A versatile upconversion-based multimode lateral flow platform for rapid and ultrasensitive detection of microRNA towards health monitoring
MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simult...
Saved in:
Published in | Biosensors & bioelectronics Vol. 252; p. 116135 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays.
•Ultrasensitive detection of microRNA-21without extra signal amplification process, spanning from 2 nM to 1 fM.•UCNPs are self-assembled on NC membrane, allowing the advantages of liquid-state and solid-state sensor combined in LFA.•Multi-mode lateral flow assay to achieve colorimetric, fluorescence, and SERS signals on the test line.•A specific fluorescence-Raman detection platform enables rapid and simple acquisition of results simultaneously.•Successfully application in authentic samples, distinguish periodontitis patients from normal individuals in saliva samples. |
---|---|
AbstractList | MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF₄: Yb³⁺, Er³⁺) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays. MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF : Yb , Er ) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays. MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays.MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays. MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays. •Ultrasensitive detection of microRNA-21without extra signal amplification process, spanning from 2 nM to 1 fM.•UCNPs are self-assembled on NC membrane, allowing the advantages of liquid-state and solid-state sensor combined in LFA.•Multi-mode lateral flow assay to achieve colorimetric, fluorescence, and SERS signals on the test line.•A specific fluorescence-Raman detection platform enables rapid and simple acquisition of results simultaneously.•Successfully application in authentic samples, distinguish periodontitis patients from normal individuals in saliva samples. |
ArticleNumber | 116135 |
Author | Dong, Biao Chen, Cong Hu, Songtao Li, Liang Chang, Zhiyong Qi, Manlin Wang, Lin Tian, Lulu |
Author_xml | – sequence: 1 givenname: Cong surname: Chen fullname: Chen, Cong organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China – sequence: 2 givenname: Songtao surname: Hu fullname: Hu, Songtao organization: State Key Laboratory on Integrated Optoelectronics, Collage of Electronic Science and Engineering, Jilin University, Changchun, 130021, PR China – sequence: 3 givenname: Lulu surname: Tian fullname: Tian, Lulu organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China – sequence: 4 givenname: Manlin surname: Qi fullname: Qi, Manlin organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China – sequence: 5 givenname: Zhiyong surname: Chang fullname: Chang, Zhiyong organization: Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, PR China – sequence: 6 givenname: Liang orcidid: 0000-0002-5117-9739 surname: Li fullname: Li, Liang email: lliang@jlu.edu.cn organization: State Key Laboratory of Superhard Materials, Collage of Physics, Jilin University, Changchun, 130021, PR China – sequence: 7 givenname: Lin surname: Wang fullname: Wang, Lin email: wanglin1982@jlu.edu.cn organization: Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China – sequence: 8 givenname: Biao surname: Dong fullname: Dong, Biao email: dongb@jlu.edu.cn organization: State Key Laboratory on Integrated Optoelectronics, Collage of Electronic Science and Engineering, Jilin University, Changchun, 130021, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38387230$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7G31D7iQLN3MNR-TTAbcXEpthaIgug6Z5IzNJTMZk9xb_A3-aTPc6sJF3eRw4HkO5H0v0NkcZ0DoNSVbSqh8t98OPuYtI6zdUiopF8_QhqqONy3j4gxtSC9kI6Tk5-gi5z0hpKM9eYHOueKqY5xs0K8dPkLKpvgA-LDYOK-rj3MzmAwOT4dQ_BQd4GAKJBPwGOIDXuo2xjTh-uBkFu-wmR2ucKranH3xR8AOCthSj-E44snbFL982uESH0xyGd-DCeUeT3H2JSY_f3-Jno8mZHj1OC_Rtw_XX69um7vPNx-vdneN5aovzWBb4yQFZ8dedC0MvOvb1hhphvopOQhq21YOirGxcz01grWCyJGSngoCTvBL9PZ0d0nxxwFy0ZPPFkIwM8RD1pwKLpRSPfsvynredaQjSlb0zSN6GCZwekl-Mumn_pN1BdgJqDnknGD8i1Ci10L1Xq-F6rVQfSq0Suofyfpi1kxr0j48rb4_qVCzPHpIOlsPswXnU61Fu-if0n8D3yq95A |
CitedBy_id | crossref_primary_10_1016_j_snb_2025_137635 crossref_primary_10_1021_acs_analchem_4c04803 crossref_primary_10_1016_j_cclet_2024_110801 crossref_primary_10_1016_j_microc_2025_113257 crossref_primary_10_1016_j_mseb_2025_118049 crossref_primary_10_3390_s24247902 crossref_primary_10_1021_acs_analchem_4c05401 crossref_primary_10_1007_s00604_025_07031_1 |
Cites_doi | 10.1016/0003-9861(64)90150-X 10.1016/j.aca.2019.12.068 10.1021/acs.analchem.0c02642 10.1021/acsanm.0c03208 10.1016/j.biopha.2021.111528 10.1016/S1002-0721(17)60972-4 10.1016/j.snb.2020.127718 10.1039/D0AN02177F 10.1016/j.bios.2020.112015 10.1021/ja074447k 10.1021/jacs.5b10309 10.1111/jcpe.13361 10.1016/j.cca.2022.02.012 10.1016/j.trac.2016.06.006 10.1021/nn201896m 10.1021/ac502677n 10.1016/j.bios.2008.03.035 10.1016/j.aca.2017.01.025 10.1021/la403707j 10.1002/emmm.201100209 10.1007/s00216-020-03121-6 10.1039/D1AN00116G 10.1104/pp.109.139139 10.1016/j.talanta.2020.120913 10.1039/B9NR00236G 10.1038/nprot.2007.528 10.1016/j.saa.2019.117529 10.1038/nrd.2016.246 10.1016/j.bios.2019.111407 10.1016/j.talanta.2018.11.057 10.1039/c3an01677c 10.1016/j.bios.2020.112559 10.1093/nar/gkq342 10.1016/j.trac.2021.116452 10.1016/j.jhep.2010.02.021 10.1016/j.snb.2020.128621 10.1016/j.bios.2014.07.075 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2024.116135 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 38387230 10_1016_j_bios_2024_116135 S0956566324001404 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABMYL ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ LX3 M36 R2- SBG SCB SCH SSH WUQ EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-bc4ad61edcf9574eb37944aa6ab8726b51c446b822f7d91a524506f109150ed53 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Tue Aug 05 10:24:42 EDT 2025 Fri Jul 11 09:37:13 EDT 2025 Mon Jul 21 05:50:39 EDT 2025 Tue Jul 01 01:43:11 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 Sat Mar 16 16:14:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lateral flow assay Multimode biosensor Surface-enhanced Raman scattering Upconversion nanoparticles |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-bc4ad61edcf9574eb37944aa6ab8726b51c446b822f7d91a524506f109150ed53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5117-9739 |
