateral flow platform for rapid and ultrasensitive detection of microRNA towards health monitoring
URI https://dx.doi.org/10.1016/j.bios.2024.116135
https://www.ncbi.nlm.nih.gov/pubmed/38387230
https://www.proquest.com/docview/2937707086
https://www.proquest.com/docview/3153588892
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhpdAeSpt-bdqGKfRW3LUty7KPS0jYtnQPbQO5GcmSYItjm42X0kv-QP50ZiQ7bQ6bQ30w2IxAaMYzI_nNG8Y-8NRwo6SM0B5ElKm4jHSudORS51yd2qL0zWC-rfLlWfblXJzvseOpFoZglaPvDz7de-vxzXxczXm_Xs9_EIUeJiPEKOdJYqiCPZNk5Z-u_sI8ZBLOWYhvj6THwpmA8dLrjii70ww9B8Y1sSs47Uo-fRA6fcqejNkjLMIEn7E92x6wh6Gf5J8D9vgfdsHn7HoBhLnApW8sbHuPL_eHYxGFLgMeS0idcKBRVIfcgGu639DjE2WygDfYqH5tQLUGUHiDw9pLDzYCYwcP4mqhc3BBqL7vqwUMHoR7CaG6Ei68w6DZvGBnpyc_j5fR2HshqjGFGSJdZ8rkiTW1K4XMcMuNH26mFOqxkGmuRVLjRlJjeuGkKRMl0kzEuSOaURFbI_hLtt92rX3NIOVW5BI3YkrjkCLWtTKl5rWQ3Gq8ZiyZFr2qR2Jy6o_RVBMC7VdFiqpIUVVQ1Ix9vB3TB1qOe6XFpMvqjnFVGDfuHfd-UnyFXx39SlGt7bYohFmdRG9Z5LtlOAYTURRo7TP2KljN7Vx5wXEZeXz4nzN7wx7RE8EYEvGW7Q-brX2H2dGgj7z5H7EHi89fl6sbpGAQpg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SDaXpobRpm24_VeitmLUty7KPS0jYNMke2gRyM5IlwxbHNhsvpb-hf7ozkr20h80hPhhsa2DQSDMj-ekNwBceG26UlAGOBxEkKswDnSodVHFVVWVss9wVg7lcpovr5NuNuNmD4_EsDMEqB9_vfbrz1sOb2dCbs261mv0gCj1MRohRzpHEPIJ9YqcSE9ifn50vlluHLCO_1UKUeyQwnJ3xMC-9aom1O07QeWBoE7vi067808Wh0-fwbEgg2dzr-AL2bHMIj31Jyd-H8PQfgsGX8GfOCHaBvV9btukcxNztjwUUvQxzcEIqhsNqRUeRa1bV7S_W4RMlswxvbK26lWGqMQwbr1GsuXN4I2Zs73BcDWsrdkvAvu_LOesdDveO-QOW7Nb5DNLmFVyfnlwdL4Kh_EJQYhbTB7pMlEkja8oqFzLBVTfO3UQpNGUm41SLqMS1pMYMo5Imj5SIExGmFTGNitAawV_DpGkb-wZYzK1IJa7FlEaRLNSlMrnmpZDcarymEI2dXpQDNzmVyKiLEYT2syBDFWSowhtqCl-3Mp1n5ri3tRhtWfw3vgoMHffKfR4NX-DEo78pqrHtBhthYifRYWbp7jYc44nIMhzwUzjyo2arK884diMP3z5Qs0_wZHF1eVFcnC3P38EBfSFUQyTew6Rfb-wHTJZ6_XGYDH8B6xMTVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+versatile+upconversion-based+multimode+lateral+flow+platform+for+rapid+and+ultrasensitive+detection+of+microRNA+towards+health+monitoring&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Chen%2C+Cong&rft.au=Hu%2C+Songtao&rft.au=Tian%2C+Lulu&rft.au=Qi%2C+Manlin&rft.date=2024-05-15&rft.eissn=1873-4235&rft.volume=252&rft.spage=116135&rft_id=info:doi/10.1016%2Fj.bios.2024.116135&rft_id=info%3Apmid%2F38387230&rft.externalDocID=38387230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon