Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer

Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 17; p. 9254
Main Authors Le, Nguyen Quoc Khanh, Kha, Quang Hien, Nguyen, Van Hiep, Chen, Yung-Chieh, Cheng, Sho-Jen, Chen, Cheng-Yu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms22179254

Cover

Loading…
Abstract Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC.
AbstractList Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC.
Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC.Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC.
Author Chen, Yung-Chieh
Nguyen, Van Hiep
Kha, Quang Hien
Cheng, Sho-Jen
Le, Nguyen Quoc Khanh
Chen, Cheng-Yu
AuthorAffiliation 4 International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; m142109004@tmu.edu.tw (Q.H.K.); nguyenhiep0320@gmail.com (V.H.N.)
7 Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
3 Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
2 Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
6 Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan; rendell2300192@gmail.com
5 Oncology Center, Bai Chay Hospital, Quang Ninh 20000, Vietnam
1 Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; sandychen@tmu.edu.tw
AuthorAffiliation_xml – name: 2 Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
– name: 6 Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan; rendell2300192@gmail.com
– name: 5 Oncology Center, Bai Chay Hospital, Quang Ninh 20000, Vietnam
– name: 1 Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; sandychen@tmu.edu.tw
– name: 3 Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
– name: 4 International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; m142109004@tmu.edu.tw (Q.H.K.); nguyenhiep0320@gmail.com (V.H.N.)
– name: 7 Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
Author_xml – sequence: 1
  givenname: Nguyen Quoc Khanh
  orcidid: 0000-0003-4896-7926
  surname: Le
  fullname: Le, Nguyen Quoc Khanh
– sequence: 2
  givenname: Quang Hien
  surname: Kha
  fullname: Kha, Quang Hien
– sequence: 3
  givenname: Van Hiep
  orcidid: 0000-0002-3390-7923
  surname: Nguyen
  fullname: Nguyen, Van Hiep
– sequence: 4
  givenname: Yung-Chieh
  surname: Chen
  fullname: Chen, Yung-Chieh
– sequence: 5
  givenname: Sho-Jen
  surname: Cheng
  fullname: Cheng, Sho-Jen
– sequence: 6
  givenname: Cheng-Yu
  orcidid: 0000-0003-0428-4373
  surname: Chen
  fullname: Chen, Cheng-Yu
BookMark eNptkU1r3DAQhkVJaD7aW3-AoJce6lQf1kq-FNIlSUM3SdnNXYzl8UaLLW0ku9B_X283hTTkNC_MM-_wzpyQgxADEvKBszMpK_bFb_osBNeVUOUbcsxLIQrGZvrgmT4iJzlvGBNSqOotOZKlYoLP2DHZ3oB78AHpAiEFH9bFN8jY0CU0PvbeZbry6wDDmDDTNiZ6cXW5pBAa-mN5vqI34wCDjyHTnwkb73aa-kBvYyhWPXRdMceuo4sxrOkcgsP0jhy20GV8_1RPyf3lxf38e7G4u7qeny8KJ001FNCiKyXwWmutai5BlFM-wEYjEzBjxmBtFFZgGmxQ1KoxrayUwllpasXkKfm6t92OdY-NwzAk6Ow2-R7SbxvB2_87wT_YdfxlTSk5K_lk8OnJIMXHEfNge5_dFAYCxjFboTSvBDdyh358gW7imMKU7i8lpDZaTZTYUy7FnBO21vn98ab9vrOc2d0_7fN_TkOfXwz9S_Aq_gcKzKLO
CitedBy_id crossref_primary_10_3389_fgene_2022_813438
crossref_primary_10_3389_fonc_2022_848798
crossref_primary_10_3390_s23020634
crossref_primary_10_1186_s12885_023_11809_y
crossref_primary_10_3390_electronics11213577
crossref_primary_10_3390_bioengineering10070747
crossref_primary_10_1002_prm2_12089
crossref_primary_10_1089_aipo_2023_0002
crossref_primary_10_3390_cancers14143492
crossref_primary_10_1109_JBHI_2024_3390804
crossref_primary_10_1016_j_cmpbup_2022_100065
crossref_primary_10_1186_s12880_023_01042_1
crossref_primary_10_3892_ijo_2025_5724
crossref_primary_10_1615_CritRevOncog_2023050439
crossref_primary_10_1177_00368504241293008
crossref_primary_10_3390_electronics10233005
crossref_primary_10_1016_j_bspc_2022_103933
crossref_primary_10_1007_s11042_023_17922_1
crossref_primary_10_3390_ijms222111546
crossref_primary_10_3390_bios12060427
crossref_primary_10_3390_cancers16203469
crossref_primary_10_3390_ijms23094937
crossref_primary_10_3389_fonc_2025_1424647
crossref_primary_10_3390_jpm12030480
crossref_primary_10_2147_JIR_S484485
crossref_primary_10_3390_a15030077
crossref_primary_10_3390_diagnostics13040738
crossref_primary_10_1097_MD_0000000000033630
crossref_primary_10_3390_app12125829
crossref_primary_10_3390_cells10113092
crossref_primary_10_1186_s12911_024_02553_9
crossref_primary_10_3390_s21227527
crossref_primary_10_1371_journal_pone_0273831
crossref_primary_10_1002_mp_16744
crossref_primary_10_3390_electronics10202475
crossref_primary_10_1053_j_seminoncol_2022_06_002
crossref_primary_10_3390_life15010083
crossref_primary_10_1016_j_heliyon_2024_e27379
crossref_primary_10_1016_j_semcancer_2023_02_006
crossref_primary_10_3389_fphar_2022_975774
crossref_primary_10_5306_wjco_v16_i4_104785
crossref_primary_10_1016_j_ejro_2022_100441
crossref_primary_10_1155_2022_2056837
crossref_primary_10_3389_fonc_2022_879376
crossref_primary_10_1007_s00330_025_11473_9
crossref_primary_10_1186_s12885_023_10550_w
crossref_primary_10_3389_fonc_2022_994285
crossref_primary_10_4274_dir_2024_242972
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_1142_S0219622022500602
crossref_primary_10_1097_RTI_0000000000000725
crossref_primary_10_1111_jcmm_18091
crossref_primary_10_3390_cancers15184553
crossref_primary_10_1002_jbio_202300174
crossref_primary_10_1021_acssensors_3c00681
crossref_primary_10_1016_j_heliyon_2023_e23003
crossref_primary_10_3390_diagnostics12092175
crossref_primary_10_1002_advs_202408069
crossref_primary_10_1038_s41598_024_55507_6
crossref_primary_10_3390_ijms23137132
crossref_primary_10_1016_j_eclinm_2023_102385
crossref_primary_10_3390_cancers13215398
crossref_primary_10_3390_info12110471
crossref_primary_10_1016_j_acra_2023_03_040
crossref_primary_10_1177_03008916251314659
crossref_primary_10_3390_app12136615
crossref_primary_10_1016_j_acra_2024_01_031
crossref_primary_10_1002_mco2_722
crossref_primary_10_1016_j_jtho_2024_11_006
crossref_primary_10_3389_fmed_2025_1517765
crossref_primary_10_1016_j_heliyon_2024_e28292
crossref_primary_10_1109_ACCESS_2024_3523330
crossref_primary_10_2147_IJGM_S392404
crossref_primary_10_3389_fmolb_2024_1420136
crossref_primary_10_1016_j_ejso_2024_108052
crossref_primary_10_1016_j_crmeth_2024_100695
crossref_primary_10_1016_j_jncc_2022_11_004
crossref_primary_10_3390_ijms24054947
crossref_primary_10_3390_ijms241411433
crossref_primary_10_1002_adts_202400489
crossref_primary_10_1080_13682199_2022_2163538
crossref_primary_10_1016_j_bspc_2022_104148
crossref_primary_10_3390_ijms23063348
crossref_primary_10_1007_s13273_024_00500_3
crossref_primary_10_1097_RCT_0000000000001644
crossref_primary_10_3390_app14209367
crossref_primary_10_1148_radiol_222904
crossref_primary_10_1038_s41598_022_06085_y
crossref_primary_10_3389_fmicb_2022_1090770
crossref_primary_10_1016_j_meomic_2023_100025
crossref_primary_10_3389_fonc_2023_1260374
crossref_primary_10_1080_14622416_2024_2428587
Cites_doi 10.1002/cam4.2233
10.1148/rg.2017160130
10.3322/caac.21590
10.1158/0008-5472.CAN-18-0125
10.1613/jair.953
10.3892/or.2017.5409
10.1158/1078-0432.CCR-18-2495
10.1038/srep13087
10.3390/tomography7020014
10.1016/j.ejrad.2018.11.032
10.1016/j.mayocp.2019.01.013
10.3390/jpm10030128
10.3389/fphar.2021.657743
10.1038/srep41674
10.1109/TENSYMP46218.2019.8971127
10.1038/s41467-020-19116-x
10.7150/thno.30309
10.1038/sdata.2018.202
10.1186/s12859-016-1423-9
10.1016/j.compbiomed.2021.104320
10.1109/IIH-MSP.2009.145
10.1201/9781584888796
10.1158/0008-5472.CAN-17-0339
10.1097/JTO.0b013e318299ac32
10.1136/bmjopen-2013-002560
10.21037/qims-20-600
10.1148/radiol.2019190357
10.1007/s10278-013-9622-7
10.1097/CEJ.0b013e32835f3be9
10.1513/pats.200809-107LC
10.1007/s00259-019-04592-1
10.1007/978-3-540-35488-8
10.18383/j.tom.2018.00055
10.1007/978-3-319-93025-1
10.1038/s41598-020-60202-3
10.1371/journal.pmed.0020017
10.1378/chest.123.1_suppl.137S
10.1073/pnas.0405220101
10.1016/S0933-3657(00)00053-1
10.1371/journal.pmed.1002711
10.1158/1055-9965.EPI-20-0704
10.1016/j.tranon.2020.100791
10.1145/1277741.1277811
10.1038/nrclinonc.2015.90
10.1007/s11307-020-01487-8
10.3322/caac.21660
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms22179254
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8431041
10_3390_ijms22179254
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c389t-afec43a1b7775b13a24254aed7e02a6088eb85e9a8dede2b5d8f3955e648b503
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:05:38 EDT 2025
Thu Jul 10 22:20:02 EDT 2025
Fri Jul 25 20:26:29 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Tue Jul 01 03:07:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-afec43a1b7775b13a24254aed7e02a6088eb85e9a8dede2b5d8f3955e648b503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0428-4373
0000-0002-3390-7923
0000-0003-4896-7926
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22179254
PMID 34502160
PQID 2571237875
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8431041
proquest_miscellaneous_2571921831
proquest_journals_2571237875
crossref_citationtrail_10_3390_ijms22179254
crossref_primary_10_3390_ijms22179254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle International journal of molecular sciences
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Moreno (ref_33) 2021; 7
Aerts (ref_18) 2014; 5
Rubin (ref_39) 2019; 5
Pinheiro (ref_29) 2020; 10
Xu (ref_15) 2019; 25
Thomas (ref_9) 2015; 12
Li (ref_10) 2020; 19
ref_19
Zhao (ref_35) 2019; 8
Shiri (ref_22) 2020; 22
Toloza (ref_14) 2003; 123
Gevaert (ref_20) 2017; 7
Parmar (ref_17) 2015; 5
ref_25
Li (ref_37) 2017; 37
Erickson (ref_46) 2017; 37
Bakr (ref_24) 2018; 5
Fedorov (ref_28) 2017; 77
Tang (ref_12) 2013; 22
Chawla (ref_26) 2002; 16
ref_27
Zupan (ref_48) 2000; 20
Liu (ref_16) 2019; 9
Rizzo (ref_21) 2019; 110
Dong (ref_36) 2021; 11
Boch (ref_5) 2013; 3
Clark (ref_23) 2013; 26
ref_31
Xu (ref_38) 2020; 13
Siegel (ref_3) 2020; 70
Zhang (ref_30) 2020; 47
Le (ref_47) 2021; 132
Mattonen (ref_49) 2019; 293
Riely (ref_4) 2009; 6
Pao (ref_7) 2004; 101
Mu (ref_34) 2020; 11
Sung (ref_1) 2021; 71
Nioche (ref_32) 2018; 78
ref_44
ref_43
ref_42
ref_41
ref_40
ref_2
Radovic (ref_45) 2017; 18
ref_8
Cazzoli (ref_13) 2013; 8
Heeke (ref_6) 2021; 12
Farooq (ref_11) 2020; 29
References_xml – volume: 8
  start-page: 3532
  year: 2019
  ident: ref_35
  article-title: Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning
  publication-title: Cancer Med.
  doi: 10.1002/cam4.2233
– volume: 37
  start-page: 505
  year: 2017
  ident: ref_46
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
  doi: 10.1148/rg.2017160130
– volume: 70
  start-page: 7
  year: 2020
  ident: ref_3
  article-title: Cancer statistics
  publication-title: 2020 CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 78
  start-page: 4786
  year: 2018
  ident: ref_32
  article-title: LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-0125
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_26
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 37
  start-page: 1347
  year: 2017
  ident: ref_37
  article-title: Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review)
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2017.5409
– volume: 25
  start-page: 3266
  year: 2019
  ident: ref_15
  article-title: Deep learning predicts lung cancer treatment response from serial medical imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2495
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_17
  article-title: Machine learning methods for quantitative radiomic biomarkers
  publication-title: Sci. Rep.
  doi: 10.1038/srep13087
– volume: 7
  start-page: 154
  year: 2021
  ident: ref_33
  article-title: A Radiogenomics Ensemble to Predict EGFR and KRAS Mutations in NSCLC
  publication-title: Tomography
  doi: 10.3390/tomography7020014
– volume: 110
  start-page: 148
  year: 2019
  ident: ref_21
  article-title: Genomics of non-small cell lung cancer (NSCLC): Association between CT-based imaging features and EGFR and K-RAS mutations in 122 patients—An external validation
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2018.11.032
– ident: ref_2
  doi: 10.1016/j.mayocp.2019.01.013
– ident: ref_50
  doi: 10.3390/jpm10030128
– volume: 12
  start-page: 657743
  year: 2021
  ident: ref_6
  article-title: Detection of EGFR Mutations From Plasma of NSCLC Patients Using an Automatic Cartridge-Based PCR System
  publication-title: Front. Pharm.
  doi: 10.3389/fphar.2021.657743
– ident: ref_27
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_20
  article-title: Predictive radiogenomics modeling of EGFR mutation status in lung cancer
  publication-title: Sci. Rep.
  doi: 10.1038/srep41674
– ident: ref_40
  doi: 10.1109/TENSYMP46218.2019.8971127
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_34
  article-title: Non-invasive decision support for NSCLC treatment using PET/CT radiomics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19116-x
– volume: 9
  start-page: 1303
  year: 2019
  ident: ref_16
  article-title: The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges
  publication-title: Theranostics
  doi: 10.7150/thno.30309
– volume: 5
  start-page: 180202
  year: 2018
  ident: ref_24
  article-title: A radiogenomic dataset of non-small cell lung cancer
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.202
– volume: 18
  start-page: 1
  year: 2017
  ident: ref_45
  article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-016-1423-9
– volume: 132
  start-page: 104320
  year: 2021
  ident: ref_47
  article-title: Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104320
– ident: ref_41
  doi: 10.1109/IIH-MSP.2009.145
– ident: ref_31
  doi: 10.1201/9781584888796
– volume: 77
  start-page: e104
  year: 2017
  ident: ref_28
  article-title: Computational Radiomics System to Decode the Radiographic Phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 5
  start-page: 1
  year: 2014
  ident: ref_18
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1156
  year: 2013
  ident: ref_13
  article-title: microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer
  publication-title: J. Thorac. Oncol.
  doi: 10.1097/JTO.0b013e318299ac32
– volume: 3
  start-page: e002560
  year: 2013
  ident: ref_5
  article-title: The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): Routine screening data for central Europe from a cohort study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-002560
– volume: 11
  start-page: 2354
  year: 2021
  ident: ref_36
  article-title: Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-20-600
– volume: 293
  start-page: 451
  year: 2019
  ident: ref_49
  article-title: Bone Marrow and Tumor Radiomics at (18)F-FDG PET/CT: Impact on Outcome Prediction in Non-Small Cell Lung Cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2019190357
– volume: 26
  start-page: 1045
  year: 2013
  ident: ref_23
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 22
  start-page: 540
  year: 2013
  ident: ref_12
  article-title: Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer
  publication-title: Eur. J. Cancer Prev.
  doi: 10.1097/CEJ.0b013e32835f3be9
– volume: 6
  start-page: 201
  year: 2009
  ident: ref_4
  article-title: KRAS mutations in non–small cell lung cancer
  publication-title: Proc. Am. Thorac. Soc.
  doi: 10.1513/pats.200809-107LC
– volume: 47
  start-page: 1137
  year: 2020
  ident: ref_30
  article-title: Value of pre-therapy 18 F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-019-04592-1
– ident: ref_44
  doi: 10.1007/978-3-540-35488-8
– volume: 5
  start-page: 170
  year: 2019
  ident: ref_39
  article-title: ePAD: An image annotation and analysis platform for quantitative imaging
  publication-title: Tomography
  doi: 10.18383/j.tom.2018.00055
– ident: ref_25
  doi: 10.1007/978-3-319-93025-1
– volume: 10
  start-page: 3625
  year: 2020
  ident: ref_29
  article-title: Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60202-3
– ident: ref_8
  doi: 10.1371/journal.pmed.0020017
– volume: 123
  start-page: 137S
  year: 2003
  ident: ref_14
  article-title: Noninvasive staging of non-small cell lung cancer: A review of the current evidence
  publication-title: Chest
  doi: 10.1378/chest.123.1_suppl.137S
– volume: 101
  start-page: 13306
  year: 2004
  ident: ref_7
  article-title: EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0405220101
– volume: 20
  start-page: 59
  year: 2000
  ident: ref_48
  article-title: Machine learning for survival analysis: A case study on recurrence of prostate cancer
  publication-title: Artif. Intell. Med.
  doi: 10.1016/S0933-3657(00)00053-1
– ident: ref_19
  doi: 10.1371/journal.pmed.1002711
– volume: 29
  start-page: 2416
  year: 2020
  ident: ref_11
  article-title: Noninvasive diagnostics for early detection of lung cancer: Challenges and potential with a focus on changes in DNA methylation
  publication-title: Cancer Epidemiol. Biomark. Prev.
  doi: 10.1158/1055-9965.EPI-20-0704
– volume: 13
  start-page: 100791
  year: 2020
  ident: ref_38
  article-title: Molecular Characteristics and Clinical Outcomes of EGFR Exon 19 C-Helix Deletion in Non–Small Cell Lung Cancer and Response to EGFR TKIs
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2020.100791
– volume: 19
  start-page: 3389
  year: 2020
  ident: ref_10
  article-title: Emerging non-invasive detection methodologies for lung cancer
  publication-title: Oncol. Lett.
– ident: ref_42
  doi: 10.1145/1277741.1277811
– ident: ref_43
– volume: 12
  start-page: 511
  year: 2015
  ident: ref_9
  article-title: Refining the treatment of NSCLC according to histological and molecular subtypes
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2015.90
– volume: 22
  start-page: 1132
  year: 2020
  ident: ref_22
  article-title: Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms
  publication-title: Mol. Imaging Biol.
  doi: 10.1007/s11307-020-01487-8
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_1
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
SSID ssj0023259
Score 2.5957649
Snippet Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 9254
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Classification
Datasets
Drug resistance
Feature selection
Lung cancer
Machine learning
Medical prognosis
Mutation
Radiomics
Semantics
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCImXafwS3QYyEjwha00c_8gTGtXKBHRC7ZD6Fjn2dQRlade0D_z3u0vSdn2At0i2ZMk-333n-_IdYx-kngEiCSd8GsUi0S4R1vWdAJICkRY8NAKmoyt9-Sv5NlXT7sGt7miVG5_YOOow9_RGfoamhU4WzUt9XtwJ6hpF1dWuhcZj9oSky4jSZaa7hEvGTbO0CGOQ0CrVLfFdYpp_Vvy5rWOE42mskv2QtMOZ-yzJB2FneMQOO7zIz9sDfs4eQfWCPW07SP59yRajhgwJvNNJvRFfMCwFPnahoP-Naz4pblrxzpojPuUXX4dj7qrAv4_PJ3y0bivxNf-5pIoNffOi4lfzSkxuXVmKAZQl_4EegQ_IPpav2PXw4npwKbomCsIjFlkJNwOfSBflxhiVR9JRjpE4CAb6sdPoZCC3ClJnAwSIcxXsTKZKgU5srvryNTuo5hW8YRyxmtWRTb1SBvMkm_vISyOVSwPiCG167NNmGzPfCYxTn4syw0SDNj17uOk99nE7e9EKa_xj3unmRLLuetXZzhh67P12GC8GVTtcBfN1OyclABj1mNk7ye16JK29P1IVvxuJbYu4qp9Ex_9f_IQ9i4ni0lDOTtnBarmGt4hRVvm7xhDvAaqM5nQ
  priority: 102
  providerName: ProQuest
Title Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer
URI https://www.proquest.com/docview/2571237875
https://www.proquest.com/docview/2571921831
https://pubmed.ncbi.nlm.nih.gov/PMC8431041
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7yoJBLSV_ETWq20J7KttZjtatDKYmxE9raBDsB38RKGicKipxYNiT_vjOS7Ma0hV6EQCskZndnvk8z-gbggxdMkZCElUnouNIPrC-N7ViJLAXiGUywEjAdDIOzS__7RE22YNVttDFg-Vdqx_2kLuf554f7x2-04b8y4yTK_iW7uS1dgtYhkZ1t2KWYpHmLDvx1PoFgQ9U2jT94SHbQdQn8H3dvBqffiHOzXvJJAOrvw_MGOYrjeqpfwBYWL-FZ3Uvy8RXcDaqySBSNYuqVPKEAlYqRTTP-87gU4-yqlvEsBSFV0Tvtj4QtUvFjdDwWg2Wdky_F-ZxzN3wuskIMZ4Uc39o8l13Mc_GTfIPo8kqZv4aLfu-ieyabdgoyIVSykHaKie9ZJ9Zaq9jxLLMN32KqsePagNwNxkZhaE2KKbqxSs3UC5XCwDex6nhvYKeYFXgAglCbCRwTJkppYkwmTpzE056yYUqIItAt-LQyY5Q0UuPc8SKPiHKw0aOnRm_Bx_Xou1pi4x_jjlYzEq3WSUQeh2IveR3Vgvfry7RFOO9hC5wt6zEhQ0GnBXpjJtfPY5HtzStFdl2JbRtCWB3fefufL3kIey5XvVRVaEews5gv8R3BlkXchm090XQ0_dM27J70huejNgcS1a7W6i-mLfAL
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgSXiqcaKLBI9IRWtb1ee32oqhIaUvIQSoKUm7W2J8XIdUKcqOqP4j8y60fSHODWm6Vd2dLsNzPfeGZnAD4Kb4bEJDSPA9vhrqddrrSlOZpWIEJhjGUD08HQ6_5wv03ldA_-NHdhTFllYxNLQ53MY_OP_ISgRUaW4CXPFr-5mRplsqvNCI0KFj28vaGQrTi9_ELne-w4nYtJu8vrqQI8Jue84nqGsSu0Hfm-LyNbaEO6XY2Jj5ajPdI6jJTEQKsEE3QimaiZCKREz1WRtAS99gE8JL9rGYXyp9v4TjjlbDabXB73ZOBVdfZCBNZJ-uu6cIj9B450dz3gltbuFmXe8XKdp3BQ01N2XuHpGexh_hweVQMrb1_AYlDWXiKr27Je8c_kBRM20klqrjcXbJxeVb1CC0Z0mF187YyYzhPWG52P2WBdJf4L9n1pEkTmmaU5G85zPr7WWcbbmGWsTwaItQ0cly9hch_SfQX7-TzHQ2BEDZVnqyCW0qewTEWxHQtfSB0kRFs8vwWfGjGGcd3P3IzVyEKKa4zQw7tCb8HxZvei6uPxj31HzYmEtTYX4RZ7LfiwWSY9NMkVneN8Xe0JDN-0W-DvnOTme6aT9-5Knv4sO3orAyfXfv3_j7-Hx93JoB_2L4e9N_DEMdU1ZbXbEeyvlmt8S_RoFb0rQckgvGcl-AuRkSOU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9tAEB3SlJZeSj-JmzTdQnMqiyWtVlodSkicuEkdm2Cn4JtYSeNURZEdyybkp_XfdVYfdnxob7kJdpFgdmbnjfbtG4AvwpsgIQnN48B2uOtplyttaY5GCkQojLEUMO0PvLOf7o-xHG_Bn-YujKFVNntiuVEn09j8I2-Ta9EmS-4l25OaFnF50j2c3XLTQcqctDbtNCoX6eH9HZVvxbfzE1rrA8fpnl51znjdYYDHlKgXXE8wdoW2I9_3ZWQLbQC4qzHx0XK0RxGIkZIYaJVggk4kEzURgZTouSqSlqDXPoGnvpC2CTF_vK71hFP2abMp_XFPBl7FuRcisNrp75vCoUogcKS7mQ3XEHeToPkg43VfwcsaqrKjyrdewxbmb-BZ1bzy_i3M-iUPE1kt0XrNjykjJmyok9RcdS7YKL2udEMLRtCYnX7vDpnOE9YbHo1Yf1mRAAp2OTeHReaZpTkbTHM-utFZxjuYZeyCNiPWMa45fwdXj2Hd97CdT3PcAUYwUXm2CmIpfSrRVBTbsSCz6yAhCOP5LfjamDGMa21z02IjC6nGMUYPHxq9BQer2bNK0-Mf8_aaFQnryC7CtR-24PNqmGLSHLToHKfLak5gsKfdAn9jJVffM6remyN5-qtU91YE6SzX_vD_j3-C5-T-4cX5oLcLLxxDtCmJb3uwvZgv8SMhpUW0X_okg_CRY-Av5Donyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Radiomics+Signatures+for+EGFR+and+KRAS+Mutations+Prediction+in+Non-Small-Cell+Lung+Cancer&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Le%2C+Nguyen+Quoc+Khanh&rft.au=Kha%2C+Quang+Hien&rft.au=Nguyen%2C+Van+Hiep&rft.au=Chen%2C+Yung-Chieh&rft.date=2021-09-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=17&rft.spage=9254&rft_id=info:doi/10.3390%2Fijms22179254&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms22179254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon