Interface engineering of nickel Hydroxide-Molybdenum diselenide nanosheet heterostructure arrays for efficient alkaline hydrogen production

An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further used as efficient self-supported electrocatalyst for alkaline hydrogen production. [Display omitted] •The Ni(OH)2-MoSe2 nanosheets arrays hetero...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 614; pp. 267 - 276
Main Authors Zhang, Limin, Zhang, Wenfei, Wang, Minglang, Wang, Hui, Zang, Jinhao, Shen, Weixia, Huang, Xiaowen, Kong, Dezhi, Tian, Yongtao, Xu, Tingting, Wang, Ye, Li, Xinjian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2022
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2022.01.121

Cover

Loading…
Abstract An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further used as efficient self-supported electrocatalyst for alkaline hydrogen production. [Display omitted] •The Ni(OH)2-MoSe2 nanosheets arrays heterostructure are constructed on carbon cloth.•The Ni(OH)2 deposition time can regulate the alkaline HER activity of the catalyst.•The optimized catalyst performs a low η10 of 130 mV with a Tafel slope of 78.2 mV dec-1.•Ni(OH)2 in the catalyst promotes the water dissociation and regulates the electronic structures. The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides.
AbstractList The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides.The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides.
The stacking of Molybdenum Diselenide (MoSe₂) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)₂-MoSe₂ heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)₂ deposition time on the HER performance. The synergistic effect between Ni(OH)₂ and MoSe₂ in the Ni(OH)₂-MoSe₂ heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)₂-MoSe₂/CC constructed in this way with a Ni(OH)₂ deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at ⁻10 mA cm⁻², a low Tafel slope of 78.2 mV dec⁻¹ and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe₂ and other similar transition metal dichalcogenides.
An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further used as efficient self-supported electrocatalyst for alkaline hydrogen production. [Display omitted] •The Ni(OH)2-MoSe2 nanosheets arrays heterostructure are constructed on carbon cloth.•The Ni(OH)2 deposition time can regulate the alkaline HER activity of the catalyst.•The optimized catalyst performs a low η10 of 130 mV with a Tafel slope of 78.2 mV dec-1.•Ni(OH)2 in the catalyst promotes the water dissociation and regulates the electronic structures. The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides.
The stacking of Molybdenum Diselenide (MoSe ) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH) -MoSe heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH) deposition time on the HER performance. The synergistic effect between Ni(OH) and MoSe in the Ni(OH) -MoSe heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH) -MoSe /CC constructed in this way with a Ni(OH) deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at 10 mA cm , a low Tafel slope of 78.2 mV dec and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe and other similar transition metal dichalcogenides.
Author Tian, Yongtao
Shen, Weixia
Zhang, Wenfei
Wang, Ye
Wang, Hui
Xu, Tingting
Li, Xinjian
Huang, Xiaowen
Zhang, Limin
Zang, Jinhao
Wang, Minglang
Kong, Dezhi
Author_xml – sequence: 1
  givenname: Limin
  surname: Zhang
  fullname: Zhang, Limin
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 2
  givenname: Wenfei
  surname: Zhang
  fullname: Zhang, Wenfei
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 3
  givenname: Minglang
  surname: Wang
  fullname: Wang, Minglang
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 4
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 5
  givenname: Jinhao
  surname: Zang
  fullname: Zang, Jinhao
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 6
  givenname: Weixia
  surname: Shen
  fullname: Shen, Weixia
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 7
  givenname: Xiaowen
  surname: Huang
  fullname: Huang, Xiaowen
  organization: State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
– sequence: 8
  givenname: Dezhi
  surname: Kong
  fullname: Kong, Dezhi
  email: dezhi_kong@zzu.edu.cn
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 9
  givenname: Yongtao
  surname: Tian
  fullname: Tian, Yongtao
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 10
  givenname: Tingting
  surname: Xu
  fullname: Xu, Tingting
  email: xutt@zzu.edu.cn
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 11
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
– sequence: 12
  givenname: Xinjian
  surname: Li
  fullname: Li, Xinjian
  organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35101674$$D View this record in MEDLINE/PubMed
BookMark eNqNkbFuHCEURVFkK147-YEUEWWamQCzzAxSmshKYkuO3Ng1YuCxy5oFBxgr-w356TBau0lhpUKgc-973HuOTkIMgNAHSlpKaP951-60yy0jjLWEtpTRN2hFieDNQEl3glaEMNqIQQxn6DznHSGUci7eorOOLwbDeoX-XIcCySoNGMLGBYDkwgZHi4PTD-Dx1cGk-NsZaH5Gf5gMhHmPjcvgIdRXHFSIeQtQ8BaqU8wlzbrMCbBKSR0ytjFhsNZpB6Fg5R-Ur2PwdvHdQMCPKZqqcDG8Q6dW-Qzvn88LdP_9293lVXNz--P68utNo7tRlGZSYhq0UoZMI1v3pl7M0Pe91cBHO4CYej5N1FqlOANLBedm3a-t0QrECLy7QJ-OvnX0rxlykXuXNXivAsQ5S9Z3PecD79h_oHUDLkY6VvTjMzpPezDyMbm9Sgf5knUFxiOga0o5gZXaFbV8vCTlvKRELqTcyaVWudQqCZW11ipl_0hf3F8VfTmKoGb55CDJvHSgwbgEukgT3Wvyv04xwLQ
CitedBy_id crossref_primary_10_1002_aenm_202303614
crossref_primary_10_1016_j_cej_2024_157270
crossref_primary_10_1016_j_electacta_2023_142191
crossref_primary_10_1016_j_apsusc_2024_161057
crossref_primary_10_1002_aenm_202202600
crossref_primary_10_1016_j_cej_2022_139251
crossref_primary_10_1016_j_jcis_2023_01_006
crossref_primary_10_1021_acsanm_2c01924
crossref_primary_10_1039_D2TA02458F
crossref_primary_10_1039_D2TA03294E
crossref_primary_10_1016_j_jechem_2023_05_013
crossref_primary_10_1016_j_apsusc_2024_160990
crossref_primary_10_1021_acs_jpca_4c05203
crossref_primary_10_1002_smtd_202200900
Cites_doi 10.1039/C7NR06001G
10.1002/celc.201900448
10.1016/j.cej.2018.08.185
10.1016/j.nanoen.2017.05.011
10.1016/j.cej.2020.126529
10.1002/adma.202007100
10.1016/j.jcis.2021.12.076
10.1016/j.electacta.2020.136598
10.1016/j.jcp.2015.02.030
10.1021/acsnano.9b05865
10.1039/C8TA02773K
10.1002/aenm.201700155
10.1016/j.jcis.2021.09.020
10.1039/D0TA05817C
10.1016/j.apcatb.2018.09.064
10.1039/C8NR08028C
10.1063/1674-0068/cjcp1911204
10.1021/jacs.9b04492
10.1007/s11581-020-03641-2
10.1021/acsami.5b12772
10.1002/adma.201606521
10.1126/science.1211934
10.1021/acsphotonics.8b00853
10.1002/smll.201703798
10.1039/C7TA05352E
10.1016/j.jallcom.2017.06.105
10.1039/C8NR07045H
10.3389/fchem.2018.00431
10.1002/adfm.201705970
10.1016/j.apsusc.2020.148804
10.1016/j.ensm.2019.09.007
10.1016/j.jcis.2020.10.119
10.1007/s11581-017-2160-4
10.1038/nmat3313
10.1002/celc.201901623
10.1002/adfm.202003261
10.1016/j.electacta.2018.12.101
10.1039/C8TA04950E
10.1002/adfm.201102796
10.1016/j.jcis.2021.10.020
10.1002/adma.202004412
10.1016/j.ijhydene.2020.02.056
10.1007/s40820-021-00756-7
10.1007/s12274-021-3629-z
10.1039/C9NR10348A
10.1021/acsami.8b07489
10.1039/C9NR09278A
10.1002/anie.202109291
10.1021/acsaem.0c01091
10.1039/D0NR08009H
10.1016/j.nanoen.2019.103919
10.1016/j.nanoen.2020.105645
10.1016/j.apsusc.2021.149598
10.1002/adfm.201806419
10.1002/adma.201806326
10.1016/j.apcatb.2019.01.094
10.1016/j.ssi.2021.115711
10.1007/s12274-018-2200-z
10.1002/smtd.201800317
10.1016/j.snb.2017.12.070
10.1016/j.jpowsour.2020.228906
10.1016/j.apcatb.2019.04.072
10.1002/ente.201901503
10.1364/OL.42.003335
10.1021/acssuschemeng.9b07507
10.1021/acsnano.9b03994
10.1039/C9TA13611H
10.1016/j.apsusc.2018.03.154
10.1002/adfm.201702300
10.1007/s12274-021-3346-7
10.1002/ente.201800476
10.1007/s40820-020-00469-3
10.1039/D1TC01552D
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2022.01.121
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 276
ExternalDocumentID 35101674
10_1016_j_jcis_2022_01_121
S0021979722001345
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-ba9b7caad0b8246db7cd7666fce58f7e9b65bb1ffaa52ef1955d464fdcae98e53
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 22:32:04 EDT 2025
Fri Jul 11 10:54:14 EDT 2025
Thu Apr 03 07:08:33 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Tue Jul 01 01:19:18 EDT 2025
Fri Feb 23 02:40:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen evolution reaction
Overpotential
Synergistic effect
Heterostructures
Tafel slope
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-ba9b7caad0b8246db7cd7666fce58f7e9b65bb1ffaa52ef1955d464fdcae98e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35101674
PQID 2624659818
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2636557532
proquest_miscellaneous_2624659818
pubmed_primary_35101674
crossref_citationtrail_10_1016_j_jcis_2022_01_121
crossref_primary_10_1016_j_jcis_2022_01_121
elsevier_sciencedirect_doi_10_1016_j_jcis_2022_01_121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Subbaraman, Tripkovic, Strmcnik, Chang, Uchimura, Paulikas, Stamenkovic, Markovic (b0155) 2011; 334
Xu, Jiang, Zhang, Hu, Li (b0160) 2019; 242
Tang, Zhang, Mei, Zhang, Liu, Wang, Li (b0325) 2021; 404
Wang, Zhang, Fu, Wang (b0335) 2020; 33
Zhang, Kong, Zhuang, Wang, Zhang, Zang, Shen, Xu, Wu, Tian, Wang, Li, Huang (b0225) 2021; 9
Zhou, Yang, Xi, He, Song (b0380) 2020; 45
Yu, Tian, Zhou, Zhang, Chen, Liu, Liu, Xu, Wang (b0355) 2018; 6
He, Liu, Zhu, Tan, Cao, Zhao, Chen (b0175) 2020; 3
Wang, Wang (b0340) 2020; 29
Ma, Xu, Wang (b0215) 2020; 25
Ma, Xu, Yan, Xu, Kong, Zhang, Shen, Shi, Ke, Li, Wang (b0065) 2021; 482
Lu, Yu, Tian (b0120) 2022; 607
Wang, Kong, Huang, Shi, Ding, Von Lim, Xu, Chen, Li, Yang (b0070) 2018; 6
Yan, Zhi, Kong, Wang, Xu, Zang, Shen, Xu, Shi, Dai, Li, Wang (b0220) 2020; 8
Yang, Yao, Yu, Islam, He, Yuan, Yue, Xu, Hao, Sun, Li, Ma, Zapol, Kanatzidis (b0285) 2019; 141
Subbaraman, Tripkovic, Chang, Strmcnik, Paulikas, Hirunsit, Chan, Greeley, Stamenkovic, Markovic (b0150) 2012; 11
Vecharynski, Yang, Pask (b0330) 2015; 290
Zeng, Lin, Li, Zhang, Zhang, Xie, Mak, Chai, Lau, Luo, Tsang (b0180) 2018; 28
Zeng, Wu, Jie, Ren, Hu, Lau, Chai, Tsang (b0030) 2020; 32
Li, Kou, Wang (b0110) 2020; 5
Zhang, Huang, Shen, Gong, Chi, Pu, Li (b0245) 2017; 7
Wu, Guo, Du, Xia, Zeng, Tian, Shi, Tian, Li, Tsang, Jie (b0265) 2019; 13
Ming, Hua, Ming, Ce, Yi, Jun (b0085) 2020; 32
Zhao, Lin, Rui, Zhou, Chen, Dou, Sun (b0190) 2018; 10
Zhang, Zuo, Zhang, Huang, Lu, Fan, Liu (b0205) 2016; 8
Wu, Zhao, Lu, Rogée, Zeng, Lin, Shi, Tian, Li, Tsang (b0115) 2021; 14
Yu, Duan, Feng, Yu, Gao, Yu (b0280) 2021; 33
Pei, Zhang, Zhi, Kong, Wang, Huang, Zang, Xu, Wang, Li (b0015) 2021
Kuang, He, Zou, Yu, Fan (b0290) 2019; 254
Zong, Yu, Zhu (b0305) 2020; 353
Zhang, Wang, Sun, Sun, Hu, Xu, Ma (b0100) 2017; 5
Zhang, Liu, Wang, Ruan, Ji, Xu, Chen, Wan, Miao, Jiang (b0250) 2017; 37
Li, Zhao, Yu, Liu, Zhang, Liu, Zhou (b0005) 2020; 12
Zhou, Zhao, Rui, Chen, Xu, Dou, Sun (b0135) 2019; 11
Chen, Zhu, Li, Feng, Li, Zhang, Wang, Gu, Zhang, Zhao (b0300) 2020; 8
Kong, Wang, Huang, Lim, Wang, Xu, Zang, Li, Yang (b0020) 2022; 607
Chen, Zhang, Ren, Ge, Teng, Sun, Li (b0170) 2017; 9
Amiinu, Pu, Liu, Owusu, Monestel, Boakye, Zhang, Mu (b0360) 2017; 27
Xu, Pei, Liu, Wu, Shi, Xu, Tian, Li (b0035) 2017; 725
Wang, Lim, Huang, Ding, Kong, Pei, Xu, Shi, Li, Yang (b0240) 2020; 12
Hao, Jiang, Kang, Hua, Bing, De, Meng, Hong, Du (b0295) 2021; 586
Wu, Wang, Zeng, Jia, Wu, Xu, Shi, Tian, Li, Tsang (b0050) 2018; 5
Wang, Sun, Ci, Shi, Shen, Wei, Ding, Yang, Sun (b0270) 2021; 60
Zhuo, Zeng, Yuan, Wu, Wang, Shi, Xu, Tian, Li, Tsang (b0375) 2019; 12
Feng, Pang, Xu, Guo, Gao, Qiu, Chen (b0025) 2020; 7
Yong, Qian, Ting, Jing, Liu (b0345) 2018; 14
Wu, Chen, Zhu, Du, Huang, Yan, Cai, Guan, Pan (b0310) 2020; 8
Shao, Wang, Huang (b0125) 2019; 29
Yang, Zhang, Wang, Huang, Xu, Kong, Zhang, Zang, Li, Wang (b0210) 2022; 611
Zhang, Zhang, Zhang, Jiang, Zhang, Yang, Gu, Hu, Wan (b0140) 2019; 3
Dai, Zhang, Xu, Shen, Zhang, Yang, Xu, Dang, Hu, Zhao, Wang, Qu, Fu, Li, Hu, Liu (b0080) 2019; 64
Liu, Jiang, Li, Zhou, Li, Li, Shao (b0315) 2019; 247
Wang, Wu, Wang, Xu, Kong, Jiang, Wu, Tang, Li, Lee (b0010) 2021; 14
Kirubasankar, Palanisamy, Arunachalam, Murugadoss, Angaiah (b0195) 2019; 355
Tang, Tang, Gong (b0200) 2012; 22
Lou, Zeng, Wang, Wu, Xu, Shi, Tian, LI, Tsang (b0370) 2017; 42
Zhang, Li, Deng, Shen, Zhang, Pan, Xiong, Liu, Xia, Wang, Tu (b0055) 2019; 6
Jiang, Xu, Yan, Ma, Dai (b0130) 2018; 6
Zhao, Zhuang, Xu, Zhang, Shen, Tang, Wang, Xu, Wang, Li (b0090) 2020; 26
Wang, Zheng, Wang, Wang, Sun, He, Zhang, Chen (b0145) 2019; 299
Wu, Dong, Sun, Huang (b0095) 2021; 13
Chen, Pei, Jiang, Shi, Xu, Wu, Xu, Tian, Wang, Li (b0040) 2018; 447
Xu, Liu, Pei, Chen, Jiang, Shi, Xu, Wu, Tian, Li (b0045) 2018; 259
Jiang, Xu, Dai, Yan, Ma, Wang, Xu, Zhang, Wang (b0165) 2019; 7
Liu, Zhao, Peng, Zhang, Sit, Yuen, Zhang, Lee, Zhang (b0350) 2017; 29
Liang, Xia, Gao, Zhao, Cao, Deng, Ren, Li, Guo, Wang (b0185) 2022; 15
Wang, Jiang, Hou, Wang, Xu, Zhang, Kong, Li, Wang (b0230) 2021; 368
Xu, Tang, Xu, Wu, Shi, Tian, Li (b0075) 2017; 23
Ye, Li, Ma, Chen, Yuan, Xu, Wang (b0235) 2021; 554
Masurkar, Thangavel, Arava (b0060) 2018; 10
Li, Wang, Cui, Xiong, Mi, Chen (b0320) 2021; 543
Jiang, Sun, Sharma, Mao, Kakkar, Meng, Zheng, Cao (b0365) 2021; 81
Jia, Huang, Wu, Tian, Guo, Zhao, Shi, Tian, Jie, Li (b0260) 2020; 12
Wu, Jia, Shi, Zeng, Lin, Dong, Shi, Tian, Li, Jie (b0255) 2020; 8
Zhang, Maijenburg, Li, Schweizer, Wehrspohn (b0105) 2020; 30
He, Huang, Gan, Hao, Liu, Wu, Pang, Johannessen, Tang, Luo, Wang, Guo (b0275) 2019; 13
Kuang (10.1016/j.jcis.2022.01.121_b0290) 2019; 254
Jiang (10.1016/j.jcis.2022.01.121_b0365) 2021; 81
Zeng (10.1016/j.jcis.2022.01.121_b0180) 2018; 28
Zhang (10.1016/j.jcis.2022.01.121_b0055) 2019; 6
Shao (10.1016/j.jcis.2022.01.121_b0125) 2019; 29
Zeng (10.1016/j.jcis.2022.01.121_b0030) 2020; 32
Wang (10.1016/j.jcis.2022.01.121_b0335) 2020; 33
Subbaraman (10.1016/j.jcis.2022.01.121_b0150) 2012; 11
Xu (10.1016/j.jcis.2022.01.121_b0045) 2018; 259
He (10.1016/j.jcis.2022.01.121_b0175) 2020; 3
Li (10.1016/j.jcis.2022.01.121_b0005) 2020; 12
Wang (10.1016/j.jcis.2022.01.121_b0010) 2021; 14
Xu (10.1016/j.jcis.2022.01.121_b0035) 2017; 725
Zhou (10.1016/j.jcis.2022.01.121_b0135) 2019; 11
Kong (10.1016/j.jcis.2022.01.121_b0020) 2022; 607
Yang (10.1016/j.jcis.2022.01.121_b0285) 2019; 141
Chen (10.1016/j.jcis.2022.01.121_b0300) 2020; 8
Zhang (10.1016/j.jcis.2022.01.121_b0140) 2019; 3
Liang (10.1016/j.jcis.2022.01.121_b0185) 2022; 15
Chen (10.1016/j.jcis.2022.01.121_b0170) 2017; 9
Yang (10.1016/j.jcis.2022.01.121_b0210) 2022; 611
Dai (10.1016/j.jcis.2022.01.121_b0080) 2019; 64
Wang (10.1016/j.jcis.2022.01.121_b0230) 2021; 368
Masurkar (10.1016/j.jcis.2022.01.121_b0060) 2018; 10
Zhang (10.1016/j.jcis.2022.01.121_b0205) 2016; 8
Chen (10.1016/j.jcis.2022.01.121_b0040) 2018; 447
Jiang (10.1016/j.jcis.2022.01.121_b0165) 2019; 7
Liu (10.1016/j.jcis.2022.01.121_b0350) 2017; 29
Yan (10.1016/j.jcis.2022.01.121_b0220) 2020; 8
Wang (10.1016/j.jcis.2022.01.121_b0070) 2018; 6
Kirubasankar (10.1016/j.jcis.2022.01.121_b0195) 2019; 355
Zhang (10.1016/j.jcis.2022.01.121_b0245) 2017; 7
Pei (10.1016/j.jcis.2022.01.121_b0015) 2021
Tang (10.1016/j.jcis.2022.01.121_b0200) 2012; 22
Hao (10.1016/j.jcis.2022.01.121_b0295) 2021; 586
Wang (10.1016/j.jcis.2022.01.121_b0340) 2020; 29
Zong (10.1016/j.jcis.2022.01.121_b0305) 2020; 353
Wu (10.1016/j.jcis.2022.01.121_b0310) 2020; 8
Zhang (10.1016/j.jcis.2022.01.121_b0225) 2021; 9
Vecharynski (10.1016/j.jcis.2022.01.121_b0330) 2015; 290
Lu (10.1016/j.jcis.2022.01.121_b0120) 2022; 607
Zhou (10.1016/j.jcis.2022.01.121_b0380) 2020; 45
Zhang (10.1016/j.jcis.2022.01.121_b0105) 2020; 30
Ming (10.1016/j.jcis.2022.01.121_b0085) 2020; 32
Wang (10.1016/j.jcis.2022.01.121_b0145) 2019; 299
Zhuo (10.1016/j.jcis.2022.01.121_b0375) 2019; 12
Wang (10.1016/j.jcis.2022.01.121_b0270) 2021; 60
Wu (10.1016/j.jcis.2022.01.121_b0255) 2020; 8
Wu (10.1016/j.jcis.2022.01.121_b0050) 2018; 5
Wu (10.1016/j.jcis.2022.01.121_b0265) 2019; 13
Li (10.1016/j.jcis.2022.01.121_b0320) 2021; 543
Wu (10.1016/j.jcis.2022.01.121_b0095) 2021; 13
Wu (10.1016/j.jcis.2022.01.121_b0115) 2021; 14
Tang (10.1016/j.jcis.2022.01.121_b0325) 2021; 404
Yu (10.1016/j.jcis.2022.01.121_b0355) 2018; 6
Li (10.1016/j.jcis.2022.01.121_b0110) 2020; 5
Yong (10.1016/j.jcis.2022.01.121_b0345) 2018; 14
Amiinu (10.1016/j.jcis.2022.01.121_b0360) 2017; 27
Lou (10.1016/j.jcis.2022.01.121_b0370) 2017; 42
Xu (10.1016/j.jcis.2022.01.121_b0075) 2017; 23
Zhang (10.1016/j.jcis.2022.01.121_b0250) 2017; 37
Jiang (10.1016/j.jcis.2022.01.121_b0130) 2018; 6
Ma (10.1016/j.jcis.2022.01.121_b0215) 2020; 25
Feng (10.1016/j.jcis.2022.01.121_b0025) 2020; 7
Jia (10.1016/j.jcis.2022.01.121_b0260) 2020; 12
He (10.1016/j.jcis.2022.01.121_b0275) 2019; 13
Zhao (10.1016/j.jcis.2022.01.121_b0090) 2020; 26
Xu (10.1016/j.jcis.2022.01.121_b0160) 2019; 242
Ma (10.1016/j.jcis.2022.01.121_b0065) 2021; 482
Zhang (10.1016/j.jcis.2022.01.121_b0100) 2017; 5
Zhao (10.1016/j.jcis.2022.01.121_b0190) 2018; 10
Subbaraman (10.1016/j.jcis.2022.01.121_b0155) 2011; 334
Wang (10.1016/j.jcis.2022.01.121_b0240) 2020; 12
Ye (10.1016/j.jcis.2022.01.121_b0235) 2021; 554
Yu (10.1016/j.jcis.2022.01.121_b0280) 2021; 33
Liu (10.1016/j.jcis.2022.01.121_b0315) 2019; 247
References_xml – volume: 8
  start-page: 7077
  year: 2016
  end-page: 7085
  ident: b0205
  article-title: Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 5019
  year: 2020
  end-page: 5028
  ident: b0090
  article-title: Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework
  publication-title: Ionics
– volume: 11
  start-page: 550
  year: 2012
  end-page: 557
  ident: b0150
  article-title: M., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts
  publication-title: Nat. Mater.
– volume: 247
  start-page: 107
  year: 2019
  end-page: 114
  ident: b0315
  article-title: Interface engineering of (Ni, Fe)S
  publication-title: Appl. Catal. B-Environ.
– volume: 141
  start-page: 10417
  year: 2019
  end-page: 10430
  ident: b0285
  article-title: Hierarchical Nanoassembly of MoS
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 3335
  year: 2017
  end-page: 3338
  ident: b0370
  article-title: High-performance MoS
  publication-title: Opt. Lett.
– volume: 11
  start-page: 717
  year: 2019
  end-page: 724
  ident: b0135
  article-title: Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics
  publication-title: Nanoscale
– volume: 607
  start-page: 1876
  year: 2022
  end-page: 1887
  ident: b0020
  article-title: Defect-Engineered 3D Hierarchical NiMo
  publication-title: J. Colloid Interface Sci.
– volume: 33
  start-page: 697
  year: 2020
  end-page: 702
  ident: b0335
  article-title: Low-bias conductance mechanism of diarylethene isomers: A first-principle study
  publication-title: Chin. J. Chem. Phys.
– volume: 447
  start-page: 325
  year: 2018
  end-page: 330
  ident: b0040
  article-title: Humidity sensing properties of the hydrothermally synthesized WS
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 431
  year: 2018
  ident: b0130
  article-title: Urchin-Like Ni
  publication-title: Front. Chem.
– volume: 7
  start-page: 1800476
  year: 2019
  ident: b0165
  article-title: 3D Mesoporous Ni(OH)
  publication-title: Energy Technol.
– volume: 14
  start-page: 1703798
  year: 2018
  ident: b0345
  article-title: Edge-Riched MoSe
  publication-title: Small
– volume: 27
  start-page: 1702300
  year: 2017
  ident: b0360
  article-title: Multifunctional Mo-N/C@MoS
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 2007100
  year: 2021
  ident: b0280
  article-title: Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: past, Recent Progress, and Future Prospects
  publication-title: Adv. Mater.
– volume: 81
  year: 2021
  ident: b0365
  article-title: Further insights into bifunctional mechanism in alkaline hydrogen evolution for hybridized nanocatalysts and general route toward mechanism-oriented synthesis
  publication-title: Nano Energy
– volume: 8
  start-page: 3632
  year: 2020
  end-page: 3642
  ident: b0255
  article-title: Mixed-dimensional PdSe
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 2004412
  year: 2020
  ident: b0030
  article-title: Van der Waals Epitaxial Growth of Mosaic-Like 2D Platinum Ditelluride Layers for Room-Temperature Mid-Infrared Photodetection up to 10.6 microm
  publication-title: Adv. Mater.
– volume: 30
  start-page: 2003261
  year: 2020
  ident: b0105
  article-title: Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 16632
  year: 2017
  end-page: 16637
  ident: b0170
  article-title: Ni(OH)
  publication-title: Nanoscale
– volume: 22
  start-page: 1272
  year: 2012
  end-page: 1278
  ident: b0200
  article-title: A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)
  publication-title: Adv. Funct. Mater.
– volume: 368
  year: 2021
  ident: b0230
  article-title: N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode
  publication-title: Solid State Ionics
– volume: 8
  start-page: 4474
  year: 2020
  end-page: 4480
  ident: b0310
  article-title: Rational Construction of a WS
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 19843
  year: 2020
  end-page: 19854
  ident: b0220
  article-title: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode
  publication-title: J. Mater. Chem. A
– volume: 404
  year: 2021
  ident: b0325
  article-title: Synthesis of hollow CoSe
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 1806419
  year: 2019
  ident: b0125
  article-title: Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1700155
  year: 2017
  ident: b0245
  article-title: High-Performance Aqueous Rechargeable Li-Ni Battery Based on Ni(OH)
  publication-title: Adv. Energy Mater.
– volume: 586
  start-page: 538
  year: 2021
  end-page: 550
  ident: b0295
  article-title: Multicomponent Co
  publication-title: J. Colloid Interface Sci.
– volume: 242
  start-page: 60
  year: 2019
  end-page: 66
  ident: b0160
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)
  publication-title: Appl. Catal. B-Environ.
– volume: 554
  year: 2021
  ident: b0235
  article-title: CoNi
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 1581
  year: 2021
  end-page: 1595
  ident: b0095
  article-title: Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts
  publication-title: Nanoscale
– volume: 254
  start-page: 15
  year: 2019
  end-page: 25
  ident: b0290
  article-title: 0D/3D MoS
  publication-title: Appl. Catal. B-Environ.
– volume: 64
  year: 2019
  ident: b0080
  article-title: In situ Raman study of nickel bicarbonate for high-performance energy storage device
  publication-title: Nano Energy
– volume: 14
  start-page: 23
  year: 2021
  ident: b0010
  article-title: Fabricating Na/In/C Composite Anode with Natrophilic Na-In Alloy Enables Superior Na Ion Deposition in the EC/PC Electrolyte
  publication-title: Nano Micro Lett.
– volume: 29
  start-page: 1606521
  year: 2017
  ident: b0350
  article-title: Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution
  publication-title: Adv. Mater.
– volume: 12
  start-page: 131
  year: 2020
  ident: b0005
  article-title: Water Splitting: From Electrode to Green Energy System
  publication-title: Nano Micro Lett.
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  ident: b0155
  article-title: Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li
  publication-title: Science
– volume: 13
  start-page: 11843
  year: 2019
  end-page: 11852
  ident: b0275
  article-title: Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage
  publication-title: ACS Nano
– volume: 355
  start-page: 881
  year: 2019
  end-page: 890
  ident: b0195
  article-title: 2D MoSe
  publication-title: Chem. Eng. J.
– volume: 290
  start-page: 73
  year: 2015
  end-page: 89
  ident: b0330
  article-title: A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix
  publication-title: J. Comput. Phys.
– volume: 543
  year: 2021
  ident: b0320
  article-title: Heterostructured MoO
  publication-title: Appl. Surf. Sci.
– volume: 29
  year: 2020
  ident: b0340
  article-title: Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes
  publication-title: Chin. Phys. B
– volume: 482
  year: 2021
  ident: b0065
  article-title: Mechanism investigation of high performance Na
  publication-title: J. Power Sources
– volume: 259
  start-page: 789
  year: 2018
  end-page: 796
  ident: b0045
  article-title: The ultra-high NO
  publication-title: Sens. Actuator B-Chem.
– volume: 5
  start-page: 2001010
  year: 2020
  ident: b0110
  article-title: Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: fundamentals
  publication-title: Strategies, and Electrocatalytic Applications, Small Methods
– volume: 37
  start-page: 74
  year: 2017
  end-page: 80
  ident: b0250
  article-title: Interface engineering: The Ni(OH)
  publication-title: Nano Energy
– volume: 12
  start-page: 4435
  year: 2020
  end-page: 4444
  ident: b0260
  article-title: An ultrasensitive self-driven broadband photodetector based on a 2D-WS
  publication-title: Nanoscale
– volume: 5
  start-page: 3820
  year: 2018
  end-page: 3827
  ident: b0050
  article-title: Design of 2D layered PtSe heterojunction for the high-performance room-temperature broadband infrared photodetector
  publication-title: ACS Photonics
– volume: 14
  start-page: 1973
  year: 2021
  end-page: 1979
  ident: b0115
  article-title: Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe
  publication-title: Nano Res.
– volume: 45
  start-page: 11138
  year: 2020
  end-page: 11147
  ident: b0380
  article-title: Vermicular Ni
  publication-title: Int. J. Hydrog. Energy
– volume: 60
  start-page: 24558
  year: 2021
  end-page: 24565
  ident: b0270
  article-title: Identifying the Evolution of Selenium-Vacancy-Modulated MoSe
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  start-page: 1806326
  year: 2020
  ident: b0085
  article-title: Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1800317
  year: 2019
  ident: b0140
  article-title: Phase-Controlled Synthesis of 1T-MoSe
  publication-title: Small Methods
– volume: 12
  start-page: 4341
  year: 2020
  end-page: 4351
  ident: b0240
  article-title: Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO
  publication-title: Nanoscale
– volume: 353
  year: 2020
  ident: b0305
  article-title: Heterostructure nanohybrids of Ni-doped MoSe
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 1221
  year: 2022
  end-page: 1229
  ident: b0185
  article-title: Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC
  publication-title: Nano Res.
– volume: 611
  start-page: 317
  year: 2022
  end-page: 326
  ident: b0210
  article-title: Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 10813
  year: 2018
  end-page: 10824
  ident: b0070
  article-title: 3D carbon foam-supported WS
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 19074
  year: 2018
  end-page: 19081
  ident: b0190
  article-title: Epitaxial growth of Ni(OH)
  publication-title: Nanoscale
– volume: 8
  start-page: 1901503
  year: 2020
  ident: b0300
  article-title: Phase Modulation and Chemical Activation of MoSe
  publication-title: Energy Technol.
– volume: 5
  start-page: 19752
  year: 2017
  end-page: 19759
  ident: b0100
  article-title: Hydrothermal synthesis of 3D hierarchical MoSe
  publication-title: J. Mater. Chem. A
– volume: 299
  start-page: 197
  year: 2019
  end-page: 205
  ident: b0145
  article-title: Hierarchical MoSe
  publication-title: Electrochim. Acta
– year: 2021
  ident: b0015
  article-title: Rational construction of hierarchical porous FeP nanorod arrays ncapsulated in polypyrrole for efficient and durable hydrogen volution reaction
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 17353
  year: 2018
  end-page: 17360
  ident: b0355
  article-title: Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 9524
  year: 2021
  end-page: 9531
  ident: b0225
  article-title: Vertically aligned 1T-phase PtSe
  publication-title: J. Mater. Chem. C
– volume: 725
  start-page: 253
  year: 2017
  end-page: 259
  ident: b0035
  article-title: High-response NO
  publication-title: J. Alloy. Compd.
– volume: 25
  start-page: 811
  year: 2020
  end-page: 826
  ident: b0215
  article-title: Advanced carbon nanostructures for future high performance sodium metal anodes
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 7039
  year: 2020
  end-page: 7047
  ident: b0175
  article-title: Defect-Mediated Adsorption of Metal Ions for Constructing Ni Hydroxide/MoS
  publication-title: ACS Appl. Energ. Mater.
– volume: 10
  start-page: 27771
  year: 2018
  end-page: 27779
  ident: b0060
  article-title: CVD-Grown MoSe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 3530
  year: 2019
  end-page: 3548
  ident: b0055
  article-title: Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction
  publication-title: ChemElectroChem
– volume: 28
  start-page: 1705970
  year: 2018
  ident: b0180
  article-title: Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 3273
  year: 2017
  end-page: 3280
  ident: b0075
  article-title: Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries
  publication-title: Ionics
– volume: 607
  start-page: 645
  year: 2022
  end-page: 654
  ident: b0120
  article-title: Theoretical insight into surface structures of pentlandite toward hydrogen evolution
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 9907
  year: 2019
  end-page: 9917
  ident: b0265
  article-title: Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe
  publication-title: ACS Nano
– volume: 7
  start-page: 31
  year: 2020
  end-page: 54
  ident: b0025
  article-title: Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction
  publication-title: ChemElectroChem
– volume: 12
  start-page: 183
  year: 2019
  end-page: 189
  ident: b0375
  article-title: In-situ fabrication of PtSe
  publication-title: Nano Res.
– volume: 9
  start-page: 16632
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0170
  article-title: Ni(OH)2-CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media
  publication-title: Nanoscale
  doi: 10.1039/C7NR06001G
– volume: 6
  start-page: 3530
  issue: 14
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0055
  article-title: Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900448
– volume: 355
  start-page: 881
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0195
  article-title: 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.185
– volume: 37
  start-page: 74
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0250
  article-title: Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.011
– volume: 404
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0325
  article-title: Synthesis of hollow CoSe2/MoSe2 nanospheres for efficient hydrazine-assisted hydrogen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126529
– volume: 33
  start-page: 2007100
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0280
  article-title: Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: past, Recent Progress, and Future Prospects
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007100
– volume: 611
  start-page: 317
  year: 2022
  ident: 10.1016/j.jcis.2022.01.121_b0210
  article-title: Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.076
– volume: 353
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0305
  article-title: Heterostructure nanohybrids of Ni-doped MoSe2 coupled with Ti2NTx toward efficient overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136598
– volume: 290
  start-page: 73
  year: 2015
  ident: 10.1016/j.jcis.2022.01.121_b0330
  article-title: A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.02.030
– volume: 13
  start-page: 11843
  issue: 10
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0275
  article-title: Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05865
– volume: 6
  start-page: 10813
  issue: 23
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0070
  article-title: 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02773K
– volume: 7
  start-page: 1700155
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0245
  article-title: High-Performance Aqueous Rechargeable Li-Ni Battery Based on Ni(OH)2/NiOOH Redox Couple with High Voltage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700155
– volume: 607
  start-page: 645
  year: 2022
  ident: 10.1016/j.jcis.2022.01.121_b0120
  article-title: Theoretical insight into surface structures of pentlandite toward hydrogen evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.09.020
– volume: 8
  start-page: 19843
  issue: 38
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0220
  article-title: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05817C
– volume: 242
  start-page: 60
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0160
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.09.064
– volume: 11
  start-page: 717
  issue: 2
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0135
  article-title: Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics
  publication-title: Nanoscale
  doi: 10.1039/C8NR08028C
– volume: 33
  start-page: 697
  issue: 6
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0335
  article-title: Low-bias conductance mechanism of diarylethene isomers: A first-principle study
  publication-title: Chin. J. Chem. Phys.
  doi: 10.1063/1674-0068/cjcp1911204
– volume: 141
  start-page: 10417
  issue: 26
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0285
  article-title: Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 26
  start-page: 5019
  issue: 10
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0090
  article-title: Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework
  publication-title: Ionics
  doi: 10.1007/s11581-020-03641-2
– volume: 8
  start-page: 7077
  issue: 11
  year: 2016
  ident: 10.1016/j.jcis.2022.01.121_b0205
  article-title: Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12772
– volume: 29
  start-page: 1606521
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0350
  article-title: Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606521
– volume: 334
  start-page: 1256
  issue: 6060
  year: 2011
  ident: 10.1016/j.jcis.2022.01.121_b0155
  article-title: Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 5
  start-page: 3820
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0050
  article-title: Design of 2D layered PtSe heterojunction for the high-performance room-temperature broadband infrared photodetector
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00853
– volume: 14
  start-page: 1703798
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0345
  article-title: Edge-Riched MoSe2/MoO2 Hybrid Electrocatalyst for Efficient Hydrogen Evolution Reaction
  publication-title: Small
  doi: 10.1002/smll.201703798
– volume: 5
  start-page: 19752
  issue: 37
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0100
  article-title: Hydrothermal synthesis of 3D hierarchical MoSe2/NiSe2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05352E
– volume: 725
  start-page: 253
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0035
  article-title: High-response NO2 resistive gas sensor based on bilayer MoS2 grown by a new two-step chemical vapor deposition method
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.06.105
– volume: 10
  start-page: 19074
  issue: 40
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0190
  article-title: Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR07045H
– volume: 6
  start-page: 431
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0130
  article-title: Urchin-Like Ni2/3Co1/3(CO3)1/2(OH).0.11H2O for High-Performance Supercapacitors
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00431
– volume: 28
  start-page: 1705970
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0180
  article-title: Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705970
– volume: 543
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0320
  article-title: Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148804
– volume: 5
  start-page: 2001010
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0110
  article-title: Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: fundamentals
  publication-title: Strategies, and Electrocatalytic Applications, Small Methods
– volume: 25
  start-page: 811
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0215
  article-title: Advanced carbon nanostructures for future high performance sodium metal anodes
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.09.007
– volume: 586
  start-page: 538
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0295
  article-title: Multicomponent Co9S8@MoS2 nanohybrids as a novel trifunctional electrocatalyst for efficient methanol electrooxidation and overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.10.119
– volume: 23
  start-page: 3273
  issue: 12
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0075
  article-title: Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries
  publication-title: Ionics
  doi: 10.1007/s11581-017-2160-4
– volume: 11
  start-page: 550
  issue: 6
  year: 2012
  ident: 10.1016/j.jcis.2022.01.121_b0150
  article-title: M., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3313
– volume: 7
  start-page: 31
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0025
  article-title: Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901623
– volume: 30
  start-page: 2003261
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0105
  article-title: Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003261
– volume: 299
  start-page: 197
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0145
  article-title: Hierarchical MoSe2-CoSe2 nanotubes anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution in alkaline medium
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.101
– volume: 6
  start-page: 17353
  issue: 36
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0355
  article-title: Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04950E
– volume: 22
  start-page: 1272
  issue: 6
  year: 2012
  ident: 10.1016/j.jcis.2022.01.121_b0200
  article-title: A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102796
– volume: 607
  start-page: 1876
  year: 2022
  ident: 10.1016/j.jcis.2022.01.121_b0020
  article-title: Defect-Engineered 3D Hierarchical NiMo3S4 Nanoflowers as Bifunctional Electrocatalyst for Overall Water Splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.020
– volume: 32
  start-page: 2004412
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0030
  article-title: Van der Waals Epitaxial Growth of Mosaic-Like 2D Platinum Ditelluride Layers for Room-Temperature Mid-Infrared Photodetection up to 10.6 microm
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004412
– volume: 45
  start-page: 11138
  issue: 19
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0380
  article-title: Vermicular Ni3S2–Ni(OH)2 heterostructure supported on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.02.056
– volume: 14
  start-page: 23
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0010
  article-title: Fabricating Na/In/C Composite Anode with Natrophilic Na-In Alloy Enables Superior Na Ion Deposition in the EC/PC Electrolyte
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-021-00756-7
– volume: 15
  start-page: 1221
  issue: 2
  year: 2022
  ident: 10.1016/j.jcis.2022.01.121_b0185
  article-title: Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3629-z
– volume: 12
  start-page: 4435
  issue: 7
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0260
  article-title: An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction
  publication-title: Nanoscale
  doi: 10.1039/C9NR10348A
– volume: 10
  start-page: 27771
  issue: 33
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0060
  article-title: CVD-Grown MoSe2 Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07489
– volume: 12
  start-page: 4341
  issue: 7
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0240
  article-title: Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO
  publication-title: Nanoscale
  doi: 10.1039/C9NR09278A
– volume: 60
  start-page: 24558
  issue: 46
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0270
  article-title: Identifying the Evolution of Selenium-Vacancy-Modulated MoSe2 Precatalyst in Lithium-Sulfur Chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109291
– volume: 3
  start-page: 7039
  issue: 7
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0175
  article-title: Defect-Mediated Adsorption of Metal Ions for Constructing Ni Hydroxide/MoS2 Heterostructures as High-Performance Water-Splitting Electrocatalysts
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.0c01091
– volume: 13
  start-page: 1581
  issue: 3
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0095
  article-title: Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts
  publication-title: Nanoscale
  doi: 10.1039/D0NR08009H
– volume: 64
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0080
  article-title: In situ Raman study of nickel bicarbonate for high-performance energy storage device
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103919
– volume: 81
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0365
  article-title: Further insights into bifunctional mechanism in alkaline hydrogen evolution for hybridized nanocatalysts and general route toward mechanism-oriented synthesis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105645
– volume: 554
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0235
  article-title: CoNi2S4 nanoparticle on carbon cloth with high mass loading as multifunctional electrode for hybrid supercapacitor and overall water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149598
– volume: 29
  start-page: 1806419
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0125
  article-title: Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806419
– volume: 32
  start-page: 1806326
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0085
  article-title: Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806326
– volume: 247
  start-page: 107
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0315
  article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.01.094
– volume: 368
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0230
  article-title: N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2021.115711
– volume: 12
  start-page: 183
  issue: 1
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0375
  article-title: In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2200-z
– volume: 3
  start-page: 1800317
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0140
  article-title: Phase-Controlled Synthesis of 1T-MoSe2/NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution
  publication-title: Small Methods
  doi: 10.1002/smtd.201800317
– volume: 259
  start-page: 789
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0045
  article-title: The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2017.12.070
– volume: 482
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0065
  article-title: Mechanism investigation of high performance Na3V2(PO4)2O2F/reduced graphene oxide cathode for sodium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228906
– volume: 254
  start-page: 15
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0290
  article-title: 0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.04.072
– volume: 8
  start-page: 1901503
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0300
  article-title: Phase Modulation and Chemical Activation of MoSe2 by Phosphorus for Electrocatalytic Hydrogen Evolution Reaction
  publication-title: Energy Technol.
  doi: 10.1002/ente.201901503
– volume: 42
  start-page: 3335
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0370
  article-title: High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.003335
– volume: 8
  start-page: 4474
  issue: 11
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0310
  article-title: Rational Construction of a WS2/CoS2 Heterostructure Electrocatalyst for Efficient Hydrogen Evolution at All pH Values
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b07507
– volume: 29
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0340
  article-title: Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes
  publication-title: Chin. Phys. B
– year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0015
  article-title: Rational construction of hierarchical porous FeP nanorod arrays ncapsulated in polypyrrole for efficient and durable hydrogen volution reaction
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 9907
  issue: 9
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0265
  article-title: Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03994
– volume: 8
  start-page: 3632
  issue: 7
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0255
  article-title: Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13611H
– volume: 447
  start-page: 325
  year: 2018
  ident: 10.1016/j.jcis.2022.01.121_b0040
  article-title: Humidity sensing properties of the hydrothermally synthesized WS2-modified SnO2 hybrid nanocomposite
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.154
– volume: 27
  start-page: 1702300
  year: 2017
  ident: 10.1016/j.jcis.2022.01.121_b0360
  article-title: Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702300
– volume: 14
  start-page: 1973
  issue: 6
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0115
  article-title: Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3346-7
– volume: 7
  start-page: 1800476
  year: 2019
  ident: 10.1016/j.jcis.2022.01.121_b0165
  article-title: 3D Mesoporous Ni(OH)2/WS2 Nanofibers with Highly Enhanced Performances for Hybrid Supercapacitors
  publication-title: Energy Technol.
  doi: 10.1002/ente.201800476
– volume: 12
  start-page: 131
  year: 2020
  ident: 10.1016/j.jcis.2022.01.121_b0005
  article-title: Water Splitting: From Electrode to Green Energy System
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-020-00469-3
– volume: 9
  start-page: 9524
  issue: 30
  year: 2021
  ident: 10.1016/j.jcis.2022.01.121_b0225
  article-title: Vertically aligned 1T-phase PtSe2 on flexible carbon cloth for efficient and stable hydrogen evolution reaction
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC01552D
SSID ssj0011559
Score 2.4741783
Snippet An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further...
The stacking of Molybdenum Diselenide (MoSe ) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which...
The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which...
The stacking of Molybdenum Diselenide (MoSe₂) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 267
SubjectTerms adsorption
carbon
dissociation
electron transfer
Gibbs free energy
Heterostructures
Hydrogen evolution reaction
hydrogen production
molybdenum
nanosheets
nickel
Overpotential
synergism
Synergistic effect
Tafel slope
Title Interface engineering of nickel Hydroxide-Molybdenum diselenide nanosheet heterostructure arrays for efficient alkaline hydrogen production
URI https://dx.doi.org/10.1016/j.jcis.2022.01.121
https://www.ncbi.nlm.nih.gov/pubmed/35101674
https://www.proquest.com/docview/2624659818
https://www.proquest.com/docview/2636557532
Volume 614
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMqjy6MyEjcUunb8SI7VimoB0ROVeov8GGtTVslqu5XYC3-AP81MHgscugeOsezI8Wd7xvE33zD2LhUC0C-GLDptMxU7yVunM7LdXoQggu_UPi_M_FJ9vtJXB2w2xsIQrXLY-_s9vduth5LTYTRPV3VNMb642mxpJdGCckWB5kpZmuUffu5oHoKu3Xqah8io9hA403O8rkNNkt1SknSnkOIu43SX89kZofPH7NHgPfKzvoNP2AE0R-z-bEzadsQe_qUv-JT96v73JReAw59y3ibe1Lh6l3y-jev2Rx0h-9outz4SL57HLgNTg6W8cU17swDY8AXRZtpebfZ2Ddyt1257w9Hl5dCpUKDx4m753ZHbyhf0XpyafNULyiL4z9jl-cdvs3k2ZF_IAjoxm8y70tvgXJz6QioT8SFaPOykALpIFkpvtPciJee0hCRKraMyKsXgoCxA58_ZYdM2cMw4Qi5tECaZQiuvywLPWLKculwZY30pJkyMw16FQZqcMmQsq5GDdl0RVBVBVU1FhVBN2Ptdm1UvzLG3th7RrP6ZXhVajr3t3o7QV4gkXaa4BtpbrGRwUPBTRLGvTm40-sO5nLAX_bzZ9TWnzdBY9fI_e_aKPaAnIjII_ZodIv7wBv2jjT_pFsAJu3f26cv84jeJgxMN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kziHtoWjTzV1ZoLdCiCmJlHQMjAZKk_iUALkRXGGlhmQ4DhB_Q366M1rc9hAfehRFChTfkPMkDt8AfAs598iLfeS0yKLUtZK3WkTkuw23llvTqn3OZHmV_rwW13swHc7CUFhlv_Z3a3q7WvclR_1oHi2ris744mzLiiymsKAkFU9gn9SpxAj2j0_Pytl2M4F23rpIDx5Rg_7sTBfmdWMrUu2OY1Lv5DF_zD89xj9bP3TyAp73BJIdd318CXu-PoSD6ZC37RCe_SUx-Aoe2l9-QVvP_J9y1gRWVziBF6zcuFVzXzkfXTSLjXEUGs9cm4SpxlJW67q5nXu_ZnOKnGk6wdm7lWd6tdKbW4asl_lWiAL9F9OLX5qYK5vTc9E62bLTlEX8X8PVyY_LaRn1CRgiizxmHRldmMxq7SYmj1Pp8MJl-L0TrBd5yHxhpDCGh6C1iH3ghRAulWlwVvsi9yJ5A6O6qf07YIh6nFkug8xFakSR42dWXEx0kkqZmYKPgQ_DrmyvTk5JMhZqCEO7UQSVIqjUhCuEagzft22WnTbHztpiQFP9Y2EKncfOdl8H6BUiSfspuvbNHVaSOCj4KjzfVSeRAilxEo_hbWc3274mtB7KLH3_nz37Agfl5cW5Oj-dnX2Ap3SH4hq4-AgjtAX_CenS2nzup8Nv34UVvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+engineering+of+nickel+Hydroxide-Molybdenum+diselenide+nanosheet+heterostructure+arrays+for+efficient+alkaline+hydrogen+production&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhang%2C+Limin&rft.au=Zhang%2C+Wenfei&rft.au=Wang%2C+Minglang&rft.au=Wang%2C+Hui&rft.date=2022-05-15&rft.eissn=1095-7103&rft.volume=614&rft.spage=267&rft_id=info:doi/10.1016%2Fj.jcis.2022.01.121&rft_id=info%3Apmid%2F35101674&rft.externalDocID=35101674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon