Understanding the dynamic design of the spliceosome
The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates that in Saccharomyces cerevisiae, spliceosome fidelity is promoted by the Prp16 and Prp22 DEAH box ATPases, which function as molecular timers...
Saved in:
Published in | Trends in biochemical sciences (Amsterdam. Regular ed.) Vol. 49; no. 7; pp. 583 - 595 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates that in Saccharomyces cerevisiae, spliceosome fidelity is promoted by the Prp16 and Prp22 DEAH box ATPases, which function as molecular timers that, upon ATP hydrolysis, remove step-specific protein activators of catalysis.Additionally, research is showing that in human cells, quality control during the early phases of spliceosome assembly occurs via the G-patch protein SUGP1, which recruits the human ortholog of Prp43, hPrp43/DHX15, to early assembly complexes.Genetic analysis has revealed that specific factors prevent substrates from being erroneously repositioned during the many dynamic transitions that occur during spliceosome assembly and catalysis. The requirement for such factors may help explain the spliceosomes’ compositional complexity.
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome.
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome. |
---|---|
AbstractList | The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome. The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates that in Saccharomyces cerevisiae, spliceosome fidelity is promoted by the Prp16 and Prp22 DEAH box ATPases, which function as molecular timers that, upon ATP hydrolysis, remove step-specific protein activators of catalysis.Additionally, research is showing that in human cells, quality control during the early phases of spliceosome assembly occurs via the G-patch protein SUGP1, which recruits the human ortholog of Prp43, hPrp43/DHX15, to early assembly complexes.Genetic analysis has revealed that specific factors prevent substrates from being erroneously repositioned during the many dynamic transitions that occur during spliceosome assembly and catalysis. The requirement for such factors may help explain the spliceosomes’ compositional complexity. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection–rejection framework helps explain the dynamic nature of the spliceosome. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome. The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or snRNAs in S. cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome. |
Author | Beusch, Irene Madhani, Hiten D. |
Author_xml | – sequence: 1 givenname: Irene orcidid: 0000-0001-7758-4348 surname: Beusch fullname: Beusch, Irene organization: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA – sequence: 2 givenname: Hiten D. orcidid: 0000-0001-7400-6657 surname: Madhani fullname: Madhani, Hiten D. email: hiten.madhani@ucsf.edu organization: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38641465$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LxDAQQIMouqv-AQ-yRy-tk4-2KXgR8QsEL3oOaTLVLG2yJlnBf2_X1YsHPQ0M783Am5NdHzwSckKhpEDr82WZXZdKBkyUwEugbIfMKK9ZITird8kM2loWACAOyDylJQCtmqbaJwdc1oKKupoR_uwtxpS1t86_LPIrLuyH16MzC4vJvfhF6L-2aTU4gyGFEY_IXq-HhMff85A831w_Xd0VD4-391eXD4Xhss1FV8mWad5oZFaK6belspW2E8L2uhGdaBpgUBtr-1Zi1fbAtOi55hVrUbQ9PyRn27urGN7WmLIaXTI4DNpjWCfFacXrinMh_kdBcGgaweSEnn6j625Eq1bRjTp-qJ8mEyC3gIkhpYi9Mi7r7ILPUbtBUVCb_GqpNvnVJr8Crqb8k8p-qT_X_5QuthJOLd8dRpWMQ2_QuogmKxvcX_onszecUg |
CitedBy_id | crossref_primary_10_1016_j_gene_2024_148856 crossref_primary_10_1080_15476286_2025_2477844 crossref_primary_10_1093_nar_gkae561 |
Cites_doi | 10.1126/science.abm4245 10.1371/journal.pgen.1010028 10.1128/MCB.00035-13 10.7554/eLife.78808 10.1016/j.molcel.2023.06.003 10.1016/j.devcel.2017.07.002 10.1016/0092-8674(86)90881-0 10.1038/s41576-022-00556-8 10.1038/nrm3154 10.1101/gad.1.5.445 10.1073/pnas.2216712119 10.1093/nar/gkz765 10.1093/nar/gkab695 10.1002/j.1460-2075.1992.tb05291.x 10.1261/rna.2030510 10.1126/science.aag0291 10.1101/gad.253708.114 10.1002/cfg.213 10.1515/hsz-2023-0157 10.1146/annurev-biochem-060614-034316 10.1093/nar/gkad861 10.1038/nrg.2016.46 10.1093/emboj/cdf480 10.1016/0092-8674(85)90065-0 10.1126/science.1158993 10.1101/gad.14.1.97 10.1016/j.celrep.2023.113223 10.1038/302591a0 10.1093/molbev/msad011 10.1261/rna.079888.123 10.1016/S0300-9084(75)80139-8 10.1038/s41586-023-06746-6 10.1016/j.tibs.2020.10.006 10.1016/j.cell.2016.01.025 10.1073/pnas.71.10.4135 10.1126/science.aar6401 10.3389/fgene.2021.700744 10.1038/s41388-020-01507-5 10.1093/nar/gkac991 10.1261/rna.066878.118 10.1186/s12862-018-1161-x 10.1073/pnas.2036312100 10.1371/journal.pone.0000468 10.1126/science.aar3729 10.1038/s41467-023-36489-x 10.1101/cshperspect.a032417 10.1038/349494a0 10.1038/s41467-021-24879-y 10.1016/j.molcel.2010.07.014 10.1016/j.devcel.2017.07.003 10.1038/s41586-021-03789-5 10.1101/cshperspect.a032391 10.1038/s41594-023-01150-0 10.1073/pnas.0906022107 10.1016/j.cell.2012.08.029 10.1016/j.celrep.2013.10.047 10.1126/sciadv.adf1785 10.1101/cshperspect.a016071 10.1111/jeu.12927 10.1515/hsz-2020-0381 10.1126/science.aag1906 10.1002/wrna.1331 10.1073/pnas.1922622117 10.7554/eLife.91997 10.1016/j.febslet.2012.02.052 10.1038/s41580-023-00628-5 10.1038/s41467-019-11293-8 10.1016/0092-8674(92)90556-R 10.1261/rna.059204.116 10.1038/nsmb1093 10.1016/j.molcel.2024.02.039 10.1038/nature11681 10.1016/j.cub.2021.09.004 10.1038/nature12734 10.1016/j.molcel.2007.09.022 10.1016/j.molcel.2023.03.026 10.1016/0092-8674(90)90086-T 10.1016/j.molcel.2021.02.021 10.1038/s41586-023-06049-w 10.1038/nature05228 10.1101/gad.351154.123 10.7554/eLife.15564 10.1261/rna.070649.119 10.1016/j.molcel.2020.09.012 10.1261/rna.078977.121 10.1021/acs.chemrev.7b00499 10.1016/j.tig.2017.07.009 10.1016/j.cell.2018.01.010 10.1038/s41586-020-2344-3 10.1126/science.aax3289 10.1146/annurev-biochem-091719-064225 10.1101/gad.291872.116 10.1038/nsmb.2951 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.tibs.2024.03.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1362-4326 |
EndPage | 595 |
ExternalDocumentID | 38641465 10_1016_j_tibs_2024_03_012 S0968000424000781 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM071801 |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 123 1B1 1CY 1RT 1~. 1~5 29Q 3EH 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABUDA ABXDB ACDAQ ACGFO ACGFS ACGOD ACKIV ACNCT ACPRK ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ H~9 IH2 IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TAE UQL WUQ X7M XFK XPP Y6R ZCA ZMT ~G- AAMRU AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-b5892a37ae2d84015d1898db44dfa74b4770206cddf98e59f02a4f3a3529e49f3 |
IEDL.DBID | .~1 |
ISSN | 0968-0004 |
IngestDate | Wed Jul 02 04:55:50 EDT 2025 Fri Jul 11 11:42:17 EDT 2025 Sat Aug 16 01:30:48 EDT 2025 Tue Jul 01 01:05:06 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Sat Jun 29 15:30:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | fidelity spliceosome ATPases snRNA pre-mRNA splicing |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-b5892a37ae2d84015d1898db44dfa74b4770206cddf98e59f02a4f3a3529e49f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7400-6657 0000-0001-7758-4348 |
PMID | 38641465 |
PQID | 3043077428 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3153653344 proquest_miscellaneous_3043077428 pubmed_primary_38641465 crossref_citationtrail_10_1016_j_tibs_2024_03_012 crossref_primary_10_1016_j_tibs_2024_03_012 elsevier_sciencedirect_doi_10_1016_j_tibs_2024_03_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in biochemical sciences (Amsterdam. Regular ed.) |
PublicationTitleAlternate | Trends Biochem Sci |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schmelzer, Schweyen (bb0010) 1986; 46 Novikova, Belfort (bb0040) 2017; 33 Dybkov (bb0370) 2023; 9 Will (bb0355) 2002; 21 Ninio (bb0435) 1975; 57 Mayas (bb0175) 2010; 107 Liang, Cheng (bb0240) 2015; 29 Hopfield (bb0430) 1974; 71 Parker (bb0410) 2022; 11 Beier (bb0270) 2019; 47 Chiang, Cheng (bb0115) 2013; 33 Wilkinson (bb0070) 2017; 358 Enders (bb0095) 2023; 404 Lee, Rio (bb0105) 2015; 84 Smith (bb0110) 1993; 13 Maul-Newby (bb0205) 2022; 28 Rogalska (bb0035) 2023; 24 Tang (bb0265) 2016; 30 Fourmann (bb0165) 2016; 5 Vosseberg (bb0330) 2023; 40 Akinyi, Frilander (bb0030) 2021; 12 Zhang (bb0280) 2020; 583 Couto (bb0145) 1987; 1 Kao (bb0260) 2021; 49 De (bb0080) 2016; 7 Curtis (bb0465) 2012; 492 Schwer, Guthrie (bb0125) 1991; 349 Plaschka (bb0025) 2019; 11 Wilkinson (bb0005) 2020; 89 Lardelli (bb0300) 2010; 16 Zhang (bb0365) 2023; 37 Tseng, Cheng (bb0015) 2008; 320 Kastner (bb0020) 2019; 11 Yang (bb0350) 2023; 14 Zahler (bb0400) 2018; 24 Zhan (bb0130) 2018; 359 Liu (bb0195) 2020; 117 Bohnsack (bb0200) 2023; 24 Tseng (bb0120) 2017; 23 Zhang (bb0215) 2022; 119 Charenton (bb0415) 2019; 364 Rauhut (bb0310) 2016; 353 Perriman (bb0250) 2003; 100 Qiu (bb0455) 2018; 18 Fica (bb0060) 2013; 503 Niu (bb0230) 2012; 586 De (bb0325) 2015; 22 De Bortoli (bb0075) 2021; 46 Beusch (bb0185) 2023; 83 Damianov (bb0225) 2024; 84 Xu (bb0055) 2023; 624 Keiper (bb0425) 2019; 10 Linder, Jankowsky (bb0085) 2011; 12 Imielinski (bb0220) 2012; 150 Schmitzová (bb0320) 2023; 617 Semlow (bb0140) 2016; 164 Koodathingal (bb0155) 2010; 39 Savir, Tlusty (bb0440) 2007; 2 Wong (bb0460) 2023; 70 Bertram (bb0135) 2020; 80 Burgess (bb0150) 1990; 60 Yan (bb0315) 2016; 353 Cartwright-Acar (bb0390) 2022; 50 Mayas (bb0170) 2006; 13 Russell (bb0450) 2006; 443 Chung (bb0160) 2023; 51 Madhani, Guthrie (bb0065) 1992; 71 Haack (bb0050) 2024; 31 Parker (bb0405) 2023; 12 Treisman (bb0385) 1983; 302 Weis (bb0090) 2021; 402 Kim (bb0295) 1992; 11 Haselbach (bb0305) 2018; 172 Parker, Guthrie (bb0380) 1985; 41 Zhang (bb0275) 2013; 5 Sales-Lee (bb0335) 2021; 31 Tyc (bb0345) 2017; 42 Lazear (bb0360) 2023; 83 Suzuki (bb0395) 2022; 18 Osterhoudt (bb0375) 2024; 30 Xu, Query (bb0235) 2007; 28 Akay (bb0340) 2017; 42 Sibley (bb0100) 2016; 17 Fukumura (bb0420) 2021; 12 Perriman, Ares (bb0255) 2000; 14 Tholen (bb0290) 2022; 375 Talkish (bb0245) 2019; 25 Irimia, Roy (bb0445) 2014; 6 Wilkinson (bb0180) 2021; 81 Feng (bb0210) 2023; 42 Leontis, Westhof (bb0470) 2002; 3 Alsafadi (bb0190) 2021; 40 Galej (bb0045) 2018; 118 Zhang (bb0285) 2021; 596 Schmitzová (10.1016/j.tibs.2024.03.012_bb0320) 2023; 617 Beusch (10.1016/j.tibs.2024.03.012_bb0185) 2023; 83 Alsafadi (10.1016/j.tibs.2024.03.012_bb0190) 2021; 40 Maul-Newby (10.1016/j.tibs.2024.03.012_bb0205) 2022; 28 Tholen (10.1016/j.tibs.2024.03.012_bb0290) 2022; 375 Yang (10.1016/j.tibs.2024.03.012_bb0350) 2023; 14 Zhang (10.1016/j.tibs.2024.03.012_bb0365) 2023; 37 Irimia (10.1016/j.tibs.2024.03.012_bb0445) 2014; 6 Liu (10.1016/j.tibs.2024.03.012_bb0195) 2020; 117 Fukumura (10.1016/j.tibs.2024.03.012_bb0420) 2021; 12 De (10.1016/j.tibs.2024.03.012_bb0080) 2016; 7 Dybkov (10.1016/j.tibs.2024.03.012_bb0370) 2023; 9 Sibley (10.1016/j.tibs.2024.03.012_bb0100) 2016; 17 Mayas (10.1016/j.tibs.2024.03.012_bb0175) 2010; 107 Chung (10.1016/j.tibs.2024.03.012_bb0160) 2023; 51 Keiper (10.1016/j.tibs.2024.03.012_bb0425) 2019; 10 Novikova (10.1016/j.tibs.2024.03.012_bb0040) 2017; 33 Will (10.1016/j.tibs.2024.03.012_bb0355) 2002; 21 Parker (10.1016/j.tibs.2024.03.012_bb0380) 1985; 41 Wilkinson (10.1016/j.tibs.2024.03.012_bb0005) 2020; 89 Schmelzer (10.1016/j.tibs.2024.03.012_bb0010) 1986; 46 Rogalska (10.1016/j.tibs.2024.03.012_bb0035) 2023; 24 Schwer (10.1016/j.tibs.2024.03.012_bb0125) 1991; 349 Tseng (10.1016/j.tibs.2024.03.012_bb0120) 2017; 23 Zahler (10.1016/j.tibs.2024.03.012_bb0400) 2018; 24 Linder (10.1016/j.tibs.2024.03.012_bb0085) 2011; 12 Haack (10.1016/j.tibs.2024.03.012_bb0050) 2024; 31 De Bortoli (10.1016/j.tibs.2024.03.012_bb0075) 2021; 46 Fourmann (10.1016/j.tibs.2024.03.012_bb0165) 2016; 5 Madhani (10.1016/j.tibs.2024.03.012_bb0065) 1992; 71 Feng (10.1016/j.tibs.2024.03.012_bb0210) 2023; 42 Bertram (10.1016/j.tibs.2024.03.012_bb0135) 2020; 80 Damianov (10.1016/j.tibs.2024.03.012_bb0225) 2024; 84 Zhang (10.1016/j.tibs.2024.03.012_bb0215) 2022; 119 Akay (10.1016/j.tibs.2024.03.012_bb0340) 2017; 42 Xu (10.1016/j.tibs.2024.03.012_bb0235) 2007; 28 Akinyi (10.1016/j.tibs.2024.03.012_bb0030) 2021; 12 Haselbach (10.1016/j.tibs.2024.03.012_bb0305) 2018; 172 Vosseberg (10.1016/j.tibs.2024.03.012_bb0330) 2023; 40 Osterhoudt (10.1016/j.tibs.2024.03.012_bb0375) 2024; 30 Treisman (10.1016/j.tibs.2024.03.012_bb0385) 1983; 302 Qiu (10.1016/j.tibs.2024.03.012_bb0455) 2018; 18 Couto (10.1016/j.tibs.2024.03.012_bb0145) 1987; 1 Cartwright-Acar (10.1016/j.tibs.2024.03.012_bb0390) 2022; 50 Charenton (10.1016/j.tibs.2024.03.012_bb0415) 2019; 364 Zhang (10.1016/j.tibs.2024.03.012_bb0280) 2020; 583 Kim (10.1016/j.tibs.2024.03.012_bb0295) 1992; 11 Wong (10.1016/j.tibs.2024.03.012_bb0460) 2023; 70 Plaschka (10.1016/j.tibs.2024.03.012_bb0025) 2019; 11 Beier (10.1016/j.tibs.2024.03.012_bb0270) 2019; 47 Ninio (10.1016/j.tibs.2024.03.012_bb0435) 1975; 57 Russell (10.1016/j.tibs.2024.03.012_bb0450) 2006; 443 Suzuki (10.1016/j.tibs.2024.03.012_bb0395) 2022; 18 Chiang (10.1016/j.tibs.2024.03.012_bb0115) 2013; 33 Perriman (10.1016/j.tibs.2024.03.012_bb0255) 2000; 14 Wilkinson (10.1016/j.tibs.2024.03.012_bb0180) 2021; 81 Galej (10.1016/j.tibs.2024.03.012_bb0045) 2018; 118 Sales-Lee (10.1016/j.tibs.2024.03.012_bb0335) 2021; 31 Tyc (10.1016/j.tibs.2024.03.012_bb0345) 2017; 42 Smith (10.1016/j.tibs.2024.03.012_bb0110) 1993; 13 Lardelli (10.1016/j.tibs.2024.03.012_bb0300) 2010; 16 Leontis (10.1016/j.tibs.2024.03.012_bb0470) 2002; 3 Fica (10.1016/j.tibs.2024.03.012_bb0060) 2013; 503 Hopfield (10.1016/j.tibs.2024.03.012_bb0430) 1974; 71 Lee (10.1016/j.tibs.2024.03.012_bb0105) 2015; 84 Lazear (10.1016/j.tibs.2024.03.012_bb0360) 2023; 83 Enders (10.1016/j.tibs.2024.03.012_bb0095) 2023; 404 Yan (10.1016/j.tibs.2024.03.012_bb0315) 2016; 353 Semlow (10.1016/j.tibs.2024.03.012_bb0140) 2016; 164 Bohnsack (10.1016/j.tibs.2024.03.012_bb0200) 2023; 24 Parker (10.1016/j.tibs.2024.03.012_bb0410) 2022; 11 De (10.1016/j.tibs.2024.03.012_bb0325) 2015; 22 Niu (10.1016/j.tibs.2024.03.012_bb0230) 2012; 586 Rauhut (10.1016/j.tibs.2024.03.012_bb0310) 2016; 353 Curtis (10.1016/j.tibs.2024.03.012_bb0465) 2012; 492 Imielinski (10.1016/j.tibs.2024.03.012_bb0220) 2012; 150 Liang (10.1016/j.tibs.2024.03.012_bb0240) 2015; 29 Talkish (10.1016/j.tibs.2024.03.012_bb0245) 2019; 25 Zhang (10.1016/j.tibs.2024.03.012_bb0275) 2013; 5 Savir (10.1016/j.tibs.2024.03.012_bb0440) 2007; 2 Tseng (10.1016/j.tibs.2024.03.012_bb0015) 2008; 320 Xu (10.1016/j.tibs.2024.03.012_bb0055) 2023; 624 Koodathingal (10.1016/j.tibs.2024.03.012_bb0155) 2010; 39 Parker (10.1016/j.tibs.2024.03.012_bb0405) 2023; 12 Zhang (10.1016/j.tibs.2024.03.012_bb0285) 2021; 596 Wilkinson (10.1016/j.tibs.2024.03.012_bb0070) 2017; 358 Kastner (10.1016/j.tibs.2024.03.012_bb0020) 2019; 11 Zhan (10.1016/j.tibs.2024.03.012_bb0130) 2018; 359 Mayas (10.1016/j.tibs.2024.03.012_bb0170) 2006; 13 Tang (10.1016/j.tibs.2024.03.012_bb0265) 2016; 30 Kao (10.1016/j.tibs.2024.03.012_bb0260) 2021; 49 Perriman (10.1016/j.tibs.2024.03.012_bb0250) 2003; 100 Weis (10.1016/j.tibs.2024.03.012_bb0090) 2021; 402 Burgess (10.1016/j.tibs.2024.03.012_bb0150) 1990; 60 |
References_xml | – volume: 42 start-page: 241 year: 2017 end-page: 255.e6 ident: bb0340 article-title: The helicase Aquarius/EMB-4 is required to overcome intronic barriers to allow nuclear RNAi pathways to heritably silence transcription publication-title: Dev. Cell – volume: 31 start-page: 179 year: 2024 end-page: 189 ident: bb0050 article-title: Structural basis of branching during RNA splicing publication-title: Nat. Struct. Mol. Biol. – volume: 404 start-page: 851 year: 2023 end-page: 866 ident: bb0095 article-title: Structure and function of spliceosomal DEAH-box ATPases publication-title: Biol. Chem. – volume: 28 start-page: 583 year: 2022 end-page: 595 ident: bb0205 article-title: A model for DHX15 mediated disassembly of A-complex spliceosomes publication-title: RNA – volume: 358 start-page: 1283 year: 2017 end-page: 1288 ident: bb0070 article-title: Postcatalytic spliceosome structure reveals mechanism of 3′-splice site selection publication-title: Science – volume: 164 start-page: 985 year: 2016 end-page: 998 ident: bb0140 article-title: Spliceosomal DEAH-Box ATPases remodel pre-mRNA to activate alternative splice sites publication-title: Cell – volume: 5 start-page: 1269 year: 2013 end-page: 1278 ident: bb0275 article-title: Crystal structure of Prp5p reveals interdomain interactions that impact spliceosome assembly publication-title: Cell Rep. – volume: 3 start-page: 518 year: 2002 end-page: 524 ident: bb0470 article-title: The annotation of RNA motifs publication-title: Comp. Funct. Genomics – volume: 6 year: 2014 ident: bb0445 article-title: Origin of spliceosomal introns and alternative splicing publication-title: Cold Spring Harb. Perspect. Biol. – volume: 24 start-page: 251 year: 2023 end-page: 269 ident: bb0035 article-title: Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects publication-title: Nat. Rev. Genet. – volume: 13 start-page: 482 year: 2006 end-page: 490 ident: bb0170 article-title: Exon ligation is proofread by the DExD/H-box ATPase Prp22p publication-title: Nat. Struct. Mol. Biol. – volume: 50 start-page: 11834 year: 2022 end-page: 11857 ident: bb0390 article-title: A forward genetic screen in publication-title: Nucleic Acids Res. – volume: 349 start-page: 494 year: 1991 end-page: 499 ident: bb0125 article-title: PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome publication-title: Nature – volume: 30 start-page: 2710 year: 2016 end-page: 2723 ident: bb0265 article-title: SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing publication-title: Genes Dev. – volume: 353 start-page: 904 year: 2016 end-page: 911 ident: bb0315 article-title: Structure of a yeast activated spliceosome at 3.5 A resolution publication-title: Science – volume: 83 start-page: 2578 year: 2023 end-page: 2594 ident: bb0185 article-title: Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles publication-title: Mol. Cell – volume: 30 start-page: 404 year: 2024 end-page: 417 ident: bb0375 article-title: Spliceosomal helicases DDX41/SACY-1 and PRP22/MOG-5 both contribute to proofreading against proximal 3′ splice site usage publication-title: RNA – volume: 40 start-page: 85 year: 2021 end-page: 96 ident: bb0190 article-title: Genetic alterations of SUGP1 mimic mutant-SF3B1 splice pattern in lung adenocarcinoma and other cancers publication-title: Oncogene – volume: 18 year: 2022 ident: bb0395 article-title: A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5′ splice site identity publication-title: PLoS Genet. – volume: 24 start-page: 749 year: 2023 end-page: 769 ident: bb0200 article-title: Cellular functions of eukaryotic RNA helicases and their links to human diseases publication-title: Nat. Rev. Mol. Cell Biol. – volume: 5 year: 2016 ident: bb0165 article-title: The target of the DEAH-box NTP triphosphatase Prp43 in publication-title: Elife – volume: 49 start-page: 9965 year: 2021 end-page: 9977 ident: bb0260 article-title: Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint publication-title: Nucleic Acids Res. – volume: 83 start-page: 1725 year: 2023 end-page: 1742.e12 ident: bb0360 article-title: Proteomic discovery of chemical probes that perturb protein complexes in human cells publication-title: Mol. Cell – volume: 583 start-page: 310 year: 2020 end-page: 313 ident: bb0280 article-title: Molecular architecture of the human 17S U2 snRNP publication-title: Nature – volume: 42 start-page: 256 year: 2017 end-page: 270 ident: bb0345 article-title: The conserved intron binding protein EMB-4 plays differential roles in germline small RNA pathways of publication-title: Dev. Cell – volume: 596 start-page: 296 year: 2021 end-page: 300 ident: bb0285 article-title: Structural insights into how Prp5 proofreads the pre-mRNA branch site publication-title: Nature – volume: 1 start-page: 445 year: 1987 end-page: 455 ident: bb0145 article-title: A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation publication-title: Genes Dev. – volume: 2 year: 2007 ident: bb0440 article-title: Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition publication-title: PLoS One – volume: 80 start-page: 127 year: 2020 end-page: 139.e6 ident: bb0135 article-title: Structural insights into the roles of Metazoan-specific splicing factors in the human step 1 spliceosome publication-title: Mol. Cell – volume: 11 year: 2022 ident: bb0410 article-title: m publication-title: Elife – volume: 40 year: 2023 ident: bb0330 article-title: Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome publication-title: Mol. Biol. Evol. – volume: 29 start-page: 81 year: 2015 end-page: 93 ident: bb0240 article-title: A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence publication-title: Genes Dev. – volume: 12 start-page: 505 year: 2011 end-page: 516 ident: bb0085 article-title: From unwinding to clamping – the DEAD box RNA helicase family publication-title: Nat. Rev. Mol. Cell Biol. – volume: 117 start-page: 10305 year: 2020 end-page: 10312 ident: bb0195 article-title: Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 1020 year: 2019 end-page: 1037 ident: bb0245 article-title: Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM–ULM interaction publication-title: RNA – volume: 81 start-page: 1439 year: 2021 end-page: 1452 ident: bb0180 article-title: Structural basis for conformational equilibrium of the catalytic spliceosome publication-title: Mol. Cell – volume: 302 start-page: 591 year: 1983 end-page: 596 ident: bb0385 article-title: Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes publication-title: Nature – volume: 17 start-page: 407 year: 2016 end-page: 421 ident: bb0100 article-title: Lessons from non-canonical splicing publication-title: Nat. Rev. Genet. – volume: 375 start-page: 50 year: 2022 end-page: 57 ident: bb0290 article-title: Structural basis of branch site recognition by the human spliceosome publication-title: Science – volume: 100 start-page: 13857 year: 2003 end-page: 13862 ident: bb0250 article-title: ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 492 start-page: 59 year: 2012 end-page: 65 ident: bb0465 article-title: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs publication-title: Nature – volume: 402 start-page: 653 year: 2021 end-page: 661 ident: bb0090 article-title: Dead or alive: DEAD-box ATPases as regulators of ribonucleoprotein complex condensation publication-title: Biol. Chem. – volume: 42 year: 2023 ident: bb0210 article-title: Splicing quality control mediated by DHX15 and its G-patch activator SUGP1 publication-title: Cell Rep. – volume: 33 start-page: 1746 year: 2013 end-page: 1755 ident: bb0115 article-title: A weak spliceosome-binding domain of Yju2 functions in the first step and bypasses Prp16 in the second step of splicing publication-title: Mol. Cell. Biol. – volume: 624 start-page: 682 year: 2023 end-page: 688 ident: bb0055 article-title: Structural insights into intron catalysis and dynamics during splicing publication-title: Nature – volume: 46 start-page: 557 year: 1986 end-page: 565 ident: bb0010 article-title: Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation publication-title: Cell – volume: 13 start-page: 4939 year: 1993 end-page: 4952 ident: bb0110 article-title: Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns publication-title: Mol. Cell. Biol. – volume: 9 year: 2023 ident: bb0370 article-title: Regulation of 3′ splice site selection after step 1 of splicing by spliceosomal C* proteins publication-title: Sci. Adv. – volume: 10 start-page: 3639 year: 2019 ident: bb0425 article-title: Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns publication-title: Nat. Commun. – volume: 12 year: 2021 ident: bb0030 article-title: At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression publication-title: Front. Genet. – volume: 119 year: 2022 ident: bb0215 article-title: DHX15 is involved in SUGP1-mediated RNA missplicing by mutant SF3B1 in cancer publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 41 year: 2018 ident: bb0455 article-title: Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of publication-title: BMC Evol. Biol. – volume: 70 year: 2023 ident: bb0460 article-title: The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae publication-title: J. Eukaryot. Microbiol. – volume: 46 start-page: 225 year: 2021 end-page: 238 ident: bb0075 article-title: DEAH-Box RNA helicases in pre-mRNA splicing publication-title: Trends Biochem. Sci. – volume: 41 start-page: 107 year: 1985 end-page: 118 ident: bb0380 article-title: A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition, cleavage, and ligation publication-title: Cell – volume: 71 start-page: 803 year: 1992 end-page: 817 ident: bb0065 article-title: A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome publication-title: Cell – volume: 33 start-page: 773 year: 2017 end-page: 783 ident: bb0040 article-title: Mobile group II introns as ancestral eukaryotic elements publication-title: Trends Genet. – volume: 107 start-page: 10020 year: 2010 end-page: 10025 ident: bb0175 article-title: Spliceosome discards intermediates via the DEAH box ATPase Prp43p publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 47 start-page: 10842 year: 2019 end-page: 10851 ident: bb0270 article-title: Dynamics of the DEAD-box ATPase Prp5 RecA-like domains provide a conformational switch during spliceosome assembly publication-title: Nucleic Acids Res. – volume: 7 start-page: 259 year: 2016 end-page: 274 ident: bb0080 article-title: The organization and contribution of helicases to RNA splicing publication-title: Wiley Interdiscip. Rev. RNA – volume: 14 start-page: 897 year: 2023 ident: bb0350 article-title: Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly publication-title: Nat. Commun. – volume: 353 start-page: 1399 year: 2016 end-page: 1405 ident: bb0310 article-title: Molecular architecture of the publication-title: Science – volume: 71 start-page: 4135 year: 1974 end-page: 4139 ident: bb0430 article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 586 start-page: 977 year: 2012 end-page: 983 ident: bb0230 article-title: Tumor suppressor RBM5 directly interacts with the DExD/H-box protein DHX15 and stimulates its helicase activity publication-title: FEBS Lett. – volume: 21 start-page: 4978 year: 2002 end-page: 4988 ident: bb0355 article-title: Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein publication-title: EMBO J. – volume: 12 start-page: 4910 year: 2021 ident: bb0420 article-title: SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns publication-title: Nat. Commun. – volume: 11 year: 2019 ident: bb0020 article-title: Structural insights into nuclear pre-mRNA splicing in higher eukaryotes publication-title: Cold Spring Harb. Perspect. Biol. – volume: 320 start-page: 1782 year: 2008 end-page: 1784 ident: bb0015 article-title: Both catalytic steps of nuclear pre-mRNA splicing are reversible publication-title: Science – volume: 24 start-page: 1314 year: 2018 end-page: 1325 ident: bb0400 article-title: SNRP-27, the publication-title: RNA – volume: 443 start-page: 863 year: 2006 end-page: 866 ident: bb0450 article-title: An early evolutionary origin for the minor spliceosome publication-title: Nature – volume: 12 year: 2023 ident: bb0405 article-title: Inter-species association mapping links splice site evolution to METTL16 and SNRNP27K publication-title: Elife – volume: 23 start-page: 546 year: 2017 end-page: 556 ident: bb0120 article-title: A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing publication-title: RNA – volume: 84 start-page: 1 year: 2024 end-page: 16 ident: bb0225 article-title: The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin publication-title: Mol. Cell – volume: 172 start-page: 454 year: 2018 end-page: 464.e11 ident: bb0305 article-title: Structure and conformational dynamics of the human spliceosomal B(act) complex publication-title: Cell – volume: 14 start-page: 97 year: 2000 end-page: 107 ident: bb0255 article-title: ATP can be dispensable for prespliceosome formation in yeast publication-title: Genes Dev. – volume: 22 start-page: 138 year: 2015 end-page: 144 ident: bb0325 article-title: The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes publication-title: Nat. Struct. Mol. Biol. – volume: 89 start-page: 359 year: 2020 end-page: 388 ident: bb0005 article-title: RNA splicing by the spliceosome publication-title: Annu. Rev. Biochem. – volume: 11 year: 2019 ident: bb0025 article-title: Structural basis of nuclear pre-mRNA splicing: lessons from yeast publication-title: Cold Spring Harb. Perspect. Biol. – volume: 51 start-page: 10815 year: 2023 end-page: 10828 ident: bb0160 article-title: An ATP-independent role for Prp16 in promoting aberrant splicing publication-title: Nucleic Acids Res. – volume: 617 start-page: 842 year: 2023 end-page: 850 ident: bb0320 article-title: Structural basis of catalytic activation in human splicing publication-title: Nature – volume: 37 start-page: 968 year: 2023 end-page: 983 ident: bb0365 article-title: Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing publication-title: . – volume: 39 start-page: 385 year: 2010 end-page: 395 ident: bb0155 article-title: The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing publication-title: Mol. Cell – volume: 57 start-page: 587 year: 1975 end-page: 595 ident: bb0435 article-title: Kinetic amplification of enzyme discrimination publication-title: Biochimie – volume: 118 start-page: 4156 year: 2018 end-page: 4176 ident: bb0045 article-title: Molecular mechanism and evolution of nuclear pre-mRNA and group II intron splicing: insights from cryo-electron microscopy structures publication-title: Chem. Rev. – volume: 60 start-page: 705 year: 1990 end-page: 717 ident: bb0150 article-title: A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing publication-title: Cell – volume: 31 start-page: 4898 year: 2021 end-page: 4910.e4 ident: bb0335 article-title: Coupling of spliceosome complexity to intron diversity publication-title: Curr. Biol. – volume: 364 start-page: 362 year: 2019 end-page: 367 ident: bb0415 article-title: Mechanism of 5′ splice site transfer for human spliceosome activation publication-title: Science – volume: 16 start-page: 516 year: 2010 end-page: 528 ident: bb0300 article-title: Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing publication-title: RNA – volume: 359 start-page: 537 year: 2018 end-page: 545 ident: bb0130 article-title: Structure of a human catalytic step I spliceosome publication-title: Science – volume: 11 start-page: 2319 year: 1992 end-page: 2326 ident: bb0295 article-title: The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase publication-title: EMBO J. – volume: 503 start-page: 229 year: 2013 end-page: 234 ident: bb0060 article-title: RNA catalyses nuclear pre-mRNA splicing publication-title: Nature – volume: 150 start-page: 1107 year: 2012 end-page: 1120 ident: bb0220 article-title: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing publication-title: Cell – volume: 28 start-page: 838 year: 2007 end-page: 849 ident: bb0235 article-title: Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly publication-title: Mol. Cell – volume: 84 start-page: 291 year: 2015 end-page: 323 ident: bb0105 article-title: Mechanisms and regulation of alternative pre-mRNA splicing publication-title: Annu. Rev. Biochem. – volume: 375 start-page: 50 year: 2022 ident: 10.1016/j.tibs.2024.03.012_bb0290 article-title: Structural basis of branch site recognition by the human spliceosome publication-title: Science doi: 10.1126/science.abm4245 – volume: 18 year: 2022 ident: 10.1016/j.tibs.2024.03.012_bb0395 article-title: A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5′ splice site identity publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1010028 – volume: 33 start-page: 1746 year: 2013 ident: 10.1016/j.tibs.2024.03.012_bb0115 article-title: A weak spliceosome-binding domain of Yju2 functions in the first step and bypasses Prp16 in the second step of splicing publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00035-13 – volume: 11 year: 2022 ident: 10.1016/j.tibs.2024.03.012_bb0410 article-title: m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5′ splice site publication-title: Elife doi: 10.7554/eLife.78808 – volume: 83 start-page: 2578 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0185 article-title: Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.06.003 – volume: 42 start-page: 241 year: 2017 ident: 10.1016/j.tibs.2024.03.012_bb0340 article-title: The helicase Aquarius/EMB-4 is required to overcome intronic barriers to allow nuclear RNAi pathways to heritably silence transcription publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.07.002 – volume: 46 start-page: 557 year: 1986 ident: 10.1016/j.tibs.2024.03.012_bb0010 article-title: Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation publication-title: Cell doi: 10.1016/0092-8674(86)90881-0 – volume: 24 start-page: 251 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0035 article-title: Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-022-00556-8 – volume: 12 start-page: 505 year: 2011 ident: 10.1016/j.tibs.2024.03.012_bb0085 article-title: From unwinding to clamping – the DEAD box RNA helicase family publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3154 – volume: 1 start-page: 445 year: 1987 ident: 10.1016/j.tibs.2024.03.012_bb0145 article-title: A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation publication-title: Genes Dev. doi: 10.1101/gad.1.5.445 – volume: 119 year: 2022 ident: 10.1016/j.tibs.2024.03.012_bb0215 article-title: DHX15 is involved in SUGP1-mediated RNA missplicing by mutant SF3B1 in cancer publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2216712119 – volume: 47 start-page: 10842 year: 2019 ident: 10.1016/j.tibs.2024.03.012_bb0270 article-title: Dynamics of the DEAD-box ATPase Prp5 RecA-like domains provide a conformational switch during spliceosome assembly publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz765 – volume: 49 start-page: 9965 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0260 article-title: Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab695 – volume: 11 start-page: 2319 year: 1992 ident: 10.1016/j.tibs.2024.03.012_bb0295 article-title: The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05291.x – volume: 16 start-page: 516 year: 2010 ident: 10.1016/j.tibs.2024.03.012_bb0300 article-title: Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing publication-title: RNA doi: 10.1261/rna.2030510 – volume: 353 start-page: 904 year: 2016 ident: 10.1016/j.tibs.2024.03.012_bb0315 article-title: Structure of a yeast activated spliceosome at 3.5 A resolution publication-title: Science doi: 10.1126/science.aag0291 – volume: 29 start-page: 81 year: 2015 ident: 10.1016/j.tibs.2024.03.012_bb0240 article-title: A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence publication-title: Genes Dev. doi: 10.1101/gad.253708.114 – volume: 3 start-page: 518 year: 2002 ident: 10.1016/j.tibs.2024.03.012_bb0470 article-title: The annotation of RNA motifs publication-title: Comp. Funct. Genomics doi: 10.1002/cfg.213 – volume: 404 start-page: 851 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0095 article-title: Structure and function of spliceosomal DEAH-box ATPases publication-title: Biol. Chem. doi: 10.1515/hsz-2023-0157 – volume: 84 start-page: 291 year: 2015 ident: 10.1016/j.tibs.2024.03.012_bb0105 article-title: Mechanisms and regulation of alternative pre-mRNA splicing publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060614-034316 – volume: 51 start-page: 10815 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0160 article-title: An ATP-independent role for Prp16 in promoting aberrant splicing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad861 – volume: 17 start-page: 407 year: 2016 ident: 10.1016/j.tibs.2024.03.012_bb0100 article-title: Lessons from non-canonical splicing publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.46 – volume: 21 start-page: 4978 year: 2002 ident: 10.1016/j.tibs.2024.03.012_bb0355 article-title: Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein publication-title: EMBO J. doi: 10.1093/emboj/cdf480 – volume: 41 start-page: 107 year: 1985 ident: 10.1016/j.tibs.2024.03.012_bb0380 article-title: A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition, cleavage, and ligation publication-title: Cell doi: 10.1016/0092-8674(85)90065-0 – volume: 320 start-page: 1782 year: 2008 ident: 10.1016/j.tibs.2024.03.012_bb0015 article-title: Both catalytic steps of nuclear pre-mRNA splicing are reversible publication-title: Science doi: 10.1126/science.1158993 – volume: 14 start-page: 97 year: 2000 ident: 10.1016/j.tibs.2024.03.012_bb0255 article-title: ATP can be dispensable for prespliceosome formation in yeast publication-title: Genes Dev. doi: 10.1101/gad.14.1.97 – volume: 42 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0210 article-title: Splicing quality control mediated by DHX15 and its G-patch activator SUGP1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.113223 – volume: 302 start-page: 591 year: 1983 ident: 10.1016/j.tibs.2024.03.012_bb0385 article-title: Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes publication-title: Nature doi: 10.1038/302591a0 – volume: 40 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0330 article-title: Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msad011 – volume: 13 start-page: 4939 year: 1993 ident: 10.1016/j.tibs.2024.03.012_bb0110 article-title: Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns publication-title: Mol. Cell. Biol. – volume: 30 start-page: 404 year: 2024 ident: 10.1016/j.tibs.2024.03.012_bb0375 article-title: Spliceosomal helicases DDX41/SACY-1 and PRP22/MOG-5 both contribute to proofreading against proximal 3′ splice site usage publication-title: RNA doi: 10.1261/rna.079888.123 – volume: 57 start-page: 587 year: 1975 ident: 10.1016/j.tibs.2024.03.012_bb0435 article-title: Kinetic amplification of enzyme discrimination publication-title: Biochimie doi: 10.1016/S0300-9084(75)80139-8 – volume: 624 start-page: 682 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0055 article-title: Structural insights into intron catalysis and dynamics during splicing publication-title: Nature doi: 10.1038/s41586-023-06746-6 – volume: 46 start-page: 225 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0075 article-title: DEAH-Box RNA helicases in pre-mRNA splicing publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.10.006 – volume: 164 start-page: 985 year: 2016 ident: 10.1016/j.tibs.2024.03.012_bb0140 article-title: Spliceosomal DEAH-Box ATPases remodel pre-mRNA to activate alternative splice sites publication-title: Cell doi: 10.1016/j.cell.2016.01.025 – volume: 71 start-page: 4135 year: 1974 ident: 10.1016/j.tibs.2024.03.012_bb0430 article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.71.10.4135 – volume: 359 start-page: 537 year: 2018 ident: 10.1016/j.tibs.2024.03.012_bb0130 article-title: Structure of a human catalytic step I spliceosome publication-title: Science doi: 10.1126/science.aar6401 – volume: 12 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0030 article-title: At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression publication-title: Front. Genet. doi: 10.3389/fgene.2021.700744 – volume: 40 start-page: 85 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0190 article-title: Genetic alterations of SUGP1 mimic mutant-SF3B1 splice pattern in lung adenocarcinoma and other cancers publication-title: Oncogene doi: 10.1038/s41388-020-01507-5 – volume: 50 start-page: 11834 year: 2022 ident: 10.1016/j.tibs.2024.03.012_bb0390 article-title: A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac991 – volume: 24 start-page: 1314 year: 2018 ident: 10.1016/j.tibs.2024.03.012_bb0400 article-title: SNRP-27, the C. elegans homolog of the tri-snRNP 27K protein, has a role in 5′ splice site positioning in the spliceosome publication-title: RNA doi: 10.1261/rna.066878.118 – volume: 18 start-page: 41 year: 2018 ident: 10.1016/j.tibs.2024.03.012_bb0455 article-title: Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria publication-title: BMC Evol. Biol. doi: 10.1186/s12862-018-1161-x – volume: 100 start-page: 13857 year: 2003 ident: 10.1016/j.tibs.2024.03.012_bb0250 article-title: ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2036312100 – volume: 2 year: 2007 ident: 10.1016/j.tibs.2024.03.012_bb0440 article-title: Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition publication-title: PLoS One doi: 10.1371/journal.pone.0000468 – volume: 358 start-page: 1283 year: 2017 ident: 10.1016/j.tibs.2024.03.012_bb0070 article-title: Postcatalytic spliceosome structure reveals mechanism of 3′-splice site selection publication-title: Science doi: 10.1126/science.aar3729 – volume: 14 start-page: 897 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0350 article-title: Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly publication-title: Nat. Commun. doi: 10.1038/s41467-023-36489-x – volume: 11 year: 2019 ident: 10.1016/j.tibs.2024.03.012_bb0020 article-title: Structural insights into nuclear pre-mRNA splicing in higher eukaryotes publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a032417 – volume: 349 start-page: 494 year: 1991 ident: 10.1016/j.tibs.2024.03.012_bb0125 article-title: PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome publication-title: Nature doi: 10.1038/349494a0 – volume: 12 start-page: 4910 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0420 article-title: SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns publication-title: Nat. Commun. doi: 10.1038/s41467-021-24879-y – volume: 39 start-page: 385 year: 2010 ident: 10.1016/j.tibs.2024.03.012_bb0155 article-title: The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.07.014 – volume: 42 start-page: 256 year: 2017 ident: 10.1016/j.tibs.2024.03.012_bb0345 article-title: The conserved intron binding protein EMB-4 plays differential roles in germline small RNA pathways of C. elegans publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.07.003 – volume: 596 start-page: 296 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0285 article-title: Structural insights into how Prp5 proofreads the pre-mRNA branch site publication-title: Nature doi: 10.1038/s41586-021-03789-5 – volume: 11 year: 2019 ident: 10.1016/j.tibs.2024.03.012_bb0025 article-title: Structural basis of nuclear pre-mRNA splicing: lessons from yeast publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a032391 – volume: 31 start-page: 179 year: 2024 ident: 10.1016/j.tibs.2024.03.012_bb0050 article-title: Structural basis of branching during RNA splicing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-023-01150-0 – volume: 107 start-page: 10020 year: 2010 ident: 10.1016/j.tibs.2024.03.012_bb0175 article-title: Spliceosome discards intermediates via the DEAH box ATPase Prp43p publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0906022107 – volume: 150 start-page: 1107 year: 2012 ident: 10.1016/j.tibs.2024.03.012_bb0220 article-title: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing publication-title: Cell doi: 10.1016/j.cell.2012.08.029 – volume: 5 start-page: 1269 year: 2013 ident: 10.1016/j.tibs.2024.03.012_bb0275 article-title: Crystal structure of Prp5p reveals interdomain interactions that impact spliceosome assembly publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.10.047 – volume: 9 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0370 article-title: Regulation of 3′ splice site selection after step 1 of splicing by spliceosomal C* proteins publication-title: Sci. Adv. doi: 10.1126/sciadv.adf1785 – volume: 6 year: 2014 ident: 10.1016/j.tibs.2024.03.012_bb0445 article-title: Origin of spliceosomal introns and alternative splicing publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016071 – volume: 70 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0460 article-title: The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae publication-title: J. Eukaryot. Microbiol. doi: 10.1111/jeu.12927 – volume: 402 start-page: 653 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0090 article-title: Dead or alive: DEAD-box ATPases as regulators of ribonucleoprotein complex condensation publication-title: Biol. Chem. doi: 10.1515/hsz-2020-0381 – volume: 353 start-page: 1399 year: 2016 ident: 10.1016/j.tibs.2024.03.012_bb0310 article-title: Molecular architecture of the Saccharomyces cerevisiae activated spliceosome publication-title: Science doi: 10.1126/science.aag1906 – volume: 7 start-page: 259 year: 2016 ident: 10.1016/j.tibs.2024.03.012_bb0080 article-title: The organization and contribution of helicases to RNA splicing publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1331 – volume: 117 start-page: 10305 year: 2020 ident: 10.1016/j.tibs.2024.03.012_bb0195 article-title: Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1922622117 – volume: 12 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0405 article-title: Inter-species association mapping links splice site evolution to METTL16 and SNRNP27K publication-title: Elife doi: 10.7554/eLife.91997 – volume: 586 start-page: 977 year: 2012 ident: 10.1016/j.tibs.2024.03.012_bb0230 article-title: Tumor suppressor RBM5 directly interacts with the DExD/H-box protein DHX15 and stimulates its helicase activity publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.02.052 – volume: 24 start-page: 749 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0200 article-title: Cellular functions of eukaryotic RNA helicases and their links to human diseases publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-023-00628-5 – volume: 10 start-page: 3639 year: 2019 ident: 10.1016/j.tibs.2024.03.012_bb0425 article-title: Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns publication-title: Nat. Commun. doi: 10.1038/s41467-019-11293-8 – volume: 71 start-page: 803 year: 1992 ident: 10.1016/j.tibs.2024.03.012_bb0065 article-title: A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome publication-title: Cell doi: 10.1016/0092-8674(92)90556-R – volume: 23 start-page: 546 year: 2017 ident: 10.1016/j.tibs.2024.03.012_bb0120 article-title: A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing publication-title: RNA doi: 10.1261/rna.059204.116 – volume: 13 start-page: 482 year: 2006 ident: 10.1016/j.tibs.2024.03.012_bb0170 article-title: Exon ligation is proofread by the DExD/H-box ATPase Prp22p publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1093 – volume: 84 start-page: 1 year: 2024 ident: 10.1016/j.tibs.2024.03.012_bb0225 article-title: The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2024.02.039 – volume: 492 start-page: 59 year: 2012 ident: 10.1016/j.tibs.2024.03.012_bb0465 article-title: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs publication-title: Nature doi: 10.1038/nature11681 – volume: 31 start-page: 4898 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0335 article-title: Coupling of spliceosome complexity to intron diversity publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.09.004 – volume: 503 start-page: 229 year: 2013 ident: 10.1016/j.tibs.2024.03.012_bb0060 article-title: RNA catalyses nuclear pre-mRNA splicing publication-title: Nature doi: 10.1038/nature12734 – volume: 28 start-page: 838 year: 2007 ident: 10.1016/j.tibs.2024.03.012_bb0235 article-title: Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.09.022 – volume: 83 start-page: 1725 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0360 article-title: Proteomic discovery of chemical probes that perturb protein complexes in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.03.026 – volume: 60 start-page: 705 year: 1990 ident: 10.1016/j.tibs.2024.03.012_bb0150 article-title: A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing publication-title: Cell doi: 10.1016/0092-8674(90)90086-T – volume: 81 start-page: 1439 year: 2021 ident: 10.1016/j.tibs.2024.03.012_bb0180 article-title: Structural basis for conformational equilibrium of the catalytic spliceosome publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.02.021 – volume: 617 start-page: 842 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0320 article-title: Structural basis of catalytic activation in human splicing publication-title: Nature doi: 10.1038/s41586-023-06049-w – volume: 443 start-page: 863 year: 2006 ident: 10.1016/j.tibs.2024.03.012_bb0450 article-title: An early evolutionary origin for the minor spliceosome publication-title: Nature doi: 10.1038/nature05228 – volume: 37 start-page: 968 year: 2023 ident: 10.1016/j.tibs.2024.03.012_bb0365 article-title: Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing publication-title: Genes Dev. doi: 10.1101/gad.351154.123 – volume: 5 year: 2016 ident: 10.1016/j.tibs.2024.03.012_bb0165 article-title: The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP-intron interaction publication-title: Elife doi: 10.7554/eLife.15564 – volume: 25 start-page: 1020 year: 2019 ident: 10.1016/j.tibs.2024.03.012_bb0245 article-title: Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM–ULM interaction publication-title: RNA doi: 10.1261/rna.070649.119 – volume: 80 start-page: 127 year: 2020 ident: 10.1016/j.tibs.2024.03.012_bb0135 article-title: Structural insights into the roles of Metazoan-specific splicing factors in the human step 1 spliceosome publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.09.012 – volume: 28 start-page: 583 year: 2022 ident: 10.1016/j.tibs.2024.03.012_bb0205 article-title: A model for DHX15 mediated disassembly of A-complex spliceosomes publication-title: RNA doi: 10.1261/rna.078977.121 – volume: 118 start-page: 4156 year: 2018 ident: 10.1016/j.tibs.2024.03.012_bb0045 article-title: Molecular mechanism and evolution of nuclear pre-mRNA and group II intron splicing: insights from cryo-electron microscopy structures publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00499 – volume: 33 start-page: 773 year: 2017 ident: 10.1016/j.tibs.2024.03.012_bb0040 article-title: Mobile group II introns as ancestral eukaryotic elements publication-title: Trends Genet. doi: 10.1016/j.tig.2017.07.009 – volume: 172 start-page: 454 year: 2018 ident: 10.1016/j.tibs.2024.03.012_bb0305 article-title: Structure and conformational dynamics of the human spliceosomal B(act) complex publication-title: Cell doi: 10.1016/j.cell.2018.01.010 – volume: 583 start-page: 310 year: 2020 ident: 10.1016/j.tibs.2024.03.012_bb0280 article-title: Molecular architecture of the human 17S U2 snRNP publication-title: Nature doi: 10.1038/s41586-020-2344-3 – volume: 364 start-page: 362 year: 2019 ident: 10.1016/j.tibs.2024.03.012_bb0415 article-title: Mechanism of 5′ splice site transfer for human spliceosome activation publication-title: Science doi: 10.1126/science.aax3289 – volume: 89 start-page: 359 year: 2020 ident: 10.1016/j.tibs.2024.03.012_bb0005 article-title: RNA splicing by the spliceosome publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-091719-064225 – volume: 30 start-page: 2710 year: 2016 ident: 10.1016/j.tibs.2024.03.012_bb0265 article-title: SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing publication-title: Genes Dev. doi: 10.1101/gad.291872.116 – volume: 22 start-page: 138 year: 2015 ident: 10.1016/j.tibs.2024.03.012_bb0325 article-title: The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2951 |
SSID | ssj0015775 |
Score | 2.483921 |
SecondaryResourceType | review_article |
Snippet | The spliceosome is a highly dynamic and complex ATP-dependent ribonucleoprotein machine required for the splicing of mRNA precursors.Recent work demonstrates... The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 583 |
SubjectTerms | adenosinetriphosphatase Animals ATPases fidelity Humans Introns pre-mRNA splicing quality control ribonucleoproteins RNA RNA Precursors - genetics RNA Precursors - metabolism RNA Splicing Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism snRNA spliceosome spliceosomes Spliceosomes - metabolism |
Title | Understanding the dynamic design of the spliceosome |
URI | https://dx.doi.org/10.1016/j.tibs.2024.03.012 https://www.ncbi.nlm.nih.gov/pubmed/38641465 https://www.proquest.com/docview/3043077428 https://www.proquest.com/docview/3153653344 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEbyIb-ujrOBN1ja7ySY5lmKpir1oobeQJ1R0t9jtwYu_3SS7W_TQHjxumCzDTDLzhXkBcGMRNDSxOlYSyRi551osHLKIMVPQYpVJZX1E93mcjSbocYqnLTBoamF8WmVt-yubHqx1vdKtpdmdz2bdFwe-aS-E7oKjCxXsiPhTfve9SvOAmIRmu544VFDXhTNVjlc5k75ld4JCo1OYrHNO68BncELDfbBXo8eoXzF4AFomPwQ71TzJryOQTn6XqkQO20W6mjgf6ZCpERU2rC581NoUi-LDHIPJ8P51MIrrqQixcuCijCWmLBEpESbR7nUGsYaUUS0R0lYQJBEhDgJmSmvLqMHM9hKBbCoc0mIGMZuegK28yM0ZiIi1ilqdafcjRIwShKqezSg0mhpGVRvARhxc1S3D_eSKd97khr1xL0LuRch7KXcibIPb1Z551TBjIzVupMz_qJ07i75x33WjEu7ugw9yiNwUywVPfRMzh2kTuoHGmfnM1yCjNjit9LniNaUZct4Dn_-Tswuw67-qjN5LsFV-Ls2Vwy2l7ISD2QHb_Yen0fgHj3LrtQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ki-hFfFufEbxJaJPsJptjKUprHxdb6G1J9gEVTYptD_57ZzdJ0UN78LqZDctsMvMNM_MNwKMmnmK-lq5ISeoSDNfcBJGFS2PhaSrCVGiT0R2Nw96UvM7orAbdqhfGlFWWtr-w6dZalyutUputxXzeekPwzdo2dWcdHYZADcNORevQ6PQHvfEmmUAjy7dr5G0Tddk7U5R5reapYe32ieU69fxt_mkb_rR-6OUIDksA6XSKMx5DTWUnsFeMlPw-hWD6u1vFQXjnyGLovCNtsYaTa7u6NIlrlS_zT3UG05fnSbfnloMRXIH4YuWmlMV-EkSJ8iUGaB6VHouZTAmROolISqIIUWAopNQxUzTWbT8hOkgQbMWKxDo4h3qWZ-oSnEhrwbQMJb6IREokERNtHTJPSaZiJprgVergomQNN8MrPnhVHvbOjQq5USFvBxxV2ISnzZ5FwZmxU5pWWuZ_bp6jUd-576G6Eo6_hMlzJJnK10seGB4zhLU-2yGDlj40bcikCRfFfW7OGrCQoAOhV_882T3s9yajIR_2x4NrODBPigLfG6ivvtbqFmHMKr0rP9MfrAXuZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+dynamic+design+of+the+spliceosome&rft.jtitle=Trends+in+biochemical+sciences+%28Amsterdam.+Regular+ed.%29&rft.au=Beusch%2C+Irene&rft.au=Madhani%2C+Hiten+D&rft.date=2024-07-01&rft.issn=0968-0004&rft.volume=49&rft.issue=7&rft.spage=583&rft_id=info:doi/10.1016%2Fj.tibs.2024.03.012&rft_id=info%3Apmid%2F38641465&rft.externalDocID=38641465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-0004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-0004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-0004&client=summon |