PMID | 38387230 |
PQID | 2937707086 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153588892 proquest_miscellaneous_2937707086 pubmed_primary_38387230 crossref_primary_10_1016_j_bios_2024_116135 crossref_citationtrail_10_1016_j_bios_2024_116135 elsevier_sciencedirect_doi_10_1016_j_bios_2024_116135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-15 |
PublicationDateYYYYMMDD | 2024-05-15 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rupaimoole, Slack (bib29) 2017; 16 Schulte, Marschall, Martin, Rosenstiel, Mestdagh, Schlierf, Thor, Vandesompele, Eggert, Schreiber, Rahmann, Schramm (bib32) 2010; 38 Mohammadi, Yammouri, Amine (bib22) 2019; 16 Samal, Polavarapu, Rodal-Cedeira, Liz-Marzán, Pérez-Juste, Pastoriza-Santos (bib31) 2013; 29 Miao, Wang, Yu, Zhao, Tang (bib21) 2015; 63 Li, Xu, Ma, Wu, Sun, Kuang, Wang, Kotov, Xu (bib14) 2016; 138 Wang, Li, Nie, Fan, Han (bib39) 2021; 146 Zhang, Yan, Ru, Zhu, Zou, Gao, Huang, Wang (bib43) 2022; 201 Hosseinzadeh, Ravan, Mohammadi, Pourghadamyari (bib9) 2020; 216 Meng, Jia, An, Wang, Yang, Zhang (bib19) 2020; 323 Sena-Torralba, Ngo, Parolo, Hu, Álvarez-Diduk, Bergua, Rosati, Surareungchai, Merkoçi (bib33) 2020; 168 Zhou, Wu, Ding, Huang, Xiong (bib45) 2021; 145 Chen, Luo, Li, Li, Qin, Zhou, Liu, Gong, Chang (bib4) 2020; 92 Vetrone, Naccache, Fuente, Sanz-Rodríguez, Blazquez-Castro, Rodriguez, Jaque, Solé, Capobianco (bib36) 2010; 2 Fakhri, Abarghoei, Dadmehr, Hosseini, Sabahi, Ganjali (bib7) 2020; 227 Du, Wu, Huang, Sun (bib6) 2021; 4 Bahadır, Sezgintürk (bib2) 2016; 82 Pant, Musialak-Lange, Nuc, May, Buhtz, Kehr, Walther, Scheible (bib26) 2009; 150 Chaiet, Wolf (bib3) 1964; 106 Shin Low, Pan, Ji, Li, Lu, He, Chen, Liu (bib34) 2020; 308 Wang, Wang, Chen, Fu, Lin, Ye, Long, Gao, Zheng (bib40) 2022; 198 Nguyen, Song, Park, Joo (bib23) 2020; 152 Wang, Li, Liu, Zhang, Wu, Diao, Tan, Huang, Cheng, You (bib38) 2022; 42 Ji, Song, Li, Bai, Yang, Peng (bib12) 2007; 129 Lin, Weng, Liu, Lin, Yang, Chen, Feng (bib17) 2024; 399 Meng, X., Pang, X., Yang, J., Zhang, X., Dong, H., n.d. Small n/a, 2307701.. Várallyay, Burgyán, Havelda (bib35) 2008; 3 Li, Ye, Chen, Liu, Guo, Wang (bib15) 2017; 35 Sadighbathi, Mobed (bib30) 2022; 530 Zhang, Li, Pan, Zhang, Zhang, Wang, Yan, Liu, Lu (bib42) 2021; 190 Pothipor, Aroonyadet, Bamrungsap, Jakmunee, Ounnunkad (bib27) 2021; 146 Al-Rawi, Al-Marzooq, Al-Nuaimi, Hachim, Hamoudi (bib1) 2020; 15 Hussen, Hidayat, Salihi, Sabir, Taheri, Ghafouri-Fard (bib10) 2021; 138 Noor, Krull (bib25) 2014; 86 Quesada-González, Stefani, González, de la Escosura-Muñiz, Domingo, Mutjé, Merkoçi (bib28) 2019; 141 Liu, Yu, Yu, Lavker, Cai, Liu, Yang, He, Chen (bib18) 2010; 53 Iorio, Croce (bib11) 2012; 4 Doughan, Uddayasankar, Peri, Krull (bib5) 2017; 962 Wang, Xue, Hao, Miao, Zhang, Zheng, Zheng, Lin, Weng (bib41) 2020; 1103 Fernandes, Gonçalves Fernandes, Morford, Harrison, Kompotiati, Huang, Aukhil, Wallet, Macchion Shaddox (bib8) 2020; 47 Zheng, Chen, Li, Xu, Chen, Chen, Liu, Lin, Weng (bib44) 2021; 413 Jin, Gu, Man, Cheng, Xu, Zhang, Wang, Lee, Cheng, Wong (bib13) 2011; 5 Lin, Yang, Chen, Yang, Chang (bib16) 2008; 24 N. Johnson, Mutharasan (bib24) 2014; 139 Wang, Sun, Pu, Wei (bib37) 2019; 195 Fernandes (10.1016/j.bios.2024.116135_bib8) 2020; 47 Mohammadi (10.1016/j.bios.2024.116135_bib22) 2019; 16 Sena-Torralba (10.1016/j.bios.2024.116135_bib33) 2020; 168 Fakhri (10.1016/j.bios.2024.116135_bib7) 2020; 227 Hosseinzadeh (10.1016/j.bios.2024.116135_bib9) 2020; 216 Li (10.1016/j.bios.2024.116135_bib14) 2016; 138 Rupaimoole (10.1016/j.bios.2024.116135_bib29) 2017; 16 Shin Low (10.1016/j.bios.2024.116135_bib34) 2020; 308 Du (10.1016/j.bios.2024.116135_bib6) 2021; 4 Schulte (10.1016/j.bios.2024.116135_bib32) 2010; 38 N. Johnson (10.1016/j.bios.2024.116135_bib24) 2014; 139 Bahadır (10.1016/j.bios.2024.116135_bib2) 2016; 82 Iorio (10.1016/j.bios.2024.116135_bib11) 2012; 4 Ji (10.1016/j.bios.2024.116135_bib12) 2007; 129 Zhang (10.1016/j.bios.2024.116135_bib43) 2022; 201 Hussen (10.1016/j.bios.2024.116135_bib10) 2021; 138 Miao (10.1016/j.bios.2024.116135_bib21) 2015; 63 Pothipor (10.1016/j.bios.2024.116135_bib27) 2021; 146 10.1016/j.bios.2024.116135_bib20 Nguyen (10.1016/j.bios.2024.116135_bib23) 2020; 152 Zheng (10.1016/j.bios.2024.116135_bib44) 2021; 413 Wang (10.1016/j.bios.2024.116135_bib39) 2021; 146 Zhou (10.1016/j.bios.2024.116135_bib45) 2021; 145 Sadighbathi (10.1016/j.bios.2024.116135_bib30) 2022; 530 Wang (10.1016/j.bios.2024.116135_bib37) 2019; 195 Samal (10.1016/j.bios.2024.116135_bib31) 2013; 29 Wang (10.1016/j.bios.2024.116135_bib41) 2020; 1103 Al-Rawi (10.1016/j.bios.2024.116135_bib1) 2020; 15 Lin (10.1016/j.bios.2024.116135_bib17) 2024; 399 Liu (10.1016/j.bios.2024.116135_bib18) 2010; 53 Wang (10.1016/j.bios.2024.116135_bib38) 2022; 42 Li (10.1016/j.bios.2024.116135_bib15) 2017; 35 Pant (10.1016/j.bios.2024.116135_bib26) 2009; 150 Jin (10.1016/j.bios.2024.116135_bib13) 2011; 5 Noor (10.1016/j.bios.2024.116135_bib25) 2014; 86 Lin (10.1016/j.bios.2024.116135_bib16) 2008; 24 Zhang (10.1016/j.bios.2024.116135_bib42) 2021; 190 Chaiet (10.1016/j.bios.2024.116135_bib3) 1964; 106 Meng (10.1016/j.bios.2024.116135_bib19) 2020; 323 Doughan (10.1016/j.bios.2024.116135_bib5) 2017; 962 Wang (10.1016/j.bios.2024.116135_bib40) 2022; 198 Várallyay (10.1016/j.bios.2024.116135_bib35) 2008; 3 Vetrone (10.1016/j.bios.2024.116135_bib36) 2010; 2 Chen (10.1016/j.bios.2024.116135_bib4) 2020; 92 Quesada-González (10.1016/j.bios.2024.116135_bib28) 2019; 141 |
References_xml | – volume: 42 year: 2022 ident: bib38 publication-title: Bioscience Reports – volume: 129 start-page: 13939 year: 2007 end-page: 13948 ident: bib12 publication-title: J. Am. Chem. Soc. – volume: 962 start-page: 88 year: 2017 end-page: 96 ident: bib5 publication-title: Anal. Chim. Acta – volume: 16 start-page: 203 year: 2017 end-page: 222 ident: bib29 publication-title: Nat. Rev. Drug Discov. – volume: 413 start-page: 1605 year: 2021 end-page: 1614 ident: bib44 publication-title: Anal. Bioanal. Chem. – volume: 146 start-page: 2679 year: 2021 end-page: 2688 ident: bib27 publication-title: Analyst – volume: 4 start-page: 2565 year: 2021 end-page: 2574 ident: bib6 publication-title: ACS Appl. Nano Mater. – volume: 63 start-page: 365 year: 2015 end-page: 370 ident: bib21 publication-title: Biosens. Bioelectron. – volume: 150 start-page: 1541 year: 2009 end-page: 1555 ident: bib26 publication-title: Plant Physiol. – volume: 15 year: 2020 ident: bib1 publication-title: PLoS One – volume: 106 start-page: 1 year: 1964 end-page: 5 ident: bib3 publication-title: Arch. Biochem. Biophys. – volume: 190 year: 2021 ident: bib42 publication-title: Biosens. Bioelectron. – volume: 138 start-page: 306 year: 2016 end-page: 312 ident: bib14 publication-title: J. Am. Chem. Soc. – reference: Meng, X., Pang, X., Yang, J., Zhang, X., Dong, H., n.d. Small n/a, 2307701.. – volume: 16 start-page: 96 year: 2019 end-page: 105 ident: bib22 publication-title: Curr. Opin. Electrochem. Electrochem. Mat. Eng. Sensor. Biosens. – volume: 201 year: 2022 ident: bib43 publication-title: Biosens. Bioelectron. – volume: 399 year: 2024 ident: bib17 publication-title: Sensor. Actuator. B Chem. – volume: 530 start-page: 27 year: 2022 end-page: 38 ident: bib30 publication-title: Clin. Chim. Acta – volume: 92 start-page: 13336 year: 2020 end-page: 13342 ident: bib4 publication-title: Anal. Chem. – volume: 3 start-page: 190 year: 2008 end-page: 196 ident: bib35 publication-title: Nat. Protoc. – volume: 1103 start-page: 212 year: 2020 end-page: 219 ident: bib41 publication-title: Anal. Chim. Acta – volume: 47 start-page: 1317 year: 2020 end-page: 1325 ident: bib8 publication-title: J. Clin. Periodontol. – volume: 29 start-page: 15076 year: 2013 end-page: 15082 ident: bib31 publication-title: Langmuir – volume: 141 year: 2019 ident: bib28 publication-title: Biosens. Bioelectron. – volume: 24 start-page: 178 year: 2008 end-page: 183 ident: bib16 publication-title: Biosens. Bioelectron. – volume: 138 year: 2021 ident: bib10 publication-title: Biomed. Pharmacother. – volume: 146 start-page: 848 year: 2021 end-page: 854 ident: bib39 publication-title: Analyst – volume: 2 start-page: 495 year: 2010 end-page: 498 ident: bib36 publication-title: Nanoscale – volume: 86 start-page: 10331 year: 2014 end-page: 10339 ident: bib25 publication-title: Anal. Chem. – volume: 195 start-page: 506 year: 2019 end-page: 515 ident: bib37 publication-title: Talanta – volume: 35 start-page: 753 year: 2017 end-page: 760 ident: bib15 publication-title: J. Rare Earths – volume: 323 year: 2020 ident: bib19 publication-title: Sensor. Actuator. B Chem. – volume: 227 year: 2020 ident: bib7 publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 5 start-page: 7838 year: 2011 end-page: 7847 ident: bib13 publication-title: ACS Nano – volume: 82 start-page: 286 year: 2016 end-page: 306 ident: bib2 publication-title: TrAC, Trends Anal. Chem. – volume: 168 year: 2020 ident: bib33 publication-title: Biosens. Bioelectron. – volume: 38 start-page: 5919 year: 2010 end-page: 5928 ident: bib32 publication-title: Nucleic Acids Res. – volume: 198 year: 2022 ident: bib40 publication-title: Biosens. Bioelectron. – volume: 139 start-page: 1576 year: 2014 end-page: 1588 ident: bib24 publication-title: Analyst – volume: 152 year: 2020 ident: bib23 publication-title: Biosens. Bioelectron. – volume: 4 start-page: 143 year: 2012 end-page: 159 ident: bib11 publication-title: EMBO Mol. Med. – volume: 53 start-page: 98 year: 2010 end-page: 107 ident: bib18 publication-title: J. Hepatol. – volume: 145 year: 2021 ident: bib45 publication-title: TrAC, Trends Anal. Chem. – volume: 216 year: 2020 ident: bib9 publication-title: Talanta – volume: 308 year: 2020 ident: bib34 publication-title: Sensor. Actuator. B Chem. – ident: 10.1016/j.bios.2024.116135_bib20 – volume: 106 start-page: 1 year: 1964 ident: 10.1016/j.bios.2024.116135_bib3 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(64)90150-X – volume: 1103 start-page: 212 year: 2020 ident: 10.1016/j.bios.2024.116135_bib41 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.12.068 – volume: 92 start-page: 13336 year: 2020 ident: 10.1016/j.bios.2024.116135_bib4 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02642 – volume: 4 start-page: 2565 year: 2021 ident: 10.1016/j.bios.2024.116135_bib6 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c03208 – volume: 399 year: 2024 ident: 10.1016/j.bios.2024.116135_bib17 publication-title: Sensor. Actuator. B Chem. – volume: 138 year: 2021 ident: 10.1016/j.bios.2024.116135_bib10 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.111528 – volume: 35 start-page: 753 year: 2017 ident: 10.1016/j.bios.2024.116135_bib15 publication-title: J. Rare Earths doi: 10.1016/S1002-0721(17)60972-4 – volume: 308 year: 2020 ident: 10.1016/j.bios.2024.116135_bib34 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2020.127718 – volume: 146 start-page: 848 year: 2021 ident: 10.1016/j.bios.2024.116135_bib39 publication-title: Analyst doi: 10.1039/D0AN02177F – volume: 152 year: 2020 ident: 10.1016/j.bios.2024.116135_bib23 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112015 – volume: 129 start-page: 13939 year: 2007 ident: 10.1016/j.bios.2024.116135_bib12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074447k – volume: 138 start-page: 306 year: 2016 ident: 10.1016/j.bios.2024.116135_bib14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10309 – volume: 47 start-page: 1317 year: 2020 ident: 10.1016/j.bios.2024.116135_bib8 publication-title: J. Clin. Periodontol. doi: 10.1111/jcpe.13361 – volume: 16 start-page: 96 year: 2019 ident: 10.1016/j.bios.2024.116135_bib22 publication-title: Curr. Opin. Electrochem. Electrochem. Mat. Eng. Sensor. Biosens. – volume: 530 start-page: 27 year: 2022 ident: 10.1016/j.bios.2024.116135_bib30 publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2022.02.012 – volume: 82 start-page: 286 year: 2016 ident: 10.1016/j.bios.2024.116135_bib2 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2016.06.006 – volume: 5 start-page: 7838 year: 2011 ident: 10.1016/j.bios.2024.116135_bib13 publication-title: ACS Nano doi: 10.1021/nn201896m – volume: 86 start-page: 10331 year: 2014 ident: 10.1016/j.bios.2024.116135_bib25 publication-title: Anal. Chem. doi: 10.1021/ac502677n – volume: 24 start-page: 178 year: 2008 ident: 10.1016/j.bios.2024.116135_bib16 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2008.03.035 – volume: 962 start-page: 88 year: 2017 ident: 10.1016/j.bios.2024.116135_bib5 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.01.025 – volume: 29 start-page: 15076 year: 2013 ident: 10.1016/j.bios.2024.116135_bib31 publication-title: Langmuir doi: 10.1021/la403707j – volume: 4 start-page: 143 year: 2012 ident: 10.1016/j.bios.2024.116135_bib11 publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201100209 – volume: 413 start-page: 1605 year: 2021 ident: 10.1016/j.bios.2024.116135_bib44 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-03121-6 – volume: 146 start-page: 2679 year: 2021 ident: 10.1016/j.bios.2024.116135_bib27 publication-title: Analyst doi: 10.1039/D1AN00116G – volume: 150 start-page: 1541 year: 2009 ident: 10.1016/j.bios.2024.116135_bib26 publication-title: Plant Physiol. doi: 10.1104/pp.109.139139 – volume: 216 year: 2020 ident: 10.1016/j.bios.2024.116135_bib9 publication-title: Talanta doi: 10.1016/j.talanta.2020.120913 – volume: 42 year: 2022 ident: 10.1016/j.bios.2024.116135_bib38 – volume: 190 year: 2021 ident: 10.1016/j.bios.2024.116135_bib42 publication-title: Biosens. Bioelectron. – volume: 2 start-page: 495 year: 2010 ident: 10.1016/j.bios.2024.116135_bib36 publication-title: Nanoscale doi: 10.1039/B9NR00236G – volume: 3 start-page: 190 year: 2008 ident: 10.1016/j.bios.2024.116135_bib35 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.528 – volume: 227 year: 2020 ident: 10.1016/j.bios.2024.116135_bib7 publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.117529 – volume: 16 start-page: 203 year: 2017 ident: 10.1016/j.bios.2024.116135_bib29 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.246 – volume: 15 year: 2020 ident: 10.1016/j.bios.2024.116135_bib1 publication-title: PLoS One – volume: 141 year: 2019 ident: 10.1016/j.bios.2024.116135_bib28 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111407 – volume: 201 year: 2022 ident: 10.1016/j.bios.2024.116135_bib43 publication-title: Biosens. Bioelectron. – volume: 195 start-page: 506 year: 2019 ident: 10.1016/j.bios.2024.116135_bib37 publication-title: Talanta doi: 10.1016/j.talanta.2018.11.057 – volume: 139 start-page: 1576 year: 2014 ident: 10.1016/j.bios.2024.116135_bib24 publication-title: Analyst doi: 10.1039/c3an01677c – volume: 168 year: 2020 ident: 10.1016/j.bios.2024.116135_bib33 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112559 – volume: 198 year: 2022 ident: 10.1016/j.bios.2024.116135_bib40 publication-title: Biosens. Bioelectron. – volume: 38 start-page: 5919 year: 2010 ident: 10.1016/j.bios.2024.116135_bib32 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq342 – volume: 145 year: 2021 ident: 10.1016/j.bios.2024.116135_bib45 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2021.116452 – volume: 53 start-page: 98 year: 2010 ident: 10.1016/j.bios.2024.116135_bib18 publication-title: J. Hepatol. doi: 10.1016/j.jhep.2010.02.021 – volume: 323 year: 2020 ident: 10.1016/j.bios.2024.116135_bib19 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2020.128621 – volume: 63 start-page: 365 year: 2015 ident: 10.1016/j.bios.2024.116135_bib21 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.07.075 |
SSID | ssj0007190 |
Score | 2.5017993 |
Snippet | MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116135 |
SubjectTerms | biomarkers biosensors early diagnosis energy transfer fluorescence gene expression immune response Lateral flow assay lung neoplasms microRNA Multimode biosensor nanoparticles periodontitis prediction Surface-enhanced Raman scattering Upconversion nanoparticles |
Title | A versatile upconversion-based multimode lateral flow platform for rapid and ultrasensitive detection of microRNA towards health monitoring |
URI | https://dx.doi.org/10.1016/j.bios.2024.116135 https://www.ncbi.nlm.nih.gov/pubmed/38387230 https://www.proquest.com/docview/2937707086 https://www.proquest.com/docview/3153588892 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhpdAeSpt-bdqGKfRW3LUty7KPS0jYtnQPbQO5GcmSYItjm42X0kv-QP50ZiQ7bQ6bQ30w2IxAaMYzI_nNG8Y-8NRwo6SM0B5ElKm4jHSudORS51yd2qL0zWC-rfLlWfblXJzvseOpFoZglaPvDz7de-vxzXxczXm_Xs9_EIUeJiPEKOdJYqiCPZNk5Z-u_sI8ZBLOWYhvj6THwpmA8dLrjii70ww9B8Y1sSs47Uo-fRA6fcqejNkjLMIEn7E92x6wh6Gf5J8D9vgfdsHn7HoBhLnApW8sbHuPL_eHYxGFLgMeS0idcKBRVIfcgGu639DjE2WygDfYqH5tQLUGUHiDw9pLDzYCYwcP4mqhc3BBqL7vqwUMHoR7CaG6Ei68w6DZvGBnpyc_j5fR2HshqjGFGSJdZ8rkiTW1K4XMcMuNH26mFOqxkGmuRVLjRlJjeuGkKRMl0kzEuSOaURFbI_hLtt92rX3NIOVW5BI3YkrjkCLWtTKl5rWQ3Gq8ZiyZFr2qR2Jy6o_RVBMC7VdFiqpIUVVQ1Ix9vB3TB1qOe6XFpMvqjnFVGDfuHfd-UnyFXx39SlGt7bYohFmdRG9Z5LtlOAYTURRo7TP2KljN7Vx5wXEZeXz4nzN7wx7RE8EYEvGW7Q-brX2H2dGgj7z5H7EHi89fl6sbpGAQpg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SDaXpobRpm24_VeitmLUty7KPS0jYNMke2gRyM5IlwxbHNhsvpb-hf7ozkr20h80hPhhsa2DQSDMj-ekNwBceG26UlAGOBxEkKswDnSodVHFVVWVss9wVg7lcpovr5NuNuNmD4_EsDMEqB9_vfbrz1sOb2dCbs261mv0gCj1MRohRzpHEPIJ9YqcSE9ifn50vlluHLCO_1UKUeyQwnJ3xMC-9aom1O07QeWBoE7vi067808Wh0-fwbEgg2dzr-AL2bHMIj31Jyd-H8PQfgsGX8GfOCHaBvV9btukcxNztjwUUvQxzcEIqhsNqRUeRa1bV7S_W4RMlswxvbK26lWGqMQwbr1GsuXN4I2Zs73BcDWsrdkvAvu_LOesdDveO-QOW7Nb5DNLmFVyfnlwdL4Kh_EJQYhbTB7pMlEkja8oqFzLBVTfO3UQpNGUm41SLqMS1pMYMo5Imj5SIExGmFTGNitAawV_DpGkb-wZYzK1IJa7FlEaRLNSlMrnmpZDcarymEI2dXpQDNzmVyKiLEYT2syBDFWSowhtqCl-3Mp1n5ri3tRhtWfw3vgoMHffKfR4NX-DEo78pqrHtBhthYifRYWbp7jYc44nIMhzwUzjyo2arK884diMP3z5Qs0_wZHF1eVFcnC3P38EBfSFUQyTew6Rfb-wHTJZ6_XGYDH8B6xMTVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+versatile+upconversion-based+multimode+lateral+flow+platform+for+rapid+and+ultrasensitive+detection+of+microRNA+towards+health+monitoring&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Chen%2C+Cong&rft.au=Hu%2C+Songtao&rft.au=Tian%2C+Lulu&rft.au=Qi%2C+Manlin&rft.date=2024-05-15&rft.eissn=1873-4235&rft.volume=252&rft.spage=116135&rft_id=info:doi/10.1016%2Fj.bios.2024.116135&rft_id=info%3Apmid%2F38387230&rft.externalDocID=38387230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |