Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model

The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and r...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 434; p. 140281
Main Authors Wang, Jiahao, Liu, Xiaomin, Desideri, Umberto
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and rarely adopts the optimizing form of unconstrained structure evolution in the process. So this study proposes a modified transient topology optimization (TO) model to seek the optimal distribution of the fins embedded into PCM subject to the constraints of fin area and specified time. This topology optimization problem is formulated using the density-based material design variable in governing equations, physical constraints, etc. The design freedom and procedural iterative solving of TO model allow for the free evolution of innovative fin structures and elucidate the interaction mechanism between the fin design and physical occurring processes. The double interpolation function, variable regularization, adjoint-based sensitivity analysis and GCMMA algorithm are established to further improve TO model to obtain high-precision solutions. Using above methods, the regular evolution mechanism of fins and physical performance parameters and the trade-off between performance and structure are analyzed. Then, the effects and reasons of pure paraffin (PW) and the adding carbon nanotubes (nPW) on changes in topology structure and performance parameters are also comparatively studied. Finally, by comparing TO-fins with conventional rectangular fins, the superiority of the established method is verified, and the performance improvement mechanism and extent of TO-fins are revealed. Results show that TO-fin LHTES with nPW can achieve better performance than TO-fin LHTES with PW under fewer branches and shorter branch length. The uniform distribution and multi-branch characteristics of TO-fins greatly shorten the heat conduction path, and its local segmentation of whole PCM enhances the local convection effect. •Modified topology optimization method for LHTES design is established and validated.•LHTES fin freely unconstrained evolves in process under modified optimization model.•The effects of pure PW and PW with nanoparticles on optimal solutions are studied.•Fin structure evolution principles and its trade-off with performance are analyzed.•Revealed physical mechanism and extent of performance enhancement for optimal fins.
AbstractList The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and rarely adopts the optimizing form of unconstrained structure evolution in the process. So this study proposes a modified transient topology optimization (TO) model to seek the optimal distribution of the fins embedded into PCM subject to the constraints of fin area and specified time. This topology optimization problem is formulated using the density-based material design variable in governing equations, physical constraints, etc. The design freedom and procedural iterative solving of TO model allow for the free evolution of innovative fin structures and elucidate the interaction mechanism between the fin design and physical occurring processes. The double interpolation function, variable regularization, adjoint-based sensitivity analysis and GCMMA algorithm are established to further improve TO model to obtain high-precision solutions. Using above methods, the regular evolution mechanism of fins and physical performance parameters and the trade-off between performance and structure are analyzed. Then, the effects and reasons of pure paraffin (PW) and the adding carbon nanotubes (nPW) on changes in topology structure and performance parameters are also comparatively studied. Finally, by comparing TO-fins with conventional rectangular fins, the superiority of the established method is verified, and the performance improvement mechanism and extent of TO-fins are revealed. Results show that TO-fin LHTES with nPW can achieve better performance than TO-fin LHTES with PW under fewer branches and shorter branch length. The uniform distribution and multi-branch characteristics of TO-fins greatly shorten the heat conduction path, and its local segmentation of whole PCM enhances the local convection effect.
The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the heat transfer rate of the latent heat thermal energy storage (LHTES). The current fin design concentrates on the limited design space, and rarely adopts the optimizing form of unconstrained structure evolution in the process. So this study proposes a modified transient topology optimization (TO) model to seek the optimal distribution of the fins embedded into PCM subject to the constraints of fin area and specified time. This topology optimization problem is formulated using the density-based material design variable in governing equations, physical constraints, etc. The design freedom and procedural iterative solving of TO model allow for the free evolution of innovative fin structures and elucidate the interaction mechanism between the fin design and physical occurring processes. The double interpolation function, variable regularization, adjoint-based sensitivity analysis and GCMMA algorithm are established to further improve TO model to obtain high-precision solutions. Using above methods, the regular evolution mechanism of fins and physical performance parameters and the trade-off between performance and structure are analyzed. Then, the effects and reasons of pure paraffin (PW) and the adding carbon nanotubes (nPW) on changes in topology structure and performance parameters are also comparatively studied. Finally, by comparing TO-fins with conventional rectangular fins, the superiority of the established method is verified, and the performance improvement mechanism and extent of TO-fins are revealed. Results show that TO-fin LHTES with nPW can achieve better performance than TO-fin LHTES with PW under fewer branches and shorter branch length. The uniform distribution and multi-branch characteristics of TO-fins greatly shorten the heat conduction path, and its local segmentation of whole PCM enhances the local convection effect. •Modified topology optimization method for LHTES design is established and validated.•LHTES fin freely unconstrained evolves in process under modified optimization model.•The effects of pure PW and PW with nanoparticles on optimal solutions are studied.•Fin structure evolution principles and its trade-off with performance are analyzed.•Revealed physical mechanism and extent of performance enhancement for optimal fins.
ArticleNumber 140281
Author Desideri, Umberto
Wang, Jiahao
Liu, Xiaomin
Author_xml – sequence: 1
  givenname: Jiahao
  orcidid: 0000-0001-7955-9349
  surname: Wang
  fullname: Wang, Jiahao
  organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Xiaomin
  orcidid: 0000-0003-1849-9295
  surname: Liu
  fullname: Liu, Xiaomin
  email: liuxm@xjtu.edu.cn
  organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: Umberto
  orcidid: 0000-0001-7360-5762
  surname: Desideri
  fullname: Desideri, Umberto
  organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122, Italy
BookMark eNqFkTtPBCEUhSk08fkTTChtdoV5TyyMMb4SExutCQOX9W4YGIE1WX-Mv1XGtbKxunDznUM454jsOe-AkDPOlpzx5mK9XCsLU_DLghXlkles6PgeOWR93S-aumgOyFGMa8Z4y9rqkHw9gEw0BemigUAnCMaHUToFFNzbPEdwiUqn6QgqLzCO-SbtNmKk3tD0Bpm3mYaw2tKYfJAroBuHiWqIuHKg6bClm4huRSUdvUaDeffzJs7myU_e-iz2U8IRP2VC72YQ7AnZN9JGOP2dx-T17vbl5mHx9Hz_eHP9tFBl16dF1-m6q7hhfaPbQlZMqYGroWh5y4eyYbIfhloZzmQ5gOE6n1nbqL5hlRqqui-PyfnONyf3voGYxIhRgbXSgd9EUfK65F1XdDNa71AVfIwBjJgCjjJsBWdi7kCsxW8HYu5A7DrIuss_OoXp56s5CbT_qq92asgpfCAEEVUOT4HGACoJ7fEfh2_3269f
CitedBy_id crossref_primary_10_3390_en18051302
crossref_primary_10_1016_j_enconman_2024_119440
crossref_primary_10_1016_j_icheatmasstransfer_2025_108626
crossref_primary_10_1016_j_applthermaleng_2024_123855
crossref_primary_10_1016_j_apenergy_2024_124596
crossref_primary_10_1016_j_applthermaleng_2024_123606
crossref_primary_10_1016_j_apenergy_2024_123131
crossref_primary_10_1016_j_applthermaleng_2024_125168
crossref_primary_10_1016_j_tsep_2024_102675
crossref_primary_10_1016_j_est_2024_115279
crossref_primary_10_1016_j_applthermaleng_2025_126135
crossref_primary_10_1016_j_ijhydene_2025_03_038
crossref_primary_10_1016_j_applthermaleng_2024_123480
Cites_doi 10.1016/j.rser.2009.06.024
10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
10.1007/s11144-022-02259-x
10.1016/j.pecs.2015.10.003
10.1016/j.ijheatmasstransfer.2015.04.077
10.1016/j.apenergy.2014.03.091
10.1016/S1359-4311(99)00003-4
10.3390/en15238827
10.1016/j.solmat.2010.09.032
10.1016/j.applthermaleng.2022.118717
10.1016/j.applthermaleng.2013.01.011
10.1080/10407790.2013.772001
10.1016/0017-9310(87)90317-6
10.1002/nme.3072
10.1016/j.enbuild.2015.02.023
10.1016/j.ijthermalsci.2017.10.038
10.1016/j.tca.2009.01.022
10.1007/s00158-002-0238-7
10.1016/j.rser.2023.113641
10.1016/j.est.2023.107047
10.1007/s00158-010-0602-y
10.1016/j.ijheatmasstransfer.2021.122393
10.1016/j.est.2023.107205
10.1016/j.ijheatmasstransfer.2014.01.014
10.1007/s00158-015-1346-5
10.1080/01430750.2021.1873848
10.1016/j.apm.2023.01.028
10.1016/j.applthermaleng.2018.09.105
10.1016/0045-7825(88)90086-2
10.1021/jp200838s
10.1016/j.ijheatmasstransfer.2010.05.028
10.1002/fld.3954
10.1016/j.applthermaleng.2017.03.005
10.1016/j.applthermaleng.2021.116575
10.1016/j.ijheatmasstransfer.2017.05.098
10.1023/A:1011430410075
10.3390/en15082746
10.1016/j.apenergy.2019.114102
10.1016/j.est.2023.108643
10.1016/j.ijthermalsci.2020.106578
10.1007/s10544-012-9672-5
10.1016/j.apenergy.2015.01.008
10.1063/1.4921442
10.1016/j.applthermaleng.2021.117104
10.1007/s10973-009-0472-y
10.1016/j.ijheatmasstransfer.2023.124402
10.1002/fld.426
10.1016/0008-6223(95)00021-5
10.1016/j.ijheatmasstransfer.2003.11.015
10.1016/j.ijmecsci.2023.108594
10.1016/j.rser.2021.111977
10.1007/s12239-012-0078-4
10.1016/j.est.2023.106889
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2023.140281
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jclepro_2023_140281
S0959652623044396
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c389t-88d5841f096d72a40ccb1cb27171b360a9bb5cf10a3bef1d5cf076c9604cb4593
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Wed Jul 02 03:21:50 EDT 2025
Tue Jul 01 04:42:49 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Sat Feb 01 16:08:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Heat transfer enhancement
Thermal energy storage
Phase change
Mechanism analysis
Optimization method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-88d5841f096d72a40ccb1cb27171b360a9bb5cf10a3bef1d5cf076c9604cb4593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1849-9295
0000-0001-7955-9349
0000-0001-7360-5762
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0959652623044396
PQID 3153188289
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153188289
crossref_primary_10_1016_j_jclepro_2023_140281
crossref_citationtrail_10_1016_j_jclepro_2023_140281
elsevier_sciencedirect_doi_10_1016_j_jclepro_2023_140281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yavari, Fard, Pashayi (bib50) 2011; 115
Bendsøe, Kikuchi (bib4) 1988; 71
Gong, Devahastin, Mujumdar (bib13) 1999; 19
Sun, Wang, Tian (bib37) 2023; 259
Zhu, Li, Zhu (bib60) 2022; 55
He, Guo, Zhang (bib14) 2022; 156
Kamkari, Shokouhmand, Bruno (bib19) 2014; 72
Pizzolato, Sharma, Ge (bib31) 2019; 203
Kalnæs, Jelle (bib18) 2015; 94
Lu, Zhang, Sun (bib26) 2021; 187
Wang, Liu, Wang (bib47) 2023; 458
Yao, Zhao, Zhao (bib49) 2021; 159
Zeng, Cao, Yang (bib52) 2010; 101
Lee, Lee, Kim (bib23) 2020; 168
Zhang, Baeyens, Cáceres (bib53) 2016; 53
Gadhave, Pathan, Kore, Prabhune (bib11) 2022; 43
Ronald (bib32) 1997; 78
Ali, Rehman, Arıcı (bib3) 2023; 100
Shmueli, Ziskind, Letan (bib35) 2010; 53
Giles, Pierce (bib12) 2000; 65
Zhang, Liu, Sun (bib54) 2016; 53
Alexandersen, Aage, Andreasen, Sigmund (bib2) 2014; 76
Lu, Zhang, Zhu, Zhang, Sun (bib27) 2022; 185
Eslami, Khosravi, Fallah Kohan (bib10) 2021; 47
Ruoff, Lorents (bib33) 1995; 33
Voller, Prakash (bib41) 1987; 30
Surya, Prakash, Nallusamy (bib38) 2023; 72
Borrvall, Petersson (bib6) 2003; 41
Wang, Lazarov, Sigmund (bib43) 2011; 43
Singh, Sharma, Hekimoğlu (bib36) 2023; 64
Jayathunga, Karunathilake, Narayana, Witharana (bib16) 2023; 189
Zhang, Li, Chen (bib55) 2020; 259
Warzoha, Weigand, Fleischer (bib48) 2015; 137
Lohrasbi, Sheikholeslami, Ganji (bib25) 2017; 118
Wang, Wang, Ma, Liu (bib44) 2022; 135
Bruyneel, Duysinx, Fleury (bib7) 2002; 24
Karami, Kamkari (bib20) 2019; 146
Moench, Dittrich (bib29) 2022; 15
Deng, Liu, Zhang (bib9) 2012; 14
Pizzolato, Sharma, Maute (bib30) 2017; 113
Tian, Liu, Xu (bib40) 2021; 194
Wang, Xie, Xin (bib42) 2009; 488
Kim, Sun (bib21) 2012; 13
Zhang, Zhu, Gong, Jia, Gao (bib56) 2023; 118
Ye, Khodadadi (bib51) 2022; 54
Wang, Wang, Liu (bib45) 2022; 15
Castro, Kiyono, Silva (bib8) 2015; 88
Zhu, Jing (bib59) 2023; 62
Jegadheeswaran, Pohekar (bib17) 2009; 13
Tao, He (bib39) 2015; 143
Zhang, Yang, Zhang (bib57) 2023; 214
Zhao, Wu (bib58) 2011; 95
Huang, Eames, Norton (bib15) 2004; 47
Lazarov, Sigmund (bib22) 2011; 86
Shen, Zhang, Rehman Mazhar, Chen, Liu (bib34) 2022; 213
Biwole, Groulx, Souayfane, Chiu (bib5) 2018; 124
Al-Abidi, Mat, Sopian (bib1) 2013; 53
Liu, Shao (bib24) 2023; 186
Ziaei, Lorente, Bejan (bib61) 2015; 117
Wang, Yang, Song (bib46) 2023; 63
Marck, Nemer, Harion (bib28) 2013; 63
Giles (10.1016/j.jclepro.2023.140281_bib12) 2000; 65
Liu (10.1016/j.jclepro.2023.140281_bib24) 2023; 186
Gadhave (10.1016/j.jclepro.2023.140281_bib11) 2022; 43
Zhang (10.1016/j.jclepro.2023.140281_bib53) 2016; 53
Wang (10.1016/j.jclepro.2023.140281_bib42) 2009; 488
Yao (10.1016/j.jclepro.2023.140281_bib49) 2021; 159
Lee (10.1016/j.jclepro.2023.140281_bib23) 2020; 168
Jayathunga (10.1016/j.jclepro.2023.140281_bib16) 2023; 189
Bendsøe (10.1016/j.jclepro.2023.140281_bib4) 1988; 71
Wang (10.1016/j.jclepro.2023.140281_bib45) 2022; 15
Voller (10.1016/j.jclepro.2023.140281_bib41) 1987; 30
Ziaei (10.1016/j.jclepro.2023.140281_bib61) 2015; 117
Lohrasbi (10.1016/j.jclepro.2023.140281_bib25) 2017; 118
Castro (10.1016/j.jclepro.2023.140281_bib8) 2015; 88
Karami (10.1016/j.jclepro.2023.140281_bib20) 2019; 146
Zhu (10.1016/j.jclepro.2023.140281_bib59) 2023; 62
Kalnæs (10.1016/j.jclepro.2023.140281_bib18) 2015; 94
Eslami (10.1016/j.jclepro.2023.140281_bib10) 2021; 47
Kim (10.1016/j.jclepro.2023.140281_bib21) 2012; 13
Lu (10.1016/j.jclepro.2023.140281_bib27) 2022; 185
Tian (10.1016/j.jclepro.2023.140281_bib40) 2021; 194
Gong (10.1016/j.jclepro.2023.140281_bib13) 1999; 19
Zhang (10.1016/j.jclepro.2023.140281_bib56) 2023; 118
Shen (10.1016/j.jclepro.2023.140281_bib34) 2022; 213
Zhu (10.1016/j.jclepro.2023.140281_bib60) 2022; 55
Yavari (10.1016/j.jclepro.2023.140281_bib50) 2011; 115
Ali (10.1016/j.jclepro.2023.140281_bib3) 2023; 100
Warzoha (10.1016/j.jclepro.2023.140281_bib48) 2015; 137
Pizzolato (10.1016/j.jclepro.2023.140281_bib30) 2017; 113
Singh (10.1016/j.jclepro.2023.140281_bib36) 2023; 64
Wang (10.1016/j.jclepro.2023.140281_bib47) 2023; 458
Moench (10.1016/j.jclepro.2023.140281_bib29) 2022; 15
Marck (10.1016/j.jclepro.2023.140281_bib28) 2013; 63
Wang (10.1016/j.jclepro.2023.140281_bib44) 2022; 135
Zhang (10.1016/j.jclepro.2023.140281_bib55) 2020; 259
Zeng (10.1016/j.jclepro.2023.140281_bib52) 2010; 101
Ronald (10.1016/j.jclepro.2023.140281_bib32) 1997; 78
Shmueli (10.1016/j.jclepro.2023.140281_bib35) 2010; 53
Lazarov (10.1016/j.jclepro.2023.140281_bib22) 2011; 86
Lu (10.1016/j.jclepro.2023.140281_bib26) 2021; 187
Jegadheeswaran (10.1016/j.jclepro.2023.140281_bib17) 2009; 13
Surya (10.1016/j.jclepro.2023.140281_bib38) 2023; 72
Bruyneel (10.1016/j.jclepro.2023.140281_bib7) 2002; 24
Wang (10.1016/j.jclepro.2023.140281_bib43) 2011; 43
Sun (10.1016/j.jclepro.2023.140281_bib37) 2023; 259
Zhang (10.1016/j.jclepro.2023.140281_bib54) 2016; 53
Ruoff (10.1016/j.jclepro.2023.140281_bib33) 1995; 33
Kamkari (10.1016/j.jclepro.2023.140281_bib19) 2014; 72
Pizzolato (10.1016/j.jclepro.2023.140281_bib31) 2019; 203
He (10.1016/j.jclepro.2023.140281_bib14) 2022; 156
Al-Abidi (10.1016/j.jclepro.2023.140281_bib1) 2013; 53
Huang (10.1016/j.jclepro.2023.140281_bib15) 2004; 47
Zhang (10.1016/j.jclepro.2023.140281_bib57) 2023; 214
Ye (10.1016/j.jclepro.2023.140281_bib51) 2022; 54
Borrvall (10.1016/j.jclepro.2023.140281_bib6) 2003; 41
Zhao (10.1016/j.jclepro.2023.140281_bib58) 2011; 95
Tao (10.1016/j.jclepro.2023.140281_bib39) 2015; 143
Deng (10.1016/j.jclepro.2023.140281_bib9) 2012; 14
Alexandersen (10.1016/j.jclepro.2023.140281_bib2) 2014; 76
Wang (10.1016/j.jclepro.2023.140281_bib46) 2023; 63
Biwole (10.1016/j.jclepro.2023.140281_bib5) 2018; 124
References_xml – volume: 135
  start-page: 2475
  year: 2022
  end-page: 2501
  ident: bib44
  article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor
  publication-title: React. Kinet. Mech. Catal.
– volume: 95
  start-page: 636
  year: 2011
  end-page: 643
  ident: bib58
  article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 259
  year: 2020
  ident: bib55
  article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins
  publication-title: Appl. Energy
– volume: 76
  start-page: 699
  year: 2014
  end-page: 721
  ident: bib2
  article-title: Topology optimization for natural convection problems
  publication-title: Int. J. Numer. Methods Fluid.
– volume: 65
  start-page: 393
  year: 2000
  end-page: 415
  ident: bib12
  article-title: An introduction to the adjoint approach to design
  publication-title: Flow, Turbul. Combust.
– volume: 63
  start-page: 508
  year: 2013
  end-page: 539
  ident: bib28
  article-title: Topology optimization of heat and mass transfer problems: laminar flow
  publication-title: Numer Heat Tr B- Fund
– volume: 143
  start-page: 38
  year: 2015
  end-page: 46
  ident: bib39
  article-title: Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube
  publication-title: Appl. Energy
– volume: 203
  year: 2019
  ident: bib31
  article-title: Maximization of performance in multi-tube latent heat storage-Optimization of fins topology, effect of materials selection and flow arrangements
  publication-title: Energy
– volume: 15
  start-page: 2746
  year: 2022
  ident: bib29
  article-title: Influence of natural convection and volume change on numerical simulation of phase change materials for latent heat storage
  publication-title: Energies
– volume: 47
  start-page: 2715
  year: 2004
  end-page: 2733
  ident: bib15
  article-title: Thermal regulation of building-integrated photovoltaics using phase change materials
  publication-title: Int. J. Heat Mass Tran.
– volume: 187
  year: 2021
  ident: bib26
  article-title: Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit
  publication-title: Appl. Therm. Eng.
– volume: 118
  start-page: 272
  year: 2023
  end-page: 302
  ident: bib56
  article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model
  publication-title: Appl. Math. Model.
– volume: 13
  start-page: 2225
  year: 2009
  end-page: 2244
  ident: bib17
  article-title: Performance enhancement in latent heat thermal storage system: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 159
  year: 2021
  ident: bib49
  article-title: Topology optimization for heat transfer enhancement in latent heat storage
  publication-title: Int. J. Therm. Sci.
– volume: 55
  year: 2022
  ident: bib60
  article-title: Heat transfer enhancement technology for fins in phase change energy storage
  publication-title: J. Energy Storage
– volume: 124
  start-page: 433
  year: 2018
  end-page: 446
  ident: bib5
  article-title: Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure
  publication-title: Int. J. Therm. Sci.
– volume: 186
  year: 2023
  ident: bib24
  article-title: Recent advances of low-temperature cascade phase change energy storage technology: a state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 194
  year: 2021
  ident: bib40
  article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage
  publication-title: Appl. Therm. Eng.
– volume: 117
  year: 2015
  ident: bib61
  article-title: Morphing tree structures for latent thermal energy storage
  publication-title: J. Appl. Phys.
– volume: 72
  start-page: 186
  year: 2014
  end-page: 200
  ident: bib19
  article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure
  publication-title: Int. J. Heat Mass Tran.
– volume: 33
  start-page: 925
  year: 1995
  end-page: 930
  ident: bib33
  article-title: Mechanical and thermal properties of carbon nanotubes
  publication-title: Carbon
– volume: 86
  start-page: 765
  year: 2011
  end-page: 781
  ident: bib22
  article-title: Filters in topology optimization based on Helmholtz-type differential equations
  publication-title: Int. J. Numer. Methods Eng.
– volume: 488
  start-page: 39
  year: 2009
  end-page: 42
  ident: bib42
  article-title: Thermal properties of paraffin based composites containing multi-walled carbon nanotubes
  publication-title: Thermochim. Acta
– volume: 146
  start-page: 45
  year: 2019
  end-page: 60
  ident: bib20
  article-title: Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units
  publication-title: Appl. Therm. Eng.
– volume: 115
  start-page: 8753
  year: 2011
  end-page: 8758
  ident: bib50
  article-title: Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives
  publication-title: J. Phys. Chem. C
– volume: 43
  start-page: 767
  year: 2011
  end-page: 784
  ident: bib43
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct Multidiscip O
– volume: 72
  year: 2023
  ident: bib38
  article-title: Heat transfer enhancement and performance study on latent heat thermal energy storage system using different configurations of spherical PCM balls
  publication-title: J. Energy Storage
– volume: 101
  start-page: 385
  year: 2010
  end-page: 389
  ident: bib52
  article-title: Thermal conductivity enhancement of Ag nanowires on an organic phase change material
  publication-title: J. Therm. Anal. Calorim.
– volume: 30
  start-page: 1709
  year: 1987
  end-page: 1719
  ident: bib41
  article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems
  publication-title: Int. J. Heat Mass Tran.
– volume: 88
  start-page: 880
  year: 2015
  end-page: 890
  ident: bib8
  article-title: Design of radiative enclosures by using topology optimization
  publication-title: Int. J. Heat Mass Tran.
– volume: 213
  year: 2022
  ident: bib34
  article-title: Experimental analysis of a fin-enhanced three-tube-shell cascaded latent heat storage system
  publication-title: Appl. Therm. Eng.
– volume: 113
  start-page: 875
  year: 2017
  end-page: 888
  ident: bib30
  article-title: Topology optimization for heat transfer enhancement in latent heat thermal energy storage
  publication-title: Int. J. Heat Mass Tran.
– volume: 53
  start-page: 147
  year: 2013
  end-page: 156
  ident: bib1
  article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 53
  start-page: 409
  year: 2016
  end-page: 424
  ident: bib54
  article-title: Topology optimization design of non-Newtonian roller-type viscous micropumps
  publication-title: Struct Multidiscip O
– volume: 64
  year: 2023
  ident: bib36
  article-title: Expanded waste glass/methyl palmitate/carbon nanofibers as effective shape stabilized and thermal enhanced composite phase change material for thermal energy storage
  publication-title: J. Energy Storage
– volume: 54
  year: 2022
  ident: bib51
  article-title: Effects of arrow-shape fins on the melting performance of a horizontal shell-and-tube latent heat thermal energy storage unit
  publication-title: J. Energy Storage
– volume: 156
  year: 2022
  ident: bib14
  article-title: Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods
  publication-title: Renew. Sustain. Energy Rev.
– volume: 189
  year: 2023
  ident: bib16
  article-title: Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications-A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 53
  start-page: 4082
  year: 2010
  end-page: 4091
  ident: bib35
  article-title: Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments
  publication-title: Int. J. Heat Mass Tran.
– volume: 43
  start-page: 4181
  year: 2022
  end-page: 4206
  ident: bib11
  article-title: Comprehensive review of phase change material based latent heat thermal energy storage system
  publication-title: Int. J. Ambient Energy
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: bib4
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 14
  start-page: 929
  year: 2012
  end-page: 945
  ident: bib9
  article-title: A flexible layout design method for passive micromixers
  publication-title: Biomedi microdevices
– volume: 15
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib45
  article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer
  publication-title: Energies
– volume: 137
  start-page: 716
  year: 2015
  end-page: 725
  ident: bib48
  article-title: Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers
  publication-title: Appl. Energy
– volume: 24
  start-page: 263
  year: 2002
  end-page: 276
  ident: bib7
  article-title: A family of MMA approximations for structural optimization
  publication-title: Struct Multidiscip O
– volume: 13
  start-page: 783
  year: 2012
  end-page: 789
  ident: bib21
  article-title: Topology optimization of gas flow channel routes in an automotive fuel cell
  publication-title: Int. J. Automot. Technol.
– volume: 47
  year: 2021
  ident: bib10
  article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review
  publication-title: Sustain Energy Techn
– volume: 458
  year: 2023
  ident: bib47
  article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm
  publication-title: Chem. Eng. J.
– volume: 259
  year: 2023
  ident: bib37
  article-title: Thermal design of composite cold plates by topology optimization
  publication-title: Int. J. Mech. Sci.
– volume: 185
  year: 2022
  ident: bib27
  article-title: Enhancement of the charging and discharging performance of a vertical latent heat thermal energy storage unit via conical shell design
  publication-title: Int. J. Heat Mass Tran.
– volume: 168
  year: 2020
  ident: bib23
  article-title: Topology optimization of a heat sink with an axially uniform cross-section cooled by forced convection
  publication-title: Int. J. Heat Mass Tran.
– volume: 214
  year: 2023
  ident: bib57
  article-title: Phase change heat transfer enhancement based on topology optimization of fin structure
  publication-title: Int. J. Heat Mass Tran.
– volume: 94
  start-page: 150
  year: 2015
  end-page: 176
  ident: bib18
  article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities
  publication-title: Energy Build.
– volume: 118
  start-page: 430
  year: 2017
  end-page: 447
  ident: bib25
  article-title: Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles
  publication-title: Appl. Therm. Eng.
– volume: 78
  start-page: 2577
  year: 1997
  end-page: 2592
  ident: bib32
  article-title: What is an adjoint model?
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 100
  year: 2023
  ident: bib3
  article-title: Advances in thermal energy storage: fundamentals and applications
  publication-title: Prog Energ Combust
– volume: 41
  start-page: 77
  year: 2003
  end-page: 107
  ident: bib6
  article-title: Topology optimization of fluids in Stokes flow
  publication-title: Int. J. Numer. Methods Fluid.
– volume: 19
  start-page: 1237
  year: 1999
  end-page: 1251
  ident: bib13
  article-title: Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall
  publication-title: Appl. Therm. Eng.
– volume: 63
  year: 2023
  ident: bib46
  article-title: Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: a review
  publication-title: J. Energy Storage
– volume: 53
  start-page: 1
  year: 2016
  end-page: 40
  ident: bib53
  article-title: Thermal energy storage: recent developments and practical aspects
  publication-title: Prog. Energy Combust. Sci.
– volume: 62
  year: 2023
  ident: bib59
  article-title: Numerical study on thermal and melting performances of a horizontal latent heat storage unit with branched tree-like convergent fins
  publication-title: J. Energy Storage
– volume: 458
  issue: 15
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib47
  article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 2225
  year: 2009
  ident: 10.1016/j.jclepro.2023.140281_bib17
  article-title: Performance enhancement in latent heat thermal storage system: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.06.024
– volume: 78
  start-page: 2577
  year: 1997
  ident: 10.1016/j.jclepro.2023.140281_bib32
  article-title: What is an adjoint model?
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
– volume: 135
  start-page: 2475
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib44
  article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor
  publication-title: React. Kinet. Mech. Catal.
  doi: 10.1007/s11144-022-02259-x
– volume: 53
  start-page: 1
  year: 2016
  ident: 10.1016/j.jclepro.2023.140281_bib53
  article-title: Thermal energy storage: recent developments and practical aspects
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2015.10.003
– volume: 88
  start-page: 880
  year: 2015
  ident: 10.1016/j.jclepro.2023.140281_bib8
  article-title: Design of radiative enclosures by using topology optimization
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.077
– volume: 137
  start-page: 716
  year: 2015
  ident: 10.1016/j.jclepro.2023.140281_bib48
  article-title: Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.091
– volume: 19
  start-page: 1237
  year: 1999
  ident: 10.1016/j.jclepro.2023.140281_bib13
  article-title: Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(99)00003-4
– volume: 203
  year: 2019
  ident: 10.1016/j.jclepro.2023.140281_bib31
  article-title: Maximization of performance in multi-tube latent heat storage-Optimization of fins topology, effect of materials selection and flow arrangements
  publication-title: Energy
– volume: 15
  start-page: 1
  issue: 23
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib45
  article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer
  publication-title: Energies
  doi: 10.3390/en15238827
– volume: 95
  start-page: 636
  year: 2011
  ident: 10.1016/j.jclepro.2023.140281_bib58
  article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.09.032
– volume: 213
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib34
  article-title: Experimental analysis of a fin-enhanced three-tube-shell cascaded latent heat storage system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118717
– volume: 53
  start-page: 147
  year: 2013
  ident: 10.1016/j.jclepro.2023.140281_bib1
  article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.01.011
– volume: 63
  start-page: 508
  issue: 6
  year: 2013
  ident: 10.1016/j.jclepro.2023.140281_bib28
  article-title: Topology optimization of heat and mass transfer problems: laminar flow
  publication-title: Numer Heat Tr B- Fund
  doi: 10.1080/10407790.2013.772001
– volume: 30
  start-page: 1709
  year: 1987
  ident: 10.1016/j.jclepro.2023.140281_bib41
  article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/0017-9310(87)90317-6
– volume: 86
  start-page: 765
  year: 2011
  ident: 10.1016/j.jclepro.2023.140281_bib22
  article-title: Filters in topology optimization based on Helmholtz-type differential equations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3072
– volume: 94
  start-page: 150
  year: 2015
  ident: 10.1016/j.jclepro.2023.140281_bib18
  article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.023
– volume: 124
  start-page: 433
  year: 2018
  ident: 10.1016/j.jclepro.2023.140281_bib5
  article-title: Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.10.038
– volume: 488
  start-page: 39
  issue: 1–2
  year: 2009
  ident: 10.1016/j.jclepro.2023.140281_bib42
  article-title: Thermal properties of paraffin based composites containing multi-walled carbon nanotubes
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2009.01.022
– volume: 24
  start-page: 263
  year: 2002
  ident: 10.1016/j.jclepro.2023.140281_bib7
  article-title: A family of MMA approximations for structural optimization
  publication-title: Struct Multidiscip O
  doi: 10.1007/s00158-002-0238-7
– volume: 47
  year: 2021
  ident: 10.1016/j.jclepro.2023.140281_bib10
  article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review
  publication-title: Sustain Energy Techn
– volume: 186
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib24
  article-title: Recent advances of low-temperature cascade phase change energy storage technology: a state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113641
– volume: 63
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib46
  article-title: Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: a review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107047
– volume: 55
  issue: 30
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib60
  article-title: Heat transfer enhancement technology for fins in phase change energy storage
  publication-title: J. Energy Storage
– volume: 43
  start-page: 767
  year: 2011
  ident: 10.1016/j.jclepro.2023.140281_bib43
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct Multidiscip O
  doi: 10.1007/s00158-010-0602-y
– volume: 185
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib27
  article-title: Enhancement of the charging and discharging performance of a vertical latent heat thermal energy storage unit via conical shell design
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2021.122393
– volume: 64
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib36
  article-title: Expanded waste glass/methyl palmitate/carbon nanofibers as effective shape stabilized and thermal enhanced composite phase change material for thermal energy storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107205
– volume: 72
  start-page: 186
  year: 2014
  ident: 10.1016/j.jclepro.2023.140281_bib19
  article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2014.01.014
– volume: 53
  start-page: 409
  issue: 3
  year: 2016
  ident: 10.1016/j.jclepro.2023.140281_bib54
  article-title: Topology optimization design of non-Newtonian roller-type viscous micropumps
  publication-title: Struct Multidiscip O
  doi: 10.1007/s00158-015-1346-5
– volume: 43
  start-page: 4181
  issue: 1
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib11
  article-title: Comprehensive review of phase change material based latent heat thermal energy storage system
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2021.1873848
– volume: 118
  start-page: 272
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib56
  article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2023.01.028
– volume: 146
  start-page: 45
  year: 2019
  ident: 10.1016/j.jclepro.2023.140281_bib20
  article-title: Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.09.105
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  ident: 10.1016/j.jclepro.2023.140281_bib4
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 54
  issue: 11
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib51
  article-title: Effects of arrow-shape fins on the melting performance of a horizontal shell-and-tube latent heat thermal energy storage unit
  publication-title: J. Energy Storage
– volume: 115
  start-page: 8753
  issue: 17
  year: 2011
  ident: 10.1016/j.jclepro.2023.140281_bib50
  article-title: Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200838s
– volume: 53
  start-page: 4082
  year: 2010
  ident: 10.1016/j.jclepro.2023.140281_bib35
  article-title: Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2010.05.028
– volume: 76
  start-page: 699
  year: 2014
  ident: 10.1016/j.jclepro.2023.140281_bib2
  article-title: Topology optimization for natural convection problems
  publication-title: Int. J. Numer. Methods Fluid.
  doi: 10.1002/fld.3954
– volume: 118
  start-page: 430
  year: 2017
  ident: 10.1016/j.jclepro.2023.140281_bib25
  article-title: Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.005
– volume: 187
  year: 2021
  ident: 10.1016/j.jclepro.2023.140281_bib26
  article-title: Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116575
– volume: 113
  start-page: 875
  year: 2017
  ident: 10.1016/j.jclepro.2023.140281_bib30
  article-title: Topology optimization for heat transfer enhancement in latent heat thermal energy storage
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.098
– volume: 65
  start-page: 393
  year: 2000
  ident: 10.1016/j.jclepro.2023.140281_bib12
  article-title: An introduction to the adjoint approach to design
  publication-title: Flow, Turbul. Combust.
  doi: 10.1023/A:1011430410075
– volume: 15
  start-page: 2746
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib29
  article-title: Influence of natural convection and volume change on numerical simulation of phase change materials for latent heat storage
  publication-title: Energies
  doi: 10.3390/en15082746
– volume: 259
  year: 2020
  ident: 10.1016/j.jclepro.2023.140281_bib55
  article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114102
– volume: 72
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib38
  article-title: Heat transfer enhancement and performance study on latent heat thermal energy storage system using different configurations of spherical PCM balls
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108643
– volume: 159
  year: 2021
  ident: 10.1016/j.jclepro.2023.140281_bib49
  article-title: Topology optimization for heat transfer enhancement in latent heat storage
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106578
– volume: 14
  start-page: 929
  issue: 5
  year: 2012
  ident: 10.1016/j.jclepro.2023.140281_bib9
  article-title: A flexible layout design method for passive micromixers
  publication-title: Biomedi microdevices
  doi: 10.1007/s10544-012-9672-5
– volume: 100
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib3
  article-title: Advances in thermal energy storage: fundamentals and applications
  publication-title: Prog Energ Combust
– volume: 143
  start-page: 38
  issue: 1
  year: 2015
  ident: 10.1016/j.jclepro.2023.140281_bib39
  article-title: Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.008
– volume: 117
  year: 2015
  ident: 10.1016/j.jclepro.2023.140281_bib61
  article-title: Morphing tree structures for latent thermal energy storage
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4921442
– volume: 189
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib16
  article-title: Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications-A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 194
  year: 2021
  ident: 10.1016/j.jclepro.2023.140281_bib40
  article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117104
– volume: 101
  start-page: 385
  issue: 1
  year: 2010
  ident: 10.1016/j.jclepro.2023.140281_bib52
  article-title: Thermal conductivity enhancement of Ag nanowires on an organic phase change material
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-009-0472-y
– volume: 168
  year: 2020
  ident: 10.1016/j.jclepro.2023.140281_bib23
  article-title: Topology optimization of a heat sink with an axially uniform cross-section cooled by forced convection
  publication-title: Int. J. Heat Mass Tran.
– volume: 214
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib57
  article-title: Phase change heat transfer enhancement based on topology optimization of fin structure
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2023.124402
– volume: 41
  start-page: 77
  issue: 1
  year: 2003
  ident: 10.1016/j.jclepro.2023.140281_bib6
  article-title: Topology optimization of fluids in Stokes flow
  publication-title: Int. J. Numer. Methods Fluid.
  doi: 10.1002/fld.426
– volume: 33
  start-page: 925
  year: 1995
  ident: 10.1016/j.jclepro.2023.140281_bib33
  article-title: Mechanical and thermal properties of carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00021-5
– volume: 47
  start-page: 2715
  year: 2004
  ident: 10.1016/j.jclepro.2023.140281_bib15
  article-title: Thermal regulation of building-integrated photovoltaics using phase change materials
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2003.11.015
– volume: 259
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib37
  article-title: Thermal design of composite cold plates by topology optimization
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108594
– volume: 156
  year: 2022
  ident: 10.1016/j.jclepro.2023.140281_bib14
  article-title: Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111977
– volume: 13
  start-page: 783
  year: 2012
  ident: 10.1016/j.jclepro.2023.140281_bib21
  article-title: Topology optimization of gas flow channel routes in an automotive fuel cell
  publication-title: Int. J. Automot. Technol.
  doi: 10.1007/s12239-012-0078-4
– volume: 62
  year: 2023
  ident: 10.1016/j.jclepro.2023.140281_bib59
  article-title: Numerical study on thermal and melting performances of a horizontal latent heat storage unit with branched tree-like convergent fins
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106889
SSID ssj0017074
Score 2.4958246
Snippet The spatial layout of the highly conductive fin and phase change materials (PCM) and the thermophysical properties of PCM are important factors restricting the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 140281
SubjectTerms algorithms
carbon nanotubes
convection
evolution
Heat transfer enhancement
latent heat
Mechanism analysis
Optimization method
Phase change
phase transition
physical activity
system optimization
thermal energy
Thermal energy storage
topology
Title Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model
URI https://dx.doi.org/10.1016/j.jclepro.2023.140281
https://www.proquest.com/docview/3153188289
Volume 434
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuxAEG1EN7q4-ESvD0pwm5lk0nn0UkQZFdyo4K5Jv3SGm2TQzMLN_RS_1ap04gtEcBUS0klIdU6drlSdYuwo5MZlVuQB_fMJuOEqyLUTAboyk2jky65o1T6v0vEtv7hL7hbYSV8LQ2mVHfZ7TG_Rujsy7N7mcDaZDK8pgpUmo5TCmuhWSXab84xm-eD_W5pHlIVeiZnCXXT2exXPcDqY4sUQqAbUQxwxAx8w-s4_fUHq1v2crbI_HW-EY_9oa2zBVuts5YOa4AZ7GSOuQtMyUfsIs_eSALDVA20pEghFZaC0VPA7eSpxz4uSQO2AuGCJN7FtPSBQ3iSiDczxqwfTZnpYA-oZKFf-HgooazNxSGH9PamwEhrfc-EZaoSisqvxhLbdzia7PTu9ORkHXfuFQCOLaYIcrZXzyOEix2Sjgodaq0irES4AIxWnYSGUSrSLwiJW1kVoWhdmqSa1F614IuIttljVld1mIBzpjwpTIBnhyKmEEUksOLKH0CFDUjuM9y9d6k6bnFpk_JN9EtpUdraSZCvpbbXDBm_DZl6c46cBeW9R-WmWSXQgPw097GeAxC-QfqsUla3nTzJGpxHltHL9-_vL77Jl3OM-uLPHFpvHud1HutOog3Y-H7Cl4_PL8dUrSPIDPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF7RcGg5oD5VoJSp1KsTO1473iNCRebRXAoSt5X31Saq7QicA3-G38qMdw2lUoXUkxVHa1ue9Tffzs58w9jXmBs3s6KIaM8n4oarqNBOROjKTKaRL7uqV_uc5-UlP73KrjbY0VALQ2mVAfs9pvdoHc5MwtucrBaLyQ-KYOXZNKewJrrV_AXbJHWqbMQ2D0_OyvnDZsIs9mLMFPGiAY-FPJPleInXQ6waUxtxhA18xuRfLuovsO490PFrth2oIxz6p3vDNmzzlm39ISj4jt2VCK3Q9WTUXsPqsSoAbPOLjhQMhKoxUFuq-V3c1PjL65JA64DoYI03sX1JIFDqJAIOrPHDB9Mne1gD6hYoXf4nVFC3ZuGQxfp7Um0ldL7twi20iEZ1KPOEvuPOe3Z5_O3iqIxCB4ZII5HpogINVvDE4TrHzKYVj7VWiVZTXAMmKs3jSiiVaZfEVaqsS9C6Lp7lmgRftOKZSD-wUdM29iMD4UiCVJgK-QhHWiWMyFLBkUDEDkmS2mF8eOlSB3ly6pLxWw55aEsZbCXJVtLbaoeNH4atvD7HcwOKwaLyyUST6EOeG_plmAESP0LaWaka265vZIp-Iylo8br7_5c_YC_Li-_n8vxkfrbHXuE_3Md6PrFRd722-8h-OvU5zO57Gq0F7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+performance+enhancement+and+mechanism+analysis+of+thermal+energy+storage+unit+designed+by+using+a+modified+transient+topology+optimization+model&rft.jtitle=Journal+of+cleaner+production&rft.au=Wang%2C+Jiahao&rft.au=Liu%2C+Xiaomin&rft.au=Desideri%2C+Umberto&rft.date=2024-01-01&rft.issn=0959-6526&rft.volume=434+p.140281-&rft_id=info:doi/10.1016%2Fj.jclepro.2023.140281&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon