Understanding the dynamic design of the spliceosome

The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates that in Saccharomyces cerevisiae, spliceosome fidelity is promoted by the Prp16 and Prp22 DEAH box ATPases, which function as molecular timers...

Full description

Saved in:
Bibliographic Details
Published inTrends in biochemical sciences (Amsterdam. Regular ed.) Vol. 49; no. 7; pp. 583 - 595
Main Authors Beusch, Irene, Madhani, Hiten D.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates that in Saccharomyces cerevisiae, spliceosome fidelity is promoted by the Prp16 and Prp22 DEAH box ATPases, which function as molecular timers that, upon ATP hydrolysis, remove step-specific protein activators of catalysis.Additionally, research is showing that in human cells, quality control during the early phases of spliceosome assembly occurs via the G-patch protein SUGP1, which recruits the human ortholog of Prp43, hPrp43/DHX15, to early assembly complexes.Genetic analysis has revealed that specific factors prevent substrates from being erroneously repositioned during the many dynamic transitions that occur during spliceosome assembly and catalysis. The requirement for such factors may help explain the spliceosomes’ compositional complexity. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome.
AbstractList The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.
The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates that in Saccharomyces cerevisiae, spliceosome fidelity is promoted by the Prp16 and Prp22 DEAH box ATPases, which function as molecular timers that, upon ATP hydrolysis, remove step-specific protein activators of catalysis.Additionally, research is showing that in human cells, quality control during the early phases of spliceosome assembly occurs via the G-patch protein SUGP1, which recruits the human ortholog of Prp43, hPrp43/DHX15, to early assembly complexes.Genetic analysis has revealed that specific factors prevent substrates from being erroneously repositioned during the many dynamic transitions that occur during spliceosome assembly and catalysis. The requirement for such factors may help explain the spliceosomes’ compositional complexity. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome.
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or snRNAs in S. cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.
Author Beusch, Irene
Madhani, Hiten D.
Author_xml – sequence: 1
  givenname: Irene
  orcidid: 0000-0001-7758-4348
  surname: Beusch
  fullname: Beusch, Irene
  organization: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
– sequence: 2
  givenname: Hiten D.
  orcidid: 0000-0001-7400-6657
  surname: Madhani
  fullname: Madhani, Hiten D.
  email: hiten.madhani@ucsf.edu
  organization: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38641465$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LxDAQQIMouqv-AQ-yRy-tk4-2KXgR8QsEL3oOaTLVLG2yJlnBf2_X1YsHPQ0M783Am5NdHzwSckKhpEDr82WZXZdKBkyUwEugbIfMKK9ZITird8kM2loWACAOyDylJQCtmqbaJwdc1oKKupoR_uwtxpS1t86_LPIrLuyH16MzC4vJvfhF6L-2aTU4gyGFEY_IXq-HhMff85A831w_Xd0VD4-391eXD4Xhss1FV8mWad5oZFaK6belspW2E8L2uhGdaBpgUBtr-1Zi1fbAtOi55hVrUbQ9PyRn27urGN7WmLIaXTI4DNpjWCfFacXrinMh_kdBcGgaweSEnn6j625Eq1bRjTp-qJ8mEyC3gIkhpYi9Mi7r7ILPUbtBUVCb_GqpNvnVJr8Crqb8k8p-qT_X_5QuthJOLd8dRpWMQ2_QuogmKxvcX_onszecUg
CitedBy_id crossref_primary_10_1016_j_gene_2024_148856
crossref_primary_10_1080_15476286_2025_2477844
crossref_primary_10_1093_nar_gkae561
Cites_doi 10.1126/science.abm4245
10.1371/journal.pgen.1010028
10.1128/MCB.00035-13
10.7554/eLife.78808
10.1016/j.molcel.2023.06.003
10.1016/j.devcel.2017.07.002
10.1016/0092-8674(86)90881-0
10.1038/s41576-022-00556-8
10.1038/nrm3154
10.1101/gad.1.5.445
10.1073/pnas.2216712119
10.1093/nar/gkz765
10.1093/nar/gkab695
10.1002/j.1460-2075.1992.tb05291.x
10.1261/rna.2030510
10.1126/science.aag0291
10.1101/gad.253708.114
10.1002/cfg.213
10.1515/hsz-2023-0157
10.1146/annurev-biochem-060614-034316
10.1093/nar/gkad861
10.1038/nrg.2016.46
10.1093/emboj/cdf480
10.1016/0092-8674(85)90065-0
10.1126/science.1158993
10.1101/gad.14.1.97
10.1016/j.celrep.2023.113223
10.1038/302591a0
10.1093/molbev/msad011
10.1261/rna.079888.123
10.1016/S0300-9084(75)80139-8
10.1038/s41586-023-06746-6
10.1016/j.tibs.2020.10.006
10.1016/j.cell.2016.01.025
10.1073/pnas.71.10.4135
10.1126/science.aar6401
10.3389/fgene.2021.700744
10.1038/s41388-020-01507-5
10.1093/nar/gkac991
10.1261/rna.066878.118
10.1186/s12862-018-1161-x
10.1073/pnas.2036312100
10.1371/journal.pone.0000468
10.1126/science.aar3729
10.1038/s41467-023-36489-x
10.1101/cshperspect.a032417
10.1038/349494a0
10.1038/s41467-021-24879-y
10.1016/j.molcel.2010.07.014
10.1016/j.devcel.2017.07.003
10.1038/s41586-021-03789-5
10.1101/cshperspect.a032391
10.1038/s41594-023-01150-0
10.1073/pnas.0906022107
10.1016/j.cell.2012.08.029
10.1016/j.celrep.2013.10.047
10.1126/sciadv.adf1785
10.1101/cshperspect.a016071
10.1111/jeu.12927
10.1515/hsz-2020-0381
10.1126/science.aag1906
10.1002/wrna.1331
10.1073/pnas.1922622117
10.7554/eLife.91997
10.1016/j.febslet.2012.02.052
10.1038/s41580-023-00628-5
10.1038/s41467-019-11293-8
10.1016/0092-8674(92)90556-R
10.1261/rna.059204.116
10.1038/nsmb1093
10.1016/j.molcel.2024.02.039
10.1038/nature11681
10.1016/j.cub.2021.09.004
10.1038/nature12734
10.1016/j.molcel.2007.09.022
10.1016/j.molcel.2023.03.026
10.1016/0092-8674(90)90086-T
10.1016/j.molcel.2021.02.021
10.1038/s41586-023-06049-w
10.1038/nature05228
10.1101/gad.351154.123
10.7554/eLife.15564
10.1261/rna.070649.119
10.1016/j.molcel.2020.09.012
10.1261/rna.078977.121
10.1021/acs.chemrev.7b00499
10.1016/j.tig.2017.07.009
10.1016/j.cell.2018.01.010
10.1038/s41586-020-2344-3
10.1126/science.aax3289
10.1146/annurev-biochem-091719-064225
10.1101/gad.291872.116
10.1038/nsmb.2951
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.tibs.2024.03.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1362-4326
EndPage 595
ExternalDocumentID 38641465
10_1016_j_tibs_2024_03_012
S0968000424000781
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM071801
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
123
1B1
1CY
1RT
1~.
1~5
29Q
3EH
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACKIV
ACNCT
ACPRK
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
H~9
IH2
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TAE
UQL
WUQ
X7M
XFK
XPP
Y6R
ZCA
ZMT
~G-
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-b5892a37ae2d84015d1898db44dfa74b4770206cddf98e59f02a4f3a3529e49f3
IEDL.DBID .~1
ISSN 0968-0004
IngestDate Wed Jul 02 04:55:50 EDT 2025
Fri Jul 11 11:42:17 EDT 2025
Sat Aug 16 01:30:48 EDT 2025
Tue Jul 01 01:05:06 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Sat Jun 29 15:30:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords fidelity
spliceosome
ATPases
snRNA
pre-mRNA splicing
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-b5892a37ae2d84015d1898db44dfa74b4770206cddf98e59f02a4f3a3529e49f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7400-6657
0000-0001-7758-4348
PMID 38641465
PQID 3043077428
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3153653344
proquest_miscellaneous_3043077428
pubmed_primary_38641465
crossref_citationtrail_10_1016_j_tibs_2024_03_012
crossref_primary_10_1016_j_tibs_2024_03_012
elsevier_sciencedirect_doi_10_1016_j_tibs_2024_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in biochemical sciences (Amsterdam. Regular ed.)
PublicationTitleAlternate Trends Biochem Sci
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schmelzer, Schweyen (bb0010) 1986; 46
Novikova, Belfort (bb0040) 2017; 33
Dybkov (bb0370) 2023; 9
Will (bb0355) 2002; 21
Ninio (bb0435) 1975; 57
Mayas (bb0175) 2010; 107
Liang, Cheng (bb0240) 2015; 29
Hopfield (bb0430) 1974; 71
Parker (bb0410) 2022; 11
Beier (bb0270) 2019; 47
Chiang, Cheng (bb0115) 2013; 33
Wilkinson (bb0070) 2017; 358
Enders (bb0095) 2023; 404
Lee, Rio (bb0105) 2015; 84
Smith (bb0110) 1993; 13
Maul-Newby (bb0205) 2022; 28
Rogalska (bb0035) 2023; 24
Tang (bb0265) 2016; 30
Fourmann (bb0165) 2016; 5
Vosseberg (bb0330) 2023; 40
Akinyi, Frilander (bb0030) 2021; 12
Zhang (bb0280) 2020; 583
Couto (bb0145) 1987; 1
Kao (bb0260) 2021; 49
De (bb0080) 2016; 7
Curtis (bb0465) 2012; 492
Schwer, Guthrie (bb0125) 1991; 349
Plaschka (bb0025) 2019; 11
Wilkinson (bb0005) 2020; 89
Lardelli (bb0300) 2010; 16
Zhang (bb0365) 2023; 37
Tseng, Cheng (bb0015) 2008; 320
Kastner (bb0020) 2019; 11
Yang (bb0350) 2023; 14
Zahler (bb0400) 2018; 24
Zhan (bb0130) 2018; 359
Liu (bb0195) 2020; 117
Bohnsack (bb0200) 2023; 24
Tseng (bb0120) 2017; 23
Zhang (bb0215) 2022; 119
Charenton (bb0415) 2019; 364
Rauhut (bb0310) 2016; 353
Perriman (bb0250) 2003; 100
Qiu (bb0455) 2018; 18
Fica (bb0060) 2013; 503
Niu (bb0230) 2012; 586
De (bb0325) 2015; 22
De Bortoli (bb0075) 2021; 46
Beusch (bb0185) 2023; 83
Damianov (bb0225) 2024; 84
Xu (bb0055) 2023; 624
Keiper (bb0425) 2019; 10
Linder, Jankowsky (bb0085) 2011; 12
Imielinski (bb0220) 2012; 150
Schmitzová (bb0320) 2023; 617
Semlow (bb0140) 2016; 164
Koodathingal (bb0155) 2010; 39
Savir, Tlusty (bb0440) 2007; 2
Wong (bb0460) 2023; 70
Bertram (bb0135) 2020; 80
Burgess (bb0150) 1990; 60
Yan (bb0315) 2016; 353
Cartwright-Acar (bb0390) 2022; 50
Mayas (bb0170) 2006; 13
Russell (bb0450) 2006; 443
Chung (bb0160) 2023; 51
Madhani, Guthrie (bb0065) 1992; 71
Haack (bb0050) 2024; 31
Parker (bb0405) 2023; 12
Treisman (bb0385) 1983; 302
Weis (bb0090) 2021; 402
Kim (bb0295) 1992; 11
Haselbach (bb0305) 2018; 172
Parker, Guthrie (bb0380) 1985; 41
Zhang (bb0275) 2013; 5
Sales-Lee (bb0335) 2021; 31
Tyc (bb0345) 2017; 42
Lazear (bb0360) 2023; 83
Suzuki (bb0395) 2022; 18
Osterhoudt (bb0375) 2024; 30
Xu, Query (bb0235) 2007; 28
Akay (bb0340) 2017; 42
Sibley (bb0100) 2016; 17
Fukumura (bb0420) 2021; 12
Perriman, Ares (bb0255) 2000; 14
Tholen (bb0290) 2022; 375
Talkish (bb0245) 2019; 25
Irimia, Roy (bb0445) 2014; 6
Wilkinson (bb0180) 2021; 81
Feng (bb0210) 2023; 42
Leontis, Westhof (bb0470) 2002; 3
Alsafadi (bb0190) 2021; 40
Galej (bb0045) 2018; 118
Zhang (bb0285) 2021; 596
Schmitzová (10.1016/j.tibs.2024.03.012_bb0320) 2023; 617
Beusch (10.1016/j.tibs.2024.03.012_bb0185) 2023; 83
Alsafadi (10.1016/j.tibs.2024.03.012_bb0190) 2021; 40
Maul-Newby (10.1016/j.tibs.2024.03.012_bb0205) 2022; 28
Tholen (10.1016/j.tibs.2024.03.012_bb0290) 2022; 375
Yang (10.1016/j.tibs.2024.03.012_bb0350) 2023; 14
Zhang (10.1016/j.tibs.2024.03.012_bb0365) 2023; 37
Irimia (10.1016/j.tibs.2024.03.012_bb0445) 2014; 6
Liu (10.1016/j.tibs.2024.03.012_bb0195) 2020; 117
Fukumura (10.1016/j.tibs.2024.03.012_bb0420) 2021; 12
De (10.1016/j.tibs.2024.03.012_bb0080) 2016; 7
Dybkov (10.1016/j.tibs.2024.03.012_bb0370) 2023; 9
Sibley (10.1016/j.tibs.2024.03.012_bb0100) 2016; 17
Mayas (10.1016/j.tibs.2024.03.012_bb0175) 2010; 107
Chung (10.1016/j.tibs.2024.03.012_bb0160) 2023; 51
Keiper (10.1016/j.tibs.2024.03.012_bb0425) 2019; 10
Novikova (10.1016/j.tibs.2024.03.012_bb0040) 2017; 33
Will (10.1016/j.tibs.2024.03.012_bb0355) 2002; 21
Parker (10.1016/j.tibs.2024.03.012_bb0380) 1985; 41
Wilkinson (10.1016/j.tibs.2024.03.012_bb0005) 2020; 89
Schmelzer (10.1016/j.tibs.2024.03.012_bb0010) 1986; 46
Rogalska (10.1016/j.tibs.2024.03.012_bb0035) 2023; 24
Schwer (10.1016/j.tibs.2024.03.012_bb0125) 1991; 349
Tseng (10.1016/j.tibs.2024.03.012_bb0120) 2017; 23
Zahler (10.1016/j.tibs.2024.03.012_bb0400) 2018; 24
Linder (10.1016/j.tibs.2024.03.012_bb0085) 2011; 12
Haack (10.1016/j.tibs.2024.03.012_bb0050) 2024; 31
De Bortoli (10.1016/j.tibs.2024.03.012_bb0075) 2021; 46
Fourmann (10.1016/j.tibs.2024.03.012_bb0165) 2016; 5
Madhani (10.1016/j.tibs.2024.03.012_bb0065) 1992; 71
Feng (10.1016/j.tibs.2024.03.012_bb0210) 2023; 42
Bertram (10.1016/j.tibs.2024.03.012_bb0135) 2020; 80
Damianov (10.1016/j.tibs.2024.03.012_bb0225) 2024; 84
Zhang (10.1016/j.tibs.2024.03.012_bb0215) 2022; 119
Akay (10.1016/j.tibs.2024.03.012_bb0340) 2017; 42
Xu (10.1016/j.tibs.2024.03.012_bb0235) 2007; 28
Akinyi (10.1016/j.tibs.2024.03.012_bb0030) 2021; 12
Haselbach (10.1016/j.tibs.2024.03.012_bb0305) 2018; 172
Vosseberg (10.1016/j.tibs.2024.03.012_bb0330) 2023; 40
Osterhoudt (10.1016/j.tibs.2024.03.012_bb0375) 2024; 30
Treisman (10.1016/j.tibs.2024.03.012_bb0385) 1983; 302
Qiu (10.1016/j.tibs.2024.03.012_bb0455) 2018; 18
Couto (10.1016/j.tibs.2024.03.012_bb0145) 1987; 1
Cartwright-Acar (10.1016/j.tibs.2024.03.012_bb0390) 2022; 50
Charenton (10.1016/j.tibs.2024.03.012_bb0415) 2019; 364
Zhang (10.1016/j.tibs.2024.03.012_bb0280) 2020; 583
Kim (10.1016/j.tibs.2024.03.012_bb0295) 1992; 11
Wong (10.1016/j.tibs.2024.03.012_bb0460) 2023; 70
Plaschka (10.1016/j.tibs.2024.03.012_bb0025) 2019; 11
Beier (10.1016/j.tibs.2024.03.012_bb0270) 2019; 47
Ninio (10.1016/j.tibs.2024.03.012_bb0435) 1975; 57
Russell (10.1016/j.tibs.2024.03.012_bb0450) 2006; 443
Suzuki (10.1016/j.tibs.2024.03.012_bb0395) 2022; 18
Chiang (10.1016/j.tibs.2024.03.012_bb0115) 2013; 33
Perriman (10.1016/j.tibs.2024.03.012_bb0255) 2000; 14
Wilkinson (10.1016/j.tibs.2024.03.012_bb0180) 2021; 81
Galej (10.1016/j.tibs.2024.03.012_bb0045) 2018; 118
Sales-Lee (10.1016/j.tibs.2024.03.012_bb0335) 2021; 31
Tyc (10.1016/j.tibs.2024.03.012_bb0345) 2017; 42
Smith (10.1016/j.tibs.2024.03.012_bb0110) 1993; 13
Lardelli (10.1016/j.tibs.2024.03.012_bb0300) 2010; 16
Leontis (10.1016/j.tibs.2024.03.012_bb0470) 2002; 3
Fica (10.1016/j.tibs.2024.03.012_bb0060) 2013; 503
Hopfield (10.1016/j.tibs.2024.03.012_bb0430) 1974; 71
Lee (10.1016/j.tibs.2024.03.012_bb0105) 2015; 84
Lazear (10.1016/j.tibs.2024.03.012_bb0360) 2023; 83
Enders (10.1016/j.tibs.2024.03.012_bb0095) 2023; 404
Yan (10.1016/j.tibs.2024.03.012_bb0315) 2016; 353
Semlow (10.1016/j.tibs.2024.03.012_bb0140) 2016; 164
Bohnsack (10.1016/j.tibs.2024.03.012_bb0200) 2023; 24
Parker (10.1016/j.tibs.2024.03.012_bb0410) 2022; 11
De (10.1016/j.tibs.2024.03.012_bb0325) 2015; 22
Niu (10.1016/j.tibs.2024.03.012_bb0230) 2012; 586
Rauhut (10.1016/j.tibs.2024.03.012_bb0310) 2016; 353
Curtis (10.1016/j.tibs.2024.03.012_bb0465) 2012; 492
Imielinski (10.1016/j.tibs.2024.03.012_bb0220) 2012; 150
Liang (10.1016/j.tibs.2024.03.012_bb0240) 2015; 29
Talkish (10.1016/j.tibs.2024.03.012_bb0245) 2019; 25
Zhang (10.1016/j.tibs.2024.03.012_bb0275) 2013; 5
Savir (10.1016/j.tibs.2024.03.012_bb0440) 2007; 2
Tseng (10.1016/j.tibs.2024.03.012_bb0015) 2008; 320
Xu (10.1016/j.tibs.2024.03.012_bb0055) 2023; 624
Koodathingal (10.1016/j.tibs.2024.03.012_bb0155) 2010; 39
Parker (10.1016/j.tibs.2024.03.012_bb0405) 2023; 12
Zhang (10.1016/j.tibs.2024.03.012_bb0285) 2021; 596
Wilkinson (10.1016/j.tibs.2024.03.012_bb0070) 2017; 358
Kastner (10.1016/j.tibs.2024.03.012_bb0020) 2019; 11
Zhan (10.1016/j.tibs.2024.03.012_bb0130) 2018; 359
Mayas (10.1016/j.tibs.2024.03.012_bb0170) 2006; 13
Tang (10.1016/j.tibs.2024.03.012_bb0265) 2016; 30
Kao (10.1016/j.tibs.2024.03.012_bb0260) 2021; 49
Perriman (10.1016/j.tibs.2024.03.012_bb0250) 2003; 100
Weis (10.1016/j.tibs.2024.03.012_bb0090) 2021; 402
Burgess (10.1016/j.tibs.2024.03.012_bb0150) 1990; 60
References_xml – volume: 42
  start-page: 241
  year: 2017
  end-page: 255.e6
  ident: bb0340
  article-title: The helicase Aquarius/EMB-4 is required to overcome intronic barriers to allow nuclear RNAi pathways to heritably silence transcription
  publication-title: Dev. Cell
– volume: 31
  start-page: 179
  year: 2024
  end-page: 189
  ident: bb0050
  article-title: Structural basis of branching during RNA splicing
  publication-title: Nat. Struct. Mol. Biol.
– volume: 404
  start-page: 851
  year: 2023
  end-page: 866
  ident: bb0095
  article-title: Structure and function of spliceosomal DEAH-box ATPases
  publication-title: Biol. Chem.
– volume: 28
  start-page: 583
  year: 2022
  end-page: 595
  ident: bb0205
  article-title: A model for DHX15 mediated disassembly of A-complex spliceosomes
  publication-title: RNA
– volume: 358
  start-page: 1283
  year: 2017
  end-page: 1288
  ident: bb0070
  article-title: Postcatalytic spliceosome structure reveals mechanism of 3′-splice site selection
  publication-title: Science
– volume: 164
  start-page: 985
  year: 2016
  end-page: 998
  ident: bb0140
  article-title: Spliceosomal DEAH-Box ATPases remodel pre-mRNA to activate alternative splice sites
  publication-title: Cell
– volume: 5
  start-page: 1269
  year: 2013
  end-page: 1278
  ident: bb0275
  article-title: Crystal structure of Prp5p reveals interdomain interactions that impact spliceosome assembly
  publication-title: Cell Rep.
– volume: 3
  start-page: 518
  year: 2002
  end-page: 524
  ident: bb0470
  article-title: The annotation of RNA motifs
  publication-title: Comp. Funct. Genomics
– volume: 6
  year: 2014
  ident: bb0445
  article-title: Origin of spliceosomal introns and alternative splicing
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 24
  start-page: 251
  year: 2023
  end-page: 269
  ident: bb0035
  article-title: Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects
  publication-title: Nat. Rev. Genet.
– volume: 13
  start-page: 482
  year: 2006
  end-page: 490
  ident: bb0170
  article-title: Exon ligation is proofread by the DExD/H-box ATPase Prp22p
  publication-title: Nat. Struct. Mol. Biol.
– volume: 50
  start-page: 11834
  year: 2022
  end-page: 11857
  ident: bb0390
  article-title: A forward genetic screen in
  publication-title: Nucleic Acids Res.
– volume: 349
  start-page: 494
  year: 1991
  end-page: 499
  ident: bb0125
  article-title: PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome
  publication-title: Nature
– volume: 30
  start-page: 2710
  year: 2016
  end-page: 2723
  ident: bb0265
  article-title: SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing
  publication-title: Genes Dev.
– volume: 353
  start-page: 904
  year: 2016
  end-page: 911
  ident: bb0315
  article-title: Structure of a yeast activated spliceosome at 3.5 A resolution
  publication-title: Science
– volume: 83
  start-page: 2578
  year: 2023
  end-page: 2594
  ident: bb0185
  article-title: Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles
  publication-title: Mol. Cell
– volume: 30
  start-page: 404
  year: 2024
  end-page: 417
  ident: bb0375
  article-title: Spliceosomal helicases DDX41/SACY-1 and PRP22/MOG-5 both contribute to proofreading against proximal 3′ splice site usage
  publication-title: RNA
– volume: 40
  start-page: 85
  year: 2021
  end-page: 96
  ident: bb0190
  article-title: Genetic alterations of SUGP1 mimic mutant-SF3B1 splice pattern in lung adenocarcinoma and other cancers
  publication-title: Oncogene
– volume: 18
  year: 2022
  ident: bb0395
  article-title: A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5′ splice site identity
  publication-title: PLoS Genet.
– volume: 24
  start-page: 749
  year: 2023
  end-page: 769
  ident: bb0200
  article-title: Cellular functions of eukaryotic RNA helicases and their links to human diseases
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 5
  year: 2016
  ident: bb0165
  article-title: The target of the DEAH-box NTP triphosphatase Prp43 in
  publication-title: Elife
– volume: 49
  start-page: 9965
  year: 2021
  end-page: 9977
  ident: bb0260
  article-title: Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint
  publication-title: Nucleic Acids Res.
– volume: 83
  start-page: 1725
  year: 2023
  end-page: 1742.e12
  ident: bb0360
  article-title: Proteomic discovery of chemical probes that perturb protein complexes in human cells
  publication-title: Mol. Cell
– volume: 583
  start-page: 310
  year: 2020
  end-page: 313
  ident: bb0280
  article-title: Molecular architecture of the human 17S U2 snRNP
  publication-title: Nature
– volume: 42
  start-page: 256
  year: 2017
  end-page: 270
  ident: bb0345
  article-title: The conserved intron binding protein EMB-4 plays differential roles in germline small RNA pathways of
  publication-title: Dev. Cell
– volume: 596
  start-page: 296
  year: 2021
  end-page: 300
  ident: bb0285
  article-title: Structural insights into how Prp5 proofreads the pre-mRNA branch site
  publication-title: Nature
– volume: 1
  start-page: 445
  year: 1987
  end-page: 455
  ident: bb0145
  article-title: A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation
  publication-title: Genes Dev.
– volume: 2
  year: 2007
  ident: bb0440
  article-title: Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition
  publication-title: PLoS One
– volume: 80
  start-page: 127
  year: 2020
  end-page: 139.e6
  ident: bb0135
  article-title: Structural insights into the roles of Metazoan-specific splicing factors in the human step 1 spliceosome
  publication-title: Mol. Cell
– volume: 11
  year: 2022
  ident: bb0410
  article-title: m
  publication-title: Elife
– volume: 40
  year: 2023
  ident: bb0330
  article-title: Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome
  publication-title: Mol. Biol. Evol.
– volume: 29
  start-page: 81
  year: 2015
  end-page: 93
  ident: bb0240
  article-title: A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence
  publication-title: Genes Dev.
– volume: 12
  start-page: 505
  year: 2011
  end-page: 516
  ident: bb0085
  article-title: From unwinding to clamping – the DEAD box RNA helicase family
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 117
  start-page: 10305
  year: 2020
  end-page: 10312
  ident: bb0195
  article-title: Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 25
  start-page: 1020
  year: 2019
  end-page: 1037
  ident: bb0245
  article-title: Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM–ULM interaction
  publication-title: RNA
– volume: 81
  start-page: 1439
  year: 2021
  end-page: 1452
  ident: bb0180
  article-title: Structural basis for conformational equilibrium of the catalytic spliceosome
  publication-title: Mol. Cell
– volume: 302
  start-page: 591
  year: 1983
  end-page: 596
  ident: bb0385
  article-title: Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes
  publication-title: Nature
– volume: 17
  start-page: 407
  year: 2016
  end-page: 421
  ident: bb0100
  article-title: Lessons from non-canonical splicing
  publication-title: Nat. Rev. Genet.
– volume: 375
  start-page: 50
  year: 2022
  end-page: 57
  ident: bb0290
  article-title: Structural basis of branch site recognition by the human spliceosome
  publication-title: Science
– volume: 100
  start-page: 13857
  year: 2003
  end-page: 13862
  ident: bb0250
  article-title: ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 492
  start-page: 59
  year: 2012
  end-page: 65
  ident: bb0465
  article-title: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs
  publication-title: Nature
– volume: 402
  start-page: 653
  year: 2021
  end-page: 661
  ident: bb0090
  article-title: Dead or alive: DEAD-box ATPases as regulators of ribonucleoprotein complex condensation
  publication-title: Biol. Chem.
– volume: 42
  year: 2023
  ident: bb0210
  article-title: Splicing quality control mediated by DHX15 and its G-patch activator SUGP1
  publication-title: Cell Rep.
– volume: 33
  start-page: 1746
  year: 2013
  end-page: 1755
  ident: bb0115
  article-title: A weak spliceosome-binding domain of Yju2 functions in the first step and bypasses Prp16 in the second step of splicing
  publication-title: Mol. Cell. Biol.
– volume: 624
  start-page: 682
  year: 2023
  end-page: 688
  ident: bb0055
  article-title: Structural insights into intron catalysis and dynamics during splicing
  publication-title: Nature
– volume: 46
  start-page: 557
  year: 1986
  end-page: 565
  ident: bb0010
  article-title: Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation
  publication-title: Cell
– volume: 13
  start-page: 4939
  year: 1993
  end-page: 4952
  ident: bb0110
  article-title: Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns
  publication-title: Mol. Cell. Biol.
– volume: 9
  year: 2023
  ident: bb0370
  article-title: Regulation of 3′ splice site selection after step 1 of splicing by spliceosomal C* proteins
  publication-title: Sci. Adv.
– volume: 10
  start-page: 3639
  year: 2019
  ident: bb0425
  article-title: Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns
  publication-title: Nat. Commun.
– volume: 12
  year: 2021
  ident: bb0030
  article-title: At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression
  publication-title: Front. Genet.
– volume: 119
  year: 2022
  ident: bb0215
  article-title: DHX15 is involved in SUGP1-mediated RNA missplicing by mutant SF3B1 in cancer
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 41
  year: 2018
  ident: bb0455
  article-title: Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of
  publication-title: BMC Evol. Biol.
– volume: 70
  year: 2023
  ident: bb0460
  article-title: The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae
  publication-title: J. Eukaryot. Microbiol.
– volume: 46
  start-page: 225
  year: 2021
  end-page: 238
  ident: bb0075
  article-title: DEAH-Box RNA helicases in pre-mRNA splicing
  publication-title: Trends Biochem. Sci.
– volume: 41
  start-page: 107
  year: 1985
  end-page: 118
  ident: bb0380
  article-title: A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition, cleavage, and ligation
  publication-title: Cell
– volume: 71
  start-page: 803
  year: 1992
  end-page: 817
  ident: bb0065
  article-title: A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome
  publication-title: Cell
– volume: 33
  start-page: 773
  year: 2017
  end-page: 783
  ident: bb0040
  article-title: Mobile group II introns as ancestral eukaryotic elements
  publication-title: Trends Genet.
– volume: 107
  start-page: 10020
  year: 2010
  end-page: 10025
  ident: bb0175
  article-title: Spliceosome discards intermediates via the DEAH box ATPase Prp43p
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 47
  start-page: 10842
  year: 2019
  end-page: 10851
  ident: bb0270
  article-title: Dynamics of the DEAD-box ATPase Prp5 RecA-like domains provide a conformational switch during spliceosome assembly
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 259
  year: 2016
  end-page: 274
  ident: bb0080
  article-title: The organization and contribution of helicases to RNA splicing
  publication-title: Wiley Interdiscip. Rev. RNA
– volume: 14
  start-page: 897
  year: 2023
  ident: bb0350
  article-title: Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly
  publication-title: Nat. Commun.
– volume: 353
  start-page: 1399
  year: 2016
  end-page: 1405
  ident: bb0310
  article-title: Molecular architecture of the
  publication-title: Science
– volume: 71
  start-page: 4135
  year: 1974
  end-page: 4139
  ident: bb0430
  article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 586
  start-page: 977
  year: 2012
  end-page: 983
  ident: bb0230
  article-title: Tumor suppressor RBM5 directly interacts with the DExD/H-box protein DHX15 and stimulates its helicase activity
  publication-title: FEBS Lett.
– volume: 21
  start-page: 4978
  year: 2002
  end-page: 4988
  ident: bb0355
  article-title: Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein
  publication-title: EMBO J.
– volume: 12
  start-page: 4910
  year: 2021
  ident: bb0420
  article-title: SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns
  publication-title: Nat. Commun.
– volume: 11
  year: 2019
  ident: bb0020
  article-title: Structural insights into nuclear pre-mRNA splicing in higher eukaryotes
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 320
  start-page: 1782
  year: 2008
  end-page: 1784
  ident: bb0015
  article-title: Both catalytic steps of nuclear pre-mRNA splicing are reversible
  publication-title: Science
– volume: 24
  start-page: 1314
  year: 2018
  end-page: 1325
  ident: bb0400
  article-title: SNRP-27, the
  publication-title: RNA
– volume: 443
  start-page: 863
  year: 2006
  end-page: 866
  ident: bb0450
  article-title: An early evolutionary origin for the minor spliceosome
  publication-title: Nature
– volume: 12
  year: 2023
  ident: bb0405
  article-title: Inter-species association mapping links splice site evolution to METTL16 and SNRNP27K
  publication-title: Elife
– volume: 23
  start-page: 546
  year: 2017
  end-page: 556
  ident: bb0120
  article-title: A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing
  publication-title: RNA
– volume: 84
  start-page: 1
  year: 2024
  end-page: 16
  ident: bb0225
  article-title: The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin
  publication-title: Mol. Cell
– volume: 172
  start-page: 454
  year: 2018
  end-page: 464.e11
  ident: bb0305
  article-title: Structure and conformational dynamics of the human spliceosomal B(act) complex
  publication-title: Cell
– volume: 14
  start-page: 97
  year: 2000
  end-page: 107
  ident: bb0255
  article-title: ATP can be dispensable for prespliceosome formation in yeast
  publication-title: Genes Dev.
– volume: 22
  start-page: 138
  year: 2015
  end-page: 144
  ident: bb0325
  article-title: The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes
  publication-title: Nat. Struct. Mol. Biol.
– volume: 89
  start-page: 359
  year: 2020
  end-page: 388
  ident: bb0005
  article-title: RNA splicing by the spliceosome
  publication-title: Annu. Rev. Biochem.
– volume: 11
  year: 2019
  ident: bb0025
  article-title: Structural basis of nuclear pre-mRNA splicing: lessons from yeast
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 51
  start-page: 10815
  year: 2023
  end-page: 10828
  ident: bb0160
  article-title: An ATP-independent role for Prp16 in promoting aberrant splicing
  publication-title: Nucleic Acids Res.
– volume: 617
  start-page: 842
  year: 2023
  end-page: 850
  ident: bb0320
  article-title: Structural basis of catalytic activation in human splicing
  publication-title: Nature
– volume: 37
  start-page: 968
  year: 2023
  end-page: 983
  ident: bb0365
  article-title: Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing
  publication-title: .
– volume: 39
  start-page: 385
  year: 2010
  end-page: 395
  ident: bb0155
  article-title: The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing
  publication-title: Mol. Cell
– volume: 57
  start-page: 587
  year: 1975
  end-page: 595
  ident: bb0435
  article-title: Kinetic amplification of enzyme discrimination
  publication-title: Biochimie
– volume: 118
  start-page: 4156
  year: 2018
  end-page: 4176
  ident: bb0045
  article-title: Molecular mechanism and evolution of nuclear pre-mRNA and group II intron splicing: insights from cryo-electron microscopy structures
  publication-title: Chem. Rev.
– volume: 60
  start-page: 705
  year: 1990
  end-page: 717
  ident: bb0150
  article-title: A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing
  publication-title: Cell
– volume: 31
  start-page: 4898
  year: 2021
  end-page: 4910.e4
  ident: bb0335
  article-title: Coupling of spliceosome complexity to intron diversity
  publication-title: Curr. Biol.
– volume: 364
  start-page: 362
  year: 2019
  end-page: 367
  ident: bb0415
  article-title: Mechanism of 5′ splice site transfer for human spliceosome activation
  publication-title: Science
– volume: 16
  start-page: 516
  year: 2010
  end-page: 528
  ident: bb0300
  article-title: Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing
  publication-title: RNA
– volume: 359
  start-page: 537
  year: 2018
  end-page: 545
  ident: bb0130
  article-title: Structure of a human catalytic step I spliceosome
  publication-title: Science
– volume: 11
  start-page: 2319
  year: 1992
  end-page: 2326
  ident: bb0295
  article-title: The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase
  publication-title: EMBO J.
– volume: 503
  start-page: 229
  year: 2013
  end-page: 234
  ident: bb0060
  article-title: RNA catalyses nuclear pre-mRNA splicing
  publication-title: Nature
– volume: 150
  start-page: 1107
  year: 2012
  end-page: 1120
  ident: bb0220
  article-title: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing
  publication-title: Cell
– volume: 28
  start-page: 838
  year: 2007
  end-page: 849
  ident: bb0235
  article-title: Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly
  publication-title: Mol. Cell
– volume: 84
  start-page: 291
  year: 2015
  end-page: 323
  ident: bb0105
  article-title: Mechanisms and regulation of alternative pre-mRNA splicing
  publication-title: Annu. Rev. Biochem.
– volume: 375
  start-page: 50
  year: 2022
  ident: 10.1016/j.tibs.2024.03.012_bb0290
  article-title: Structural basis of branch site recognition by the human spliceosome
  publication-title: Science
  doi: 10.1126/science.abm4245
– volume: 18
  year: 2022
  ident: 10.1016/j.tibs.2024.03.012_bb0395
  article-title: A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5′ splice site identity
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1010028
– volume: 33
  start-page: 1746
  year: 2013
  ident: 10.1016/j.tibs.2024.03.012_bb0115
  article-title: A weak spliceosome-binding domain of Yju2 functions in the first step and bypasses Prp16 in the second step of splicing
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00035-13
– volume: 11
  year: 2022
  ident: 10.1016/j.tibs.2024.03.012_bb0410
  article-title: m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5′ splice site
  publication-title: Elife
  doi: 10.7554/eLife.78808
– volume: 83
  start-page: 2578
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0185
  article-title: Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2023.06.003
– volume: 42
  start-page: 241
  year: 2017
  ident: 10.1016/j.tibs.2024.03.012_bb0340
  article-title: The helicase Aquarius/EMB-4 is required to overcome intronic barriers to allow nuclear RNAi pathways to heritably silence transcription
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.07.002
– volume: 46
  start-page: 557
  year: 1986
  ident: 10.1016/j.tibs.2024.03.012_bb0010
  article-title: Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90881-0
– volume: 24
  start-page: 251
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0035
  article-title: Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-022-00556-8
– volume: 12
  start-page: 505
  year: 2011
  ident: 10.1016/j.tibs.2024.03.012_bb0085
  article-title: From unwinding to clamping – the DEAD box RNA helicase family
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3154
– volume: 1
  start-page: 445
  year: 1987
  ident: 10.1016/j.tibs.2024.03.012_bb0145
  article-title: A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1.5.445
– volume: 119
  year: 2022
  ident: 10.1016/j.tibs.2024.03.012_bb0215
  article-title: DHX15 is involved in SUGP1-mediated RNA missplicing by mutant SF3B1 in cancer
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2216712119
– volume: 47
  start-page: 10842
  year: 2019
  ident: 10.1016/j.tibs.2024.03.012_bb0270
  article-title: Dynamics of the DEAD-box ATPase Prp5 RecA-like domains provide a conformational switch during spliceosome assembly
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz765
– volume: 49
  start-page: 9965
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0260
  article-title: Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab695
– volume: 11
  start-page: 2319
  year: 1992
  ident: 10.1016/j.tibs.2024.03.012_bb0295
  article-title: The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05291.x
– volume: 16
  start-page: 516
  year: 2010
  ident: 10.1016/j.tibs.2024.03.012_bb0300
  article-title: Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing
  publication-title: RNA
  doi: 10.1261/rna.2030510
– volume: 353
  start-page: 904
  year: 2016
  ident: 10.1016/j.tibs.2024.03.012_bb0315
  article-title: Structure of a yeast activated spliceosome at 3.5 A resolution
  publication-title: Science
  doi: 10.1126/science.aag0291
– volume: 29
  start-page: 81
  year: 2015
  ident: 10.1016/j.tibs.2024.03.012_bb0240
  article-title: A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence
  publication-title: Genes Dev.
  doi: 10.1101/gad.253708.114
– volume: 3
  start-page: 518
  year: 2002
  ident: 10.1016/j.tibs.2024.03.012_bb0470
  article-title: The annotation of RNA motifs
  publication-title: Comp. Funct. Genomics
  doi: 10.1002/cfg.213
– volume: 404
  start-page: 851
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0095
  article-title: Structure and function of spliceosomal DEAH-box ATPases
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2023-0157
– volume: 84
  start-page: 291
  year: 2015
  ident: 10.1016/j.tibs.2024.03.012_bb0105
  article-title: Mechanisms and regulation of alternative pre-mRNA splicing
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060614-034316
– volume: 51
  start-page: 10815
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0160
  article-title: An ATP-independent role for Prp16 in promoting aberrant splicing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad861
– volume: 17
  start-page: 407
  year: 2016
  ident: 10.1016/j.tibs.2024.03.012_bb0100
  article-title: Lessons from non-canonical splicing
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.46
– volume: 21
  start-page: 4978
  year: 2002
  ident: 10.1016/j.tibs.2024.03.012_bb0355
  article-title: Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf480
– volume: 41
  start-page: 107
  year: 1985
  ident: 10.1016/j.tibs.2024.03.012_bb0380
  article-title: A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition, cleavage, and ligation
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90065-0
– volume: 320
  start-page: 1782
  year: 2008
  ident: 10.1016/j.tibs.2024.03.012_bb0015
  article-title: Both catalytic steps of nuclear pre-mRNA splicing are reversible
  publication-title: Science
  doi: 10.1126/science.1158993
– volume: 14
  start-page: 97
  year: 2000
  ident: 10.1016/j.tibs.2024.03.012_bb0255
  article-title: ATP can be dispensable for prespliceosome formation in yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.1.97
– volume: 42
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0210
  article-title: Splicing quality control mediated by DHX15 and its G-patch activator SUGP1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.113223
– volume: 302
  start-page: 591
  year: 1983
  ident: 10.1016/j.tibs.2024.03.012_bb0385
  article-title: Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes
  publication-title: Nature
  doi: 10.1038/302591a0
– volume: 40
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0330
  article-title: Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msad011
– volume: 13
  start-page: 4939
  year: 1993
  ident: 10.1016/j.tibs.2024.03.012_bb0110
  article-title: Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns
  publication-title: Mol. Cell. Biol.
– volume: 30
  start-page: 404
  year: 2024
  ident: 10.1016/j.tibs.2024.03.012_bb0375
  article-title: Spliceosomal helicases DDX41/SACY-1 and PRP22/MOG-5 both contribute to proofreading against proximal 3′ splice site usage
  publication-title: RNA
  doi: 10.1261/rna.079888.123
– volume: 57
  start-page: 587
  year: 1975
  ident: 10.1016/j.tibs.2024.03.012_bb0435
  article-title: Kinetic amplification of enzyme discrimination
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(75)80139-8
– volume: 624
  start-page: 682
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0055
  article-title: Structural insights into intron catalysis and dynamics during splicing
  publication-title: Nature
  doi: 10.1038/s41586-023-06746-6
– volume: 46
  start-page: 225
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0075
  article-title: DEAH-Box RNA helicases in pre-mRNA splicing
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2020.10.006
– volume: 164
  start-page: 985
  year: 2016
  ident: 10.1016/j.tibs.2024.03.012_bb0140
  article-title: Spliceosomal DEAH-Box ATPases remodel pre-mRNA to activate alternative splice sites
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.025
– volume: 71
  start-page: 4135
  year: 1974
  ident: 10.1016/j.tibs.2024.03.012_bb0430
  article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.71.10.4135
– volume: 359
  start-page: 537
  year: 2018
  ident: 10.1016/j.tibs.2024.03.012_bb0130
  article-title: Structure of a human catalytic step I spliceosome
  publication-title: Science
  doi: 10.1126/science.aar6401
– volume: 12
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0030
  article-title: At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2021.700744
– volume: 40
  start-page: 85
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0190
  article-title: Genetic alterations of SUGP1 mimic mutant-SF3B1 splice pattern in lung adenocarcinoma and other cancers
  publication-title: Oncogene
  doi: 10.1038/s41388-020-01507-5
– volume: 50
  start-page: 11834
  year: 2022
  ident: 10.1016/j.tibs.2024.03.012_bb0390
  article-title: A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac991
– volume: 24
  start-page: 1314
  year: 2018
  ident: 10.1016/j.tibs.2024.03.012_bb0400
  article-title: SNRP-27, the C. elegans homolog of the tri-snRNP 27K protein, has a role in 5′ splice site positioning in the spliceosome
  publication-title: RNA
  doi: 10.1261/rna.066878.118
– volume: 18
  start-page: 41
  year: 2018
  ident: 10.1016/j.tibs.2024.03.012_bb0455
  article-title: Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-018-1161-x
– volume: 100
  start-page: 13857
  year: 2003
  ident: 10.1016/j.tibs.2024.03.012_bb0250
  article-title: ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2036312100
– volume: 2
  year: 2007
  ident: 10.1016/j.tibs.2024.03.012_bb0440
  article-title: Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000468
– volume: 358
  start-page: 1283
  year: 2017
  ident: 10.1016/j.tibs.2024.03.012_bb0070
  article-title: Postcatalytic spliceosome structure reveals mechanism of 3′-splice site selection
  publication-title: Science
  doi: 10.1126/science.aar3729
– volume: 14
  start-page: 897
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0350
  article-title: Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36489-x
– volume: 11
  year: 2019
  ident: 10.1016/j.tibs.2024.03.012_bb0020
  article-title: Structural insights into nuclear pre-mRNA splicing in higher eukaryotes
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a032417
– volume: 349
  start-page: 494
  year: 1991
  ident: 10.1016/j.tibs.2024.03.012_bb0125
  article-title: PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome
  publication-title: Nature
  doi: 10.1038/349494a0
– volume: 12
  start-page: 4910
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0420
  article-title: SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24879-y
– volume: 39
  start-page: 385
  year: 2010
  ident: 10.1016/j.tibs.2024.03.012_bb0155
  article-title: The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.07.014
– volume: 42
  start-page: 256
  year: 2017
  ident: 10.1016/j.tibs.2024.03.012_bb0345
  article-title: The conserved intron binding protein EMB-4 plays differential roles in germline small RNA pathways of C. elegans
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.07.003
– volume: 596
  start-page: 296
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0285
  article-title: Structural insights into how Prp5 proofreads the pre-mRNA branch site
  publication-title: Nature
  doi: 10.1038/s41586-021-03789-5
– volume: 11
  year: 2019
  ident: 10.1016/j.tibs.2024.03.012_bb0025
  article-title: Structural basis of nuclear pre-mRNA splicing: lessons from yeast
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a032391
– volume: 31
  start-page: 179
  year: 2024
  ident: 10.1016/j.tibs.2024.03.012_bb0050
  article-title: Structural basis of branching during RNA splicing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-023-01150-0
– volume: 107
  start-page: 10020
  year: 2010
  ident: 10.1016/j.tibs.2024.03.012_bb0175
  article-title: Spliceosome discards intermediates via the DEAH box ATPase Prp43p
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0906022107
– volume: 150
  start-page: 1107
  year: 2012
  ident: 10.1016/j.tibs.2024.03.012_bb0220
  article-title: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.029
– volume: 5
  start-page: 1269
  year: 2013
  ident: 10.1016/j.tibs.2024.03.012_bb0275
  article-title: Crystal structure of Prp5p reveals interdomain interactions that impact spliceosome assembly
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.10.047
– volume: 9
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0370
  article-title: Regulation of 3′ splice site selection after step 1 of splicing by spliceosomal C* proteins
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adf1785
– volume: 6
  year: 2014
  ident: 10.1016/j.tibs.2024.03.012_bb0445
  article-title: Origin of spliceosomal introns and alternative splicing
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016071
– volume: 70
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0460
  article-title: The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae
  publication-title: J. Eukaryot. Microbiol.
  doi: 10.1111/jeu.12927
– volume: 402
  start-page: 653
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0090
  article-title: Dead or alive: DEAD-box ATPases as regulators of ribonucleoprotein complex condensation
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2020-0381
– volume: 353
  start-page: 1399
  year: 2016
  ident: 10.1016/j.tibs.2024.03.012_bb0310
  article-title: Molecular architecture of the Saccharomyces cerevisiae activated spliceosome
  publication-title: Science
  doi: 10.1126/science.aag1906
– volume: 7
  start-page: 259
  year: 2016
  ident: 10.1016/j.tibs.2024.03.012_bb0080
  article-title: The organization and contribution of helicases to RNA splicing
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1331
– volume: 117
  start-page: 10305
  year: 2020
  ident: 10.1016/j.tibs.2024.03.012_bb0195
  article-title: Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1922622117
– volume: 12
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0405
  article-title: Inter-species association mapping links splice site evolution to METTL16 and SNRNP27K
  publication-title: Elife
  doi: 10.7554/eLife.91997
– volume: 586
  start-page: 977
  year: 2012
  ident: 10.1016/j.tibs.2024.03.012_bb0230
  article-title: Tumor suppressor RBM5 directly interacts with the DExD/H-box protein DHX15 and stimulates its helicase activity
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.02.052
– volume: 24
  start-page: 749
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0200
  article-title: Cellular functions of eukaryotic RNA helicases and their links to human diseases
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-023-00628-5
– volume: 10
  start-page: 3639
  year: 2019
  ident: 10.1016/j.tibs.2024.03.012_bb0425
  article-title: Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11293-8
– volume: 71
  start-page: 803
  year: 1992
  ident: 10.1016/j.tibs.2024.03.012_bb0065
  article-title: A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90556-R
– volume: 23
  start-page: 546
  year: 2017
  ident: 10.1016/j.tibs.2024.03.012_bb0120
  article-title: A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing
  publication-title: RNA
  doi: 10.1261/rna.059204.116
– volume: 13
  start-page: 482
  year: 2006
  ident: 10.1016/j.tibs.2024.03.012_bb0170
  article-title: Exon ligation is proofread by the DExD/H-box ATPase Prp22p
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1093
– volume: 84
  start-page: 1
  year: 2024
  ident: 10.1016/j.tibs.2024.03.012_bb0225
  article-title: The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2024.02.039
– volume: 492
  start-page: 59
  year: 2012
  ident: 10.1016/j.tibs.2024.03.012_bb0465
  article-title: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs
  publication-title: Nature
  doi: 10.1038/nature11681
– volume: 31
  start-page: 4898
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0335
  article-title: Coupling of spliceosome complexity to intron diversity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2021.09.004
– volume: 503
  start-page: 229
  year: 2013
  ident: 10.1016/j.tibs.2024.03.012_bb0060
  article-title: RNA catalyses nuclear pre-mRNA splicing
  publication-title: Nature
  doi: 10.1038/nature12734
– volume: 28
  start-page: 838
  year: 2007
  ident: 10.1016/j.tibs.2024.03.012_bb0235
  article-title: Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.09.022
– volume: 83
  start-page: 1725
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0360
  article-title: Proteomic discovery of chemical probes that perturb protein complexes in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2023.03.026
– volume: 60
  start-page: 705
  year: 1990
  ident: 10.1016/j.tibs.2024.03.012_bb0150
  article-title: A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90086-T
– volume: 81
  start-page: 1439
  year: 2021
  ident: 10.1016/j.tibs.2024.03.012_bb0180
  article-title: Structural basis for conformational equilibrium of the catalytic spliceosome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.02.021
– volume: 617
  start-page: 842
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0320
  article-title: Structural basis of catalytic activation in human splicing
  publication-title: Nature
  doi: 10.1038/s41586-023-06049-w
– volume: 443
  start-page: 863
  year: 2006
  ident: 10.1016/j.tibs.2024.03.012_bb0450
  article-title: An early evolutionary origin for the minor spliceosome
  publication-title: Nature
  doi: 10.1038/nature05228
– volume: 37
  start-page: 968
  year: 2023
  ident: 10.1016/j.tibs.2024.03.012_bb0365
  article-title: Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing
  publication-title: Genes Dev.
  doi: 10.1101/gad.351154.123
– volume: 5
  year: 2016
  ident: 10.1016/j.tibs.2024.03.012_bb0165
  article-title: The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP-intron interaction
  publication-title: Elife
  doi: 10.7554/eLife.15564
– volume: 25
  start-page: 1020
  year: 2019
  ident: 10.1016/j.tibs.2024.03.012_bb0245
  article-title: Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM–ULM interaction
  publication-title: RNA
  doi: 10.1261/rna.070649.119
– volume: 80
  start-page: 127
  year: 2020
  ident: 10.1016/j.tibs.2024.03.012_bb0135
  article-title: Structural insights into the roles of Metazoan-specific splicing factors in the human step 1 spliceosome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.09.012
– volume: 28
  start-page: 583
  year: 2022
  ident: 10.1016/j.tibs.2024.03.012_bb0205
  article-title: A model for DHX15 mediated disassembly of A-complex spliceosomes
  publication-title: RNA
  doi: 10.1261/rna.078977.121
– volume: 118
  start-page: 4156
  year: 2018
  ident: 10.1016/j.tibs.2024.03.012_bb0045
  article-title: Molecular mechanism and evolution of nuclear pre-mRNA and group II intron splicing: insights from cryo-electron microscopy structures
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00499
– volume: 33
  start-page: 773
  year: 2017
  ident: 10.1016/j.tibs.2024.03.012_bb0040
  article-title: Mobile group II introns as ancestral eukaryotic elements
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.07.009
– volume: 172
  start-page: 454
  year: 2018
  ident: 10.1016/j.tibs.2024.03.012_bb0305
  article-title: Structure and conformational dynamics of the human spliceosomal B(act) complex
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.010
– volume: 583
  start-page: 310
  year: 2020
  ident: 10.1016/j.tibs.2024.03.012_bb0280
  article-title: Molecular architecture of the human 17S U2 snRNP
  publication-title: Nature
  doi: 10.1038/s41586-020-2344-3
– volume: 364
  start-page: 362
  year: 2019
  ident: 10.1016/j.tibs.2024.03.012_bb0415
  article-title: Mechanism of 5′ splice site transfer for human spliceosome activation
  publication-title: Science
  doi: 10.1126/science.aax3289
– volume: 89
  start-page: 359
  year: 2020
  ident: 10.1016/j.tibs.2024.03.012_bb0005
  article-title: RNA splicing by the spliceosome
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-091719-064225
– volume: 30
  start-page: 2710
  year: 2016
  ident: 10.1016/j.tibs.2024.03.012_bb0265
  article-title: SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing
  publication-title: Genes Dev.
  doi: 10.1101/gad.291872.116
– volume: 22
  start-page: 138
  year: 2015
  ident: 10.1016/j.tibs.2024.03.012_bb0325
  article-title: The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2951
SSID ssj0015775
Score 2.483921
SecondaryResourceType review_article
Snippet The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates...
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 583
SubjectTerms adenosinetriphosphatase
Animals
ATPases
fidelity
Humans
Introns
pre-mRNA splicing
quality control
ribonucleoproteins
RNA
RNA Precursors - genetics
RNA Precursors - metabolism
RNA Splicing
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
snRNA
spliceosome
spliceosomes
Spliceosomes - metabolism
Title Understanding the dynamic design of the spliceosome
URI https://dx.doi.org/10.1016/j.tibs.2024.03.012
https://www.ncbi.nlm.nih.gov/pubmed/38641465
https://www.proquest.com/docview/3043077428
https://www.proquest.com/docview/3153653344
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEbyIb-ujrOBN1ja7ySY5lmKpir1oobeQJ1R0t9jtwYu_3SS7W_TQHjxumCzDTDLzhXkBcGMRNDSxOlYSyRi551osHLKIMVPQYpVJZX1E93mcjSbocYqnLTBoamF8WmVt-yubHqx1vdKtpdmdz2bdFwe-aS-E7oKjCxXsiPhTfve9SvOAmIRmu544VFDXhTNVjlc5k75ld4JCo1OYrHNO68BncELDfbBXo8eoXzF4AFomPwQ71TzJryOQTn6XqkQO20W6mjgf6ZCpERU2rC581NoUi-LDHIPJ8P51MIrrqQixcuCijCWmLBEpESbR7nUGsYaUUS0R0lYQJBEhDgJmSmvLqMHM9hKBbCoc0mIGMZuegK28yM0ZiIi1ilqdafcjRIwShKqezSg0mhpGVRvARhxc1S3D_eSKd97khr1xL0LuRch7KXcibIPb1Z551TBjIzVupMz_qJ07i75x33WjEu7ugw9yiNwUywVPfRMzh2kTuoHGmfnM1yCjNjit9LniNaUZct4Dn_-Tswuw67-qjN5LsFV-Ls2Vwy2l7ISD2QHb_Yen0fgHj3LrtQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ki-hFfFufEbxJaJPsJptjKUprHxdb6G1J9gEVTYptD_57ZzdJ0UN78LqZDctsMvMNM_MNwKMmnmK-lq5ISeoSDNfcBJGFS2PhaSrCVGiT0R2Nw96UvM7orAbdqhfGlFWWtr-w6dZalyutUputxXzeekPwzdo2dWcdHYZADcNORevQ6PQHvfEmmUAjy7dr5G0Tddk7U5R5reapYe32ieU69fxt_mkb_rR-6OUIDksA6XSKMx5DTWUnsFeMlPw-hWD6u1vFQXjnyGLovCNtsYaTa7u6NIlrlS_zT3UG05fnSbfnloMRXIH4YuWmlMV-EkSJ8iUGaB6VHouZTAmROolISqIIUWAopNQxUzTWbT8hOkgQbMWKxDo4h3qWZ-oSnEhrwbQMJb6IREokERNtHTJPSaZiJprgVergomQNN8MrPnhVHvbOjQq5USFvBxxV2ISnzZ5FwZmxU5pWWuZ_bp6jUd-576G6Eo6_hMlzJJnK10seGB4zhLU-2yGDlj40bcikCRfFfW7OGrCQoAOhV_882T3s9yajIR_2x4NrODBPigLfG6ivvtbqFmHMKr0rP9MfrAXuZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+dynamic+design+of+the+spliceosome&rft.jtitle=Trends+in+biochemical+sciences+%28Amsterdam.+Regular+ed.%29&rft.au=Beusch%2C+Irene&rft.au=Madhani%2C+Hiten+D&rft.date=2024-07-01&rft.issn=0968-0004&rft.volume=49&rft.issue=7&rft.spage=583&rft_id=info:doi/10.1016%2Fj.tibs.2024.03.012&rft_id=info%3Apmid%2F38641465&rft.externalDocID=38641465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-0004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-0004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-0004&client=summon