3D Janus structure MXene/cellulose nanofibers/luffa aerogels with superb mechanical strength and high-efficiency desalination for solar-driven interfacial evaporation
Janus MXene-decorated CNFs/luffa (JMCL) aerogel integrated the multifunction of fast water transport, good thermal management, fast vapor escape, and efficient photothermal conversion in a single-module. The hydrophobic lower part and hydrophilic upper part perform complementary functions, endowing...
Saved in:
Published in | Journal of colloid and interface science Vol. 645; pp. 306 - 318 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Janus MXene-decorated CNFs/luffa (JMCL) aerogel integrated the multifunction of fast water transport, good thermal management, fast vapor escape, and efficient photothermal conversion in a single-module. The hydrophobic lower part and hydrophilic upper part perform complementary functions, endowing the JMCL aerogel with high sunlight-to-heat-to-vapor conversion efficiency and self-floating performance. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m-2h−1 and an efficiency of 91.20% under 1 sun illumination. In addition, the mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The excellent salt resistance during 24h working and long-term solar vapor generation of up to 28 days were achieved.
[Display omitted]
Interfacial solar steam generation (ISSG) is considered to be an attractive technique to address the water shortage. However, developing a sustainable thermal management, salt rejection, and excellent mechanical strength ISSG device for long-term stability desalination is still a challenge. Herein, a biomass ISSG device with superb mechanical properties was prepared by introducing a luffa sponge as the skeleton and constructing the MXene/cellulose nanofibers (CNFs) aerogels via freeze-drying. The Janus MXene-decorated CNFs/luffa (JMCL) aerogels integrated the multifunction of fast water transport, good thermal management, and efficient photothermal conversion in a single module, to achieve high-efficiency desalination. 3D Janus structure endowed the JMCL aerogel with opposite wettability, which is feasible to construct the localized photothermal generation and self-floating. The mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m-2h−1 and an efficiency of 91.20% under 1 sun illumination. The excellent salt resistance during 24 h working and long-term solar vapor generation of up to 28 days were achieved. The multifunctional JMCL aerogels with 3D Janus structure offer new insights for developing good durability and eco-friendly biopolymer-based steam generators. |
---|---|
AbstractList | Interfacial solar steam generation (ISSG) is considered to be an attractive technique to address the water shortage. However, developing a sustainable thermal management, salt rejection, and excellent mechanical strength ISSG device for long-term stability desalination is still a challenge. Herein, a biomass ISSG device with superb mechanical properties was prepared by introducing a luffa sponge as the skeleton and constructing the MXene/cellulose nanofibers (CNFs) aerogels via freeze-drying. The Janus MXene-decorated CNFs/luffa (JMCL) aerogels integrated the multifunction of fast water transport, good thermal management, and efficient photothermal conversion in a single module, to achieve high-efficiency desalination. 3D Janus structure endowed the JMCL aerogel with opposite wettability, which is feasible to construct the localized photothermal generation and self-floating. The mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m⁻²h⁻¹ and an efficiency of 91.20% under 1 sun illumination. The excellent salt resistance during 24 h working and long-term solar vapor generation of up to 28 days were achieved. The multifunctional JMCL aerogels with 3D Janus structure offer new insights for developing good durability and eco-friendly biopolymer-based steam generators. Interfacial solar steam generation (ISSG) is considered to be an attractive technique to address the water shortage. However, developing a sustainable thermal management, salt rejection, and excellent mechanical strength ISSG device for long-term stability desalination is still a challenge. Herein, a biomass ISSG device with superb mechanical properties was prepared by introducing a luffa sponge as the skeleton and constructing the MXene/cellulose nanofibers (CNFs) aerogels via freeze-drying. The Janus MXene-decorated CNFs/luffa (JMCL) aerogels integrated the multifunction of fast water transport, good thermal management, and efficient photothermal conversion in a single module, to achieve high-efficiency desalination. 3D Janus structure endowed the JMCL aerogel with opposite wettability, which is feasible to construct the localized photothermal generation and self-floating. The mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m-2h-1 and an efficiency of 91.20% under 1 sun illumination. The excellent salt resistance during 24 h working and long-term solar vapor generation of up to 28 days were achieved. The multifunctional JMCL aerogels with 3D Janus structure offer new insights for developing good durability and eco-friendly biopolymer-based steam generators.Interfacial solar steam generation (ISSG) is considered to be an attractive technique to address the water shortage. However, developing a sustainable thermal management, salt rejection, and excellent mechanical strength ISSG device for long-term stability desalination is still a challenge. Herein, a biomass ISSG device with superb mechanical properties was prepared by introducing a luffa sponge as the skeleton and constructing the MXene/cellulose nanofibers (CNFs) aerogels via freeze-drying. The Janus MXene-decorated CNFs/luffa (JMCL) aerogels integrated the multifunction of fast water transport, good thermal management, and efficient photothermal conversion in a single module, to achieve high-efficiency desalination. 3D Janus structure endowed the JMCL aerogel with opposite wettability, which is feasible to construct the localized photothermal generation and self-floating. The mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m-2h-1 and an efficiency of 91.20% under 1 sun illumination. The excellent salt resistance during 24 h working and long-term solar vapor generation of up to 28 days were achieved. The multifunctional JMCL aerogels with 3D Janus structure offer new insights for developing good durability and eco-friendly biopolymer-based steam generators. Interfacial solar steam generation (ISSG) is considered to be an attractive technique to address the water shortage. However, developing a sustainable thermal management, salt rejection, and excellent mechanical strength ISSG device for long-term stability desalination is still a challenge. Herein, a biomass ISSG device with superb mechanical properties was prepared by introducing a luffa sponge as the skeleton and constructing the MXene/cellulose nanofibers (CNFs) aerogels via freeze-drying. The Janus MXene-decorated CNFs/luffa (JMCL) aerogels integrated the multifunction of fast water transport, good thermal management, and efficient photothermal conversion in a single module, to achieve high-efficiency desalination. 3D Janus structure endowed the JMCL aerogel with opposite wettability, which is feasible to construct the localized photothermal generation and self-floating. The mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m h and an efficiency of 91.20% under 1 sun illumination. The excellent salt resistance during 24 h working and long-term solar vapor generation of up to 28 days were achieved. The multifunctional JMCL aerogels with 3D Janus structure offer new insights for developing good durability and eco-friendly biopolymer-based steam generators. Janus MXene-decorated CNFs/luffa (JMCL) aerogel integrated the multifunction of fast water transport, good thermal management, fast vapor escape, and efficient photothermal conversion in a single-module. The hydrophobic lower part and hydrophilic upper part perform complementary functions, endowing the JMCL aerogel with high sunlight-to-heat-to-vapor conversion efficiency and self-floating performance. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m-2h−1 and an efficiency of 91.20% under 1 sun illumination. In addition, the mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The excellent salt resistance during 24h working and long-term solar vapor generation of up to 28 days were achieved. [Display omitted] Interfacial solar steam generation (ISSG) is considered to be an attractive technique to address the water shortage. However, developing a sustainable thermal management, salt rejection, and excellent mechanical strength ISSG device for long-term stability desalination is still a challenge. Herein, a biomass ISSG device with superb mechanical properties was prepared by introducing a luffa sponge as the skeleton and constructing the MXene/cellulose nanofibers (CNFs) aerogels via freeze-drying. The Janus MXene-decorated CNFs/luffa (JMCL) aerogels integrated the multifunction of fast water transport, good thermal management, and efficient photothermal conversion in a single module, to achieve high-efficiency desalination. 3D Janus structure endowed the JMCL aerogel with opposite wettability, which is feasible to construct the localized photothermal generation and self-floating. The mechanical strength of JMCL aerogels is 437 times that of MXene/CNFs aerogels. The JMCL aerogels delivered a water evaporation rate of 1.40 kg m-2h−1 and an efficiency of 91.20% under 1 sun illumination. The excellent salt resistance during 24 h working and long-term solar vapor generation of up to 28 days were achieved. The multifunctional JMCL aerogels with 3D Janus structure offer new insights for developing good durability and eco-friendly biopolymer-based steam generators. |
Author | Ma, Ming-Guo Wang, Pei-Lin Zhang, Wei Mai, Tian Qi, Meng-Yu Yuan, Qi |
Author_xml | – sequence: 1 givenname: Pei-Lin surname: Wang fullname: Wang, Pei-Lin – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 3 givenname: Qi surname: Yuan fullname: Yuan, Qi – sequence: 4 givenname: Tian surname: Mai fullname: Mai, Tian – sequence: 5 givenname: Meng-Yu surname: Qi fullname: Qi, Meng-Yu – sequence: 6 givenname: Ming-Guo surname: Ma fullname: Ma, Ming-Guo email: mg_ma@bjfu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37150004$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2O0zAURi00iOkMvAAL5CWbpNdO3SQSGzT8axAbkNhZN85168q1i50UzQvxnCTtzIbFiJUXPueT7HPFLkIMxNhLAaUAsV7uyp1xuZQgqxJWJTTiCVsIaFVRC6gu2AJAiqKt2_qSXeW8AxBCqfYZu6xqoQBgtWB_qnf8C4Yx8zyk0QxjIv71JwVaGvJ-9DETDxiidR2lvPSjtciRUtyQz_y3G7Y8jwdKHd-T2WJwBv08RWEzXWHo-dZttgVZ64yjYO54Txm9Czi4GLiNiefoMRV9ckcK3IWBkkXjphk64iGmE_icPbXoM724P6_Zjw_vv998Km6_ffx88_a2MFXTDgUSqZU1ayJTo6qMbFoDorPW1tASkqoIG6ip60jJTilLQq3BColNOzl9dc1en3cPKf4aKQ967_L8ExgojlnLpqnXlQAl_gMVQgolVTuhr-7RsdtTrw_J7THd6YcME9CcAZNizomsNm44PXxI6LwWoOfieqfn4nourmGlp-KTKv9RH9Yfld6cpSkiHR0lnU91qHeJzKD76B7T_wJY5coK |
CitedBy_id | crossref_primary_10_1007_s40820_025_01647_x crossref_primary_10_1016_j_jcis_2024_05_240 crossref_primary_10_1016_j_jcis_2023_11_110 crossref_primary_10_1016_j_ijbiomac_2024_130821 crossref_primary_10_1021_acsami_4c19875 crossref_primary_10_1016_j_solener_2024_113201 crossref_primary_10_1016_j_nanoen_2024_110394 crossref_primary_10_1007_s11431_023_2590_4 crossref_primary_10_1016_j_ijbiomac_2024_138106 crossref_primary_10_1007_s10570_024_06075_5 crossref_primary_10_1016_j_cej_2024_154469 crossref_primary_10_1016_j_cej_2025_161873 crossref_primary_10_1016_j_carbpol_2024_123182 crossref_primary_10_1016_j_progpolymsci_2024_101856 crossref_primary_10_1016_j_nanoen_2023_109176 crossref_primary_10_1016_j_surfin_2024_105596 crossref_primary_10_1016_j_cej_2024_154291 crossref_primary_10_1016_j_greenca_2025_02_001 crossref_primary_10_1016_j_seppur_2025_132404 crossref_primary_10_1039_D5EE00159E crossref_primary_10_1016_j_seppur_2024_131344 crossref_primary_10_1007_s42114_024_01144_6 crossref_primary_10_1016_j_cej_2023_148121 crossref_primary_10_1016_j_susmat_2024_e00941 crossref_primary_10_1016_j_cej_2023_147276 crossref_primary_10_1016_j_jcis_2023_11_125 crossref_primary_10_1080_15583724_2024_2319585 crossref_primary_10_1016_j_cej_2023_146652 crossref_primary_10_1021_acs_nanolett_5c00520 crossref_primary_10_1016_j_desal_2024_118085 crossref_primary_10_1016_j_nanoen_2024_110458 crossref_primary_10_1002_smll_202400603 crossref_primary_10_1016_j_ijbiomac_2024_130447 crossref_primary_10_1016_j_rineng_2024_102649 crossref_primary_10_1002_adma_202418997 crossref_primary_10_1021_acs_jpclett_4c02087 crossref_primary_10_1016_j_desal_2025_118559 crossref_primary_10_1021_acs_langmuir_4c00929 crossref_primary_10_1016_j_desal_2023_117068 crossref_primary_10_1016_j_jcis_2024_05_183 crossref_primary_10_1016_j_cej_2024_148671 crossref_primary_10_1016_j_cej_2025_160085 crossref_primary_10_1016_j_desal_2024_117303 crossref_primary_10_1016_j_cej_2023_148034 crossref_primary_10_1016_j_cej_2023_146566 crossref_primary_10_1016_j_jece_2025_116007 crossref_primary_10_1016_j_indcrop_2024_119220 crossref_primary_10_1016_j_desal_2023_117023 crossref_primary_10_1021_acsaem_3c02894 crossref_primary_10_1002_adsu_202400618 crossref_primary_10_1016_j_jmrt_2023_12_108 crossref_primary_10_1016_j_nxmate_2024_100432 crossref_primary_10_1016_j_cej_2024_156450 crossref_primary_10_1039_D4EN00427B crossref_primary_10_1016_j_cej_2024_155762 crossref_primary_10_1002_smll_202304914 crossref_primary_10_1016_j_seppur_2024_127588 crossref_primary_10_1016_j_desal_2025_118708 crossref_primary_10_1016_j_desal_2024_117954 crossref_primary_10_1007_s10570_024_05853_5 crossref_primary_10_1016_j_jcis_2024_06_248 crossref_primary_10_1016_j_cej_2024_152813 crossref_primary_10_1016_j_cej_2024_153707 |
Cites_doi | 10.1126/science.aag2421 10.1002/adfm.201907234 10.1002/adfm.202005190 10.1021/acsami.9b10606 10.1038/s41467-022-34168-x 10.1002/mame.202100549 10.1021/acsnano.6b08415 10.1016/j.nanoen.2021.106443 10.1002/wer.1067 10.1016/j.joule.2019.06.009 10.1002/advs.202002209 10.1016/j.cej.2020.127524 10.1002/adfm.202007110 10.1016/j.desal.2021.115093 10.1016/j.carbpol.2004.08.005 10.1039/D0EW00725K 10.1002/smll.201902070 10.1016/j.nanoen.2020.105269 10.1002/smll.201900354 10.1016/j.nanoen.2021.106146 10.1126/science.289.5477.284 10.1002/aenm.201702149 10.1016/j.nanoen.2020.104834 10.1002/adma.201908269 10.1016/j.nanoen.2019.03.087 10.1021/acsnano.9b06180 10.1021/bm301674e 10.1016/j.enconman.2020.113515 10.1016/j.nanoen.2018.09.038 10.1021/acsami.0c10750 10.1016/j.corsci.2011.01.040 10.1002/adfm.201803266 10.3390/polym11101667 10.1016/j.cej.2018.11.115 10.1038/ncomms5449 10.1016/j.carbon.2020.06.023 10.1039/D1TA04991G 10.1016/j.enconman.2021.115070 10.1002/cssc.201802406 10.1021/acsami.7b13421 10.1021/acsami.7b01992 10.1039/D0TA03872E 10.1016/j.jmbbm.2012.07.004 10.1016/j.nanoen.2017.09.034 10.1126/science.aba7977 10.1002/adfm.201901312 10.1002/adma.201601819 10.1002/aenm.201802158 10.1039/C9TA00176J 10.1007/s10570-022-04442-8 10.1016/j.cej.2020.126438 10.1016/j.seppur.2022.120534 10.1002/adfm.202008681 10.1016/j.joule.2018.04.004 10.1039/C9MH01443H 10.1002/adfm.202009524 10.1016/j.susmat.2021.e00273 10.1021/acsnano.8b01084 10.1021/acssensors.2c01748 10.1039/C9TA04509K 10.1002/adfm.201707134 10.1021/acs.est.9b06072 10.1002/adma.202000922 10.1002/adma.201706805 10.1038/s41560-018-0260-7 10.1021/acsnano.8b00997 10.1016/j.nanoen.2015.08.021 10.1002/aenm.201701028 10.1038/s41467-021-21435-6 10.1021/acsami.7b15125 10.1016/j.polymer.2017.05.068 10.1039/C8TA05569F 10.1039/D1TA07042H 10.1039/D0TA01258K 10.1021/acs.nanolett.8b04514 10.1021/acs.nanolett.5b03901 10.1016/j.nanoen.2020.105060 10.1002/adsu.202000102 10.1073/pnas.1613031113 10.1016/j.jcis.2021.08.092 10.1007/s10853-021-06676-6 10.1021/acsanm.1c01185 10.1155/2018/8973643 10.1016/j.jbiomech.2014.02.010 10.1007/s40820-019-0304-y 10.1021/acs.nanolett.6b04339 10.1039/C9RA06399D 10.1002/anie.201905229 10.1016/j.cej.2020.128051 10.1002/adma.201604031 10.1016/j.carbpol.2012.02.052 10.1039/C8EE01146J 10.1016/j.rser.2015.04.111 10.1021/acs.chemmater.7b00531 10.1002/adfm.201905898 10.1002/adma.201102306 10.1002/aenm.201900250 10.1021/acsami.0c02481 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.04.081 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 318 |
ExternalDocumentID | 37150004 10_1016_j_jcis_2023_04_081 S0021979723006707 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c389t-aee54fc6eec7a53c289c01bfff709eae53ea807ebbe52b55fe1560f12a89eecd3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Tue Aug 05 10:38:50 EDT 2025 Fri Jul 11 16:53:19 EDT 2025 Thu Apr 03 07:05:37 EDT 2025 Tue Jul 01 04:19:04 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:35:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aerogels Interface water evaporation Ti3C2Tx MXene Janus structure Photothermal conversion Cellulose nanofibers TiCT(x) MXene |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-aee54fc6eec7a53c289c01bfff709eae53ea807ebbe52b55fe1560f12a89eecd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37150004 |
PQID | 2811215259 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2887631051 proquest_miscellaneous_2811215259 pubmed_primary_37150004 crossref_citationtrail_10_1016_j_jcis_2023_04_081 crossref_primary_10_1016_j_jcis_2023_04_081 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_04_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 2023-Sep 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Oboh, Aluyor, Audu (b0380) 2011 Sun, Wang, Wu, Wang, Wang, Sun, Liu (b0045) 2019; 29 Li, Zhang, Shi, Wang (b0175) 2017; 11 Rajak, Pagar, Menezes, Linul (b0365) 2019; 11 Chung, Lee, Choe (b0455) 2004; 58 Zielinski, Choi, La Grange, Modestino, Hashemi, Pu, Birkhold, Hubbell, Psaltis (b0200) 2016; 16 Chen, Zhang, Yang, Luo, Yang, Zhou (b0440) 2021; 413 Li, Jiang, Huo, Ding, Huang, Jia, Li, Liu, Liu (b0085) 2019; 60 Tu, Cai, Chen, Ouyang, Zhang, Zhang (b0080) 2019; 15 Hui, Ge, Zhao, Li, Yin (b0095) 2020; 30 Mu, Zhang, Bai, He, Sun, Zhu, Liang, Li (b0270) 2019; 9 Iqbal, Shahzad, Hantanasirisakul, Kim, Kwon, Hong, Kim, Kim, Gogotsi, Koo (b0105) 2020; 369 Ma, Fu, Hong, Hao, Wang, Ju, Sun (b0300) 2020; 12 De France, Hoare, Cranston (b0335) 2017; 29 Wang, Wu, Yang, Owens, Xu (b0205) 2020; 78 Ma, Cao, Zhang, Ma, Sun, Zhang, Chen (b0330) 2021; 403 Tonoli, Teixeira, Correa, Marconcini, Caixeta, Pereira-da-Silva, Mattoso (b0450) 2012; 89 Dong, Cao, Si, Ding, Deng (b0465) 2020; 32 Li, Wang, Ma, Wang (b0305) 2018; 2018 Chen, Shi, Gorb, Li (b0360) 2014; 47 Zhang, Chen, Fu, Yu, Quan (b0485) 2020; 76 Oboh, Aluyor (b0370) 2009; 4 Yuan, Yang, Yang, Bai, Wang, Wei, Liang, Chen (b0075) 2022; 252 Gao, Zhu, Peh, Ho (b0030) 2019; 12 Cao, Ma, Tan, Ma, Wan, Chen (b0120) 2019; 11 Hao, Fu, Meng, Xu, Yang (b0155) 2022; 13 Li, Xu, Tang, Zhou, Zhu, Zhu, Zhu (b0195) 2016; 113 Li, Li, Lu, Xu, Chen, Min, Zhu, Li, Zhou, Zhu, Zhang, Zhu (b0480) 2018; 2 Song, Geng, Tian, Mu, Li (b0515) 2021; 9 Cui, Zhang, Xiao, Liang, Liang, Cheng, Qu (b0070) 2018; 30 Zhao, Peng, Tang, Pu, Zha, Ke, Bao, Yang, Yang (b0260) 2020; 7 Zhang, Fu, Yu, Chen (b0500) 2020; 8 Xin, Ma, Chen (b0115) 2021; 4 Zhao, Zha, Pu, Bai, Bao, Liu, Yang, Yang (b0215) 2019; 7 Jiang, Liu, Li, Kuang, Xu, Chen, Huang, Jia, Zhao, Hitz, Zhou, Yang, Cui, Hu (b0340) 2018; 10 Ghasemi, Ni, Marconnet, Loomis, Yerci, Miljkovic, Chen (b0020) 2014; 5 Fei, Koh, Tu, Ge, Rezaeyan, Hou, Duan, Lam, Li (b0245) 2020; 4 Saito, Kuramae, Wohlert, Berglund, Isogai (b0320) 2013; 14 Xue, Liu, Chen, Yang, Li, Ding, Duan, Qi, Zhou (b0230) 2017; 9 Li, Zhang, Zang, Yang, Liu, Jing, Jing, Hu, Wang, Zhou (b0250) 2020; 73 Xu, Liu, Luo, Tian, Dang, Yao, Song, Xuan, Zhao, Ding (b0385) 2022; 45 Zhu, Ding, Gao, Peh, Ho (b0210) 2019; 9 Wang, Ma, Chu, Hsiao (b0395) 2017; 126 Li, Cui, Xiu, Wang, Du, Yang, Xu, Kozliak, Ji (b0505) 2022; 29 Ma, Ma, Si, Ji, Wan (b0140) 2021; 31 Wang, Ma, Yuan, Mai, Ma (b0435) 2022; 606 Djellabi, Noureen, Dao, Meroni, Falletta, Dionysiou, Bianchi (b0035) 2022; 431 Zhang, Ma, Huang, Guo, Li, Bian, Ma (b0125) 2021; 306 Li, Gao, Yang, Chen, Kuang, Song, Jia, Hitz, Yang, Hu (b0240) 2017; 41 Zhu, Gao, Peh, Wang, Ho (b0280) 2018; 8 Li, Liu, Zhao, Chen, Dai, Pastel, Jia, Chen, Hitz, Siddhartha, Yang, Hu (b0225) 2018; 28 Guo, Zhong, Fang, Wan, Yu (b0430) 2019; 19 Shen, Xie, Huang, Zhou, Ruan (b0460) 2012; 15 WHO chronicle (b0495) 2011 Li, Ni, Cooper, Xu, Li, Zhou, Hu, Zhu, Yao, Zhu (b0425) 2019; 3 Zhu, Li, Chen, Zhu, Dai, Li, Yang, Yan, Song, Wang, Hitz, Luo, Lu, Yang, Hu (b0050) 2018; 8 Liu, Zou, Tang, Yang, Zhang, Zhang, Huang, Chen, Shao, Dong (b0470) 2017; 9 Meng, Jiang, Li, Xu, Li, Henzie, Nanjundan, Yamauchi, Bando (b0235) 2021; 87 Ghim, Jiang, Cao, Singamaneni, Jun (b0060) 2018; 53 Wan, Jiao, Wei, Zhang, Wu, Li (b0355) 2019; 359 Han, Ding, Fan, Zhou, Wang (b0265) 2021; 9 Ming, Guo, Zhang, Guo, Yu, Hou, Wang, Homewood, Wang (b0170) 2020; 167 Li, Qiao, He, Wang, Yu, Murto, Li, Xu (b0350) 2021; 31 Zhao, Yang, Yang, Tian, Han, Liu, Yin, Que (b0180) 2018; 6 Yu, Tan, Hu, Chen, Li (b0410) 2011; 53 Durkaieswaran, Murugavel (b0015) 2015; 49 Tao, Ni, Song, Shang, Wu, Zhu, Chen, Deng (b0025) 2018; 3 Wu, Chen, Wang, Chen, Yang, Darling (b0010) 2021; 7 Hu, Zhu (b0190) 2020; 30 Mittal, Ansari, Gowda, Brouzet, Chen, Larsson, Roth, Lundell, Wagberg, Kotov, Soderberg (b0315) 2018; 12 Jiang, Tian, Liu, Tadepalli, Raliya, Biswas, Naik, Singamaneni (b0415) 2016; 28 Hu, Xu, Zhou, Tan, Wang, Zhu, Zhu (b0220) 2017; 29 Lv, Gao, Xu, Fan, Xiao, Liu, Song (b0295) 2021; 510 Ying, Ai, Hu, Geng, Li, Sun, Tan, Zhang, Li (b0165) 2021; 89 Ma, Yuan, Du, Ma, Si, Wan (b0135) 2020; 12 Cao, Rathi, Wu, Ghim, Jun, Singamaneni (b0345) 2021; 33 Liu, Zhao, Wu, Yang, Ning, Lai, Bradley (b0040) 2018; 28 Cao, Ma, Mao, Zhang, Ma, Chen (b0145) 2019; 29 Ni, Miljkovic, Ghasemi, Huang, Boriskina, Lin, Wang, Xu, Rahman, Zhang, Chen (b0420) 2015; 17 Ma, Fang, Guo, Li, Chen, Ying, Xu, Gao, Peng (b0065) 2019; 15 Li, Chang, Zeng, Huang, Li, Li, Xi (b0100) 2020; 226 Jiao, Wu, Liu, Zhang, Zheng, Xu, Shi, Lu (b0445) 2022; 57 Zhang, Yang, Tian, Liang, Zhu, Sand, Li, Ma, Liu, Yang (b0375) 2019; 91 Fan, Yang, Shi, Liu, Li, Liang, Chen (b0255) 2020; 30 Yang, Li, Guo, He, Wang, Qiao, Li, Yu, Wang, Xu (b0310) 2021; 417 Zhang, Yi, Fu, Yu, Chen, Quan (b0285) 2019; 13 Xin, Xi, Cao, Ma, Liu, Ma, Bian (b0110) 2019; 9 Wang, Li, Liu, Li, Hu, Xu, Zhao, Zhu, Zhu (b0490) 2019; 58 Li, Li, Liu, Li, Zheng, Yeung, Cui, Liang, Zhu, Hu, Qi, Zhang, Wang, Wu (b0160) 2021; 12 Xu, Li, Gan, Chen, Li, Zhang, Jiang, Shi, Liu, Wen, Zhang (b0150) 2020; 7 Zhang, Mu, He, Zhu, Sun, Wei, Liang, Li (b0275) 2019; 12 Wang, Xu, An, Xu, Qi, Das, Zhao (b0510) 2022; 287 Lin, Wang, Yu, Chen, Shi (b0475) 2017; 17 Vorosmarty, Green, Salisbury, Lammers (b0005) 2000; 289 Zha, Zhao, Pu, Tang, Ke, Bao, Bai, Liu, Yang, Yang (b0185) 2019; 11 Xu, Tang, Ma, Liu, Qi, You, Cui, Wei, Wang (b0290) 2020; 54 Cao, Chen, Zhu, Zhang, Jiang, Ma, Chen (b0325) 2018; 12 Zhang, Mu, Han, He, Zhu, Sun, Liang, Li (b0055) 2019; 7 Shahzad, Alhabeb, Hatter, Anasori, Man Hong, Koo, Gogotsi (b0405) 2016; 353 Liu, Hong, Sun, Natan, Luan, Yang, Zhu (b0400) 2020; 8 Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (b0090) 2011; 23 Alvarado-Gomez, Tapia, Encinas (b0390) 2021; 28 Quan, Shi, Luo, Fan, Lv, Chen, Zeng, Yang, Hu, Su, Wei, Yang (b0130) 2023; 8 Xu (10.1016/j.jcis.2023.04.081_b0150) 2020; 7 Zhu (10.1016/j.jcis.2023.04.081_b0210) 2019; 9 Liu (10.1016/j.jcis.2023.04.081_b0040) 2018; 28 Zhang (10.1016/j.jcis.2023.04.081_b0485) 2020; 76 Chen (10.1016/j.jcis.2023.04.081_b0440) 2021; 413 Djellabi (10.1016/j.jcis.2023.04.081_b0035) 2022; 431 Li (10.1016/j.jcis.2023.04.081_b0160) 2021; 12 Ma (10.1016/j.jcis.2023.04.081_b0140) 2021; 31 Sun (10.1016/j.jcis.2023.04.081_b0045) 2019; 29 Jiang (10.1016/j.jcis.2023.04.081_b0415) 2016; 28 Li (10.1016/j.jcis.2023.04.081_b0085) 2019; 60 Xue (10.1016/j.jcis.2023.04.081_b0230) 2017; 9 WHO chronicle (10.1016/j.jcis.2023.04.081_b0495) 2011 De France (10.1016/j.jcis.2023.04.081_b0335) 2017; 29 Zhang (10.1016/j.jcis.2023.04.081_b0125) 2021; 306 Chen (10.1016/j.jcis.2023.04.081_b0360) 2014; 47 Meng (10.1016/j.jcis.2023.04.081_b0235) 2021; 87 Tonoli (10.1016/j.jcis.2023.04.081_b0450) 2012; 89 Ma (10.1016/j.jcis.2023.04.081_b0065) 2019; 15 Dong (10.1016/j.jcis.2023.04.081_b0465) 2020; 32 Iqbal (10.1016/j.jcis.2023.04.081_b0105) 2020; 369 Ma (10.1016/j.jcis.2023.04.081_b0135) 2020; 12 Ma (10.1016/j.jcis.2023.04.081_b0330) 2021; 403 Lv (10.1016/j.jcis.2023.04.081_b0295) 2021; 510 Xu (10.1016/j.jcis.2023.04.081_b0385) 2022; 45 Fei (10.1016/j.jcis.2023.04.081_b0245) 2020; 4 Xin (10.1016/j.jcis.2023.04.081_b0110) 2019; 9 Wang (10.1016/j.jcis.2023.04.081_b0395) 2017; 126 Wang (10.1016/j.jcis.2023.04.081_b0205) 2020; 78 Li (10.1016/j.jcis.2023.04.081_b0100) 2020; 226 Ming (10.1016/j.jcis.2023.04.081_b0170) 2020; 167 Cao (10.1016/j.jcis.2023.04.081_b0145) 2019; 29 Li (10.1016/j.jcis.2023.04.081_b0240) 2017; 41 Alvarado-Gomez (10.1016/j.jcis.2023.04.081_b0390) 2021; 28 Oboh (10.1016/j.jcis.2023.04.081_b0370) 2009; 4 Liu (10.1016/j.jcis.2023.04.081_b0400) 2020; 8 Hu (10.1016/j.jcis.2023.04.081_b0190) 2020; 30 Zielinski (10.1016/j.jcis.2023.04.081_b0200) 2016; 16 Shahzad (10.1016/j.jcis.2023.04.081_b0405) 2016; 353 Hui (10.1016/j.jcis.2023.04.081_b0095) 2020; 30 Guo (10.1016/j.jcis.2023.04.081_b0430) 2019; 19 Li (10.1016/j.jcis.2023.04.081_b0175) 2017; 11 Yang (10.1016/j.jcis.2023.04.081_b0310) 2021; 417 Wan (10.1016/j.jcis.2023.04.081_b0355) 2019; 359 Lin (10.1016/j.jcis.2023.04.081_b0475) 2017; 17 Hu (10.1016/j.jcis.2023.04.081_b0220) 2017; 29 Zhang (10.1016/j.jcis.2023.04.081_b0500) 2020; 8 Zhao (10.1016/j.jcis.2023.04.081_b0260) 2020; 7 Shen (10.1016/j.jcis.2023.04.081_b0460) 2012; 15 Ghim (10.1016/j.jcis.2023.04.081_b0060) 2018; 53 Wang (10.1016/j.jcis.2023.04.081_b0490) 2019; 58 Cao (10.1016/j.jcis.2023.04.081_b0325) 2018; 12 Chung (10.1016/j.jcis.2023.04.081_b0455) 2004; 58 Li (10.1016/j.jcis.2023.04.081_b0305) 2018; 2018 Li (10.1016/j.jcis.2023.04.081_b0350) 2021; 31 Zha (10.1016/j.jcis.2023.04.081_b0185) 2019; 11 Tao (10.1016/j.jcis.2023.04.081_b0025) 2018; 3 Cao (10.1016/j.jcis.2023.04.081_b0120) 2019; 11 Hao (10.1016/j.jcis.2023.04.081_b0155) 2022; 13 Jiang (10.1016/j.jcis.2023.04.081_b0340) 2018; 10 Liu (10.1016/j.jcis.2023.04.081_b0470) 2017; 9 Mittal (10.1016/j.jcis.2023.04.081_b0315) 2018; 12 Li (10.1016/j.jcis.2023.04.081_b0250) 2020; 73 Ma (10.1016/j.jcis.2023.04.081_b0300) 2020; 12 Li (10.1016/j.jcis.2023.04.081_b0425) 2019; 3 Zhao (10.1016/j.jcis.2023.04.081_b0215) 2019; 7 Yuan (10.1016/j.jcis.2023.04.081_b0075) 2022; 252 Mu (10.1016/j.jcis.2023.04.081_b0270) 2019; 9 Song (10.1016/j.jcis.2023.04.081_b0515) 2021; 9 Naguib (10.1016/j.jcis.2023.04.081_b0090) 2011; 23 Fan (10.1016/j.jcis.2023.04.081_b0255) 2020; 30 Saito (10.1016/j.jcis.2023.04.081_b0320) 2013; 14 Cao (10.1016/j.jcis.2023.04.081_b0345) 2021; 33 Xin (10.1016/j.jcis.2023.04.081_b0115) 2021; 4 Ni (10.1016/j.jcis.2023.04.081_b0420) 2015; 17 Ghasemi (10.1016/j.jcis.2023.04.081_b0020) 2014; 5 Cui (10.1016/j.jcis.2023.04.081_b0070) 2018; 30 Gao (10.1016/j.jcis.2023.04.081_b0030) 2019; 12 Tu (10.1016/j.jcis.2023.04.081_b0080) 2019; 15 Zhang (10.1016/j.jcis.2023.04.081_b0055) 2019; 7 Li (10.1016/j.jcis.2023.04.081_b0505) 2022; 29 Jiao (10.1016/j.jcis.2023.04.081_b0445) 2022; 57 Li (10.1016/j.jcis.2023.04.081_b0195) 2016; 113 Zhao (10.1016/j.jcis.2023.04.081_b0180) 2018; 6 Wang (10.1016/j.jcis.2023.04.081_b0510) 2022; 287 Durkaieswaran (10.1016/j.jcis.2023.04.081_b0015) 2015; 49 Zhu (10.1016/j.jcis.2023.04.081_b0050) 2018; 8 Li (10.1016/j.jcis.2023.04.081_b0480) 2018; 2 Ying (10.1016/j.jcis.2023.04.081_b0165) 2021; 89 Oboh (10.1016/j.jcis.2023.04.081_b0380) 2011 Zhang (10.1016/j.jcis.2023.04.081_b0285) 2019; 13 Xu (10.1016/j.jcis.2023.04.081_b0290) 2020; 54 Zhang (10.1016/j.jcis.2023.04.081_b0375) 2019; 91 Wu (10.1016/j.jcis.2023.04.081_b0010) 2021; 7 Yu (10.1016/j.jcis.2023.04.081_b0410) 2011; 53 Zhu (10.1016/j.jcis.2023.04.081_b0280) 2018; 8 Quan (10.1016/j.jcis.2023.04.081_b0130) 2023; 8 Han (10.1016/j.jcis.2023.04.081_b0265) 2021; 9 Zhang (10.1016/j.jcis.2023.04.081_b0275) 2019; 12 Rajak (10.1016/j.jcis.2023.04.081_b0365) 2019; 11 Li (10.1016/j.jcis.2023.04.081_b0225) 2018; 28 Wang (10.1016/j.jcis.2023.04.081_b0435) 2022; 606 Vorosmarty (10.1016/j.jcis.2023.04.081_b0005) 2000; 289 |
References_xml | – volume: 53 start-page: 949 year: 2018 end-page: 957 ident: b0060 article-title: Mechanically interlocked 1T/2H phases of MoS publication-title: Nano Energy – volume: 11 start-page: 72 year: 2019 ident: b0120 article-title: Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding publication-title: Nano-Micro Lett. – volume: 29 start-page: 1905898 year: 2019 ident: b0145 article-title: MXene-Reinforced Cellulose Nanofibril Inks for 3D-Printed Smart Fibres and Textiles publication-title: Adv. Funct. Mater. – volume: 306 start-page: 2100549 year: 2021 ident: b0125 article-title: Stretchable, Antifreezing, Non-Drying, and Fast-Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection publication-title: Macromol. Mater. Eng. – volume: 4 start-page: 7234 year: 2021 end-page: 7243 ident: b0115 article-title: Silicone-Coated MXene/Cellulose Nanofiber Aerogel Films with Photothermal and Joule Heating Performances for Electromagnetic Interference Shielding publication-title: ACS Appl. Nano Mater. – volume: 47 start-page: 1332 year: 2014 end-page: 1339 ident: b0360 article-title: A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant publication-title: J. Biomech. – volume: 2 start-page: 1331 year: 2018 end-page: 1338 ident: b0480 article-title: Enhancement of Interfacial Solar Vapor Generation by Environmental Energy publication-title: Joule – volume: 31 start-page: 2008681 year: 2021 ident: b0350 article-title: Solar-Driven Interfacial Evaporation and Self-Powered Water Wave Detection Based on an All-Cellulose Monolithic Design publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1802158 year: 2019 ident: b0270 article-title: Superwetting Monolithic Hollow-Carbon-Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation publication-title: Adv. Energy Mater. – volume: 14 start-page: 248 year: 2013 end-page: 253 ident: b0320 article-title: An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation publication-title: Biomacromolecules – volume: 12 start-page: 1224 year: 2021 ident: b0160 article-title: Interfacial engineering of Bi publication-title: Nat. Commun. – volume: 289 start-page: 284 year: 2000 end-page: 288 ident: b0005 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science – volume: 49 start-page: 1048 year: 2015 end-page: 1060 ident: b0015 article-title: Various special designs of single basin passive solar still - A review publication-title: Renew. Sustain. Energy Rev. – volume: 606 start-page: 971 year: 2022 end-page: 982 ident: b0435 article-title: Novel Ti publication-title: J. Colloid Interface Sci. – volume: 33 start-page: 2000922 year: 2021 ident: b0345 article-title: Cellulose nanomaterials in interfacial evaporators for desalination: A “natural” choice publication-title: Adv. Mater. – volume: 9 start-page: 23117 year: 2021 end-page: 23126 ident: b0515 article-title: Robust superhydrophilic attapulgite-based aligned aerogels for highly efficient and stable solar steam generation in harsh environments publication-title: J. Mater. Chem. A – volume: 9 start-page: 1900250 year: 2019 ident: b0210 article-title: Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation publication-title: Adv. Energy Mater. – volume: 12 start-page: 18165 year: 2020 end-page: 18173 ident: b0300 article-title: Processing Natural Wood into an Efficient and Durable Solar Steam Generation Device publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 4449 year: 2014 ident: b0020 article-title: Solar steam generation by heat localization publication-title: Nat. Commun. – volume: 9 start-page: 18614 year: 2021 end-page: 18622 ident: b0265 article-title: Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators publication-title: J. Mater. Chem. A – volume: 13 start-page: 13196 year: 2019 end-page: 13207 ident: b0285 article-title: Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance publication-title: ACS Nano – volume: 15 start-page: 1900354 year: 2019 ident: b0065 article-title: Hierarchical Porous SWCNT Stringed Carbon Polyhedrons and PSS Threaded MOF Bilayer Membrane for Efficient Solar Vapor Generation publication-title: Small – volume: 57 start-page: 2584 year: 2022 end-page: 2596 ident: b0445 article-title: Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond publication-title: J. Mater. Sci. – volume: 9 start-page: 29636 year: 2019 end-page: 29644 ident: b0110 article-title: Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding publication-title: RSC Adv. – volume: 413 year: 2021 ident: b0440 article-title: Mxene (Ti publication-title: Chem. Eng. J. – volume: 29 start-page: 2461 year: 2022 end-page: 2477 ident: b0505 article-title: An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation publication-title: Cellul. – volume: 11 start-page: 36589 year: 2019 end-page: 36597 ident: b0185 article-title: Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3752 year: 2017 end-page: 3759 ident: b0175 article-title: MXene Ti publication-title: ACS Nano – volume: 15 start-page: 1902070 year: 2019 ident: b0080 article-title: A 3D-Structured Sustainable Solar-Driven Steam Generator Using Super-Black Nylon Flocking Materials publication-title: Small – volume: 167 start-page: 285 year: 2020 end-page: 295 ident: b0170 article-title: 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification publication-title: Carbon – volume: 87 year: 2021 ident: b0235 article-title: Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator publication-title: Nano Energy – volume: 76 year: 2020 ident: b0485 article-title: Temperature-difference-induced electricity during solar desalination with bilayer MXene-based monoliths publication-title: Nano Energy – volume: 30 start-page: 2005190 year: 2020 ident: b0095 article-title: Interface Chemistry on MXene-Based Materials for Enhanced Energy Storage and Conversion Performance publication-title: Adv. Funct. Mater. – volume: 7 start-page: 24 year: 2021 end-page: 39 ident: b0010 article-title: Solar-driven evaporators for water treatment: challenges and opportunities publication-title: Environ Sci-Water Res Technol. – volume: 54 start-page: 5150 year: 2020 end-page: 5158 ident: b0290 article-title: Low-Tortuosity Water Microchannels Boosting Energy Utilization for High Water Flux Solar Distillation publication-title: Environ. Sci. Technol. – volume: 28 start-page: 9400 year: 2016 ident: b0415 article-title: Bilayered Biofoam for Highly Efficient Solar Steam Generation publication-title: Adv. Mater. – volume: 9 start-page: 40077 year: 2017 end-page: 40086 ident: b0470 article-title: Surface Modified Ti publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: b0090 article-title: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti publication-title: Adv. Mater. – volume: 12 start-page: 841 year: 2019 end-page: 864 ident: b0030 article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production publication-title: Energy Environ. Sci. – volume: 30 start-page: 1706805 year: 2018 ident: b0070 article-title: High Rate Production of Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene Architecture publication-title: Adv. Mater. – volume: 403 year: 2021 ident: b0330 article-title: Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding publication-title: Chem. Eng. J. – volume: 4 start-page: 2000102 year: 2020 ident: b0245 article-title: Functionalized MXene Enabled Sustainable Water Harvesting and Desalination publication-title: Adv. Sustainable Syst. – volume: 53 start-page: 2035 year: 2011 end-page: 2040 ident: b0410 article-title: Microstructure effects on the electrochemical corrosion properties of Mg – 4.1% Ga – 2.2% Hg alloy as the anode for seawater-activated batteries publication-title: Corros. Sci. – volume: 41 start-page: 201 year: 2017 end-page: 209 ident: b0240 article-title: Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination publication-title: Nano Energy – volume: 7 start-page: 10446 year: 2019 end-page: 10455 ident: b0215 article-title: Macroporous three-dimensional MXene architectures for highly efficient solar steam generation Electronic supplementary information (ESI) available publication-title: J. Mater. Chem. A – volume: 510 year: 2021 ident: b0295 article-title: A self-floating, salt-resistant 3D Janus radish-based evaporator for highly efficient solar desalination publication-title: Desalination – volume: 91 start-page: 581 year: 2019 end-page: 587 ident: b0375 article-title: Durability and performance of loofah sponge as carrier for wastewater treatment with high ammonium publication-title: Water Environ. Res. – volume: 4 start-page: 684 year: 2009 end-page: 688 ident: b0370 article-title: Luffa cylindrica - an emerging cash crop publication-title: Afr. J. Agric. Res. – volume: 32 start-page: 1908269 year: 2020 ident: b0465 article-title: Cellular Structured CNTs@SiO publication-title: Adv. Mater. – volume: 58 start-page: 12054 year: 2019 end-page: 12058 ident: b0490 article-title: An Interfacial Solar Heating Assisted Liquid Sorbent Atmospheric Water Generator publication-title: Angew. Chem. Int. Ed. – year: 2011 ident: b0495 publication-title: Guidelines for drinking-water quality – volume: 16 start-page: 2159 year: 2016 end-page: 2167 ident: b0200 article-title: Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation publication-title: Nano Lett. – volume: 252 year: 2022 ident: b0075 article-title: Flexible vacancy-mediated MoS publication-title: Energ. Conver. Manage. – volume: 29 start-page: 1604031 year: 2017 ident: b0220 article-title: Tailoring Graphene Oxide-Based Aerogels for Efficient Solar Steam Generation under One Sun publication-title: Adv. Mater. – volume: 359 start-page: 459 year: 2019 end-page: 475 ident: b0355 article-title: Functional nanocomposites from sustainable regenerated cellulose aerogels: A review publication-title: Chem. Eng. J. – volume: 417 year: 2021 ident: b0310 article-title: Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination publication-title: Chem. Eng. J. – volume: 226 year: 2020 ident: b0100 article-title: Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors publication-title: Energ. Conver. Manage. – volume: 13 start-page: 6472 year: 2022 ident: b0155 article-title: A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics publication-title: Nat. Commun. – volume: 45 start-page: 786 year: 2022 end-page: 795 ident: b0385 article-title: Loofah-derived eco-friendly SiC ceramics for high-performance sunlight capture, thermal transport, and energy storage publication-title: Energy Stor. Mater. – volume: 12 start-page: 34226 year: 2020 end-page: 34234 ident: b0135 article-title: Multiresponsive MXene (Ti publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 4583 year: 2018 end-page: 4593 ident: b0325 article-title: Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties publication-title: ACS Nano – volume: 7 start-page: 18092 year: 2019 end-page: 18099 ident: b0055 article-title: Superwetting and mechanically robust MnO publication-title: J. Mater. Chem. A – volume: 126 start-page: 470 year: 2017 end-page: 476 ident: b0395 article-title: Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption publication-title: Polymer – volume: 11 start-page: 1667 year: 2019 ident: b0365 article-title: Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications publication-title: Polymers – volume: 287 year: 2022 ident: b0510 article-title: Hierarchically structured bilayer Aerogel-based Salt-resistant solar interfacial evaporator for highly efficient seawater desalination publication-title: Sep. Purif. Technol. – volume: 89 start-page: 80 year: 2012 end-page: 88 ident: b0450 article-title: Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties publication-title: Carbohydr. Polym. – volume: 3 start-page: 1798 year: 2019 end-page: 1803 ident: b0425 article-title: Measuring Conversion Efficiency of Solar Vapor Generation publication-title: Joule – volume: 28 start-page: e00273 year: 2021 ident: b0390 article-title: A sustainable hydrophobic luffa sponge for efficient removal of oils from water publication-title: Sustainable Mater. Technol. – volume: 369 start-page: 446 year: 2020 ident: b0105 article-title: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti publication-title: Science – volume: 31 start-page: 2009524 year: 2021 ident: b0140 article-title: Flexible MXene-Based Composites for Wearable Devices publication-title: Adv. Funct. Mater. – volume: 353 start-page: 1137 year: 2016 end-page: 1140 ident: b0405 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science – volume: 8 start-page: 8065 year: 2020 end-page: 8074 ident: b0500 article-title: Nanoplating of a SnO publication-title: J. Mater. Chem. A – volume: 60 start-page: 841 year: 2019 end-page: 849 ident: b0085 article-title: Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination publication-title: Nano Energy – volume: 8 start-page: 12323 year: 2020 end-page: 12333 ident: b0400 article-title: An 'antifouling' porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination publication-title: J. Mater. Chem. A – volume: 8 start-page: 1702149 year: 2018 ident: b0280 article-title: Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation publication-title: Adv. Energy Mater. – volume: 29 start-page: 4609 year: 2017 end-page: 4631 ident: b0335 article-title: Review of Hydrogels and Aerogels Containing Nanocellulose publication-title: Chem. Mater. – volume: 113 start-page: 13953 year: 2016 end-page: 13958 ident: b0195 article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 73 year: 2020 ident: b0250 article-title: Engineering controllable water transport of biosafety cuttlefish juice solar absorber toward remarkably enhanced solar-driven gas-liquid interfacial evaporation publication-title: Nano Energy – volume: 89 year: 2021 ident: b0165 article-title: A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications publication-title: Nano Energy – volume: 30 start-page: 2007110 year: 2020 ident: b0255 article-title: A MXene-Based Hierarchical Design Enabling Highly Efficient and Stable Solar-Water Desalination with Good Salt Resistance publication-title: Adv. Funct. Mater. – volume: 15 start-page: 141 year: 2012 end-page: 152 ident: b0460 article-title: Mechanical properties of luffa sponge publication-title: J. Mech. Behav. Biomed. Mater. – start-page: 195 year: 2011 end-page: 212 ident: b0380 article-title: Application of Luffa cylindrica in natural form as biosorbent to removal of divalent metals from aqueous solutions-kinetic and equilibrium study, Waste Water-Treatment and Reutilization publication-title: INTECH – volume: 9 start-page: 15052 year: 2017 end-page: 15057 ident: b0230 article-title: Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 6378 year: 2018 end-page: 6388 ident: b0315 article-title: Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers publication-title: ACS Nano – volume: 29 start-page: 1901312 year: 2019 ident: b0045 article-title: Plasmon Based Double-Layer Hydrogel Device for a Highly Efficient Solar Vapor Generation publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1104 year: 2018 end-page: 1112 ident: b0340 article-title: Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 1707134 year: 2018 ident: b0225 article-title: Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport publication-title: Adv. Funct. Mater. – volume: 17 start-page: 290 year: 2015 end-page: 301 ident: b0420 article-title: Volumetric solar heating of nanofluids for direct vapor generation publication-title: Nano Energy – volume: 28 start-page: 1803266 year: 2018 ident: b0040 article-title: Low Cost, Robust, Environmentally Friendly Geopolymer-Mesoporous Carbon Composites for Efficient Solar Powered Steam Generation publication-title: Adv. Funct. Mater. – volume: 7 start-page: 855 year: 2020 end-page: 865 ident: b0260 article-title: All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels publication-title: Mater. Horiz. – volume: 19 start-page: 1143 year: 2019 end-page: 1150 ident: b0430 article-title: A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human-Machine Interfacing publication-title: Nano Lett. – volume: 30 start-page: 1907234 year: 2020 ident: b0190 article-title: Tailoring Aerogels and Related 3D Macroporous Monoliths for Interfacial Solar Vapor Generation publication-title: Adv. Funct. Mater. – volume: 8 start-page: 103 year: 2023 end-page: 113 ident: b0130 article-title: Fully Flexible MXene-based Gas Sensor on Paper for Highly Sensitive Room-Temperature Nitrogen Dioxide Detection publication-title: ACS Sensors – volume: 431 year: 2022 ident: b0035 article-title: Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect publication-title: Chem. Eng. J. – volume: 6 start-page: 16196 year: 2018 end-page: 16204 ident: b0180 article-title: A hydrophobic surface enabled salt-blocking 2D Ti publication-title: J. Mater. Chem. A – volume: 17 start-page: 384 year: 2017 end-page: 391 ident: b0475 article-title: Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion publication-title: Nano Lett. – volume: 7 start-page: 2002209 year: 2020 ident: b0150 article-title: Zero-Dimensional MXene-Based Optical Devices for Ultrafast and Ultranarrow Photonics Applications publication-title: Adv. Sci. – volume: 12 start-page: 426 year: 2019 end-page: 433 ident: b0275 article-title: Facile and Scalable Fabrication of Surface-Modified Sponge for Efficient Solar Steam Generation publication-title: ChemSusChem – volume: 3 start-page: 1031 year: 2018 end-page: 1041 ident: b0025 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy – volume: 58 start-page: 417 year: 2004 end-page: 420 ident: b0455 article-title: Characterization of cotton fabric scouring by FT-IR ATR spectroscopy publication-title: Carbohydr. Polym. – volume: 8 start-page: 1701028 year: 2018 ident: b0050 article-title: Plasmonic Wood for High-Efficiency Solar Steam Generation publication-title: Adv. Energy Mater. – volume: 78 year: 2020 ident: b0205 article-title: Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation publication-title: Nano Energy – volume: 2018 start-page: 8973643 year: 2018 ident: b0305 article-title: Review of Recent Development on Preparation, Properties, and Applications of Cellulose-Based Functional Materials publication-title: Int. J. Polym. Sci. – volume: 353 start-page: 1137 issue: 6304 year: 2016 ident: 10.1016/j.jcis.2023.04.081_b0405 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science doi: 10.1126/science.aag2421 – volume: 30 start-page: 1907234 issue: 3 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0190 article-title: Tailoring Aerogels and Related 3D Macroporous Monoliths for Interfacial Solar Vapor Generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907234 – volume: 30 start-page: 2005190 issue: 50 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0095 article-title: Interface Chemistry on MXene-Based Materials for Enhanced Energy Storage and Conversion Performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005190 – volume: 11 start-page: 36589 issue: 40 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0185 article-title: Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10606 – volume: 13 start-page: 6472 issue: 1 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0155 article-title: A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics publication-title: Nat. Commun. doi: 10.1038/s41467-022-34168-x – volume: 306 start-page: 2100549 issue: 12 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0125 article-title: Stretchable, Antifreezing, Non-Drying, and Fast-Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.202100549 – volume: 11 start-page: 3752 issue: 4 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0175 article-title: MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material publication-title: ACS Nano doi: 10.1021/acsnano.6b08415 – year: 2011 ident: 10.1016/j.jcis.2023.04.081_b0495 – volume: 89 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0165 article-title: A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106443 – volume: 91 start-page: 581 issue: 7 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0375 article-title: Durability and performance of loofah sponge as carrier for wastewater treatment with high ammonium publication-title: Water Environ. Res. doi: 10.1002/wer.1067 – volume: 3 start-page: 1798 issue: 8 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0425 article-title: Measuring Conversion Efficiency of Solar Vapor Generation publication-title: Joule doi: 10.1016/j.joule.2019.06.009 – volume: 7 start-page: 2002209 issue: 22 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0150 article-title: Zero-Dimensional MXene-Based Optical Devices for Ultrafast and Ultranarrow Photonics Applications publication-title: Adv. Sci. doi: 10.1002/advs.202002209 – volume: 413 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0440 article-title: Mxene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127524 – volume: 30 start-page: 2007110 issue: 52 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0255 article-title: A MXene-Based Hierarchical Design Enabling Highly Efficient and Stable Solar-Water Desalination with Good Salt Resistance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007110 – volume: 510 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0295 article-title: A self-floating, salt-resistant 3D Janus radish-based evaporator for highly efficient solar desalination publication-title: Desalination doi: 10.1016/j.desal.2021.115093 – volume: 58 start-page: 417 issue: 4 year: 2004 ident: 10.1016/j.jcis.2023.04.081_b0455 article-title: Characterization of cotton fabric scouring by FT-IR ATR spectroscopy publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2004.08.005 – volume: 7 start-page: 24 issue: 1 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0010 article-title: Solar-driven evaporators for water treatment: challenges and opportunities publication-title: Environ Sci-Water Res Technol. doi: 10.1039/D0EW00725K – volume: 15 start-page: 1902070 issue: 37 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0080 article-title: A 3D-Structured Sustainable Solar-Driven Steam Generator Using Super-Black Nylon Flocking Materials publication-title: Small doi: 10.1002/smll.201902070 – volume: 78 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0205 article-title: Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105269 – volume: 15 start-page: 1900354 issue: 15 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0065 article-title: Hierarchical Porous SWCNT Stringed Carbon Polyhedrons and PSS Threaded MOF Bilayer Membrane for Efficient Solar Vapor Generation publication-title: Small doi: 10.1002/smll.201900354 – volume: 87 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0235 article-title: Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106146 – volume: 289 start-page: 284 issue: 5477 year: 2000 ident: 10.1016/j.jcis.2023.04.081_b0005 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science doi: 10.1126/science.289.5477.284 – volume: 8 start-page: 1702149 issue: 16 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0280 article-title: Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702149 – volume: 73 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0250 article-title: Engineering controllable water transport of biosafety cuttlefish juice solar absorber toward remarkably enhanced solar-driven gas-liquid interfacial evaporation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104834 – volume: 32 start-page: 1908269 issue: 34 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0465 article-title: Cellular Structured CNTs@SiO(2) Nanofibrous Aerogels with Vertically Aligned Vessels for Salt-Resistant Solar Desalination publication-title: Adv. Mater. doi: 10.1002/adma.201908269 – volume: 60 start-page: 841 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0085 article-title: Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.087 – volume: 13 start-page: 13196 issue: 11 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0285 article-title: Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance publication-title: ACS Nano doi: 10.1021/acsnano.9b06180 – volume: 14 start-page: 248 issue: 1 year: 2013 ident: 10.1016/j.jcis.2023.04.081_b0320 article-title: An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation publication-title: Biomacromolecules doi: 10.1021/bm301674e – volume: 226 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0100 article-title: Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2020.113515 – volume: 53 start-page: 949 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0060 article-title: Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.038 – volume: 12 start-page: 34226 issue: 30 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0135 article-title: Multiresponsive MXene (Ti3C2Tx)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10750 – volume: 53 start-page: 2035 issue: 5 year: 2011 ident: 10.1016/j.jcis.2023.04.081_b0410 article-title: Microstructure effects on the electrochemical corrosion properties of Mg – 4.1% Ga – 2.2% Hg alloy as the anode for seawater-activated batteries publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.01.040 – volume: 28 start-page: 1803266 issue: 47 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0040 article-title: Low Cost, Robust, Environmentally Friendly Geopolymer-Mesoporous Carbon Composites for Efficient Solar Powered Steam Generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803266 – volume: 11 start-page: 1667 issue: 10 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0365 article-title: Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications publication-title: Polymers doi: 10.3390/polym11101667 – volume: 359 start-page: 459 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0355 article-title: Functional nanocomposites from sustainable regenerated cellulose aerogels: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.115 – volume: 5 start-page: 4449 year: 2014 ident: 10.1016/j.jcis.2023.04.081_b0020 article-title: Solar steam generation by heat localization publication-title: Nat. Commun. doi: 10.1038/ncomms5449 – volume: 167 start-page: 285 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0170 article-title: 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification publication-title: Carbon doi: 10.1016/j.carbon.2020.06.023 – volume: 9 start-page: 18614 issue: 34 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0265 article-title: Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04991G – volume: 252 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0075 article-title: Flexible vacancy-mediated MoS2-X nanosheet arrays for solar-driven interfacial water evaporation, photothermal-enhanced photodegradation, and thermoelectric generation publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.115070 – volume: 431 issue: 1 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0035 article-title: Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect publication-title: Chem. Eng. J. – volume: 12 start-page: 426 issue: 2 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0275 article-title: Facile and Scalable Fabrication of Surface-Modified Sponge for Efficient Solar Steam Generation publication-title: ChemSusChem doi: 10.1002/cssc.201802406 – volume: 9 start-page: 40077 issue: 46 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0470 article-title: Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13421 – volume: 9 start-page: 15052 issue: 17 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0230 article-title: Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01992 – volume: 8 start-page: 12323 issue: 25 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0400 article-title: An 'antifouling' porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03872E – volume: 15 start-page: 141 year: 2012 ident: 10.1016/j.jcis.2023.04.081_b0460 article-title: Mechanical properties of luffa sponge publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.07.004 – volume: 41 start-page: 201 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0240 article-title: Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.034 – volume: 369 start-page: 446 issue: 6502 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0105 article-title: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene) publication-title: Science doi: 10.1126/science.aba7977 – volume: 29 start-page: 1901312 issue: 29 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0045 article-title: Plasmon Based Double-Layer Hydrogel Device for a Highly Efficient Solar Vapor Generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901312 – volume: 28 start-page: 9400 issue: 42 year: 2016 ident: 10.1016/j.jcis.2023.04.081_b0415 article-title: Bilayered Biofoam for Highly Efficient Solar Steam Generation publication-title: Adv. Mater. doi: 10.1002/adma.201601819 – volume: 9 start-page: 1802158 issue: 1 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0270 article-title: Superwetting Monolithic Hollow-Carbon-Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802158 – volume: 7 start-page: 10446 issue: 17 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0215 article-title: Macroporous three-dimensional MXene architectures for highly efficient solar steam generation Electronic supplementary information (ESI) available publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00176J – volume: 29 start-page: 2461 issue: 4 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0505 article-title: An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation publication-title: Cellul. doi: 10.1007/s10570-022-04442-8 – volume: 403 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0330 article-title: Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126438 – volume: 287 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0510 article-title: Hierarchically structured bilayer Aerogel-based Salt-resistant solar interfacial evaporator for highly efficient seawater desalination publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120534 – volume: 31 start-page: 2008681 issue: 7 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0350 article-title: Solar-Driven Interfacial Evaporation and Self-Powered Water Wave Detection Based on an All-Cellulose Monolithic Design publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008681 – volume: 2 start-page: 1331 issue: 7 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0480 article-title: Enhancement of Interfacial Solar Vapor Generation by Environmental Energy publication-title: Joule doi: 10.1016/j.joule.2018.04.004 – volume: 7 start-page: 855 issue: 3 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0260 article-title: All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels publication-title: Mater. Horiz. doi: 10.1039/C9MH01443H – volume: 31 start-page: 2009524 issue: 22 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0140 article-title: Flexible MXene-Based Composites for Wearable Devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009524 – volume: 28 start-page: e00273 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0390 article-title: A sustainable hydrophobic luffa sponge for efficient removal of oils from water publication-title: Sustainable Mater. Technol. doi: 10.1016/j.susmat.2021.e00273 – volume: 12 start-page: 6378 issue: 7 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0315 article-title: Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers publication-title: ACS Nano doi: 10.1021/acsnano.8b01084 – start-page: 195 year: 2011 ident: 10.1016/j.jcis.2023.04.081_b0380 article-title: Application of Luffa cylindrica in natural form as biosorbent to removal of divalent metals from aqueous solutions-kinetic and equilibrium study, Waste Water-Treatment and Reutilization publication-title: INTECH – volume: 8 start-page: 103 issue: 1 year: 2023 ident: 10.1016/j.jcis.2023.04.081_b0130 article-title: Fully Flexible MXene-based Gas Sensor on Paper for Highly Sensitive Room-Temperature Nitrogen Dioxide Detection publication-title: ACS Sensors doi: 10.1021/acssensors.2c01748 – volume: 7 start-page: 18092 issue: 30 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0055 article-title: Superwetting and mechanically robust MnO2 nanowire-reduced graphene oxide monolithic aerogels for efficient solar vapor generation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04509K – volume: 28 start-page: 1707134 issue: 16 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0225 article-title: Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707134 – volume: 54 start-page: 5150 issue: 8 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0290 article-title: Low-Tortuosity Water Microchannels Boosting Energy Utilization for High Water Flux Solar Distillation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b06072 – volume: 33 start-page: 2000922 issue: 28 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0345 article-title: Cellulose nanomaterials in interfacial evaporators for desalination: A “natural” choice publication-title: Adv. Mater. doi: 10.1002/adma.202000922 – volume: 30 start-page: 1706805 issue: 22 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0070 article-title: High Rate Production of Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene Architecture publication-title: Adv. Mater. doi: 10.1002/adma.201706805 – volume: 3 start-page: 1031 issue: 12 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0025 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy doi: 10.1038/s41560-018-0260-7 – volume: 12 start-page: 4583 issue: 5 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0325 article-title: Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties publication-title: ACS Nano doi: 10.1021/acsnano.8b00997 – volume: 17 start-page: 290 year: 2015 ident: 10.1016/j.jcis.2023.04.081_b0420 article-title: Volumetric solar heating of nanofluids for direct vapor generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.021 – volume: 8 start-page: 1701028 issue: 4 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0050 article-title: Plasmonic Wood for High-Efficiency Solar Steam Generation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701028 – volume: 12 start-page: 1224 issue: 1 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0160 article-title: Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing publication-title: Nat. Commun. doi: 10.1038/s41467-021-21435-6 – volume: 10 start-page: 1104 issue: 1 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0340 article-title: Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15125 – volume: 126 start-page: 470 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0395 article-title: Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption publication-title: Polymer doi: 10.1016/j.polymer.2017.05.068 – volume: 6 start-page: 16196 issue: 33 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0180 article-title: A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05569F – volume: 9 start-page: 23117 issue: 40 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0515 article-title: Robust superhydrophilic attapulgite-based aligned aerogels for highly efficient and stable solar steam generation in harsh environments publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07042H – volume: 8 start-page: 8065 issue: 16 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0500 article-title: Nanoplating of a SnO2 thin-film on MXene-based sponge for stable and efficient solar energy conversion publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01258K – volume: 45 start-page: 786 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0385 article-title: Loofah-derived eco-friendly SiC ceramics for high-performance sunlight capture, thermal transport, and energy storage publication-title: Energy Stor. Mater. – volume: 19 start-page: 1143 issue: 2 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0430 article-title: A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human-Machine Interfacing publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04514 – volume: 16 start-page: 2159 issue: 4 year: 2016 ident: 10.1016/j.jcis.2023.04.081_b0200 article-title: Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03901 – volume: 76 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0485 article-title: Temperature-difference-induced electricity during solar desalination with bilayer MXene-based monoliths publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105060 – volume: 4 start-page: 2000102 issue: 9 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0245 article-title: Functionalized MXene Enabled Sustainable Water Harvesting and Desalination publication-title: Adv. Sustainable Syst. doi: 10.1002/adsu.202000102 – volume: 113 start-page: 13953 issue: 49 year: 2016 ident: 10.1016/j.jcis.2023.04.081_b0195 article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1613031113 – volume: 606 start-page: 971 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0435 article-title: Novel Ti3C2Tx MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.092 – volume: 4 start-page: 684 issue: 8 year: 2009 ident: 10.1016/j.jcis.2023.04.081_b0370 article-title: Luffa cylindrica - an emerging cash crop publication-title: Afr. J. Agric. Res. – volume: 57 start-page: 2584 issue: 4 year: 2022 ident: 10.1016/j.jcis.2023.04.081_b0445 article-title: Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06676-6 – volume: 4 start-page: 7234 issue: 7 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0115 article-title: Silicone-Coated MXene/Cellulose Nanofiber Aerogel Films with Photothermal and Joule Heating Performances for Electromagnetic Interference Shielding publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c01185 – volume: 2018 start-page: 8973643 year: 2018 ident: 10.1016/j.jcis.2023.04.081_b0305 article-title: Review of Recent Development on Preparation, Properties, and Applications of Cellulose-Based Functional Materials publication-title: Int. J. Polym. Sci. doi: 10.1155/2018/8973643 – volume: 47 start-page: 1332 issue: 6 year: 2014 ident: 10.1016/j.jcis.2023.04.081_b0360 article-title: A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.02.010 – volume: 11 start-page: 72 issue: 1 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0120 article-title: Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0304-y – volume: 17 start-page: 384 issue: 1 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0475 article-title: Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04339 – volume: 9 start-page: 29636 issue: 51 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0110 article-title: Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding publication-title: RSC Adv. doi: 10.1039/C9RA06399D – volume: 58 start-page: 12054 issue: 35 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0490 article-title: An Interfacial Solar Heating Assisted Liquid Sorbent Atmospheric Water Generator publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905229 – volume: 417 year: 2021 ident: 10.1016/j.jcis.2023.04.081_b0310 article-title: Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128051 – volume: 29 start-page: 1604031 issue: 5 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0220 article-title: Tailoring Graphene Oxide-Based Aerogels for Efficient Solar Steam Generation under One Sun publication-title: Adv. Mater. doi: 10.1002/adma.201604031 – volume: 89 start-page: 80 issue: 1 year: 2012 ident: 10.1016/j.jcis.2023.04.081_b0450 article-title: Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.02.052 – volume: 12 start-page: 841 issue: 3 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0030 article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01146J – volume: 49 start-page: 1048 year: 2015 ident: 10.1016/j.jcis.2023.04.081_b0015 article-title: Various special designs of single basin passive solar still - A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.111 – volume: 29 start-page: 4609 issue: 11 year: 2017 ident: 10.1016/j.jcis.2023.04.081_b0335 article-title: Review of Hydrogels and Aerogels Containing Nanocellulose publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00531 – volume: 29 start-page: 1905898 issue: 51 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0145 article-title: MXene-Reinforced Cellulose Nanofibril Inks for 3D-Printed Smart Fibres and Textiles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905898 – volume: 23 start-page: 4248 issue: 37 year: 2011 ident: 10.1016/j.jcis.2023.04.081_b0090 article-title: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 9 start-page: 1900250 issue: 22 year: 2019 ident: 10.1016/j.jcis.2023.04.081_b0210 article-title: Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900250 – volume: 12 start-page: 18165 issue: 15 year: 2020 ident: 10.1016/j.jcis.2023.04.081_b0300 article-title: Processing Natural Wood into an Efficient and Durable Solar Steam Generation Device publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02481 |
SSID | ssj0011559 |
Score | 2.6326406 |
Snippet | Janus MXene-decorated CNFs/luffa (JMCL) aerogel integrated the multifunction of fast water transport, good thermal management, fast vapor escape, and efficient... Interfacial solar steam generation (ISSG) is considered to be an attractive technique to address the water shortage. However, developing a sustainable thermal... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 306 |
SubjectTerms | Aerogels biomass Cellulose nanofibers desalination durability evaporation rate freeze drying Interface water evaporation Janus structure lighting Photothermal conversion skeleton steam strength (mechanics) Ti3C2Tx MXene water shortages wettability |
Title | 3D Janus structure MXene/cellulose nanofibers/luffa aerogels with superb mechanical strength and high-efficiency desalination for solar-driven interfacial evaporation |
URI | https://dx.doi.org/10.1016/j.jcis.2023.04.081 https://www.ncbi.nlm.nih.gov/pubmed/37150004 https://www.proquest.com/docview/2811215259 https://www.proquest.com/docview/2887631051 |
Volume | 645 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiJZXoVRG4obMxokdJ8dqS7UUtScq7S2ynXG11da72jQc-Tn8TmbyWMGhe-gxyTiyPJOZsTPfN4x9BucDFReK3PhaKIyY6ActiCxzKZQYdELHrn95lc-u1cVcz_fYdMTCUFnl4Pt7n9556-HOZFjNyXqxIIwvfm2GumZ1YBNClCtlyMq__t6WeUj67daXeUhB0gNwpq_xuvULouxOs47utJAPBaeHks8uCJ2_ZC-G7JGf9hM8YHsQD9nT6di07ZA9_4df8BX7k53xCxvbhvc0se0G-OUcvduEzuvb5aoBHm1E-3KYBU6WbQiWW9isbnBSnI5oedOuceH5HRBCmBRKr4J4g49srDmxHQvoaCgIw8lraCxBfEndHPNh3tDWWdQbcqqcuCk2wdIpPYdfdj2Y32t2ff7t53QmhsYMwmN-cy8sgFbB5wDeWJ153LT5RLoQgklKsKAzsEViwDnQqdM6AOG1g0xtUeKYOnvD9uMqwjvGjS-NROnCKa-KBCNHXuR5Wjp0FjYHfcTkqJHKD6zl1DxjWY3labcVabEiLVaJqlCLR-zLdsy65-zYKa1HRVf_WV6FQWXnuE-jVVSoZNKbjbBqUaiQxNmBG8tdMkQFiMktvudtb1LbuWZGUpsK9f6RM_vAntFVXwl3zPbRwuAjpk737qT7Nk7Yk9PvP2ZXfwE7cx2i |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeEBQoLS8jcUNh4ySOk2O1UC2l21Mr7c2ynXG11eJdbZoe-Tn8zs7ksSqH7oFrPI6sfOOZsTPzDWNfwDpPyYVRrlwVZegx0Q4aiNLUJlCi0_Etu_70Ip9cZWczOdth46EWhtIqe9vf2fTWWvdPRv3XHK3mc6rxxd2mqGtWW2yinrCnGW5famPw7c8mz0PQf7cuz0NEJN5XznRJXjduTpzdSdrynRbiMe_0WPTZeqHTF-x5Hz7yk26FL9kOhAO2Nx66th2w_QcEg6_Y3_Q7PzOhqXnHE9usgU9naN5GdGHfLJY18GACKpjFMHC0aLw33MB6eY2L4nRHy-tmhV-e_wYqESZE6VUQrnHIhIoT3XEELQ8FFXHyCmpDNb6EN8eAmNd0do6qNVlVTuQUa2_omp7DnVn1-veaXZ3-uBxPor4zQ-QwwLmNDIDMvMsBnDIydXhqc7Gw3nsVl2BApmCKWIG1IBMrpQcq2PYiMUWJc6r0DdsNywBvGVeuVAKlC5u5rIjRdeRFnielRWthcpBHTAyIaNfTllP3jIUe8tNuNKGoCUUdZxpRPGJfN3NWHWnHVmk5AK3_UT2NXmXrvM-DVmgEmXAzAZYNChWCSDvwZLlNhrgAMbrF9xx2KrVZa6oE9anIjv9zZZ_Y3uRyeq7Pf178esee0UiXFvee7aK2wQeMo27tx3af3AOLHR8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Janus+structure+MXene%2Fcellulose+nanofibers%2Fluffa+aerogels+with+superb+mechanical+strength+and+high-efficiency+desalination+for+solar-driven+interfacial+evaporation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Wang%2C+Pei-Lin&rft.au=Zhang%2C+Wei&rft.au=Yuan%2C+Qi&rft.au=Mai%2C+Tian&rft.date=2023-09-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=645&rft.spage=306&rft.epage=318&rft_id=info:doi/10.1016%2Fj.jcis.2023.04.081&rft.externalDocID=S0021979723006707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |