Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model
The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and r...
Saved in:
Published in | Journal of cleaner production Vol. 434; p. 140281 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and rarely adopts the optimizing form of unconstrained structure evolution in the process. So this study proposes a modified transient topology optimization (TO) model to seek the optimal distribution of the fins embedded into PCM subject to the constraints of fin area and specified time. This topology optimization problem is formulated using the density-based material design variable in governing equations, physical constraints, etc. The design freedom and procedural iterative solving of TO model allow for the free evolution of innovative fin structures and elucidate the interaction mechanism between the fin design and physical occurring processes. The double interpolation function, variable regularization, adjoint-based sensitivity analysis and GCMMA algorithm are established to further improve TO model to obtain high-precision solutions. Using above methods, the regular evolution mechanism of fins and physical performance parameters and the trade-off between performance and structure are analyzed. Then, the effects and reasons of pure paraffin (PW) and the adding carbon nanotubes (nPW) on changes in topology structure and performance parameters are also comparatively studied. Finally, by comparing TO-fins with conventional rectangular fins, the superiority of the established method is verified, and the performance improvement mechanism and extent of TO-fins are revealed. Results show that TO-fin LHTES with nPW can achieve better performance than TO-fin LHTES with PW under fewer branches and shorter branch length. The uniform distribution and multi-branch characteristics of TO-fins greatly shorten the heat conduction path, and its local segmentation of whole PCM enhances the local convection effect.
•Modified topology optimization method for LHTES design is established and validated.•LHTES fin freely unconstrained evolves in process under modified optimization model.•The effects of pure PW and PW with nanoparticles on optimal solutions are studied.•Fin structure evolution principles and its trade-off with performance are analyzed.•Revealed physical mechanism and extent of performance enhancement for optimal fins. |
---|---|
AbstractList | The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and rarely adopts the optimizing form of unconstrained structure evolution in the process. So this study proposes a modified transient topology optimization (TO) model to seek the optimal distribution of the fins embedded into PCM subject to the constraints of fin area and specified time. This topology optimization problem is formulated using the density-based material design variable in governing equations, physical constraints, etc. The design freedom and procedural iterative solving of TO model allow for the free evolution of innovative fin structures and elucidate the interaction mechanism between the fin design and physical occurring processes. The double interpolation function, variable regularization, adjoint-based sensitivity analysis and GCMMA algorithm are established to further improve TO model to obtain high-precision solutions. Using above methods, the regular evolution mechanism of fins and physical performance parameters and the trade-off between performance and structure are analyzed. Then, the effects and reasons of pure paraffin (PW) and the adding carbon nanotubes (nPW) on changes in topology structure and performance parameters are also comparatively studied. Finally, by comparing TO-fins with conventional rectangular fins, the superiority of the established method is verified, and the performance improvement mechanism and extent of TO-fins are revealed. Results show that TO-fin LHTES with nPW can achieve better performance than TO-fin LHTES with PW under fewer branches and shorter branch length. The uniform distribution and multi-branch characteristics of TO-fins greatly shorten the heat conduction path, and its local segmentation of whole PCM enhances the local convection effect. The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and rarely adopts the optimizing form of unconstrained structure evolution in the process. So this study proposes a modified transient topology optimization (TO) model to seek the optimal distribution of the fins embedded into PCM subject to the constraints of fin area and specified time. This topology optimization problem is formulated using the density-based material design variable in governing equations, physical constraints, etc. The design freedom and procedural iterative solving of TO model allow for the free evolution of innovative fin structures and elucidate the interaction mechanism between the fin design and physical occurring processes. The double interpolation function, variable regularization, adjoint-based sensitivity analysis and GCMMA algorithm are established to further improve TO model to obtain high-precision solutions. Using above methods, the regular evolution mechanism of fins and physical performance parameters and the trade-off between performance and structure are analyzed. Then, the effects and reasons of pure paraffin (PW) and the adding carbon nanotubes (nPW) on changes in topology structure and performance parameters are also comparatively studied. Finally, by comparing TO-fins with conventional rectangular fins, the superiority of the established method is verified, and the performance improvement mechanism and extent of TO-fins are revealed. Results show that TO-fin LHTES with nPW can achieve better performance than TO-fin LHTES with PW under fewer branches and shorter branch length. The uniform distribution and multi-branch characteristics of TO-fins greatly shorten the heat conduction path, and its local segmentation of whole PCM enhances the local convection effect. •Modified topology optimization method for LHTES design is established and validated.•LHTES fin freely unconstrained evolves in process under modified optimization model.•The effects of pure PW and PW with nanoparticles on optimal solutions are studied.•Fin structure evolution principles and its trade-off with performance are analyzed.•Revealed physical mechanism and extent of performance enhancement for optimal fins. |
ArticleNumber | 140281 |
Author | Desideri, Umberto Wang, Jiahao Liu, Xiaomin |
Author_xml | – sequence: 1 givenname: Jiahao orcidid: 0000-0001-7955-9349 surname: Wang fullname: Wang, Jiahao organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Xiaomin orcidid: 0000-0003-1849-9295 surname: Liu fullname: Liu, Xiaomin email: liuxm@xjtu.edu.cn organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 3 givenname: Umberto orcidid: 0000-0001-7360-5762 surname: Desideri fullname: Desideri, Umberto organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122, Italy |
BookMark | eNqFkTtPBCEUhSk08fkTTChtdoV5TyyMMb4SExutCQOX9W4YGIE1WX-Mv1XGtbKxunDznUM454jsOe-AkDPOlpzx5mK9XCsLU_DLghXlkles6PgeOWR93S-aumgOyFGMa8Z4y9rqkHw9gEw0BemigUAnCMaHUToFFNzbPEdwiUqn6QgqLzCO-SbtNmKk3tD0Bpm3mYaw2tKYfJAroBuHiWqIuHKg6bClm4huRSUdvUaDeffzJs7myU_e-iz2U8IRP2VC72YQ7AnZN9JGOP2dx-T17vbl5mHx9Hz_eHP9tFBl16dF1-m6q7hhfaPbQlZMqYGroWh5y4eyYbIfhloZzmQ5gOE6n1nbqL5hlRqqui-PyfnONyf3voGYxIhRgbXSgd9EUfK65F1XdDNa71AVfIwBjJgCjjJsBWdi7kCsxW8HYu5A7DrIuss_OoXp56s5CbT_qq92asgpfCAEEVUOT4HGACoJ7fEfh2_3269f |
CitedBy_id | crossref_primary_10_3390_en18051302 crossref_primary_10_1016_j_enconman_2024_119440 crossref_primary_10_1016_j_icheatmasstransfer_2025_108626 crossref_primary_10_1016_j_applthermaleng_2024_123855 crossref_primary_10_1016_j_apenergy_2024_124596 crossref_primary_10_1016_j_applthermaleng_2024_123606 crossref_primary_10_1016_j_apenergy_2024_123131 crossref_primary_10_1016_j_applthermaleng_2024_125168 crossref_primary_10_1016_j_tsep_2024_102675 crossref_primary_10_1016_j_est_2024_115279 crossref_primary_10_1016_j_applthermaleng_2025_126135 crossref_primary_10_1016_j_ijhydene_2025_03_038 crossref_primary_10_1016_j_applthermaleng_2024_123480 |
Cites_doi | 10.1016/j.rser.2009.06.024 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2 10.1007/s11144-022-02259-x 10.1016/j.pecs.2015.10.003 10.1016/j.ijheatmasstransfer.2015.04.077 10.1016/j.apenergy.2014.03.091 10.1016/S1359-4311(99)00003-4 10.3390/en15238827 10.1016/j.solmat.2010.09.032 10.1016/j.applthermaleng.2022.118717 10.1016/j.applthermaleng.2013.01.011 10.1080/10407790.2013.772001 10.1016/0017-9310(87)90317-6 10.1002/nme.3072 10.1016/j.enbuild.2015.02.023 10.1016/j.ijthermalsci.2017.10.038 10.1016/j.tca.2009.01.022 10.1007/s00158-002-0238-7 10.1016/j.rser.2023.113641 10.1016/j.est.2023.107047 10.1007/s00158-010-0602-y 10.1016/j.ijheatmasstransfer.2021.122393 10.1016/j.est.2023.107205 10.1016/j.ijheatmasstransfer.2014.01.014 10.1007/s00158-015-1346-5 10.1080/01430750.2021.1873848 10.1016/j.apm.2023.01.028 10.1016/j.applthermaleng.2018.09.105 10.1016/0045-7825(88)90086-2 10.1021/jp200838s 10.1016/j.ijheatmasstransfer.2010.05.028 10.1002/fld.3954 10.1016/j.applthermaleng.2017.03.005 10.1016/j.applthermaleng.2021.116575 10.1016/j.ijheatmasstransfer.2017.05.098 10.1023/A:1011430410075 10.3390/en15082746 10.1016/j.apenergy.2019.114102 10.1016/j.est.2023.108643 10.1016/j.ijthermalsci.2020.106578 10.1007/s10544-012-9672-5 10.1016/j.apenergy.2015.01.008 10.1063/1.4921442 10.1016/j.applthermaleng.2021.117104 10.1007/s10973-009-0472-y 10.1016/j.ijheatmasstransfer.2023.124402 10.1002/fld.426 10.1016/0008-6223(95)00021-5 10.1016/j.ijheatmasstransfer.2003.11.015 10.1016/j.ijmecsci.2023.108594 10.1016/j.rser.2021.111977 10.1007/s12239-012-0078-4 10.1016/j.est.2023.106889 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2023.140281 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jclepro_2023_140281 S0959652623044396 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-88d5841f096d72a40ccb1cb27171b360a9bb5cf10a3bef1d5cf076c9604cb4593 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Wed Jul 02 03:21:50 EDT 2025 Tue Jul 01 04:42:49 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 Sat Feb 01 16:08:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heat transfer enhancement Thermal energy storage Phase change Mechanism analysis Optimization method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-88d5841f096d72a40ccb1cb27171b360a9bb5cf10a3bef1d5cf076c9604cb4593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1849-9295 0000-0001-7955-9349 0000-0001-7360-5762 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0959652623044396 |
PQID | 3153188289 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153188289 crossref_primary_10_1016_j_jclepro_2023_140281 crossref_citationtrail_10_1016_j_jclepro_2023_140281 elsevier_sciencedirect_doi_10_1016_j_jclepro_2023_140281 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yavari, Fard, Pashayi (bib50) 2011; 115 Bendsøe, Kikuchi (bib4) 1988; 71 Gong, Devahastin, Mujumdar (bib13) 1999; 19 Sun, Wang, Tian (bib37) 2023; 259 Zhu, Li, Zhu (bib60) 2022; 55 He, Guo, Zhang (bib14) 2022; 156 Kamkari, Shokouhmand, Bruno (bib19) 2014; 72 Pizzolato, Sharma, Ge (bib31) 2019; 203 Kalnæs, Jelle (bib18) 2015; 94 Lu, Zhang, Sun (bib26) 2021; 187 Wang, Liu, Wang (bib47) 2023; 458 Yao, Zhao, Zhao (bib49) 2021; 159 Zeng, Cao, Yang (bib52) 2010; 101 Lee, Lee, Kim (bib23) 2020; 168 Zhang, Baeyens, Cáceres (bib53) 2016; 53 Gadhave, Pathan, Kore, Prabhune (bib11) 2022; 43 Ronald (bib32) 1997; 78 Ali, Rehman, Arıcı (bib3) 2023; 100 Shmueli, Ziskind, Letan (bib35) 2010; 53 Giles, Pierce (bib12) 2000; 65 Zhang, Liu, Sun (bib54) 2016; 53 Alexandersen, Aage, Andreasen, Sigmund (bib2) 2014; 76 Lu, Zhang, Zhu, Zhang, Sun (bib27) 2022; 185 Eslami, Khosravi, Fallah Kohan (bib10) 2021; 47 Ruoff, Lorents (bib33) 1995; 33 Voller, Prakash (bib41) 1987; 30 Surya, Prakash, Nallusamy (bib38) 2023; 72 Borrvall, Petersson (bib6) 2003; 41 Wang, Lazarov, Sigmund (bib43) 2011; 43 Singh, Sharma, Hekimoğlu (bib36) 2023; 64 Jayathunga, Karunathilake, Narayana, Witharana (bib16) 2023; 189 Zhang, Li, Chen (bib55) 2020; 259 Warzoha, Weigand, Fleischer (bib48) 2015; 137 Lohrasbi, Sheikholeslami, Ganji (bib25) 2017; 118 Wang, Wang, Ma, Liu (bib44) 2022; 135 Bruyneel, Duysinx, Fleury (bib7) 2002; 24 Karami, Kamkari (bib20) 2019; 146 Moench, Dittrich (bib29) 2022; 15 Deng, Liu, Zhang (bib9) 2012; 14 Pizzolato, Sharma, Maute (bib30) 2017; 113 Tian, Liu, Xu (bib40) 2021; 194 Wang, Xie, Xin (bib42) 2009; 488 Kim, Sun (bib21) 2012; 13 Zhang, Zhu, Gong, Jia, Gao (bib56) 2023; 118 Ye, Khodadadi (bib51) 2022; 54 Wang, Wang, Liu (bib45) 2022; 15 Castro, Kiyono, Silva (bib8) 2015; 88 Zhu, Jing (bib59) 2023; 62 Jegadheeswaran, Pohekar (bib17) 2009; 13 Tao, He (bib39) 2015; 143 Zhang, Yang, Zhang (bib57) 2023; 214 Zhao, Wu (bib58) 2011; 95 Huang, Eames, Norton (bib15) 2004; 47 Lazarov, Sigmund (bib22) 2011; 86 Shen, Zhang, Rehman Mazhar, Chen, Liu (bib34) 2022; 213 Biwole, Groulx, Souayfane, Chiu (bib5) 2018; 124 Al-Abidi, Mat, Sopian (bib1) 2013; 53 Liu, Shao (bib24) 2023; 186 Ziaei, Lorente, Bejan (bib61) 2015; 117 Wang, Yang, Song (bib46) 2023; 63 Marck, Nemer, Harion (bib28) 2013; 63 Giles (10.1016/j.jclepro.2023.140281_bib12) 2000; 65 Liu (10.1016/j.jclepro.2023.140281_bib24) 2023; 186 Gadhave (10.1016/j.jclepro.2023.140281_bib11) 2022; 43 Zhang (10.1016/j.jclepro.2023.140281_bib53) 2016; 53 Wang (10.1016/j.jclepro.2023.140281_bib42) 2009; 488 Yao (10.1016/j.jclepro.2023.140281_bib49) 2021; 159 Lee (10.1016/j.jclepro.2023.140281_bib23) 2020; 168 Jayathunga (10.1016/j.jclepro.2023.140281_bib16) 2023; 189 Bendsøe (10.1016/j.jclepro.2023.140281_bib4) 1988; 71 Wang (10.1016/j.jclepro.2023.140281_bib45) 2022; 15 Voller (10.1016/j.jclepro.2023.140281_bib41) 1987; 30 Ziaei (10.1016/j.jclepro.2023.140281_bib61) 2015; 117 Lohrasbi (10.1016/j.jclepro.2023.140281_bib25) 2017; 118 Castro (10.1016/j.jclepro.2023.140281_bib8) 2015; 88 Karami (10.1016/j.jclepro.2023.140281_bib20) 2019; 146 Zhu (10.1016/j.jclepro.2023.140281_bib59) 2023; 62 Kalnæs (10.1016/j.jclepro.2023.140281_bib18) 2015; 94 Eslami (10.1016/j.jclepro.2023.140281_bib10) 2021; 47 Kim (10.1016/j.jclepro.2023.140281_bib21) 2012; 13 Lu (10.1016/j.jclepro.2023.140281_bib27) 2022; 185 Tian (10.1016/j.jclepro.2023.140281_bib40) 2021; 194 Gong (10.1016/j.jclepro.2023.140281_bib13) 1999; 19 Zhang (10.1016/j.jclepro.2023.140281_bib56) 2023; 118 Shen (10.1016/j.jclepro.2023.140281_bib34) 2022; 213 Zhu (10.1016/j.jclepro.2023.140281_bib60) 2022; 55 Yavari (10.1016/j.jclepro.2023.140281_bib50) 2011; 115 Ali (10.1016/j.jclepro.2023.140281_bib3) 2023; 100 Warzoha (10.1016/j.jclepro.2023.140281_bib48) 2015; 137 Pizzolato (10.1016/j.jclepro.2023.140281_bib30) 2017; 113 Singh (10.1016/j.jclepro.2023.140281_bib36) 2023; 64 Wang (10.1016/j.jclepro.2023.140281_bib47) 2023; 458 Moench (10.1016/j.jclepro.2023.140281_bib29) 2022; 15 Marck (10.1016/j.jclepro.2023.140281_bib28) 2013; 63 Wang (10.1016/j.jclepro.2023.140281_bib44) 2022; 135 Zhang (10.1016/j.jclepro.2023.140281_bib55) 2020; 259 Zeng (10.1016/j.jclepro.2023.140281_bib52) 2010; 101 Ronald (10.1016/j.jclepro.2023.140281_bib32) 1997; 78 Shmueli (10.1016/j.jclepro.2023.140281_bib35) 2010; 53 Lazarov (10.1016/j.jclepro.2023.140281_bib22) 2011; 86 Lu (10.1016/j.jclepro.2023.140281_bib26) 2021; 187 Jegadheeswaran (10.1016/j.jclepro.2023.140281_bib17) 2009; 13 Surya (10.1016/j.jclepro.2023.140281_bib38) 2023; 72 Bruyneel (10.1016/j.jclepro.2023.140281_bib7) 2002; 24 Wang (10.1016/j.jclepro.2023.140281_bib43) 2011; 43 Sun (10.1016/j.jclepro.2023.140281_bib37) 2023; 259 Zhang (10.1016/j.jclepro.2023.140281_bib54) 2016; 53 Ruoff (10.1016/j.jclepro.2023.140281_bib33) 1995; 33 Kamkari (10.1016/j.jclepro.2023.140281_bib19) 2014; 72 Pizzolato (10.1016/j.jclepro.2023.140281_bib31) 2019; 203 He (10.1016/j.jclepro.2023.140281_bib14) 2022; 156 Al-Abidi (10.1016/j.jclepro.2023.140281_bib1) 2013; 53 Huang (10.1016/j.jclepro.2023.140281_bib15) 2004; 47 Zhang (10.1016/j.jclepro.2023.140281_bib57) 2023; 214 Ye (10.1016/j.jclepro.2023.140281_bib51) 2022; 54 Borrvall (10.1016/j.jclepro.2023.140281_bib6) 2003; 41 Zhao (10.1016/j.jclepro.2023.140281_bib58) 2011; 95 Tao (10.1016/j.jclepro.2023.140281_bib39) 2015; 143 Deng (10.1016/j.jclepro.2023.140281_bib9) 2012; 14 Alexandersen (10.1016/j.jclepro.2023.140281_bib2) 2014; 76 Wang (10.1016/j.jclepro.2023.140281_bib46) 2023; 63 Biwole (10.1016/j.jclepro.2023.140281_bib5) 2018; 124 |
References_xml | – volume: 135 start-page: 2475 year: 2022 end-page: 2501 ident: bib44 article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor publication-title: React. Kinet. Mech. Catal. – volume: 95 start-page: 636 year: 2011 end-page: 643 ident: bib58 article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite publication-title: Sol. Energy Mater. Sol. Cells – volume: 259 year: 2020 ident: bib55 article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins publication-title: Appl. Energy – volume: 76 start-page: 699 year: 2014 end-page: 721 ident: bib2 article-title: Topology optimization for natural convection problems publication-title: Int. J. Numer. Methods Fluid. – volume: 65 start-page: 393 year: 2000 end-page: 415 ident: bib12 article-title: An introduction to the adjoint approach to design publication-title: Flow, Turbul. Combust. – volume: 63 start-page: 508 year: 2013 end-page: 539 ident: bib28 article-title: Topology optimization of heat and mass transfer problems: laminar flow publication-title: Numer Heat Tr B- Fund – volume: 143 start-page: 38 year: 2015 end-page: 46 ident: bib39 article-title: Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube publication-title: Appl. Energy – volume: 203 year: 2019 ident: bib31 article-title: Maximization of performance in multi-tube latent heat storage-Optimization of fins topology, effect of materials selection and flow arrangements publication-title: Energy – volume: 15 start-page: 2746 year: 2022 ident: bib29 article-title: Influence of natural convection and volume change on numerical simulation of phase change materials for latent heat storage publication-title: Energies – volume: 47 start-page: 2715 year: 2004 end-page: 2733 ident: bib15 article-title: Thermal regulation of building-integrated photovoltaics using phase change materials publication-title: Int. J. Heat Mass Tran. – volume: 187 year: 2021 ident: bib26 article-title: Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit publication-title: Appl. Therm. Eng. – volume: 118 start-page: 272 year: 2023 end-page: 302 ident: bib56 article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model publication-title: Appl. Math. Model. – volume: 13 start-page: 2225 year: 2009 end-page: 2244 ident: bib17 article-title: Performance enhancement in latent heat thermal storage system: a review publication-title: Renew. Sustain. Energy Rev. – volume: 159 year: 2021 ident: bib49 article-title: Topology optimization for heat transfer enhancement in latent heat storage publication-title: Int. J. Therm. Sci. – volume: 55 year: 2022 ident: bib60 article-title: Heat transfer enhancement technology for fins in phase change energy storage publication-title: J. Energy Storage – volume: 124 start-page: 433 year: 2018 end-page: 446 ident: bib5 article-title: Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure publication-title: Int. J. Therm. Sci. – volume: 186 year: 2023 ident: bib24 article-title: Recent advances of low-temperature cascade phase change energy storage technology: a state-of-the-art review publication-title: Renew. Sustain. Energy Rev. – volume: 194 year: 2021 ident: bib40 article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage publication-title: Appl. Therm. Eng. – volume: 117 year: 2015 ident: bib61 article-title: Morphing tree structures for latent thermal energy storage publication-title: J. Appl. Phys. – volume: 72 start-page: 186 year: 2014 end-page: 200 ident: bib19 article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure publication-title: Int. J. Heat Mass Tran. – volume: 33 start-page: 925 year: 1995 end-page: 930 ident: bib33 article-title: Mechanical and thermal properties of carbon nanotubes publication-title: Carbon – volume: 86 start-page: 765 year: 2011 end-page: 781 ident: bib22 article-title: Filters in topology optimization based on Helmholtz-type differential equations publication-title: Int. J. Numer. Methods Eng. – volume: 488 start-page: 39 year: 2009 end-page: 42 ident: bib42 article-title: Thermal properties of paraffin based composites containing multi-walled carbon nanotubes publication-title: Thermochim. Acta – volume: 146 start-page: 45 year: 2019 end-page: 60 ident: bib20 article-title: Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units publication-title: Appl. Therm. Eng. – volume: 115 start-page: 8753 year: 2011 end-page: 8758 ident: bib50 article-title: Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives publication-title: J. Phys. Chem. C – volume: 43 start-page: 767 year: 2011 end-page: 784 ident: bib43 article-title: On projection methods, convergence and robust formulations in topology optimization publication-title: Struct Multidiscip O – volume: 72 year: 2023 ident: bib38 article-title: Heat transfer enhancement and performance study on latent heat thermal energy storage system using different configurations of spherical PCM balls publication-title: J. Energy Storage – volume: 101 start-page: 385 year: 2010 end-page: 389 ident: bib52 article-title: Thermal conductivity enhancement of Ag nanowires on an organic phase change material publication-title: J. Therm. Anal. Calorim. – volume: 30 start-page: 1709 year: 1987 end-page: 1719 ident: bib41 article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems publication-title: Int. J. Heat Mass Tran. – volume: 88 start-page: 880 year: 2015 end-page: 890 ident: bib8 article-title: Design of radiative enclosures by using topology optimization publication-title: Int. J. Heat Mass Tran. – volume: 213 year: 2022 ident: bib34 article-title: Experimental analysis of a fin-enhanced three-tube-shell cascaded latent heat storage system publication-title: Appl. Therm. Eng. – volume: 113 start-page: 875 year: 2017 end-page: 888 ident: bib30 article-title: Topology optimization for heat transfer enhancement in latent heat thermal energy storage publication-title: Int. J. Heat Mass Tran. – volume: 53 start-page: 147 year: 2013 end-page: 156 ident: bib1 article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers publication-title: Appl. Therm. Eng. – volume: 53 start-page: 409 year: 2016 end-page: 424 ident: bib54 article-title: Topology optimization design of non-Newtonian roller-type viscous micropumps publication-title: Struct Multidiscip O – volume: 64 year: 2023 ident: bib36 article-title: Expanded waste glass/methyl palmitate/carbon nanofibers as effective shape stabilized and thermal enhanced composite phase change material for thermal energy storage publication-title: J. Energy Storage – volume: 54 year: 2022 ident: bib51 article-title: Effects of arrow-shape fins on the melting performance of a horizontal shell-and-tube latent heat thermal energy storage unit publication-title: J. Energy Storage – volume: 156 year: 2022 ident: bib14 article-title: Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods publication-title: Renew. Sustain. Energy Rev. – volume: 189 year: 2023 ident: bib16 article-title: Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications-A review publication-title: Renew. Sustain. Energy Rev. – volume: 53 start-page: 4082 year: 2010 end-page: 4091 ident: bib35 article-title: Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments publication-title: Int. J. Heat Mass Tran. – volume: 43 start-page: 4181 year: 2022 end-page: 4206 ident: bib11 article-title: Comprehensive review of phase change material based latent heat thermal energy storage system publication-title: Int. J. Ambient Energy – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: bib4 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 14 start-page: 929 year: 2012 end-page: 945 ident: bib9 article-title: A flexible layout design method for passive micromixers publication-title: Biomedi microdevices – volume: 15 start-page: 1 year: 2022 end-page: 18 ident: bib45 article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer publication-title: Energies – volume: 137 start-page: 716 year: 2015 end-page: 725 ident: bib48 article-title: Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers publication-title: Appl. Energy – volume: 24 start-page: 263 year: 2002 end-page: 276 ident: bib7 article-title: A family of MMA approximations for structural optimization publication-title: Struct Multidiscip O – volume: 13 start-page: 783 year: 2012 end-page: 789 ident: bib21 article-title: Topology optimization of gas flow channel routes in an automotive fuel cell publication-title: Int. J. Automot. Technol. – volume: 47 year: 2021 ident: bib10 article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review publication-title: Sustain Energy Techn – volume: 458 year: 2023 ident: bib47 article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm publication-title: Chem. Eng. J. – volume: 259 year: 2023 ident: bib37 article-title: Thermal design of composite cold plates by topology optimization publication-title: Int. J. Mech. Sci. – volume: 185 year: 2022 ident: bib27 article-title: Enhancement of the charging and discharging performance of a vertical latent heat thermal energy storage unit via conical shell design publication-title: Int. J. Heat Mass Tran. – volume: 168 year: 2020 ident: bib23 article-title: Topology optimization of a heat sink with an axially uniform cross-section cooled by forced convection publication-title: Int. J. Heat Mass Tran. – volume: 214 year: 2023 ident: bib57 article-title: Phase change heat transfer enhancement based on topology optimization of fin structure publication-title: Int. J. Heat Mass Tran. – volume: 94 start-page: 150 year: 2015 end-page: 176 ident: bib18 article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities publication-title: Energy Build. – volume: 118 start-page: 430 year: 2017 end-page: 447 ident: bib25 article-title: Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles publication-title: Appl. Therm. Eng. – volume: 78 start-page: 2577 year: 1997 end-page: 2592 ident: bib32 article-title: What is an adjoint model? publication-title: Bull. Am. Meteorol. Soc. – volume: 100 year: 2023 ident: bib3 article-title: Advances in thermal energy storage: fundamentals and applications publication-title: Prog Energ Combust – volume: 41 start-page: 77 year: 2003 end-page: 107 ident: bib6 article-title: Topology optimization of fluids in Stokes flow publication-title: Int. J. Numer. Methods Fluid. – volume: 19 start-page: 1237 year: 1999 end-page: 1251 ident: bib13 article-title: Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall publication-title: Appl. Therm. Eng. – volume: 63 year: 2023 ident: bib46 article-title: Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: a review publication-title: J. Energy Storage – volume: 53 start-page: 1 year: 2016 end-page: 40 ident: bib53 article-title: Thermal energy storage: recent developments and practical aspects publication-title: Prog. Energy Combust. Sci. – volume: 62 year: 2023 ident: bib59 article-title: Numerical study on thermal and melting performances of a horizontal latent heat storage unit with branched tree-like convergent fins publication-title: J. Energy Storage – volume: 458 issue: 15 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib47 article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm publication-title: Chem. Eng. J. – volume: 13 start-page: 2225 year: 2009 ident: 10.1016/j.jclepro.2023.140281_bib17 article-title: Performance enhancement in latent heat thermal storage system: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.06.024 – volume: 78 start-page: 2577 year: 1997 ident: 10.1016/j.jclepro.2023.140281_bib32 article-title: What is an adjoint model? publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2 – volume: 135 start-page: 2475 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib44 article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor publication-title: React. Kinet. Mech. Catal. doi: 10.1007/s11144-022-02259-x – volume: 53 start-page: 1 year: 2016 ident: 10.1016/j.jclepro.2023.140281_bib53 article-title: Thermal energy storage: recent developments and practical aspects publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2015.10.003 – volume: 88 start-page: 880 year: 2015 ident: 10.1016/j.jclepro.2023.140281_bib8 article-title: Design of radiative enclosures by using topology optimization publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.04.077 – volume: 137 start-page: 716 year: 2015 ident: 10.1016/j.jclepro.2023.140281_bib48 article-title: Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.091 – volume: 19 start-page: 1237 year: 1999 ident: 10.1016/j.jclepro.2023.140281_bib13 article-title: Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(99)00003-4 – volume: 203 year: 2019 ident: 10.1016/j.jclepro.2023.140281_bib31 article-title: Maximization of performance in multi-tube latent heat storage-Optimization of fins topology, effect of materials selection and flow arrangements publication-title: Energy – volume: 15 start-page: 1 issue: 23 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib45 article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer publication-title: Energies doi: 10.3390/en15238827 – volume: 95 start-page: 636 year: 2011 ident: 10.1016/j.jclepro.2023.140281_bib58 article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.09.032 – volume: 213 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib34 article-title: Experimental analysis of a fin-enhanced three-tube-shell cascaded latent heat storage system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118717 – volume: 53 start-page: 147 year: 2013 ident: 10.1016/j.jclepro.2023.140281_bib1 article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.01.011 – volume: 63 start-page: 508 issue: 6 year: 2013 ident: 10.1016/j.jclepro.2023.140281_bib28 article-title: Topology optimization of heat and mass transfer problems: laminar flow publication-title: Numer Heat Tr B- Fund doi: 10.1080/10407790.2013.772001 – volume: 30 start-page: 1709 year: 1987 ident: 10.1016/j.jclepro.2023.140281_bib41 article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems publication-title: Int. J. Heat Mass Tran. doi: 10.1016/0017-9310(87)90317-6 – volume: 86 start-page: 765 year: 2011 ident: 10.1016/j.jclepro.2023.140281_bib22 article-title: Filters in topology optimization based on Helmholtz-type differential equations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.3072 – volume: 94 start-page: 150 year: 2015 ident: 10.1016/j.jclepro.2023.140281_bib18 article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.023 – volume: 124 start-page: 433 year: 2018 ident: 10.1016/j.jclepro.2023.140281_bib5 article-title: Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.10.038 – volume: 488 start-page: 39 issue: 1–2 year: 2009 ident: 10.1016/j.jclepro.2023.140281_bib42 article-title: Thermal properties of paraffin based composites containing multi-walled carbon nanotubes publication-title: Thermochim. Acta doi: 10.1016/j.tca.2009.01.022 – volume: 24 start-page: 263 year: 2002 ident: 10.1016/j.jclepro.2023.140281_bib7 article-title: A family of MMA approximations for structural optimization publication-title: Struct Multidiscip O doi: 10.1007/s00158-002-0238-7 – volume: 47 year: 2021 ident: 10.1016/j.jclepro.2023.140281_bib10 article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review publication-title: Sustain Energy Techn – volume: 186 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib24 article-title: Recent advances of low-temperature cascade phase change energy storage technology: a state-of-the-art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113641 – volume: 63 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib46 article-title: Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: a review publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107047 – volume: 55 issue: 30 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib60 article-title: Heat transfer enhancement technology for fins in phase change energy storage publication-title: J. Energy Storage – volume: 43 start-page: 767 year: 2011 ident: 10.1016/j.jclepro.2023.140281_bib43 article-title: On projection methods, convergence and robust formulations in topology optimization publication-title: Struct Multidiscip O doi: 10.1007/s00158-010-0602-y – volume: 185 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib27 article-title: Enhancement of the charging and discharging performance of a vertical latent heat thermal energy storage unit via conical shell design publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2021.122393 – volume: 64 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib36 article-title: Expanded waste glass/methyl palmitate/carbon nanofibers as effective shape stabilized and thermal enhanced composite phase change material for thermal energy storage publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107205 – volume: 72 start-page: 186 year: 2014 ident: 10.1016/j.jclepro.2023.140281_bib19 article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2014.01.014 – volume: 53 start-page: 409 issue: 3 year: 2016 ident: 10.1016/j.jclepro.2023.140281_bib54 article-title: Topology optimization design of non-Newtonian roller-type viscous micropumps publication-title: Struct Multidiscip O doi: 10.1007/s00158-015-1346-5 – volume: 43 start-page: 4181 issue: 1 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib11 article-title: Comprehensive review of phase change material based latent heat thermal energy storage system publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2021.1873848 – volume: 118 start-page: 272 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib56 article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2023.01.028 – volume: 146 start-page: 45 year: 2019 ident: 10.1016/j.jclepro.2023.140281_bib20 article-title: Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.09.105 – volume: 71 start-page: 197 issue: 2 year: 1988 ident: 10.1016/j.jclepro.2023.140281_bib4 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90086-2 – volume: 54 issue: 11 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib51 article-title: Effects of arrow-shape fins on the melting performance of a horizontal shell-and-tube latent heat thermal energy storage unit publication-title: J. Energy Storage – volume: 115 start-page: 8753 issue: 17 year: 2011 ident: 10.1016/j.jclepro.2023.140281_bib50 article-title: Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives publication-title: J. Phys. Chem. C doi: 10.1021/jp200838s – volume: 53 start-page: 4082 year: 2010 ident: 10.1016/j.jclepro.2023.140281_bib35 article-title: Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2010.05.028 – volume: 76 start-page: 699 year: 2014 ident: 10.1016/j.jclepro.2023.140281_bib2 article-title: Topology optimization for natural convection problems publication-title: Int. J. Numer. Methods Fluid. doi: 10.1002/fld.3954 – volume: 118 start-page: 430 year: 2017 ident: 10.1016/j.jclepro.2023.140281_bib25 article-title: Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.005 – volume: 187 year: 2021 ident: 10.1016/j.jclepro.2023.140281_bib26 article-title: Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116575 – volume: 113 start-page: 875 year: 2017 ident: 10.1016/j.jclepro.2023.140281_bib30 article-title: Topology optimization for heat transfer enhancement in latent heat thermal energy storage publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.05.098 – volume: 65 start-page: 393 year: 2000 ident: 10.1016/j.jclepro.2023.140281_bib12 article-title: An introduction to the adjoint approach to design publication-title: Flow, Turbul. Combust. doi: 10.1023/A:1011430410075 – volume: 15 start-page: 2746 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib29 article-title: Influence of natural convection and volume change on numerical simulation of phase change materials for latent heat storage publication-title: Energies doi: 10.3390/en15082746 – volume: 259 year: 2020 ident: 10.1016/j.jclepro.2023.140281_bib55 article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114102 – volume: 72 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib38 article-title: Heat transfer enhancement and performance study on latent heat thermal energy storage system using different configurations of spherical PCM balls publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108643 – volume: 159 year: 2021 ident: 10.1016/j.jclepro.2023.140281_bib49 article-title: Topology optimization for heat transfer enhancement in latent heat storage publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106578 – volume: 14 start-page: 929 issue: 5 year: 2012 ident: 10.1016/j.jclepro.2023.140281_bib9 article-title: A flexible layout design method for passive micromixers publication-title: Biomedi microdevices doi: 10.1007/s10544-012-9672-5 – volume: 100 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib3 article-title: Advances in thermal energy storage: fundamentals and applications publication-title: Prog Energ Combust – volume: 143 start-page: 38 issue: 1 year: 2015 ident: 10.1016/j.jclepro.2023.140281_bib39 article-title: Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.008 – volume: 117 year: 2015 ident: 10.1016/j.jclepro.2023.140281_bib61 article-title: Morphing tree structures for latent thermal energy storage publication-title: J. Appl. Phys. doi: 10.1063/1.4921442 – volume: 189 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib16 article-title: Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications-A review publication-title: Renew. Sustain. Energy Rev. – volume: 194 year: 2021 ident: 10.1016/j.jclepro.2023.140281_bib40 article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117104 – volume: 101 start-page: 385 issue: 1 year: 2010 ident: 10.1016/j.jclepro.2023.140281_bib52 article-title: Thermal conductivity enhancement of Ag nanowires on an organic phase change material publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-009-0472-y – volume: 168 year: 2020 ident: 10.1016/j.jclepro.2023.140281_bib23 article-title: Topology optimization of a heat sink with an axially uniform cross-section cooled by forced convection publication-title: Int. J. Heat Mass Tran. – volume: 214 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib57 article-title: Phase change heat transfer enhancement based on topology optimization of fin structure publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2023.124402 – volume: 41 start-page: 77 issue: 1 year: 2003 ident: 10.1016/j.jclepro.2023.140281_bib6 article-title: Topology optimization of fluids in Stokes flow publication-title: Int. J. Numer. Methods Fluid. doi: 10.1002/fld.426 – volume: 33 start-page: 925 year: 1995 ident: 10.1016/j.jclepro.2023.140281_bib33 article-title: Mechanical and thermal properties of carbon nanotubes publication-title: Carbon doi: 10.1016/0008-6223(95)00021-5 – volume: 47 start-page: 2715 year: 2004 ident: 10.1016/j.jclepro.2023.140281_bib15 article-title: Thermal regulation of building-integrated photovoltaics using phase change materials publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2003.11.015 – volume: 259 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib37 article-title: Thermal design of composite cold plates by topology optimization publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108594 – volume: 156 year: 2022 ident: 10.1016/j.jclepro.2023.140281_bib14 article-title: Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111977 – volume: 13 start-page: 783 year: 2012 ident: 10.1016/j.jclepro.2023.140281_bib21 article-title: Topology optimization of gas flow channel routes in an automotive fuel cell publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-012-0078-4 – volume: 62 year: 2023 ident: 10.1016/j.jclepro.2023.140281_bib59 article-title: Numerical study on thermal and melting performances of a horizontal latent heat storage unit with branched tree-like convergent fins publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106889 |
SSID | ssj0017074 |
Score | 2.4958246 |
Snippet | The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 140281 |
SubjectTerms | algorithms carbon nanotubes convection evolution Heat transfer enhancement latent heat Mechanism analysis Optimization method Phase change phase transition physical activity system optimization thermal energy Thermal energy storage topology |
Title | Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model |
URI | https://dx.doi.org/10.1016/j.jclepro.2023.140281 https://www.proquest.com/docview/3153188289 |
Volume | 434 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuxAEG1EN7q4-ESvD0pwm5lk0nn0UkQZFdyo4K5Jv3SGm2TQzMLN_RS_1ap04gtEcBUS0klIdU6drlSdYuwo5MZlVuQB_fMJuOEqyLUTAboyk2jky65o1T6v0vEtv7hL7hbYSV8LQ2mVHfZ7TG_Rujsy7N7mcDaZDK8pgpUmo5TCmuhWSXab84xm-eD_W5pHlIVeiZnCXXT2exXPcDqY4sUQqAbUQxwxAx8w-s4_fUHq1v2crbI_HW-EY_9oa2zBVuts5YOa4AZ7GSOuQtMyUfsIs_eSALDVA20pEghFZaC0VPA7eSpxz4uSQO2AuGCJN7FtPSBQ3iSiDczxqwfTZnpYA-oZKFf-HgooazNxSGH9PamwEhrfc-EZaoSisqvxhLbdzia7PTu9ORkHXfuFQCOLaYIcrZXzyOEix2Sjgodaq0irES4AIxWnYSGUSrSLwiJW1kVoWhdmqSa1F614IuIttljVld1mIBzpjwpTIBnhyKmEEUksOLKH0CFDUjuM9y9d6k6bnFpk_JN9EtpUdraSZCvpbbXDBm_DZl6c46cBeW9R-WmWSXQgPw097GeAxC-QfqsUla3nTzJGpxHltHL9-_vL77Jl3OM-uLPHFpvHud1HutOog3Y-H7Cl4_PL8dUrSPIDPA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF7RcGg5oD5VoJSp1KsTO1473iNCRebRXAoSt5X31Saq7QicA3-G38qMdw2lUoXUkxVHa1ue9Tffzs58w9jXmBs3s6KIaM8n4oarqNBOROjKTKaRL7uqV_uc5-UlP73KrjbY0VALQ2mVAfs9pvdoHc5MwtucrBaLyQ-KYOXZNKewJrrV_AXbJHWqbMQ2D0_OyvnDZsIs9mLMFPGiAY-FPJPleInXQ6waUxtxhA18xuRfLuovsO490PFrth2oIxz6p3vDNmzzlm39ISj4jt2VCK3Q9WTUXsPqsSoAbPOLjhQMhKoxUFuq-V3c1PjL65JA64DoYI03sX1JIFDqJAIOrPHDB9Mne1gD6hYoXf4nVFC3ZuGQxfp7Um0ldL7twi20iEZ1KPOEvuPOe3Z5_O3iqIxCB4ZII5HpogINVvDE4TrHzKYVj7VWiVZTXAMmKs3jSiiVaZfEVaqsS9C6Lp7lmgRftOKZSD-wUdM29iMD4UiCVJgK-QhHWiWMyFLBkUDEDkmS2mF8eOlSB3ly6pLxWw55aEsZbCXJVtLbaoeNH4atvD7HcwOKwaLyyUST6EOeG_plmAESP0LaWaka265vZIp-Iylo8br7_5c_YC_Li-_n8vxkfrbHXuE_3Md6PrFRd722-8h-OvU5zO57Gq0F7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+performance+enhancement+and+mechanism+analysis+of+thermal+energy+storage+unit+designed+by+using+a+modified+transient+topology+optimization+model&rft.jtitle=Journal+of+cleaner+production&rft.au=Wang%2C+Jiahao&rft.au=Liu%2C+Xiaomin&rft.au=Desideri%2C+Umberto&rft.date=2024-01-01&rft.issn=0959-6526&rft.volume=434+p.140281-&rft_id=info:doi/10.1016%2Fj.jclepro.2023.140281&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |