Interface engineering of nickel Hydroxide-Molybdenum diselenide nanosheet heterostructure arrays for efficient alkaline hydrogen production
An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further used as efficient self-supported electrocatalyst for alkaline hydrogen production. [Display omitted] •The Ni(OH)2-MoSe2 nanosheets arrays hetero...
Saved in:
Published in | Journal of colloid and interface science Vol. 614; pp. 267 - 276 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2022.01.121 |
Cover
Loading…
Abstract | An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further used as efficient self-supported electrocatalyst for alkaline hydrogen production.
[Display omitted]
•The Ni(OH)2-MoSe2 nanosheets arrays heterostructure are constructed on carbon cloth.•The Ni(OH)2 deposition time can regulate the alkaline HER activity of the catalyst.•The optimized catalyst performs a low η10 of 130 mV with a Tafel slope of 78.2 mV dec-1.•Ni(OH)2 in the catalyst promotes the water dissociation and regulates the electronic structures.
The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides. |
---|---|
AbstractList | The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides.The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides. The stacking of Molybdenum Diselenide (MoSe₂) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)₂-MoSe₂ heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)₂ deposition time on the HER performance. The synergistic effect between Ni(OH)₂ and MoSe₂ in the Ni(OH)₂-MoSe₂ heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)₂-MoSe₂/CC constructed in this way with a Ni(OH)₂ deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at ⁻10 mA cm⁻², a low Tafel slope of 78.2 mV dec⁻¹ and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe₂ and other similar transition metal dichalcogenides. An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further used as efficient self-supported electrocatalyst for alkaline hydrogen production. [Display omitted] •The Ni(OH)2-MoSe2 nanosheets arrays heterostructure are constructed on carbon cloth.•The Ni(OH)2 deposition time can regulate the alkaline HER activity of the catalyst.•The optimized catalyst performs a low η10 of 130 mV with a Tafel slope of 78.2 mV dec-1.•Ni(OH)2 in the catalyst promotes the water dissociation and regulates the electronic structures. The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides. The stacking of Molybdenum Diselenide (MoSe ) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH) -MoSe heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH) deposition time on the HER performance. The synergistic effect between Ni(OH) and MoSe in the Ni(OH) -MoSe heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH) -MoSe /CC constructed in this way with a Ni(OH) deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at 10 mA cm , a low Tafel slope of 78.2 mV dec and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe and other similar transition metal dichalcogenides. |
Author | Tian, Yongtao Shen, Weixia Zhang, Wenfei Wang, Ye Wang, Hui Xu, Tingting Li, Xinjian Huang, Xiaowen Zhang, Limin Zang, Jinhao Wang, Minglang Kong, Dezhi |
Author_xml | – sequence: 1 givenname: Limin surname: Zhang fullname: Zhang, Limin organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 2 givenname: Wenfei surname: Zhang fullname: Zhang, Wenfei organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 3 givenname: Minglang surname: Wang fullname: Wang, Minglang organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 4 givenname: Hui surname: Wang fullname: Wang, Hui organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 5 givenname: Jinhao surname: Zang fullname: Zang, Jinhao organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 6 givenname: Weixia surname: Shen fullname: Shen, Weixia organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 7 givenname: Xiaowen surname: Huang fullname: Huang, Xiaowen organization: State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China – sequence: 8 givenname: Dezhi surname: Kong fullname: Kong, Dezhi email: dezhi_kong@zzu.edu.cn organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 9 givenname: Yongtao surname: Tian fullname: Tian, Yongtao organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 10 givenname: Tingting surname: Xu fullname: Xu, Tingting email: xutt@zzu.edu.cn organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 11 givenname: Ye surname: Wang fullname: Wang, Ye organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China – sequence: 12 givenname: Xinjian surname: Li fullname: Li, Xinjian organization: Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35101674$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkbFuHCEURVFkK147-YEUEWWamQCzzAxSmshKYkuO3Ng1YuCxy5oFBxgr-w356TBau0lhpUKgc-973HuOTkIMgNAHSlpKaP951-60yy0jjLWEtpTRN2hFieDNQEl3glaEMNqIQQxn6DznHSGUci7eorOOLwbDeoX-XIcCySoNGMLGBYDkwgZHi4PTD-Dx1cGk-NsZaH5Gf5gMhHmPjcvgIdRXHFSIeQtQ8BaqU8wlzbrMCbBKSR0ytjFhsNZpB6Fg5R-Ur2PwdvHdQMCPKZqqcDG8Q6dW-Qzvn88LdP_9293lVXNz--P68utNo7tRlGZSYhq0UoZMI1v3pl7M0Pe91cBHO4CYej5N1FqlOANLBedm3a-t0QrECLy7QJ-OvnX0rxlykXuXNXivAsQ5S9Z3PecD79h_oHUDLkY6VvTjMzpPezDyMbm9Sgf5knUFxiOga0o5gZXaFbV8vCTlvKRELqTcyaVWudQqCZW11ipl_0hf3F8VfTmKoGb55CDJvHSgwbgEukgT3Wvyv04xwLQ |
CitedBy_id | crossref_primary_10_1002_aenm_202303614 crossref_primary_10_1016_j_cej_2024_157270 crossref_primary_10_1016_j_electacta_2023_142191 crossref_primary_10_1016_j_apsusc_2024_161057 crossref_primary_10_1002_aenm_202202600 crossref_primary_10_1016_j_cej_2022_139251 crossref_primary_10_1016_j_jcis_2023_01_006 crossref_primary_10_1021_acsanm_2c01924 crossref_primary_10_1039_D2TA02458F crossref_primary_10_1039_D2TA03294E crossref_primary_10_1016_j_jechem_2023_05_013 crossref_primary_10_1016_j_apsusc_2024_160990 crossref_primary_10_1021_acs_jpca_4c05203 crossref_primary_10_1002_smtd_202200900 |
Cites_doi | 10.1039/C7NR06001G 10.1002/celc.201900448 10.1016/j.cej.2018.08.185 10.1016/j.nanoen.2017.05.011 10.1016/j.cej.2020.126529 10.1002/adma.202007100 10.1016/j.jcis.2021.12.076 10.1016/j.electacta.2020.136598 10.1016/j.jcp.2015.02.030 10.1021/acsnano.9b05865 10.1039/C8TA02773K 10.1002/aenm.201700155 10.1016/j.jcis.2021.09.020 10.1039/D0TA05817C 10.1016/j.apcatb.2018.09.064 10.1039/C8NR08028C 10.1063/1674-0068/cjcp1911204 10.1021/jacs.9b04492 10.1007/s11581-020-03641-2 10.1021/acsami.5b12772 10.1002/adma.201606521 10.1126/science.1211934 10.1021/acsphotonics.8b00853 10.1002/smll.201703798 10.1039/C7TA05352E 10.1016/j.jallcom.2017.06.105 10.1039/C8NR07045H 10.3389/fchem.2018.00431 10.1002/adfm.201705970 10.1016/j.apsusc.2020.148804 10.1016/j.ensm.2019.09.007 10.1016/j.jcis.2020.10.119 10.1007/s11581-017-2160-4 10.1038/nmat3313 10.1002/celc.201901623 10.1002/adfm.202003261 10.1016/j.electacta.2018.12.101 10.1039/C8TA04950E 10.1002/adfm.201102796 10.1016/j.jcis.2021.10.020 10.1002/adma.202004412 10.1016/j.ijhydene.2020.02.056 10.1007/s40820-021-00756-7 10.1007/s12274-021-3629-z 10.1039/C9NR10348A 10.1021/acsami.8b07489 10.1039/C9NR09278A 10.1002/anie.202109291 10.1021/acsaem.0c01091 10.1039/D0NR08009H 10.1016/j.nanoen.2019.103919 10.1016/j.nanoen.2020.105645 10.1016/j.apsusc.2021.149598 10.1002/adfm.201806419 10.1002/adma.201806326 10.1016/j.apcatb.2019.01.094 10.1016/j.ssi.2021.115711 10.1007/s12274-018-2200-z 10.1002/smtd.201800317 10.1016/j.snb.2017.12.070 10.1016/j.jpowsour.2020.228906 10.1016/j.apcatb.2019.04.072 10.1002/ente.201901503 10.1364/OL.42.003335 10.1021/acssuschemeng.9b07507 10.1021/acsnano.9b03994 10.1039/C9TA13611H 10.1016/j.apsusc.2018.03.154 10.1002/adfm.201702300 10.1007/s12274-021-3346-7 10.1002/ente.201800476 10.1007/s40820-020-00469-3 10.1039/D1TC01552D |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2022.01.121 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 276 |
ExternalDocumentID | 35101674 10_1016_j_jcis_2022_01_121 S0021979722001345 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-ba9b7caad0b8246db7cd7666fce58f7e9b65bb1ffaa52ef1955d464fdcae98e53 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Jul 10 22:32:04 EDT 2025 Fri Jul 11 10:54:14 EDT 2025 Thu Apr 03 07:08:33 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Tue Jul 01 01:19:18 EDT 2025 Fri Feb 23 02:40:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen evolution reaction Overpotential Synergistic effect Heterostructures Tafel slope |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-ba9b7caad0b8246db7cd7666fce58f7e9b65bb1ffaa52ef1955d464fdcae98e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35101674 |
PQID | 2624659818 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636557532 proquest_miscellaneous_2624659818 pubmed_primary_35101674 crossref_citationtrail_10_1016_j_jcis_2022_01_121 crossref_primary_10_1016_j_jcis_2022_01_121 elsevier_sciencedirect_doi_10_1016_j_jcis_2022_01_121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-15 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Subbaraman, Tripkovic, Strmcnik, Chang, Uchimura, Paulikas, Stamenkovic, Markovic (b0155) 2011; 334 Xu, Jiang, Zhang, Hu, Li (b0160) 2019; 242 Tang, Zhang, Mei, Zhang, Liu, Wang, Li (b0325) 2021; 404 Wang, Zhang, Fu, Wang (b0335) 2020; 33 Zhang, Kong, Zhuang, Wang, Zhang, Zang, Shen, Xu, Wu, Tian, Wang, Li, Huang (b0225) 2021; 9 Zhou, Yang, Xi, He, Song (b0380) 2020; 45 Yu, Tian, Zhou, Zhang, Chen, Liu, Liu, Xu, Wang (b0355) 2018; 6 He, Liu, Zhu, Tan, Cao, Zhao, Chen (b0175) 2020; 3 Wang, Wang (b0340) 2020; 29 Ma, Xu, Wang (b0215) 2020; 25 Ma, Xu, Yan, Xu, Kong, Zhang, Shen, Shi, Ke, Li, Wang (b0065) 2021; 482 Lu, Yu, Tian (b0120) 2022; 607 Wang, Kong, Huang, Shi, Ding, Von Lim, Xu, Chen, Li, Yang (b0070) 2018; 6 Yan, Zhi, Kong, Wang, Xu, Zang, Shen, Xu, Shi, Dai, Li, Wang (b0220) 2020; 8 Yang, Yao, Yu, Islam, He, Yuan, Yue, Xu, Hao, Sun, Li, Ma, Zapol, Kanatzidis (b0285) 2019; 141 Subbaraman, Tripkovic, Chang, Strmcnik, Paulikas, Hirunsit, Chan, Greeley, Stamenkovic, Markovic (b0150) 2012; 11 Vecharynski, Yang, Pask (b0330) 2015; 290 Zeng, Lin, Li, Zhang, Zhang, Xie, Mak, Chai, Lau, Luo, Tsang (b0180) 2018; 28 Zeng, Wu, Jie, Ren, Hu, Lau, Chai, Tsang (b0030) 2020; 32 Li, Kou, Wang (b0110) 2020; 5 Zhang, Huang, Shen, Gong, Chi, Pu, Li (b0245) 2017; 7 Wu, Guo, Du, Xia, Zeng, Tian, Shi, Tian, Li, Tsang, Jie (b0265) 2019; 13 Ming, Hua, Ming, Ce, Yi, Jun (b0085) 2020; 32 Zhao, Lin, Rui, Zhou, Chen, Dou, Sun (b0190) 2018; 10 Zhang, Zuo, Zhang, Huang, Lu, Fan, Liu (b0205) 2016; 8 Wu, Zhao, Lu, Rogée, Zeng, Lin, Shi, Tian, Li, Tsang (b0115) 2021; 14 Yu, Duan, Feng, Yu, Gao, Yu (b0280) 2021; 33 Pei, Zhang, Zhi, Kong, Wang, Huang, Zang, Xu, Wang, Li (b0015) 2021 Kuang, He, Zou, Yu, Fan (b0290) 2019; 254 Zong, Yu, Zhu (b0305) 2020; 353 Zhang, Wang, Sun, Sun, Hu, Xu, Ma (b0100) 2017; 5 Zhang, Liu, Wang, Ruan, Ji, Xu, Chen, Wan, Miao, Jiang (b0250) 2017; 37 Li, Zhao, Yu, Liu, Zhang, Liu, Zhou (b0005) 2020; 12 Zhou, Zhao, Rui, Chen, Xu, Dou, Sun (b0135) 2019; 11 Chen, Zhu, Li, Feng, Li, Zhang, Wang, Gu, Zhang, Zhao (b0300) 2020; 8 Kong, Wang, Huang, Lim, Wang, Xu, Zang, Li, Yang (b0020) 2022; 607 Chen, Zhang, Ren, Ge, Teng, Sun, Li (b0170) 2017; 9 Amiinu, Pu, Liu, Owusu, Monestel, Boakye, Zhang, Mu (b0360) 2017; 27 Xu, Pei, Liu, Wu, Shi, Xu, Tian, Li (b0035) 2017; 725 Wang, Lim, Huang, Ding, Kong, Pei, Xu, Shi, Li, Yang (b0240) 2020; 12 Hao, Jiang, Kang, Hua, Bing, De, Meng, Hong, Du (b0295) 2021; 586 Wu, Wang, Zeng, Jia, Wu, Xu, Shi, Tian, Li, Tsang (b0050) 2018; 5 Wang, Sun, Ci, Shi, Shen, Wei, Ding, Yang, Sun (b0270) 2021; 60 Zhuo, Zeng, Yuan, Wu, Wang, Shi, Xu, Tian, Li, Tsang (b0375) 2019; 12 Feng, Pang, Xu, Guo, Gao, Qiu, Chen (b0025) 2020; 7 Yong, Qian, Ting, Jing, Liu (b0345) 2018; 14 Wu, Chen, Zhu, Du, Huang, Yan, Cai, Guan, Pan (b0310) 2020; 8 Shao, Wang, Huang (b0125) 2019; 29 Yang, Zhang, Wang, Huang, Xu, Kong, Zhang, Zang, Li, Wang (b0210) 2022; 611 Zhang, Zhang, Zhang, Jiang, Zhang, Yang, Gu, Hu, Wan (b0140) 2019; 3 Dai, Zhang, Xu, Shen, Zhang, Yang, Xu, Dang, Hu, Zhao, Wang, Qu, Fu, Li, Hu, Liu (b0080) 2019; 64 Liu, Jiang, Li, Zhou, Li, Li, Shao (b0315) 2019; 247 Wang, Wu, Wang, Xu, Kong, Jiang, Wu, Tang, Li, Lee (b0010) 2021; 14 Kirubasankar, Palanisamy, Arunachalam, Murugadoss, Angaiah (b0195) 2019; 355 Tang, Tang, Gong (b0200) 2012; 22 Lou, Zeng, Wang, Wu, Xu, Shi, Tian, LI, Tsang (b0370) 2017; 42 Zhang, Li, Deng, Shen, Zhang, Pan, Xiong, Liu, Xia, Wang, Tu (b0055) 2019; 6 Jiang, Xu, Yan, Ma, Dai (b0130) 2018; 6 Zhao, Zhuang, Xu, Zhang, Shen, Tang, Wang, Xu, Wang, Li (b0090) 2020; 26 Wang, Zheng, Wang, Wang, Sun, He, Zhang, Chen (b0145) 2019; 299 Wu, Dong, Sun, Huang (b0095) 2021; 13 Chen, Pei, Jiang, Shi, Xu, Wu, Xu, Tian, Wang, Li (b0040) 2018; 447 Xu, Liu, Pei, Chen, Jiang, Shi, Xu, Wu, Tian, Li (b0045) 2018; 259 Jiang, Xu, Dai, Yan, Ma, Wang, Xu, Zhang, Wang (b0165) 2019; 7 Liu, Zhao, Peng, Zhang, Sit, Yuen, Zhang, Lee, Zhang (b0350) 2017; 29 Liang, Xia, Gao, Zhao, Cao, Deng, Ren, Li, Guo, Wang (b0185) 2022; 15 Wang, Jiang, Hou, Wang, Xu, Zhang, Kong, Li, Wang (b0230) 2021; 368 Xu, Tang, Xu, Wu, Shi, Tian, Li (b0075) 2017; 23 Ye, Li, Ma, Chen, Yuan, Xu, Wang (b0235) 2021; 554 Masurkar, Thangavel, Arava (b0060) 2018; 10 Li, Wang, Cui, Xiong, Mi, Chen (b0320) 2021; 543 Jiang, Sun, Sharma, Mao, Kakkar, Meng, Zheng, Cao (b0365) 2021; 81 Jia, Huang, Wu, Tian, Guo, Zhao, Shi, Tian, Jie, Li (b0260) 2020; 12 Wu, Jia, Shi, Zeng, Lin, Dong, Shi, Tian, Li, Jie (b0255) 2020; 8 Zhang, Maijenburg, Li, Schweizer, Wehrspohn (b0105) 2020; 30 He, Huang, Gan, Hao, Liu, Wu, Pang, Johannessen, Tang, Luo, Wang, Guo (b0275) 2019; 13 Kuang (10.1016/j.jcis.2022.01.121_b0290) 2019; 254 Jiang (10.1016/j.jcis.2022.01.121_b0365) 2021; 81 Zeng (10.1016/j.jcis.2022.01.121_b0180) 2018; 28 Zhang (10.1016/j.jcis.2022.01.121_b0055) 2019; 6 Shao (10.1016/j.jcis.2022.01.121_b0125) 2019; 29 Zeng (10.1016/j.jcis.2022.01.121_b0030) 2020; 32 Wang (10.1016/j.jcis.2022.01.121_b0335) 2020; 33 Subbaraman (10.1016/j.jcis.2022.01.121_b0150) 2012; 11 Xu (10.1016/j.jcis.2022.01.121_b0045) 2018; 259 He (10.1016/j.jcis.2022.01.121_b0175) 2020; 3 Li (10.1016/j.jcis.2022.01.121_b0005) 2020; 12 Wang (10.1016/j.jcis.2022.01.121_b0010) 2021; 14 Xu (10.1016/j.jcis.2022.01.121_b0035) 2017; 725 Zhou (10.1016/j.jcis.2022.01.121_b0135) 2019; 11 Kong (10.1016/j.jcis.2022.01.121_b0020) 2022; 607 Yang (10.1016/j.jcis.2022.01.121_b0285) 2019; 141 Chen (10.1016/j.jcis.2022.01.121_b0300) 2020; 8 Zhang (10.1016/j.jcis.2022.01.121_b0140) 2019; 3 Liang (10.1016/j.jcis.2022.01.121_b0185) 2022; 15 Chen (10.1016/j.jcis.2022.01.121_b0170) 2017; 9 Yang (10.1016/j.jcis.2022.01.121_b0210) 2022; 611 Dai (10.1016/j.jcis.2022.01.121_b0080) 2019; 64 Wang (10.1016/j.jcis.2022.01.121_b0230) 2021; 368 Masurkar (10.1016/j.jcis.2022.01.121_b0060) 2018; 10 Zhang (10.1016/j.jcis.2022.01.121_b0205) 2016; 8 Chen (10.1016/j.jcis.2022.01.121_b0040) 2018; 447 Jiang (10.1016/j.jcis.2022.01.121_b0165) 2019; 7 Liu (10.1016/j.jcis.2022.01.121_b0350) 2017; 29 Yan (10.1016/j.jcis.2022.01.121_b0220) 2020; 8 Wang (10.1016/j.jcis.2022.01.121_b0070) 2018; 6 Kirubasankar (10.1016/j.jcis.2022.01.121_b0195) 2019; 355 Zhang (10.1016/j.jcis.2022.01.121_b0245) 2017; 7 Pei (10.1016/j.jcis.2022.01.121_b0015) 2021 Tang (10.1016/j.jcis.2022.01.121_b0200) 2012; 22 Hao (10.1016/j.jcis.2022.01.121_b0295) 2021; 586 Wang (10.1016/j.jcis.2022.01.121_b0340) 2020; 29 Zong (10.1016/j.jcis.2022.01.121_b0305) 2020; 353 Wu (10.1016/j.jcis.2022.01.121_b0310) 2020; 8 Zhang (10.1016/j.jcis.2022.01.121_b0225) 2021; 9 Vecharynski (10.1016/j.jcis.2022.01.121_b0330) 2015; 290 Lu (10.1016/j.jcis.2022.01.121_b0120) 2022; 607 Zhou (10.1016/j.jcis.2022.01.121_b0380) 2020; 45 Zhang (10.1016/j.jcis.2022.01.121_b0105) 2020; 30 Ming (10.1016/j.jcis.2022.01.121_b0085) 2020; 32 Wang (10.1016/j.jcis.2022.01.121_b0145) 2019; 299 Zhuo (10.1016/j.jcis.2022.01.121_b0375) 2019; 12 Wang (10.1016/j.jcis.2022.01.121_b0270) 2021; 60 Wu (10.1016/j.jcis.2022.01.121_b0255) 2020; 8 Wu (10.1016/j.jcis.2022.01.121_b0050) 2018; 5 Wu (10.1016/j.jcis.2022.01.121_b0265) 2019; 13 Li (10.1016/j.jcis.2022.01.121_b0320) 2021; 543 Wu (10.1016/j.jcis.2022.01.121_b0095) 2021; 13 Wu (10.1016/j.jcis.2022.01.121_b0115) 2021; 14 Tang (10.1016/j.jcis.2022.01.121_b0325) 2021; 404 Yu (10.1016/j.jcis.2022.01.121_b0355) 2018; 6 Li (10.1016/j.jcis.2022.01.121_b0110) 2020; 5 Yong (10.1016/j.jcis.2022.01.121_b0345) 2018; 14 Amiinu (10.1016/j.jcis.2022.01.121_b0360) 2017; 27 Lou (10.1016/j.jcis.2022.01.121_b0370) 2017; 42 Xu (10.1016/j.jcis.2022.01.121_b0075) 2017; 23 Zhang (10.1016/j.jcis.2022.01.121_b0250) 2017; 37 Jiang (10.1016/j.jcis.2022.01.121_b0130) 2018; 6 Ma (10.1016/j.jcis.2022.01.121_b0215) 2020; 25 Feng (10.1016/j.jcis.2022.01.121_b0025) 2020; 7 Jia (10.1016/j.jcis.2022.01.121_b0260) 2020; 12 He (10.1016/j.jcis.2022.01.121_b0275) 2019; 13 Zhao (10.1016/j.jcis.2022.01.121_b0090) 2020; 26 Xu (10.1016/j.jcis.2022.01.121_b0160) 2019; 242 Ma (10.1016/j.jcis.2022.01.121_b0065) 2021; 482 Zhang (10.1016/j.jcis.2022.01.121_b0100) 2017; 5 Zhao (10.1016/j.jcis.2022.01.121_b0190) 2018; 10 Subbaraman (10.1016/j.jcis.2022.01.121_b0155) 2011; 334 Wang (10.1016/j.jcis.2022.01.121_b0240) 2020; 12 Ye (10.1016/j.jcis.2022.01.121_b0235) 2021; 554 Yu (10.1016/j.jcis.2022.01.121_b0280) 2021; 33 Liu (10.1016/j.jcis.2022.01.121_b0315) 2019; 247 |
References_xml | – volume: 8 start-page: 7077 year: 2016 end-page: 7085 ident: b0205 article-title: Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 5019 year: 2020 end-page: 5028 ident: b0090 article-title: Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework publication-title: Ionics – volume: 11 start-page: 550 year: 2012 end-page: 557 ident: b0150 article-title: M., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts publication-title: Nat. Mater. – volume: 247 start-page: 107 year: 2019 end-page: 114 ident: b0315 article-title: Interface engineering of (Ni, Fe)S publication-title: Appl. Catal. B-Environ. – volume: 141 start-page: 10417 year: 2019 end-page: 10430 ident: b0285 article-title: Hierarchical Nanoassembly of MoS publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 3335 year: 2017 end-page: 3338 ident: b0370 article-title: High-performance MoS publication-title: Opt. Lett. – volume: 11 start-page: 717 year: 2019 end-page: 724 ident: b0135 article-title: Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics publication-title: Nanoscale – volume: 607 start-page: 1876 year: 2022 end-page: 1887 ident: b0020 article-title: Defect-Engineered 3D Hierarchical NiMo publication-title: J. Colloid Interface Sci. – volume: 33 start-page: 697 year: 2020 end-page: 702 ident: b0335 article-title: Low-bias conductance mechanism of diarylethene isomers: A first-principle study publication-title: Chin. J. Chem. Phys. – volume: 447 start-page: 325 year: 2018 end-page: 330 ident: b0040 article-title: Humidity sensing properties of the hydrothermally synthesized WS publication-title: Appl. Surf. Sci. – volume: 6 start-page: 431 year: 2018 ident: b0130 article-title: Urchin-Like Ni publication-title: Front. Chem. – volume: 7 start-page: 1800476 year: 2019 ident: b0165 article-title: 3D Mesoporous Ni(OH) publication-title: Energy Technol. – volume: 14 start-page: 1703798 year: 2018 ident: b0345 article-title: Edge-Riched MoSe publication-title: Small – volume: 27 start-page: 1702300 year: 2017 ident: b0360 article-title: Multifunctional Mo-N/C@MoS publication-title: Adv. Funct. Mater. – volume: 33 start-page: 2007100 year: 2021 ident: b0280 article-title: Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: past, Recent Progress, and Future Prospects publication-title: Adv. Mater. – volume: 81 year: 2021 ident: b0365 article-title: Further insights into bifunctional mechanism in alkaline hydrogen evolution for hybridized nanocatalysts and general route toward mechanism-oriented synthesis publication-title: Nano Energy – volume: 8 start-page: 3632 year: 2020 end-page: 3642 ident: b0255 article-title: Mixed-dimensional PdSe publication-title: J. Mater. Chem. A – volume: 32 start-page: 2004412 year: 2020 ident: b0030 article-title: Van der Waals Epitaxial Growth of Mosaic-Like 2D Platinum Ditelluride Layers for Room-Temperature Mid-Infrared Photodetection up to 10.6 microm publication-title: Adv. Mater. – volume: 30 start-page: 2003261 year: 2020 ident: b0105 article-title: Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting publication-title: Adv. Funct. Mater. – volume: 9 start-page: 16632 year: 2017 end-page: 16637 ident: b0170 article-title: Ni(OH) publication-title: Nanoscale – volume: 22 start-page: 1272 year: 2012 end-page: 1278 ident: b0200 article-title: A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH) publication-title: Adv. Funct. Mater. – volume: 368 year: 2021 ident: b0230 article-title: N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode publication-title: Solid State Ionics – volume: 8 start-page: 4474 year: 2020 end-page: 4480 ident: b0310 article-title: Rational Construction of a WS publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 19843 year: 2020 end-page: 19854 ident: b0220 article-title: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode publication-title: J. Mater. Chem. A – volume: 404 year: 2021 ident: b0325 article-title: Synthesis of hollow CoSe publication-title: Chem. Eng. J. – volume: 29 start-page: 1806419 year: 2019 ident: b0125 article-title: Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1700155 year: 2017 ident: b0245 article-title: High-Performance Aqueous Rechargeable Li-Ni Battery Based on Ni(OH) publication-title: Adv. Energy Mater. – volume: 586 start-page: 538 year: 2021 end-page: 550 ident: b0295 article-title: Multicomponent Co publication-title: J. Colloid Interface Sci. – volume: 242 start-page: 60 year: 2019 end-page: 66 ident: b0160 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH) publication-title: Appl. Catal. B-Environ. – volume: 554 year: 2021 ident: b0235 article-title: CoNi publication-title: Appl. Surf. Sci. – volume: 13 start-page: 1581 year: 2021 end-page: 1595 ident: b0095 article-title: Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts publication-title: Nanoscale – volume: 254 start-page: 15 year: 2019 end-page: 25 ident: b0290 article-title: 0D/3D MoS publication-title: Appl. Catal. B-Environ. – volume: 64 year: 2019 ident: b0080 article-title: In situ Raman study of nickel bicarbonate for high-performance energy storage device publication-title: Nano Energy – volume: 14 start-page: 23 year: 2021 ident: b0010 article-title: Fabricating Na/In/C Composite Anode with Natrophilic Na-In Alloy Enables Superior Na Ion Deposition in the EC/PC Electrolyte publication-title: Nano Micro Lett. – volume: 29 start-page: 1606521 year: 2017 ident: b0350 article-title: Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution publication-title: Adv. Mater. – volume: 12 start-page: 131 year: 2020 ident: b0005 article-title: Water Splitting: From Electrode to Green Energy System publication-title: Nano Micro Lett. – volume: 334 start-page: 1256 year: 2011 end-page: 1260 ident: b0155 article-title: Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li publication-title: Science – volume: 13 start-page: 11843 year: 2019 end-page: 11852 ident: b0275 article-title: Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage publication-title: ACS Nano – volume: 355 start-page: 881 year: 2019 end-page: 890 ident: b0195 article-title: 2D MoSe publication-title: Chem. Eng. J. – volume: 290 start-page: 73 year: 2015 end-page: 89 ident: b0330 article-title: A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix publication-title: J. Comput. Phys. – volume: 543 year: 2021 ident: b0320 article-title: Heterostructured MoO publication-title: Appl. Surf. Sci. – volume: 29 year: 2020 ident: b0340 article-title: Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes publication-title: Chin. Phys. B – volume: 482 year: 2021 ident: b0065 article-title: Mechanism investigation of high performance Na publication-title: J. Power Sources – volume: 259 start-page: 789 year: 2018 end-page: 796 ident: b0045 article-title: The ultra-high NO publication-title: Sens. Actuator B-Chem. – volume: 5 start-page: 2001010 year: 2020 ident: b0110 article-title: Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: fundamentals publication-title: Strategies, and Electrocatalytic Applications, Small Methods – volume: 37 start-page: 74 year: 2017 end-page: 80 ident: b0250 article-title: Interface engineering: The Ni(OH) publication-title: Nano Energy – volume: 12 start-page: 4435 year: 2020 end-page: 4444 ident: b0260 article-title: An ultrasensitive self-driven broadband photodetector based on a 2D-WS publication-title: Nanoscale – volume: 5 start-page: 3820 year: 2018 end-page: 3827 ident: b0050 article-title: Design of 2D layered PtSe heterojunction for the high-performance room-temperature broadband infrared photodetector publication-title: ACS Photonics – volume: 14 start-page: 1973 year: 2021 end-page: 1979 ident: b0115 article-title: Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe publication-title: Nano Res. – volume: 45 start-page: 11138 year: 2020 end-page: 11147 ident: b0380 article-title: Vermicular Ni publication-title: Int. J. Hydrog. Energy – volume: 60 start-page: 24558 year: 2021 end-page: 24565 ident: b0270 article-title: Identifying the Evolution of Selenium-Vacancy-Modulated MoSe publication-title: Angew. Chem. Int. Ed. – volume: 32 start-page: 1806326 year: 2020 ident: b0085 article-title: Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution publication-title: Adv. Mater. – volume: 3 start-page: 1800317 year: 2019 ident: b0140 article-title: Phase-Controlled Synthesis of 1T-MoSe publication-title: Small Methods – volume: 12 start-page: 4341 year: 2020 end-page: 4351 ident: b0240 article-title: Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO publication-title: Nanoscale – volume: 353 year: 2020 ident: b0305 article-title: Heterostructure nanohybrids of Ni-doped MoSe publication-title: Electrochim. Acta – volume: 15 start-page: 1221 year: 2022 end-page: 1229 ident: b0185 article-title: Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC publication-title: Nano Res. – volume: 611 start-page: 317 year: 2022 end-page: 326 ident: b0210 article-title: Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 10813 year: 2018 end-page: 10824 ident: b0070 article-title: 3D carbon foam-supported WS publication-title: J. Mater. Chem. A – volume: 10 start-page: 19074 year: 2018 end-page: 19081 ident: b0190 article-title: Epitaxial growth of Ni(OH) publication-title: Nanoscale – volume: 8 start-page: 1901503 year: 2020 ident: b0300 article-title: Phase Modulation and Chemical Activation of MoSe publication-title: Energy Technol. – volume: 5 start-page: 19752 year: 2017 end-page: 19759 ident: b0100 article-title: Hydrothermal synthesis of 3D hierarchical MoSe publication-title: J. Mater. Chem. A – volume: 299 start-page: 197 year: 2019 end-page: 205 ident: b0145 article-title: Hierarchical MoSe publication-title: Electrochim. Acta – year: 2021 ident: b0015 article-title: Rational construction of hierarchical porous FeP nanorod arrays ncapsulated in polypyrrole for efficient and durable hydrogen volution reaction publication-title: Chem. Eng. J. – volume: 6 start-page: 17353 year: 2018 end-page: 17360 ident: b0355 article-title: Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst publication-title: J. Mater. Chem. A – volume: 9 start-page: 9524 year: 2021 end-page: 9531 ident: b0225 article-title: Vertically aligned 1T-phase PtSe publication-title: J. Mater. Chem. C – volume: 725 start-page: 253 year: 2017 end-page: 259 ident: b0035 article-title: High-response NO publication-title: J. Alloy. Compd. – volume: 25 start-page: 811 year: 2020 end-page: 826 ident: b0215 article-title: Advanced carbon nanostructures for future high performance sodium metal anodes publication-title: Energy Storage Mater. – volume: 3 start-page: 7039 year: 2020 end-page: 7047 ident: b0175 article-title: Defect-Mediated Adsorption of Metal Ions for Constructing Ni Hydroxide/MoS publication-title: ACS Appl. Energ. Mater. – volume: 10 start-page: 27771 year: 2018 end-page: 27779 ident: b0060 article-title: CVD-Grown MoSe publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 3530 year: 2019 end-page: 3548 ident: b0055 article-title: Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction publication-title: ChemElectroChem – volume: 28 start-page: 1705970 year: 2018 ident: b0180 article-title: Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe publication-title: Adv. Funct. Mater. – volume: 23 start-page: 3273 year: 2017 end-page: 3280 ident: b0075 article-title: Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries publication-title: Ionics – volume: 607 start-page: 645 year: 2022 end-page: 654 ident: b0120 article-title: Theoretical insight into surface structures of pentlandite toward hydrogen evolution publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 9907 year: 2019 end-page: 9917 ident: b0265 article-title: Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe publication-title: ACS Nano – volume: 7 start-page: 31 year: 2020 end-page: 54 ident: b0025 article-title: Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction publication-title: ChemElectroChem – volume: 12 start-page: 183 year: 2019 end-page: 189 ident: b0375 article-title: In-situ fabrication of PtSe publication-title: Nano Res. – volume: 9 start-page: 16632 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0170 article-title: Ni(OH)2-CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media publication-title: Nanoscale doi: 10.1039/C7NR06001G – volume: 6 start-page: 3530 issue: 14 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0055 article-title: Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction publication-title: ChemElectroChem doi: 10.1002/celc.201900448 – volume: 355 start-page: 881 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0195 article-title: 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.185 – volume: 37 start-page: 74 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0250 article-title: Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.011 – volume: 404 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0325 article-title: Synthesis of hollow CoSe2/MoSe2 nanospheres for efficient hydrazine-assisted hydrogen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126529 – volume: 33 start-page: 2007100 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0280 article-title: Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: past, Recent Progress, and Future Prospects publication-title: Adv. Mater. doi: 10.1002/adma.202007100 – volume: 611 start-page: 317 year: 2022 ident: 10.1016/j.jcis.2022.01.121_b0210 article-title: Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.076 – volume: 353 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0305 article-title: Heterostructure nanohybrids of Ni-doped MoSe2 coupled with Ti2NTx toward efficient overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136598 – volume: 290 start-page: 73 year: 2015 ident: 10.1016/j.jcis.2022.01.121_b0330 article-title: A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.02.030 – volume: 13 start-page: 11843 issue: 10 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0275 article-title: Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage publication-title: ACS Nano doi: 10.1021/acsnano.9b05865 – volume: 6 start-page: 10813 issue: 23 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0070 article-title: 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02773K – volume: 7 start-page: 1700155 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0245 article-title: High-Performance Aqueous Rechargeable Li-Ni Battery Based on Ni(OH)2/NiOOH Redox Couple with High Voltage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700155 – volume: 607 start-page: 645 year: 2022 ident: 10.1016/j.jcis.2022.01.121_b0120 article-title: Theoretical insight into surface structures of pentlandite toward hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.09.020 – volume: 8 start-page: 19843 issue: 38 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0220 article-title: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05817C – volume: 242 start-page: 60 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0160 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.09.064 – volume: 11 start-page: 717 issue: 2 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0135 article-title: Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics publication-title: Nanoscale doi: 10.1039/C8NR08028C – volume: 33 start-page: 697 issue: 6 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0335 article-title: Low-bias conductance mechanism of diarylethene isomers: A first-principle study publication-title: Chin. J. Chem. Phys. doi: 10.1063/1674-0068/cjcp1911204 – volume: 141 start-page: 10417 issue: 26 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0285 article-title: Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 26 start-page: 5019 issue: 10 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0090 article-title: Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework publication-title: Ionics doi: 10.1007/s11581-020-03641-2 – volume: 8 start-page: 7077 issue: 11 year: 2016 ident: 10.1016/j.jcis.2022.01.121_b0205 article-title: Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12772 – volume: 29 start-page: 1606521 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0350 article-title: Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution publication-title: Adv. Mater. doi: 10.1002/adma.201606521 – volume: 334 start-page: 1256 issue: 6060 year: 2011 ident: 10.1016/j.jcis.2022.01.121_b0155 article-title: Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces publication-title: Science doi: 10.1126/science.1211934 – volume: 5 start-page: 3820 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0050 article-title: Design of 2D layered PtSe heterojunction for the high-performance room-temperature broadband infrared photodetector publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00853 – volume: 14 start-page: 1703798 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0345 article-title: Edge-Riched MoSe2/MoO2 Hybrid Electrocatalyst for Efficient Hydrogen Evolution Reaction publication-title: Small doi: 10.1002/smll.201703798 – volume: 5 start-page: 19752 issue: 37 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0100 article-title: Hydrothermal synthesis of 3D hierarchical MoSe2/NiSe2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05352E – volume: 725 start-page: 253 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0035 article-title: High-response NO2 resistive gas sensor based on bilayer MoS2 grown by a new two-step chemical vapor deposition method publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.06.105 – volume: 10 start-page: 19074 issue: 40 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0190 article-title: Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR07045H – volume: 6 start-page: 431 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0130 article-title: Urchin-Like Ni2/3Co1/3(CO3)1/2(OH).0.11H2O for High-Performance Supercapacitors publication-title: Front. Chem. doi: 10.3389/fchem.2018.00431 – volume: 28 start-page: 1705970 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0180 article-title: Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705970 – volume: 543 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0320 article-title: Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148804 – volume: 5 start-page: 2001010 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0110 article-title: Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: fundamentals publication-title: Strategies, and Electrocatalytic Applications, Small Methods – volume: 25 start-page: 811 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0215 article-title: Advanced carbon nanostructures for future high performance sodium metal anodes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.09.007 – volume: 586 start-page: 538 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0295 article-title: Multicomponent Co9S8@MoS2 nanohybrids as a novel trifunctional electrocatalyst for efficient methanol electrooxidation and overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.10.119 – volume: 23 start-page: 3273 issue: 12 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0075 article-title: Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries publication-title: Ionics doi: 10.1007/s11581-017-2160-4 – volume: 11 start-page: 550 issue: 6 year: 2012 ident: 10.1016/j.jcis.2022.01.121_b0150 article-title: M., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts publication-title: Nat. Mater. doi: 10.1038/nmat3313 – volume: 7 start-page: 31 issue: 1 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0025 article-title: Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction publication-title: ChemElectroChem doi: 10.1002/celc.201901623 – volume: 30 start-page: 2003261 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0105 article-title: Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003261 – volume: 299 start-page: 197 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0145 article-title: Hierarchical MoSe2-CoSe2 nanotubes anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution in alkaline medium publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.101 – volume: 6 start-page: 17353 issue: 36 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0355 article-title: Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04950E – volume: 22 start-page: 1272 issue: 6 year: 2012 ident: 10.1016/j.jcis.2022.01.121_b0200 article-title: A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102796 – volume: 607 start-page: 1876 year: 2022 ident: 10.1016/j.jcis.2022.01.121_b0020 article-title: Defect-Engineered 3D Hierarchical NiMo3S4 Nanoflowers as Bifunctional Electrocatalyst for Overall Water Splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.020 – volume: 32 start-page: 2004412 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0030 article-title: Van der Waals Epitaxial Growth of Mosaic-Like 2D Platinum Ditelluride Layers for Room-Temperature Mid-Infrared Photodetection up to 10.6 microm publication-title: Adv. Mater. doi: 10.1002/adma.202004412 – volume: 45 start-page: 11138 issue: 19 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0380 article-title: Vermicular Ni3S2–Ni(OH)2 heterostructure supported on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.02.056 – volume: 14 start-page: 23 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0010 article-title: Fabricating Na/In/C Composite Anode with Natrophilic Na-In Alloy Enables Superior Na Ion Deposition in the EC/PC Electrolyte publication-title: Nano Micro Lett. doi: 10.1007/s40820-021-00756-7 – volume: 15 start-page: 1221 issue: 2 year: 2022 ident: 10.1016/j.jcis.2022.01.121_b0185 article-title: Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC publication-title: Nano Res. doi: 10.1007/s12274-021-3629-z – volume: 12 start-page: 4435 issue: 7 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0260 article-title: An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction publication-title: Nanoscale doi: 10.1039/C9NR10348A – volume: 10 start-page: 27771 issue: 33 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0060 article-title: CVD-Grown MoSe2 Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07489 – volume: 12 start-page: 4341 issue: 7 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0240 article-title: Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO publication-title: Nanoscale doi: 10.1039/C9NR09278A – volume: 60 start-page: 24558 issue: 46 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0270 article-title: Identifying the Evolution of Selenium-Vacancy-Modulated MoSe2 Precatalyst in Lithium-Sulfur Chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109291 – volume: 3 start-page: 7039 issue: 7 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0175 article-title: Defect-Mediated Adsorption of Metal Ions for Constructing Ni Hydroxide/MoS2 Heterostructures as High-Performance Water-Splitting Electrocatalysts publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.0c01091 – volume: 13 start-page: 1581 issue: 3 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0095 article-title: Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts publication-title: Nanoscale doi: 10.1039/D0NR08009H – volume: 64 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0080 article-title: In situ Raman study of nickel bicarbonate for high-performance energy storage device publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103919 – volume: 81 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0365 article-title: Further insights into bifunctional mechanism in alkaline hydrogen evolution for hybridized nanocatalysts and general route toward mechanism-oriented synthesis publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105645 – volume: 554 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0235 article-title: CoNi2S4 nanoparticle on carbon cloth with high mass loading as multifunctional electrode for hybrid supercapacitor and overall water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149598 – volume: 29 start-page: 1806419 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0125 article-title: Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806419 – volume: 32 start-page: 1806326 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0085 article-title: Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution publication-title: Adv. Mater. doi: 10.1002/adma.201806326 – volume: 247 start-page: 107 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0315 article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.01.094 – volume: 368 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0230 article-title: N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode publication-title: Solid State Ionics doi: 10.1016/j.ssi.2021.115711 – volume: 12 start-page: 183 issue: 1 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0375 article-title: In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity publication-title: Nano Res. doi: 10.1007/s12274-018-2200-z – volume: 3 start-page: 1800317 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0140 article-title: Phase-Controlled Synthesis of 1T-MoSe2/NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution publication-title: Small Methods doi: 10.1002/smtd.201800317 – volume: 259 start-page: 789 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0045 article-title: The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes publication-title: Sens. Actuator B-Chem. doi: 10.1016/j.snb.2017.12.070 – volume: 482 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0065 article-title: Mechanism investigation of high performance Na3V2(PO4)2O2F/reduced graphene oxide cathode for sodium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228906 – volume: 254 start-page: 15 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0290 article-title: 0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.04.072 – volume: 8 start-page: 1901503 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0300 article-title: Phase Modulation and Chemical Activation of MoSe2 by Phosphorus for Electrocatalytic Hydrogen Evolution Reaction publication-title: Energy Technol. doi: 10.1002/ente.201901503 – volume: 42 start-page: 3335 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0370 article-title: High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared publication-title: Opt. Lett. doi: 10.1364/OL.42.003335 – volume: 8 start-page: 4474 issue: 11 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0310 article-title: Rational Construction of a WS2/CoS2 Heterostructure Electrocatalyst for Efficient Hydrogen Evolution at All pH Values publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b07507 – volume: 29 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0340 article-title: Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes publication-title: Chin. Phys. B – year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0015 article-title: Rational construction of hierarchical porous FeP nanorod arrays ncapsulated in polypyrrole for efficient and durable hydrogen volution reaction publication-title: Chem. Eng. J. – volume: 13 start-page: 9907 issue: 9 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0265 article-title: Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction publication-title: ACS Nano doi: 10.1021/acsnano.9b03994 – volume: 8 start-page: 3632 issue: 7 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0255 article-title: Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13611H – volume: 447 start-page: 325 year: 2018 ident: 10.1016/j.jcis.2022.01.121_b0040 article-title: Humidity sensing properties of the hydrothermally synthesized WS2-modified SnO2 hybrid nanocomposite publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.154 – volume: 27 start-page: 1702300 year: 2017 ident: 10.1016/j.jcis.2022.01.121_b0360 article-title: Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702300 – volume: 14 start-page: 1973 issue: 6 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0115 article-title: Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed publication-title: Nano Res. doi: 10.1007/s12274-021-3346-7 – volume: 7 start-page: 1800476 year: 2019 ident: 10.1016/j.jcis.2022.01.121_b0165 article-title: 3D Mesoporous Ni(OH)2/WS2 Nanofibers with Highly Enhanced Performances for Hybrid Supercapacitors publication-title: Energy Technol. doi: 10.1002/ente.201800476 – volume: 12 start-page: 131 year: 2020 ident: 10.1016/j.jcis.2022.01.121_b0005 article-title: Water Splitting: From Electrode to Green Energy System publication-title: Nano Micro Lett. doi: 10.1007/s40820-020-00469-3 – volume: 9 start-page: 9524 issue: 30 year: 2021 ident: 10.1016/j.jcis.2022.01.121_b0225 article-title: Vertically aligned 1T-phase PtSe2 on flexible carbon cloth for efficient and stable hydrogen evolution reaction publication-title: J. Mater. Chem. C doi: 10.1039/D1TC01552D |
SSID | ssj0011559 |
Score | 2.4741783 |
Snippet | An interconnected two-dimensional Ni(OH)2-MoSe2 nanosheet heterostructure arrays supported on carbon cloth (Ni(OH)2-MoSe2/CC) were synthezized, and further... The stacking of Molybdenum Diselenide (MoSe ) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which... The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which... The stacking of Molybdenum Diselenide (MoSe₂) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 267 |
SubjectTerms | adsorption carbon dissociation electron transfer Gibbs free energy Heterostructures Hydrogen evolution reaction hydrogen production molybdenum nanosheets nickel Overpotential synergism Synergistic effect Tafel slope |
Title | Interface engineering of nickel Hydroxide-Molybdenum diselenide nanosheet heterostructure arrays for efficient alkaline hydrogen production |
URI | https://dx.doi.org/10.1016/j.jcis.2022.01.121 https://www.ncbi.nlm.nih.gov/pubmed/35101674 https://www.proquest.com/docview/2624659818 https://www.proquest.com/docview/2636557532 |
Volume | 614 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMqjy6MyEjcUunb8SI7VimoB0ROVeov8GGtTVslqu5XYC3-AP81MHgscugeOsezI8Wd7xvE33zD2LhUC0C-GLDptMxU7yVunM7LdXoQggu_UPi_M_FJ9vtJXB2w2xsIQrXLY-_s9vduth5LTYTRPV3VNMb642mxpJdGCckWB5kpZmuUffu5oHoKu3Xqah8io9hA403O8rkNNkt1SknSnkOIu43SX89kZofPH7NHgPfKzvoNP2AE0R-z-bEzadsQe_qUv-JT96v73JReAw59y3ibe1Lh6l3y-jev2Rx0h-9outz4SL57HLgNTg6W8cU17swDY8AXRZtpebfZ2Ddyt1257w9Hl5dCpUKDx4m753ZHbyhf0XpyafNULyiL4z9jl-cdvs3k2ZF_IAjoxm8y70tvgXJz6QioT8SFaPOykALpIFkpvtPciJee0hCRKraMyKsXgoCxA58_ZYdM2cMw4Qi5tECaZQiuvywLPWLKculwZY30pJkyMw16FQZqcMmQsq5GDdl0RVBVBVU1FhVBN2Ptdm1UvzLG3th7RrP6ZXhVajr3t3o7QV4gkXaa4BtpbrGRwUPBTRLGvTm40-sO5nLAX_bzZ9TWnzdBY9fI_e_aKPaAnIjII_ZodIv7wBv2jjT_pFsAJu3f26cv84jeJgxMN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kziHtoWjTzV1ZoLdCiCmJlHQMjAZKk_iUALkRXGGlhmQ4DhB_Q366M1rc9hAfehRFChTfkPMkDt8AfAs598iLfeS0yKLUtZK3WkTkuw23llvTqn3OZHmV_rwW13swHc7CUFhlv_Z3a3q7WvclR_1oHi2ris744mzLiiymsKAkFU9gn9SpxAj2j0_Pytl2M4F23rpIDx5Rg_7sTBfmdWMrUu2OY1Lv5DF_zD89xj9bP3TyAp73BJIdd318CXu-PoSD6ZC37RCe_SUx-Aoe2l9-QVvP_J9y1gRWVziBF6zcuFVzXzkfXTSLjXEUGs9cm4SpxlJW67q5nXu_ZnOKnGk6wdm7lWd6tdKbW4asl_lWiAL9F9OLX5qYK5vTc9E62bLTlEX8X8PVyY_LaRn1CRgiizxmHRldmMxq7SYmj1Pp8MJl-L0TrBd5yHxhpDCGh6C1iH3ghRAulWlwVvsi9yJ5A6O6qf07YIh6nFkug8xFakSR42dWXEx0kkqZmYKPgQ_DrmyvTk5JMhZqCEO7UQSVIqjUhCuEagzft22WnTbHztpiQFP9Y2EKncfOdl8H6BUiSfspuvbNHVaSOCj4KjzfVSeRAilxEo_hbWc3274mtB7KLH3_nz37Agfl5cW5Oj-dnX2Ap3SH4hq4-AgjtAX_CenS2nzup8Nv34UVvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+engineering+of+nickel+Hydroxide-Molybdenum+diselenide+nanosheet+heterostructure+arrays+for+efficient+alkaline+hydrogen+production&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhang%2C+Limin&rft.au=Zhang%2C+Wenfei&rft.au=Wang%2C+Minglang&rft.au=Wang%2C+Hui&rft.date=2022-05-15&rft.eissn=1095-7103&rft.volume=614&rft.spage=267&rft_id=info:doi/10.1016%2Fj.jcis.2022.01.121&rft_id=info%3Apmid%2F35101674&rft.externalDocID=35101674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |