Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer
Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and p...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 17; p. 9254 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms22179254 |
Cover
Loading…
Abstract | Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC. |
---|---|
AbstractList | Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC. Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC.Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC. |
Author | Chen, Yung-Chieh Nguyen, Van Hiep Kha, Quang Hien Cheng, Sho-Jen Le, Nguyen Quoc Khanh Chen, Cheng-Yu |
AuthorAffiliation | 4 International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; m142109004@tmu.edu.tw (Q.H.K.); nguyenhiep0320@gmail.com (V.H.N.) 7 Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan 3 Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan 2 Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan 6 Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan; rendell2300192@gmail.com 5 Oncology Center, Bai Chay Hospital, Quang Ninh 20000, Vietnam 1 Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; sandychen@tmu.edu.tw |
AuthorAffiliation_xml | – name: 2 Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan – name: 6 Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan; rendell2300192@gmail.com – name: 5 Oncology Center, Bai Chay Hospital, Quang Ninh 20000, Vietnam – name: 1 Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; sandychen@tmu.edu.tw – name: 3 Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan – name: 4 International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; m142109004@tmu.edu.tw (Q.H.K.); nguyenhiep0320@gmail.com (V.H.N.) – name: 7 Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan |
Author_xml | – sequence: 1 givenname: Nguyen Quoc Khanh orcidid: 0000-0003-4896-7926 surname: Le fullname: Le, Nguyen Quoc Khanh – sequence: 2 givenname: Quang Hien surname: Kha fullname: Kha, Quang Hien – sequence: 3 givenname: Van Hiep orcidid: 0000-0002-3390-7923 surname: Nguyen fullname: Nguyen, Van Hiep – sequence: 4 givenname: Yung-Chieh surname: Chen fullname: Chen, Yung-Chieh – sequence: 5 givenname: Sho-Jen surname: Cheng fullname: Cheng, Sho-Jen – sequence: 6 givenname: Cheng-Yu orcidid: 0000-0003-0428-4373 surname: Chen fullname: Chen, Cheng-Yu |
BookMark | eNptkU1r3DAQhkVJaD7aW3-AoJce6lQf1kq-FNIlSUM3SdnNXYzl8UaLLW0ku9B_X283hTTkNC_MM-_wzpyQgxADEvKBszMpK_bFb_osBNeVUOUbcsxLIQrGZvrgmT4iJzlvGBNSqOotOZKlYoLP2DHZ3oB78AHpAiEFH9bFN8jY0CU0PvbeZbry6wDDmDDTNiZ6cXW5pBAa-mN5vqI34wCDjyHTnwkb73aa-kBvYyhWPXRdMceuo4sxrOkcgsP0jhy20GV8_1RPyf3lxf38e7G4u7qeny8KJ001FNCiKyXwWmutai5BlFM-wEYjEzBjxmBtFFZgGmxQ1KoxrayUwllpasXkKfm6t92OdY-NwzAk6Ow2-R7SbxvB2_87wT_YdfxlTSk5K_lk8OnJIMXHEfNge5_dFAYCxjFboTSvBDdyh358gW7imMKU7i8lpDZaTZTYUy7FnBO21vn98ab9vrOc2d0_7fN_TkOfXwz9S_Aq_gcKzKLO |
CitedBy_id | crossref_primary_10_3389_fgene_2022_813438 crossref_primary_10_3389_fonc_2022_848798 crossref_primary_10_3390_s23020634 crossref_primary_10_1186_s12885_023_11809_y crossref_primary_10_3390_electronics11213577 crossref_primary_10_3390_bioengineering10070747 crossref_primary_10_1002_prm2_12089 crossref_primary_10_1089_aipo_2023_0002 crossref_primary_10_3390_cancers14143492 crossref_primary_10_1109_JBHI_2024_3390804 crossref_primary_10_1016_j_cmpbup_2022_100065 crossref_primary_10_1186_s12880_023_01042_1 crossref_primary_10_3892_ijo_2025_5724 crossref_primary_10_1615_CritRevOncog_2023050439 crossref_primary_10_1177_00368504241293008 crossref_primary_10_3390_electronics10233005 crossref_primary_10_1016_j_bspc_2022_103933 crossref_primary_10_1007_s11042_023_17922_1 crossref_primary_10_3390_ijms222111546 crossref_primary_10_3390_bios12060427 crossref_primary_10_3390_cancers16203469 crossref_primary_10_3390_ijms23094937 crossref_primary_10_3389_fonc_2025_1424647 crossref_primary_10_3390_jpm12030480 crossref_primary_10_2147_JIR_S484485 crossref_primary_10_3390_a15030077 crossref_primary_10_3390_diagnostics13040738 crossref_primary_10_1097_MD_0000000000033630 crossref_primary_10_3390_app12125829 crossref_primary_10_3390_cells10113092 crossref_primary_10_1186_s12911_024_02553_9 crossref_primary_10_3390_s21227527 crossref_primary_10_1371_journal_pone_0273831 crossref_primary_10_1002_mp_16744 crossref_primary_10_3390_electronics10202475 crossref_primary_10_1053_j_seminoncol_2022_06_002 crossref_primary_10_3390_life15010083 crossref_primary_10_1016_j_heliyon_2024_e27379 crossref_primary_10_1016_j_semcancer_2023_02_006 crossref_primary_10_3389_fphar_2022_975774 crossref_primary_10_5306_wjco_v16_i4_104785 crossref_primary_10_1016_j_ejro_2022_100441 crossref_primary_10_1155_2022_2056837 crossref_primary_10_3389_fonc_2022_879376 crossref_primary_10_1007_s00330_025_11473_9 crossref_primary_10_1186_s12885_023_10550_w crossref_primary_10_3389_fonc_2022_994285 crossref_primary_10_4274_dir_2024_242972 crossref_primary_10_1007_s11684_024_1085_3 crossref_primary_10_1142_S0219622022500602 crossref_primary_10_1097_RTI_0000000000000725 crossref_primary_10_1111_jcmm_18091 crossref_primary_10_3390_cancers15184553 crossref_primary_10_1002_jbio_202300174 crossref_primary_10_1021_acssensors_3c00681 crossref_primary_10_1016_j_heliyon_2023_e23003 crossref_primary_10_3390_diagnostics12092175 crossref_primary_10_1002_advs_202408069 crossref_primary_10_1038_s41598_024_55507_6 crossref_primary_10_3390_ijms23137132 crossref_primary_10_1016_j_eclinm_2023_102385 crossref_primary_10_3390_cancers13215398 crossref_primary_10_3390_info12110471 crossref_primary_10_1016_j_acra_2023_03_040 crossref_primary_10_1177_03008916251314659 crossref_primary_10_3390_app12136615 crossref_primary_10_1016_j_acra_2024_01_031 crossref_primary_10_1002_mco2_722 crossref_primary_10_1016_j_jtho_2024_11_006 crossref_primary_10_3389_fmed_2025_1517765 crossref_primary_10_1016_j_heliyon_2024_e28292 crossref_primary_10_1109_ACCESS_2024_3523330 crossref_primary_10_2147_IJGM_S392404 crossref_primary_10_3389_fmolb_2024_1420136 crossref_primary_10_1016_j_ejso_2024_108052 crossref_primary_10_1016_j_crmeth_2024_100695 crossref_primary_10_1016_j_jncc_2022_11_004 crossref_primary_10_3390_ijms24054947 crossref_primary_10_3390_ijms241411433 crossref_primary_10_1002_adts_202400489 crossref_primary_10_1080_13682199_2022_2163538 crossref_primary_10_1016_j_bspc_2022_104148 crossref_primary_10_3390_ijms23063348 crossref_primary_10_1007_s13273_024_00500_3 crossref_primary_10_1097_RCT_0000000000001644 crossref_primary_10_3390_app14209367 crossref_primary_10_1148_radiol_222904 crossref_primary_10_1038_s41598_022_06085_y crossref_primary_10_3389_fmicb_2022_1090770 crossref_primary_10_1016_j_meomic_2023_100025 crossref_primary_10_3389_fonc_2023_1260374 crossref_primary_10_1080_14622416_2024_2428587 |
Cites_doi | 10.1002/cam4.2233 10.1148/rg.2017160130 10.3322/caac.21590 10.1158/0008-5472.CAN-18-0125 10.1613/jair.953 10.3892/or.2017.5409 10.1158/1078-0432.CCR-18-2495 10.1038/srep13087 10.3390/tomography7020014 10.1016/j.ejrad.2018.11.032 10.1016/j.mayocp.2019.01.013 10.3390/jpm10030128 10.3389/fphar.2021.657743 10.1038/srep41674 10.1109/TENSYMP46218.2019.8971127 10.1038/s41467-020-19116-x 10.7150/thno.30309 10.1038/sdata.2018.202 10.1186/s12859-016-1423-9 10.1016/j.compbiomed.2021.104320 10.1109/IIH-MSP.2009.145 10.1201/9781584888796 10.1158/0008-5472.CAN-17-0339 10.1097/JTO.0b013e318299ac32 10.1136/bmjopen-2013-002560 10.21037/qims-20-600 10.1148/radiol.2019190357 10.1007/s10278-013-9622-7 10.1097/CEJ.0b013e32835f3be9 10.1513/pats.200809-107LC 10.1007/s00259-019-04592-1 10.1007/978-3-540-35488-8 10.18383/j.tom.2018.00055 10.1007/978-3-319-93025-1 10.1038/s41598-020-60202-3 10.1371/journal.pmed.0020017 10.1378/chest.123.1_suppl.137S 10.1073/pnas.0405220101 10.1016/S0933-3657(00)00053-1 10.1371/journal.pmed.1002711 10.1158/1055-9965.EPI-20-0704 10.1016/j.tranon.2020.100791 10.1145/1277741.1277811 10.1038/nrclinonc.2015.90 10.1007/s11307-020-01487-8 10.3322/caac.21660 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms22179254 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8431041 10_3390_ijms22179254 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c389t-afec43a1b7775b13a24254aed7e02a6088eb85e9a8dede2b5d8f3955e648b503 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:05:38 EDT 2025 Thu Jul 10 22:20:02 EDT 2025 Fri Jul 25 20:26:29 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Tue Jul 01 03:07:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-afec43a1b7775b13a24254aed7e02a6088eb85e9a8dede2b5d8f3955e648b503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0428-4373 0000-0002-3390-7923 0000-0003-4896-7926 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22179254 |
PMID | 34502160 |
PQID | 2571237875 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8431041 proquest_miscellaneous_2571921831 proquest_journals_2571237875 crossref_citationtrail_10_3390_ijms22179254 crossref_primary_10_3390_ijms22179254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Moreno (ref_33) 2021; 7 Aerts (ref_18) 2014; 5 Rubin (ref_39) 2019; 5 Pinheiro (ref_29) 2020; 10 Xu (ref_15) 2019; 25 Thomas (ref_9) 2015; 12 Li (ref_10) 2020; 19 ref_19 Zhao (ref_35) 2019; 8 Shiri (ref_22) 2020; 22 Toloza (ref_14) 2003; 123 Gevaert (ref_20) 2017; 7 Parmar (ref_17) 2015; 5 ref_25 Li (ref_37) 2017; 37 Erickson (ref_46) 2017; 37 Bakr (ref_24) 2018; 5 Fedorov (ref_28) 2017; 77 Tang (ref_12) 2013; 22 Chawla (ref_26) 2002; 16 ref_27 Zupan (ref_48) 2000; 20 Liu (ref_16) 2019; 9 Rizzo (ref_21) 2019; 110 Dong (ref_36) 2021; 11 Boch (ref_5) 2013; 3 Clark (ref_23) 2013; 26 ref_31 Xu (ref_38) 2020; 13 Siegel (ref_3) 2020; 70 Zhang (ref_30) 2020; 47 Le (ref_47) 2021; 132 Mattonen (ref_49) 2019; 293 Riely (ref_4) 2009; 6 Pao (ref_7) 2004; 101 Mu (ref_34) 2020; 11 Sung (ref_1) 2021; 71 Nioche (ref_32) 2018; 78 ref_44 ref_43 ref_42 ref_41 ref_40 ref_2 Radovic (ref_45) 2017; 18 ref_8 Cazzoli (ref_13) 2013; 8 Heeke (ref_6) 2021; 12 Farooq (ref_11) 2020; 29 |
References_xml | – volume: 8 start-page: 3532 year: 2019 ident: ref_35 article-title: Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning publication-title: Cancer Med. doi: 10.1002/cam4.2233 – volume: 37 start-page: 505 year: 2017 ident: ref_46 article-title: Machine learning for medical imaging publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 70 start-page: 7 year: 2020 ident: ref_3 article-title: Cancer statistics publication-title: 2020 CA Cancer J. Clin. doi: 10.3322/caac.21590 – volume: 78 start-page: 4786 year: 2018 ident: ref_32 article-title: LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-0125 – volume: 16 start-page: 321 year: 2002 ident: ref_26 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 37 start-page: 1347 year: 2017 ident: ref_37 article-title: Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review) publication-title: Oncol. Rep. doi: 10.3892/or.2017.5409 – volume: 25 start-page: 3266 year: 2019 ident: ref_15 article-title: Deep learning predicts lung cancer treatment response from serial medical imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2495 – volume: 5 start-page: 1 year: 2015 ident: ref_17 article-title: Machine learning methods for quantitative radiomic biomarkers publication-title: Sci. Rep. doi: 10.1038/srep13087 – volume: 7 start-page: 154 year: 2021 ident: ref_33 article-title: A Radiogenomics Ensemble to Predict EGFR and KRAS Mutations in NSCLC publication-title: Tomography doi: 10.3390/tomography7020014 – volume: 110 start-page: 148 year: 2019 ident: ref_21 article-title: Genomics of non-small cell lung cancer (NSCLC): Association between CT-based imaging features and EGFR and K-RAS mutations in 122 patients—An external validation publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2018.11.032 – ident: ref_2 doi: 10.1016/j.mayocp.2019.01.013 – ident: ref_50 doi: 10.3390/jpm10030128 – volume: 12 start-page: 657743 year: 2021 ident: ref_6 article-title: Detection of EGFR Mutations From Plasma of NSCLC Patients Using an Automatic Cartridge-Based PCR System publication-title: Front. Pharm. doi: 10.3389/fphar.2021.657743 – ident: ref_27 – volume: 7 start-page: 1 year: 2017 ident: ref_20 article-title: Predictive radiogenomics modeling of EGFR mutation status in lung cancer publication-title: Sci. Rep. doi: 10.1038/srep41674 – ident: ref_40 doi: 10.1109/TENSYMP46218.2019.8971127 – volume: 11 start-page: 1 year: 2020 ident: ref_34 article-title: Non-invasive decision support for NSCLC treatment using PET/CT radiomics publication-title: Nat. Commun. doi: 10.1038/s41467-020-19116-x – volume: 9 start-page: 1303 year: 2019 ident: ref_16 article-title: The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges publication-title: Theranostics doi: 10.7150/thno.30309 – volume: 5 start-page: 180202 year: 2018 ident: ref_24 article-title: A radiogenomic dataset of non-small cell lung cancer publication-title: Sci. Data doi: 10.1038/sdata.2018.202 – volume: 18 start-page: 1 year: 2017 ident: ref_45 article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data publication-title: BMC Bioinform. doi: 10.1186/s12859-016-1423-9 – volume: 132 start-page: 104320 year: 2021 ident: ref_47 article-title: Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104320 – ident: ref_41 doi: 10.1109/IIH-MSP.2009.145 – ident: ref_31 doi: 10.1201/9781584888796 – volume: 77 start-page: e104 year: 2017 ident: ref_28 article-title: Computational Radiomics System to Decode the Radiographic Phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – volume: 5 start-page: 1 year: 2014 ident: ref_18 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. – volume: 8 start-page: 1156 year: 2013 ident: ref_13 article-title: microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e318299ac32 – volume: 3 start-page: e002560 year: 2013 ident: ref_5 article-title: The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): Routine screening data for central Europe from a cohort study publication-title: BMJ Open doi: 10.1136/bmjopen-2013-002560 – volume: 11 start-page: 2354 year: 2021 ident: ref_36 article-title: Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-20-600 – volume: 293 start-page: 451 year: 2019 ident: ref_49 article-title: Bone Marrow and Tumor Radiomics at (18)F-FDG PET/CT: Impact on Outcome Prediction in Non-Small Cell Lung Cancer publication-title: Radiology doi: 10.1148/radiol.2019190357 – volume: 26 start-page: 1045 year: 2013 ident: ref_23 article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 22 start-page: 540 year: 2013 ident: ref_12 article-title: Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer publication-title: Eur. J. Cancer Prev. doi: 10.1097/CEJ.0b013e32835f3be9 – volume: 6 start-page: 201 year: 2009 ident: ref_4 article-title: KRAS mutations in non–small cell lung cancer publication-title: Proc. Am. Thorac. Soc. doi: 10.1513/pats.200809-107LC – volume: 47 start-page: 1137 year: 2020 ident: ref_30 article-title: Value of pre-therapy 18 F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-019-04592-1 – ident: ref_44 doi: 10.1007/978-3-540-35488-8 – volume: 5 start-page: 170 year: 2019 ident: ref_39 article-title: ePAD: An image annotation and analysis platform for quantitative imaging publication-title: Tomography doi: 10.18383/j.tom.2018.00055 – ident: ref_25 doi: 10.1007/978-3-319-93025-1 – volume: 10 start-page: 3625 year: 2020 ident: ref_29 article-title: Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS publication-title: Sci. Rep. doi: 10.1038/s41598-020-60202-3 – ident: ref_8 doi: 10.1371/journal.pmed.0020017 – volume: 123 start-page: 137S year: 2003 ident: ref_14 article-title: Noninvasive staging of non-small cell lung cancer: A review of the current evidence publication-title: Chest doi: 10.1378/chest.123.1_suppl.137S – volume: 101 start-page: 13306 year: 2004 ident: ref_7 article-title: EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0405220101 – volume: 20 start-page: 59 year: 2000 ident: ref_48 article-title: Machine learning for survival analysis: A case study on recurrence of prostate cancer publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(00)00053-1 – ident: ref_19 doi: 10.1371/journal.pmed.1002711 – volume: 29 start-page: 2416 year: 2020 ident: ref_11 article-title: Noninvasive diagnostics for early detection of lung cancer: Challenges and potential with a focus on changes in DNA methylation publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-20-0704 – volume: 13 start-page: 100791 year: 2020 ident: ref_38 article-title: Molecular Characteristics and Clinical Outcomes of EGFR Exon 19 C-Helix Deletion in Non–Small Cell Lung Cancer and Response to EGFR TKIs publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2020.100791 – volume: 19 start-page: 3389 year: 2020 ident: ref_10 article-title: Emerging non-invasive detection methodologies for lung cancer publication-title: Oncol. Lett. – ident: ref_42 doi: 10.1145/1277741.1277811 – ident: ref_43 – volume: 12 start-page: 511 year: 2015 ident: ref_9 article-title: Refining the treatment of NSCLC according to histological and molecular subtypes publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2015.90 – volume: 22 start-page: 1132 year: 2020 ident: ref_22 article-title: Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms publication-title: Mol. Imaging Biol. doi: 10.1007/s11307-020-01487-8 – volume: 71 start-page: 209 year: 2021 ident: ref_1 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 |
SSID | ssj0023259 |
Score | 2.5957649 |
Snippet | Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 9254 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Classification Datasets Drug resistance Feature selection Lung cancer Machine learning Medical prognosis Mutation Radiomics Semantics Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCImXafwS3QYyEjwha00c_8gTGtXKBHRC7ZD6Fjn2dQRlade0D_z3u0vSdn2At0i2ZMk-333n-_IdYx-kngEiCSd8GsUi0S4R1vWdAJICkRY8NAKmoyt9-Sv5NlXT7sGt7miVG5_YOOow9_RGfoamhU4WzUt9XtwJ6hpF1dWuhcZj9oSky4jSZaa7hEvGTbO0CGOQ0CrVLfFdYpp_Vvy5rWOE42mskv2QtMOZ-yzJB2FneMQOO7zIz9sDfs4eQfWCPW07SP59yRajhgwJvNNJvRFfMCwFPnahoP-Naz4pblrxzpojPuUXX4dj7qrAv4_PJ3y0bivxNf-5pIoNffOi4lfzSkxuXVmKAZQl_4EegQ_IPpav2PXw4npwKbomCsIjFlkJNwOfSBflxhiVR9JRjpE4CAb6sdPoZCC3ClJnAwSIcxXsTKZKgU5srvryNTuo5hW8YRyxmtWRTb1SBvMkm_vISyOVSwPiCG167NNmGzPfCYxTn4syw0SDNj17uOk99nE7e9EKa_xj3unmRLLuetXZzhh67P12GC8GVTtcBfN1OyclABj1mNk7ye16JK29P1IVvxuJbYu4qp9Ex_9f_IQ9i4ni0lDOTtnBarmGt4hRVvm7xhDvAaqM5nQ priority: 102 providerName: ProQuest |
Title | Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer |
URI | https://www.proquest.com/docview/2571237875 https://www.proquest.com/docview/2571921831 https://pubmed.ncbi.nlm.nih.gov/PMC8431041 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7yoJBLSV_ETWq20J7KttZjtatDKYmxE9raBDsB38RKGicKipxYNiT_vjOS7Ma0hV6EQCskZndnvk8z-gbggxdMkZCElUnouNIPrC-N7ViJLAXiGUywEjAdDIOzS__7RE22YNVttDFg-Vdqx_2kLuf554f7x2-04b8y4yTK_iW7uS1dgtYhkZ1t2KWYpHmLDvx1PoFgQ9U2jT94SHbQdQn8H3dvBqffiHOzXvJJAOrvw_MGOYrjeqpfwBYWL-FZ3Uvy8RXcDaqySBSNYuqVPKEAlYqRTTP-87gU4-yqlvEsBSFV0Tvtj4QtUvFjdDwWg2Wdky_F-ZxzN3wuskIMZ4Uc39o8l13Mc_GTfIPo8kqZv4aLfu-ieyabdgoyIVSykHaKie9ZJ9Zaq9jxLLMN32KqsePagNwNxkZhaE2KKbqxSs3UC5XCwDex6nhvYKeYFXgAglCbCRwTJkppYkwmTpzE056yYUqIItAt-LQyY5Q0UuPc8SKPiHKw0aOnRm_Bx_Xou1pi4x_jjlYzEq3WSUQeh2IveR3Vgvfry7RFOO9hC5wt6zEhQ0GnBXpjJtfPY5HtzStFdl2JbRtCWB3fefufL3kIey5XvVRVaEews5gv8R3BlkXchm090XQ0_dM27J70huejNgcS1a7W6i-mLfAL |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgSXiqcaKLBI9IRWtb1ee32oqhIaUvIQSoKUm7W2J8XIdUKcqOqP4j8y60fSHODWm6Vd2dLsNzPfeGZnAD4Kb4bEJDSPA9vhrqddrrSlOZpWIEJhjGUD08HQ6_5wv03ldA_-NHdhTFllYxNLQ53MY_OP_ISgRUaW4CXPFr-5mRplsqvNCI0KFj28vaGQrTi9_ELne-w4nYtJu8vrqQI8Jue84nqGsSu0Hfm-LyNbaEO6XY2Jj5ajPdI6jJTEQKsEE3QimaiZCKREz1WRtAS99gE8JL9rGYXyp9v4TjjlbDabXB73ZOBVdfZCBNZJ-uu6cIj9B450dz3gltbuFmXe8XKdp3BQ01N2XuHpGexh_hweVQMrb1_AYlDWXiKr27Je8c_kBRM20klqrjcXbJxeVb1CC0Z0mF187YyYzhPWG52P2WBdJf4L9n1pEkTmmaU5G85zPr7WWcbbmGWsTwaItQ0cly9hch_SfQX7-TzHQ2BEDZVnqyCW0qewTEWxHQtfSB0kRFs8vwWfGjGGcd3P3IzVyEKKa4zQw7tCb8HxZvei6uPxj31HzYmEtTYX4RZ7LfiwWSY9NMkVneN8Xe0JDN-0W-DvnOTme6aT9-5Knv4sO3orAyfXfv3_j7-Hx93JoB_2L4e9N_DEMdU1ZbXbEeyvlmt8S_RoFb0rQckgvGcl-AuRkSOU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9tAEB3SlJZeSj-JmzTdQnMqiyWtVlodSkicuEkdm2Cn4JtYSeNURZEdyybkp_XfdVYfdnxob7kJdpFgdmbnjfbtG4AvwpsgIQnN48B2uOtplyttaY5GCkQojLEUMO0PvLOf7o-xHG_Bn-YujKFVNntiuVEn09j8I2-Ta9EmS-4l25OaFnF50j2c3XLTQcqctDbtNCoX6eH9HZVvxbfzE1rrA8fpnl51znjdYYDHlKgXXE8wdoW2I9_3ZWQLbQC4qzHx0XK0RxGIkZIYaJVggk4kEzURgZTouSqSlqDXPoGnvpC2CTF_vK71hFP2abMp_XFPBl7FuRcisNrp75vCoUogcKS7mQ3XEHeToPkg43VfwcsaqrKjyrdewxbmb-BZ1bzy_i3M-iUPE1kt0XrNjykjJmyok9RcdS7YKL2udEMLRtCYnX7vDpnOE9YbHo1Yf1mRAAp2OTeHReaZpTkbTHM-utFZxjuYZeyCNiPWMa45fwdXj2Hd97CdT3PcAUYwUXm2CmIpfSrRVBTbsSCz6yAhCOP5LfjamDGMa21z02IjC6nGMUYPHxq9BQer2bNK0-Mf8_aaFQnryC7CtR-24PNqmGLSHLToHKfLak5gsKfdAn9jJVffM6remyN5-qtU91YE6SzX_vD_j3-C5-T-4cX5oLcLLxxDtCmJb3uwvZgv8SMhpUW0X_okg_CRY-Av5Donyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Radiomics+Signatures+for+EGFR+and+KRAS+Mutations+Prediction+in+Non-Small-Cell+Lung+Cancer&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Le%2C+Nguyen+Quoc+Khanh&rft.au=Kha%2C+Quang+Hien&rft.au=Nguyen%2C+Van+Hiep&rft.au=Chen%2C+Yung-Chieh&rft.date=2021-09-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=17&rft.spage=9254&rft_id=info:doi/10.3390%2Fijms22179254&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms22179254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |