Enhancing cardiovascular health monitoring: Simultaneous multi-artery cardiac markers recording with flexible and bio-compatible AlN piezoelectric sensors
Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascula...
Saved in:
Published in | Biosensors & bioelectronics Vol. 267; p. 116790 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-5663 1873-4235 1873-4235 |
DOI | 10.1016/j.bios.2024.116790 |
Cover
Loading…
Abstract | Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive techniques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or failure in detecting transient issues and trends. Here, we report a bio-compatible, flexible, noninvasive, low-cost piezoelectric sensor for continuous and real-time cardiovascular monitoring. The sensor, utilizing a thin aluminum nitride film on a flexible Kapton substrate, is used to extract heart rate, blood pressure waves, pulse wave velocities, and cardio-ankle vascular index from four arterial pulse sites: carotid, brachial, radial, and posterior tibial arteries. This simultaneous recording, for the first time in the same experiment, allows to provide a comprehensive cardiovascular patient's health profile. In a test with a 28-year-old male subject, the sensor yielded the SI = 7.1 ± 0.2 m/s, RI = 54.4 ± 0.5 %, MAP = 86.2 ± 1.5 mmHg, CAVI = 7.8 ± 0.2, and seven PWVs from the combination of the four different arterial positions, in good agreement with the typical values reported in the literature. These findings make the proposed technology a powerful tool to facilitate personalized medical diagnosis in preventing CVDs. |
---|---|
AbstractList | Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive techniques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or failure in detecting transient issues and trends. Here, we report a bio-compatible, flexible, noninvasive, low-cost piezoelectric sensor for continuous and real-time cardiovascular monitoring. The sensor, utilizing a thin aluminum nitride film on a flexible Kapton substrate, is used to extract heart rate, blood pressure waves, pulse wave velocities, and cardio-ankle vascular index from four arterial pulse sites: carotid, brachial, radial, and posterior tibial arteries. This simultaneous recording, for the first time in the same experiment, allows to provide a comprehensive cardiovascular patient's health profile. In a test with a 28-year-old male subject, the sensor yielded the SI = 7.1 ± 0.2 m/s, RI = 54.4 ± 0.5 %, MAP = 86.2 ± 1.5 mmHg, CAVI = 7.8 ± 0.2, and seven PWVs from the combination of the four different arterial positions, in good agreement with the typical values reported in the literature. These findings make the proposed technology a powerful tool to facilitate personalized medical diagnosis in preventing CVDs.Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive techniques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or failure in detecting transient issues and trends. Here, we report a bio-compatible, flexible, noninvasive, low-cost piezoelectric sensor for continuous and real-time cardiovascular monitoring. The sensor, utilizing a thin aluminum nitride film on a flexible Kapton substrate, is used to extract heart rate, blood pressure waves, pulse wave velocities, and cardio-ankle vascular index from four arterial pulse sites: carotid, brachial, radial, and posterior tibial arteries. This simultaneous recording, for the first time in the same experiment, allows to provide a comprehensive cardiovascular patient's health profile. In a test with a 28-year-old male subject, the sensor yielded the SI = 7.1 ± 0.2 m/s, RI = 54.4 ± 0.5 %, MAP = 86.2 ± 1.5 mmHg, CAVI = 7.8 ± 0.2, and seven PWVs from the combination of the four different arterial positions, in good agreement with the typical values reported in the literature. These findings make the proposed technology a powerful tool to facilitate personalized medical diagnosis in preventing CVDs. Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive techniques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or failure in detecting transient issues and trends. Here, we report a bio-compatible, flexible, noninvasive, low-cost piezoelectric sensor for continuous and real-time cardiovascular monitoring. The sensor, utilizing a thin aluminum nitride film on a flexible Kapton substrate, is used to extract heart rate, blood pressure waves, pulse wave velocities, and cardio-ankle vascular index from four arterial pulse sites: carotid, brachial, radial, and posterior tibial arteries. This simultaneous recording, for the first time in the same experiment, allows to provide a comprehensive cardiovascular patient's health profile. In a test with a 28-year-old male subject, the sensor yielded the SI = 7.1 ± 0.2 m/s, RI = 54.4 ± 0.5 %, MAP = 86.2 ± 1.5 mmHg, CAVI = 7.8 ± 0.2, and seven PWVs from the combination of the four different arterial positions, in good agreement with the typical values reported in the literature. These findings make the proposed technology a powerful tool to facilitate personalized medical diagnosis in preventing CVDs. Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive techniques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or failure in detecting transient issues and trends. Here, we report a bio-compatible, flexible, noninvasive, low-cost piezoelectric sensor for continuous and real-time cardiovascular monitoring. The sensor, utilizing a thin aluminum nitride film on a flexible Kapton substrate, is used to extract heart rate, blood pressure waves, pulse wave velocities, and cardio-ankle vascular index from four arterial pulse sites: carotid, brachial, radial, and posterior tibial arteries. This simultaneous recording, for the first time in the same experiment, allows to provide a comprehensive cardiovascular patient's health profile. In a test with a 28-year-old male subject, the sensor yielded the SI = 7.1 ± 0.2 m/s, RI = 54.4 ± 0.5 %, MAP = 86.2 ± 1.5 mmHg, CAVI = 7.8 ± 0.2, and seven PWVs from the combination of the four different arterial positions, in good agreement with the typical values reported in the literature. These findings make the proposed technology a powerful tool to facilitate personalized medical diagnosis in preventing CVDs. |
ArticleNumber | 116790 |
Author | Shumba, Angela Tafadzwa Demir, Suleyman Mahircan Fachechi, Luca Mastronardi, Vincenzo Mariano De Vittorio, Massimo Schioppa, Enrico Junior Qualtieri, Antonio Cinquino, Marco Rizzi, Francesco Patrono, Luigi |
Author_xml | – sequence: 1 givenname: Marco orcidid: 0000-0001-9684-7860 surname: Cinquino fullname: Cinquino, Marco email: marco.cinquino@iit.it organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy – sequence: 2 givenname: Suleyman Mahircan orcidid: 0000-0002-6384-4062 surname: Demir fullname: Demir, Suleyman Mahircan organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy – sequence: 3 givenname: Angela Tafadzwa orcidid: 0000-0002-5888-7180 surname: Shumba fullname: Shumba, Angela Tafadzwa organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy – sequence: 4 givenname: Enrico Junior surname: Schioppa fullname: Schioppa, Enrico Junior organization: Inmatica S.p.A., BE-Pilot Palace, Strada Comunale Tufi, Monteroni di Lecce, LE, 73047, Italy – sequence: 5 givenname: Luca surname: Fachechi fullname: Fachechi, Luca organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy – sequence: 6 givenname: Francesco orcidid: 0000-0002-5142-5231 surname: Rizzi fullname: Rizzi, Francesco organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy – sequence: 7 givenname: Antonio orcidid: 0000-0002-2207-8111 surname: Qualtieri fullname: Qualtieri, Antonio organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy – sequence: 8 givenname: Luigi surname: Patrono fullname: Patrono, Luigi organization: Department of Innovation Engineering, University of Salento, Lecce, LE, 73100, Italy – sequence: 9 givenname: Vincenzo Mariano surname: Mastronardi fullname: Mastronardi, Vincenzo Mariano email: vincenzomariano.mastronardi@unisalento.it organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy – sequence: 10 givenname: Massimo surname: De Vittorio fullname: De Vittorio, Massimo organization: Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39332253$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFF2CBvGSTwT9xEiM2VVV-pAoWwNpy7DuMB8cebKelfZQ-LR7SblhUrK51db6j63NO0FGIARB6ScmaEtq92a1HF_OaEdauKe16SZ6gFR163rSMiyO0IlJ0jeg6foxOct4RQnoqyTN0zCXnjAm-QncXYauDceEHNjpZF690NrPXCW9B-7LFUwyuxFQFb_FXN82-6ABxzvjwdI1OBdLNwmqDJ51-Qso4gYl1U12vXTXZePjtRg9YB4vr0Y2J016Xv6sz_xnvHdxG8GBKcgZnCDmm_Bw93Wif4cX9PEXf3198O__YXH758On87LIxfJClGaixhkhCR2NbyzorWknGfqN1K4AYMFxK2THNQTPTbVorRU8F56Mhoxws46fo9eK7T_HXDLmoyWUD3i8fVZyKlgkmuvY_pJT0nLDh4PrqXjqPE1i1T66Gc6Meoq-CYRGYFHNOsFHGlZpJDCVp5xUl6tCy2qlDy-rQslparij7B31wfxR6t0BQs7xykFQ2DoIB62pbRdnoHsP_AAlvxDs |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2025_123083 |
Cites_doi | 10.3390/ijerph182010952 10.1038/nm.2555 10.1016/j.mee.2016.03.041 10.1002/adem.202200873 10.1002/admt.201800296 10.1016/j.clinimag.2015.07.002 10.1159/000485146 10.1161/CIRCULATIONAHA.114.008720 10.2337/db15-1533 10.3390/bioengineering10070796 10.1088/0967-3334/31/1/R01 10.1161/hy0102.099031 10.1557/mrs.2012.273 10.1002/adma.202110291 10.1016/j.jacc.2010.12.017 10.1039/D3RA05932D 10.1002/adma.201606453 10.1007/s13246-019-00813-x 10.1097/HJH.0000000000000651 10.1161/01.CIR.93.5.898 10.1161/01.CIR.103.7.987 10.1007/BF00553267 10.1088/1361-6439/ac87ba 10.1007/s00330-008-1097-4 10.1291/hypres.31.1921 10.5551/jat.48314 10.1038/s41467-023-40763-3 10.1136/bmjopen-2020-038581 10.1016/j.mee.2008.12.075 10.1557/mrc.2017.10 10.4037/ccn2002.22.2.60 10.1016/j.diabres.2007.12.016 10.1159/000479560 10.1002/adma.201702308 10.3390/biomedicines11030849 10.1016/j.nanoen.2022.107632 10.3390/healthcare10102113 10.1093/eurheartj/ehab724.2345 10.1016/j.talanta.2014.04.060 10.3390/technologies5020021 10.1002/adhm.202100116 10.1088/1742-6596/795/1/012016 10.1038/s41569-020-00503-2 10.1002/adma.202301627 10.1038/aps.2010.123 10.3390/jpm12111768 10.1038/s41551-018-0287-x 10.1001/jamainternmed.2018.2773 10.1038/s41598-019-44784-1 10.1007/s10832-004-5130-y 10.1016/j.hlc.2011.08.070 10.1002/adfm.201970258 10.1109/ACCESS.2024.3359058 10.1038/s41598-023-35492-y 10.1111/jch.13425 10.1161/CIRCRESAHA.121.318061 10.1038/ncomms5496 10.1056/NEJMra035098 10.1021/acssensors.0c02339 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2024.116790 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 39332253 10_1016_j_bios_2024_116790 S0956566324007966 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABGSF ABJNI ABMAC ABUDA ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- RIG SBG SCB SCH SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-81cdc0901bcd4d26d5490b7faa45e0cec399962a3ea2c6f4d9571533bc0b98d23 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Fri Jul 11 14:16:18 EDT 2025 Thu Jul 10 22:48:43 EDT 2025 Thu Apr 03 06:59:00 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Tue Jul 01 01:43:15 EDT 2025 Sat Dec 21 15:58:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Health monitoring Heart rate Flexible piezoelectric sensor Cardiovascular parameters Pulse wave velocity Blood pressure Aluminum nitride |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-81cdc0901bcd4d26d5490b7faa45e0cec399962a3ea2c6f4d9571533bc0b98d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9684-7860 0000-0002-5888-7180 0000-0002-6384-4062 0000-0002-5142-5231 0000-0002-2207-8111 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0956566324007966 |
PMID | 39332253 |
PQID | 3110730282 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154252564 proquest_miscellaneous_3110730282 pubmed_primary_39332253 crossref_citationtrail_10_1016_j_bios_2024_116790 crossref_primary_10_1016_j_bios_2024_116790 elsevier_sciencedirect_doi_10_1016_j_bios_2024_116790 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 2025-01-00 2025-Jan-01 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Giordano, Ingrosso, Todaro, Maruccio, De Guido, Cingolani, Passaseo, De Vittorio (bib22) 2009; 86 Elias, Crichton, Dearborn, Robbins, Abhayaratna (bib19) 2017; 5 Khan Mamun, Elfouly (bib34) 2023 Wang, Jing, Hu, Cui, Tang, Tu, Zhao, Huang, Guo, Li, Xu (bib70) 2023; 13 Shumba, Demir, Mastronardi, Rizzi, De Marzo, Fachechi, Ros, Demarchi, Patrono, De Vittorio (bib65) 2024; 12 Zhang, Liu, Xu, Liu, Zhou, Yang, Li, Huang, Jiang (bib76) 2023; 4 Nabel (bib48) 2003; 349 Park, Shim, Jeong, Yi, Chae, Bae, Kim, Pang (bib53) 2017; 29 Shirai, Suzuki, Tsuda, Shimizu, Takata, Yamamoto, Maruyama, Takahashi (bib63) 2019; 26 Cardiovascular diseases (Cvds). [WWW Document], n.d. URL Li, Chen, Xu (bib39) 2018; 3 Li, Jia, Zhou, Huang, Xu, Jia, Gao, Yao, Li, Zhang, Liu, Huang, Hu, Zhao, Xu, Li, Yiu, Gao, Wu, Jiao, Zhang, Tai, Chan, Zhang, Ma, Yu (bib40) 2023; 14 Li, Xiong, Pirbhulal, Wu, Li, Huang, Zhang, Wu (bib38) 2015; 94 Rico Martín, Vassilenko, de Nicolás Jiménez, Rey Sánchez, Serrano, Martínez Alvarez, Calderón García, Sánchez Muñoz-Torrero (bib56) 2020; 10 Altintas, Fakanya, Tothill (bib5) 2014; 128 A, A, Unnikrishnan, Pradeep, Rajeev, D (bib1) 2022 Avolio, Butlin, Walsh (bib6) 2010; 31 Ibn-Mohammed, Koh, Reaney, Sinclair, Mustapha, Acquaye, Wang (bib30) 2017; 7 Chen, Qi, Fan, Qiao, Yeo, Lim (bib16) 2021; 10 Maeder, Damjanovic, Setter (bib43) 2004; 13 Rastegar, GholamHosseini, Lowe (bib55) 2020; 43 Roth, Huffman, Moran, Feigin, Mensah, Naghavi, Murray (bib57) 2015; 132 Sharma, Barbosa, Ho, Griggs, Ghirmai, Krishnan, Hsiai, Chiao, Cao (bib62) 2017 Ibata, Sasaki, Kakimoto, Matsuno, Nakatani, Kobayashi, Tatsumi, Nakano, Wakasaki, Furuta, Nishi, Nanjo (bib29) 2008; 80 . Kwon, Dong (bib37) 2022; 102 Min, Kim, Joe, Kim, Jung, Lee, Lee, Doh, An, Youn, Joung, Yoo, Ahn, Lee (bib47) 2023; 35 Setyowati, Muninggar, Shanti (bib61) 2017; 795 Guerin, Blacher, Pannier, Marchais, Safar, London (bib23) 2001; 103 Yi, Zhang, Yang (bib74) 2022; 32 Dagdeviren, Su, Joe, Yona, Liu, Kim, Huang, Damadoran, Xia, Martin, Huang, Rogers (bib17) 2014; 5 Eom, Trolier-McKinstry (bib20) 2012; 37 Tian, Deng, Yang, Zhang, Xu, Xiong, Lan, Wang, Sun, Ao, Huang, Liu, Li, Jin, Yang (bib67) 2024; 2313612 Natta, Lombardi, Mastronardi, Guido, Qualtieri, Di Rienzo, Vittorio (bib50) 2022 Safar, O'Rourke, Frohlich (bib58) 2015 Qu, Yang, Chen, Li, Zhu, Xie (bib54) 2021 Budoff, Georgiou, Brody, Agatston, Kennedy, Wolfkiel, Stanford, Shields, Lewis, Janowitz, Rich, Brundage (bib12) 1996; 93 Shirwany, Zou (bib64) 2010; 31 Siontis, Noseworthy, Attia, Friedman (bib66) 2021; 18 Natta, Guido, Algieri, Mastronardi, Rizzi, Scarpa, Qualtieri, Todaro, Sallustio, De Vittorio (bib49) 2021; 6 Katsuura, Izumi, Yoshimoto, Kawaguchi, Yoshimoto, Sekitani (bib33) 2017 Park, Joe, Kim, Park, Han, Jeong, Park, Park, Joung, Lee (bib52) 2017; 29 Hayashi, Yamamoto, Takahara, Shirai (bib27) 2015; 33 Natta, Mastronardi, Guido, Algieri, Puce, Pisano, Rizzi, Pulli, Qualtieri, De Vittorio (bib51) 2019; 9 Yoo, Kim, Shishkov, Namati, Morse, Shubochkin, McCarthy, Ntziachristos, Bouma, Jaffer, Tearney (bib75) 2011; 17 Wu, Chen (bib71) 2022 McGhee, Bridges (bib46) 2002; 22 Xu, Huang, Xie, Peng, Ding, Lin, Wang, Hao, Chen, Sun, Qi, Wang, Ning, Bi (bib72) 2016; 65 Boutouyrie, Chowienczyk, Humphrey, Mitchell (bib9) 2021; 128 Dhillon, Banet (bib18) 2019 London (bib42) 2018; 45 Satoh, Shimatsu, Kato, Araki, Koyama, Okajima, Tanabe, Ooishi, Kotani, Ogawa (bib59) 2008; 31 Hamilton-Craig, Friedman, Achenbach (bib25) 2012; 21 Yi, Liu, Li, Ruan, Chen, Liu, Yang, Zhang (bib73) 2022; 34 Torrado, Bia, Zócalo, Farro, Farro, Valero, Armentano (bib68) 2011 Bhatia, Dorian (bib7) 2018; 178 Scalia, Ghafari, Carlier (bib60) 2021; 42 Gatkine, Gatkine, Poojary, Chaudhary, Noronha (bib21) 2013 Kandil, Soliman, Alghamdi, Jennings, El-Baz (bib32) 2023 Brillante, O’sullivan, Howes (bib11) 2008; vol. 17 Kim, Lee, Hong, Park, Ryu (bib35) 2023; 25 Chen, Liu, Wang, Nabulsi, Zhao, Kim, Kwon, Ryou (bib15) 2019; 29 Abid, Bensalem, Sealy (bib3) 1986; 21 Man, Cheung, Sangsiri, Shek, Wong, Chin, Chan, So (bib44) 2022 Algieri, Todaro, Guido, Mastronardi, Desmaële, Qualtieri, Giannini, Sibillano, De Vittorio (bib4) 2018; 1 Boutouyrie, Tropeano, Asmar, Gautier, Benetos, Lacolley, Laurent (bib10) 2002; 39 Huang, Gao, Hu, Shen, Jin, Cho (bib28) 2023; 13 Guido, Qualtieri, Algieri, Lemma, De Vittorio, Todaro (bib24) 2016; 159 Liu, Song, Yao, Qi, Hao, Yang, Ning, Xu (bib41) 2021; 11 Matsushita, Ding, Kim, Budoff, Chirinos, Fernhall, Hamburg, Kario, Miyoshi, Tanaka, Townsend (bib45) 2019; 21 Boulares, Alotaibi, AlMansour, Barnawi (bib8) 2021 Joung, Jung, Lee, Chae, Kim, Park, Shin, Kim, Lee, Choi (bib31) 2023; 13 Wang, Li, Hu, Zhang, Huang, Lin, Zhang, Yin, Huang, Gong, Bhaskaran, Gu, Makihata, Guo, Lei, Chen, Wang, Li, Zhang, Chen, Pisano, Zhang, Zhou, Xu (bib69) 2018; 2 Han, Lee, Hartaigh, Min (bib26) 2016; 40 Cavalcante, Lima, Redheuil, Al-Mallah (bib14) 2011; 57 Kitagawa, Sakuma, Nagata, Okuda, Hirano, Tanimoto, Matsusako, Lima, Kuribayashi, Takeda (bib36) 2008; 18 Guerin (10.1016/j.bios.2024.116790_bib23) 2001; 103 Khan Mamun (10.1016/j.bios.2024.116790_bib34) 2023 Shirwany (10.1016/j.bios.2024.116790_bib64) 2010; 31 Park (10.1016/j.bios.2024.116790_bib53) 2017; 29 Satoh (10.1016/j.bios.2024.116790_bib59) 2008; 31 Chen (10.1016/j.bios.2024.116790_bib16) 2021; 10 Han (10.1016/j.bios.2024.116790_bib26) 2016; 40 Scalia (10.1016/j.bios.2024.116790_bib60) 2021; 42 Boulares (10.1016/j.bios.2024.116790_bib8) 2021 Chen (10.1016/j.bios.2024.116790_bib15) 2019; 29 Shirai (10.1016/j.bios.2024.116790_bib63) 2019; 26 Roth (10.1016/j.bios.2024.116790_bib57) 2015; 132 Eom (10.1016/j.bios.2024.116790_bib20) 2012; 37 Xu (10.1016/j.bios.2024.116790_bib72) 2016; 65 Brillante (10.1016/j.bios.2024.116790_bib11) 2008; vol. 17 Cavalcante (10.1016/j.bios.2024.116790_bib14) 2011; 57 Altintas (10.1016/j.bios.2024.116790_bib5) 2014; 128 Avolio (10.1016/j.bios.2024.116790_bib6) 2010; 31 Budoff (10.1016/j.bios.2024.116790_bib12) 1996; 93 Siontis (10.1016/j.bios.2024.116790_bib66) 2021; 18 Wu (10.1016/j.bios.2024.116790_bib71) 2022 Kitagawa (10.1016/j.bios.2024.116790_bib36) 2008; 18 London (10.1016/j.bios.2024.116790_bib42) 2018; 45 Ibata (10.1016/j.bios.2024.116790_bib29) 2008; 80 Rastegar (10.1016/j.bios.2024.116790_bib55) 2020; 43 Hamilton-Craig (10.1016/j.bios.2024.116790_bib25) 2012; 21 Li (10.1016/j.bios.2024.116790_bib40) 2023; 14 Shumba (10.1016/j.bios.2024.116790_bib65) 2024; 12 Natta (10.1016/j.bios.2024.116790_bib51) 2019; 9 Zhang (10.1016/j.bios.2024.116790_bib76) 2023; 4 McGhee (10.1016/j.bios.2024.116790_bib46) 2002; 22 Dagdeviren (10.1016/j.bios.2024.116790_bib17) 2014; 5 Li (10.1016/j.bios.2024.116790_bib38) 2015; 94 Setyowati (10.1016/j.bios.2024.116790_bib61) 2017; 795 Yi (10.1016/j.bios.2024.116790_bib73) 2022; 34 Joung (10.1016/j.bios.2024.116790_bib31) 2023; 13 Abid (10.1016/j.bios.2024.116790_bib3) 1986; 21 Park (10.1016/j.bios.2024.116790_bib52) 2017; 29 Yoo (10.1016/j.bios.2024.116790_bib75) 2011; 17 Bhatia (10.1016/j.bios.2024.116790_bib7) 2018; 178 Rico Martín (10.1016/j.bios.2024.116790_bib56) 2020; 10 A (10.1016/j.bios.2024.116790_bib1) 2022 Guido (10.1016/j.bios.2024.116790_bib24) 2016; 159 Boutouyrie (10.1016/j.bios.2024.116790_bib9) 2021; 128 Kandil (10.1016/j.bios.2024.116790_bib32) 2023 Algieri (10.1016/j.bios.2024.116790_bib4) 2018; 1 Wang (10.1016/j.bios.2024.116790_bib70) 2023; 13 Dhillon (10.1016/j.bios.2024.116790_bib18) 2019 Boutouyrie (10.1016/j.bios.2024.116790_bib10) 2002; 39 Kwon (10.1016/j.bios.2024.116790_bib37) 2022; 102 Matsushita (10.1016/j.bios.2024.116790_bib45) 2019; 21 Nabel (10.1016/j.bios.2024.116790_bib48) 2003; 349 Qu (10.1016/j.bios.2024.116790_bib54) 2021 Giordano (10.1016/j.bios.2024.116790_bib22) 2009; 86 10.1016/j.bios.2024.116790_bib13 Natta (10.1016/j.bios.2024.116790_bib49) 2021; 6 Torrado (10.1016/j.bios.2024.116790_bib68) 2011 Min (10.1016/j.bios.2024.116790_bib47) 2023; 35 Liu (10.1016/j.bios.2024.116790_bib41) 2021; 11 Kim (10.1016/j.bios.2024.116790_bib35) 2023; 25 Katsuura (10.1016/j.bios.2024.116790_bib33) 2017 Maeder (10.1016/j.bios.2024.116790_bib43) 2004; 13 Sharma (10.1016/j.bios.2024.116790_bib62) 2017 Yi (10.1016/j.bios.2024.116790_bib74) 2022; 32 Natta (10.1016/j.bios.2024.116790_bib50) 2022 Tian (10.1016/j.bios.2024.116790_bib67) 2024; 2313612 Man (10.1016/j.bios.2024.116790_bib44) 2022 Li (10.1016/j.bios.2024.116790_bib39) 2018; 3 Hayashi (10.1016/j.bios.2024.116790_bib27) 2015; 33 Ibn-Mohammed (10.1016/j.bios.2024.116790_bib30) 2017; 7 Huang (10.1016/j.bios.2024.116790_bib28) 2023; 13 Safar (10.1016/j.bios.2024.116790_bib58) 2015 Gatkine (10.1016/j.bios.2024.116790_bib21) 2013 Elias (10.1016/j.bios.2024.116790_bib19) 2017; 5 Wang (10.1016/j.bios.2024.116790_bib69) 2018; 2 |
References_xml | – reference: Cardiovascular diseases (Cvds). [WWW Document], n.d. URL – volume: 12 start-page: 16951 year: 2024 end-page: 16962 ident: bib65 article-title: Monitoring cardiovascular physiology using bio-compatible AlN piezoelectric skin sensors publication-title: IEEE Access – year: 2022 ident: bib50 article-title: Flexible Piezoelectric Sensor with Integrated Electromagnetic Shield – year: 2022 ident: bib71 article-title: Calculation of an improved stiffness index using decomposed radial pulse and digital volume pulse signals publication-title: J. Personalized Med. – volume: 3 year: 2018 ident: bib39 article-title: Sensitive and wearable optical microfiber sensor for human health monitoring publication-title: Adv. Mater. Technol. – volume: 39 start-page: 10 year: 2002 end-page: 15 ident: bib10 article-title: Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients publication-title: Hypertension – volume: 18 start-page: 465 year: 2021 end-page: 478 ident: bib66 article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management publication-title: Nat. Rev. Cardiol. – volume: 4 year: 2023 ident: bib76 article-title: Flexible electronics for cardiovascular healthcare monitoring publication-title: Innov – volume: 1 start-page: 5203 year: 2018 end-page: 5210 ident: bib4 article-title: Flexible piezoelectric energy-harvesting exploiting biocompatible AlN thin films grown onto Spin-coated polyimide layers publication-title: ACS Appl. Energy Mater. – start-page: 43 year: 2019 end-page: 59 ident: bib18 publication-title: Pulse Arrival Time Techniques BT - the Handbook of Cuffless Blood Pressure Monitoring: A Practical Guide for Clinicians, Researchers, and Engineers – reference: ). – volume: 10 year: 2020 ident: bib56 article-title: Cardio-ankle vascular index (CAVI) measured by a new device: protocol for a validation study publication-title: BMJ Open – volume: 35 year: 2023 ident: bib47 article-title: Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring publication-title: Adv. Mater. – volume: 32 year: 2022 ident: bib74 article-title: Piezoelectric approaches for wearable continuous blood pressure monitoring: a review publication-title: J. Micromech. Microeng. – volume: 5 start-page: 4496 year: 2014 ident: bib17 article-title: Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring publication-title: Nat. Commun. – volume: vol. 17 start-page: 116 year: 2008 end-page: 123 ident: bib11 publication-title: Arterial Stiffness Indices in Healthy Volunteers Using Non‐invasive Digital Photoplethysmography – start-page: 59 year: 2021 end-page: 63 ident: bib54 article-title: Heart sound monitoring based on a piezoelectric mems acoustic sensor publication-title: 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) – volume: 31 start-page: 1921 year: 2008 end-page: 1930 ident: bib59 article-title: Evaluation of the cardio-ankle vascular index, a new indicator of arterial stiffness independent of blood pressure, in obesity and metabolic syndrome publication-title: Hypertens. Res. – year: 2023 ident: bib32 article-title: Using mean arterial pressure in hypertension diagnosis versus using either systolic or diastolic blood pressure measurements publication-title: Biomedicines – year: 2022 ident: bib44 article-title: Blood pressure measurement: from cuff-based to contactless monitoring publication-title: Healthcare – volume: 29 start-page: 1 year: 2017 end-page: 9 ident: bib52 article-title: Self-powered real-time arterial pulse monitoring using Ultrathin epidermal piezoelectric sensors publication-title: Adv. Mater. – volume: 6 start-page: 1761 year: 2021 end-page: 1769 ident: bib49 article-title: Conformable AlN piezoelectric sensors as a non-invasive Approach for Swallowing Disorder assessment publication-title: ACS Sens. – start-page: 1 year: 2022 end-page: 6 ident: bib1 article-title: Design of piezoelectric heart rate monitoring sensor for wearable applications publication-title: 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI) – volume: 102 year: 2022 ident: bib37 article-title: Flexible sensors and machine learning for heart monitoring publication-title: Nano Energy – volume: 33 year: 2015 ident: bib27 article-title: Clinical assessment of arterial stiffness with cardio-ankle vascular index: theory and applications publication-title: J. Hypertens. – volume: 29 year: 2017 ident: bib53 article-title: Microtopography-guided conductive patterns of liquid-driven graphene nanoplatelet networks for stretchable and skin-conformal sensor array publication-title: Adv. Mater. – volume: 65 start-page: 1731 year: 2016 end-page: 1740 ident: bib72 article-title: Diabetes and risk of arterial stiffness: a mendelian randomization analysis publication-title: Diabetes – volume: 13 start-page: 29174 year: 2023 end-page: 29194 ident: bib28 article-title: Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis publication-title: RSC Adv. – volume: 21 start-page: 1301 year: 1986 end-page: 1304 ident: bib3 article-title: The thermal stability of AlN publication-title: J. Mater. Sci. – year: 2021 ident: bib8 article-title: Cardiovascular disease recognition based on heartbeat segmentation and selection process publication-title: Int. J. Environ. Res. Publ. Health – volume: 37 start-page: 1007 year: 2012 end-page: 1017 ident: bib20 article-title: Thin-film piezoelectric MEMS publication-title: MRS Bull. – start-page: 1 year: 2017 end-page: 4 ident: bib33 article-title: Wearable pulse wave velocity sensor using flexible piezoelectric film array publication-title: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) – volume: 103 start-page: 987 year: 2001 end-page: 992 ident: bib23 article-title: Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure publication-title: Circulation – volume: 13 start-page: 8605 year: 2023 ident: bib31 article-title: Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations publication-title: Sci. Rep. – volume: 94 start-page: 1 year: 2015 end-page: 6 ident: bib38 article-title: Heart-carotid pulse wave velocity a useful index of atherosclerosis in Chinese hypertensive patients publication-title: Med. (United States) – volume: 21 start-page: 16 year: 2019 end-page: 24 ident: bib45 article-title: Cardio-ankle vascular index and cardiovascular disease: systematic review and meta-analysis of prospective and cross-sectional studies publication-title: J. Clin. Hypertens. – volume: 21 start-page: 70 year: 2012 end-page: 81 ident: bib25 article-title: Cardiac computed tomography—evidence, limitations and clinical application publication-title: Heart Lung Circ. – volume: 13 year: 2023 ident: bib70 article-title: Assessment of aortic to peripheral vascular stiffness and gradient by segmented upper limb PWV in healthy and hypertensive individuals publication-title: Sci. Rep. – volume: 128 start-page: 864 year: 2021 end-page: 886 ident: bib9 article-title: Arterial stiffness and cardiovascular risk in hypertension publication-title: Circ. Res. – volume: 132 start-page: 1667 year: 2015 end-page: 1678 ident: bib57 article-title: Global and regional patterns in cardiovascular mortality from 1990 to 2013 publication-title: Circulation – volume: 25 year: 2023 ident: bib35 article-title: Self-powered wearable micropyramid piezoelectric film sensor for real-time monitoring of blood pressure publication-title: Adv. Eng. Mater. – volume: 57 start-page: 1511 year: 2011 end-page: 1522 ident: bib14 article-title: Aortic stiffness: current understanding and future directions publication-title: J. Am. Coll. Cardiol. – volume: 159 start-page: 174 year: 2016 end-page: 178 ident: bib24 article-title: AlN-based flexible piezoelectric skin for energy harvesting from human motion publication-title: Microelectron. Eng. – volume: 45 start-page: 154 year: 2018 end-page: 158 ident: bib42 article-title: Arterial stiffness in chronic kidney disease and end-stage renal disease publication-title: Blood Purif. – volume: 17 start-page: 1680 year: 2011 end-page: 1684 ident: bib75 article-title: Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo publication-title: Nat. Med. – volume: 2313612 start-page: 1 year: 2024 end-page: 11 ident: bib67 article-title: Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring publication-title: Adv. Mater. – volume: 31 start-page: 1267 year: 2010 end-page: 1276 ident: bib64 article-title: Arterial stiffness: a brief review publication-title: Acta Pharmacol. Sin. – volume: 42 start-page: 2345 year: 2021 ident: bib60 article-title: A new invasive method to assess pulse wave velocity during cardiac catheterization publication-title: Eur. Heart J. – volume: 5 start-page: 88 year: 2017 end-page: 98 ident: bib19 article-title: Associations between type 2 diabetes mellitus and arterial stiffness: a prospective analysis based on the Maine-syracuse study publication-title: Pulse – volume: 22 start-page: 60 year: 2002 end-page: 79 ident: bib46 article-title: Monitoring arterial blood pressure: what you may not Know publication-title: Crit. Care Nurse – volume: 11 year: 2021 ident: bib41 article-title: Determination of aortic pulse transit time based on waveform decomposition of radial pressure wave publication-title: Sci. Rep. – volume: 34 start-page: 1 year: 2022 end-page: 11 ident: bib73 article-title: Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring publication-title: Adv. Mater. – volume: 31 start-page: R1 year: 2010 ident: bib6 article-title: Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment publication-title: Physiol. Meas. – volume: 26 start-page: 603 year: 2019 end-page: 615 ident: bib63 article-title: Comparison of cardio–ankle vascular index (CAVI) and CAVI0 in large healthy and hypertensive populations publication-title: J. Atherosclerosis Thromb. – start-page: 6458 year: 2011 end-page: 6461 ident: bib68 article-title: Carotid-radial pulse wave velocity as a discriminator of intrinsic wall alterations during evaluation of endothelial function by flow-mediated dilatation publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: bib30 article-title: Are lead-free piezoelectrics more environmentally friendly? publication-title: MRS Commun – volume: 93 start-page: 898 year: 1996 end-page: 904 ident: bib12 article-title: Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease publication-title: Circulation – volume: 10 year: 2021 ident: bib16 article-title: Flexible wearable sensors for cardiovascular health monitoring publication-title: Adv. Healthcare Mater. – volume: 128 start-page: 177 year: 2014 end-page: 186 ident: bib5 article-title: Cardiovascular disease detection using bio-sensing techniques publication-title: Talanta – volume: 178 start-page: 1163 year: 2018 end-page: 1164 ident: bib7 article-title: Screening for cardiovascular disease risk with electrocardiography publication-title: JAMA Intern. Med. – volume: 29 start-page: 1 year: 2019 end-page: 10 ident: bib15 article-title: High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film publication-title: Adv. Funct. Mater. – volume: 2 start-page: 687 year: 2018 end-page: 695 ident: bib69 article-title: Monitoring of the central blood pressure waveform via a conformal ultrasonic device publication-title: Nat. Biomed. Eng. – volume: 43 start-page: 11 year: 2020 end-page: 28 ident: bib55 article-title: Non-invasive continuous blood pressure monitoring systems: current and proposed technology issues and challenges publication-title: Phys. Eng. Sci. Med. – volume: 795 year: 2017 ident: bib61 article-title: Design of heart rate monitor based on piezoelectric sensor using an Arduino publication-title: J. Phys. Conf. Ser. – year: 2017 ident: bib62 article-title: Cuff-less and continuous blood pressure monitoring: a methodological review publication-title: Technologies – start-page: 1 year: 2013 end-page: 4 ident: bib21 article-title: Development of piezo-electric sensor based noninvasive low cost Arterial Pulse Analyzer publication-title: The 6th 2013 Biomedical Engineering International Conference – volume: 80 start-page: 265 year: 2008 end-page: 270 ident: bib29 article-title: Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure publication-title: Diabetes Res. Clin. Pract. – year: 2023 ident: bib34 article-title: Detection of cardiovascular disease from clinical parameters using a one-dimensional convolutional neural network publication-title: Bioengineering – volume: 40 start-page: 307 year: 2016 end-page: 310 ident: bib26 article-title: Role of computed tomography screening for detection of coronary artery disease publication-title: Clin. Imag. – volume: 18 start-page: 2808 year: 2008 end-page: 2816 ident: bib36 article-title: Diagnostic accuracy of stress myocardial perfusion MRI and late gadolinium-enhanced MRI for detecting flow-limiting coronary artery disease: a multicenter study publication-title: Eur. Radiol. – volume: 13 start-page: 385 year: 2004 end-page: 392 ident: bib43 article-title: Lead free piezoelectric materials publication-title: J. Electroceram. – volume: 9 start-page: 8392 year: 2019 ident: bib51 article-title: Soft and flexible piezoelectric smart patch for vascular graft monitoring based on Aluminum Nitride thin film publication-title: Sci. Rep. – volume: 14 start-page: 5009 year: 2023 ident: bib40 article-title: Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure publication-title: Nat. Commun. – volume: 349 start-page: 60 year: 2003 end-page: 72 ident: bib48 article-title: Cardiovascular disease publication-title: N. Engl. J. Med. – volume: 86 start-page: 1204 year: 2009 end-page: 1207 ident: bib22 article-title: AlN on polysilicon piezoelectric cantilevers for sensors/actuators publication-title: Microelectron. Eng. – year: 2015 ident: bib58 article-title: Blood pressure and arterial wall mechanics in cardiovascular diseases publication-title: Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases – year: 2021 ident: 10.1016/j.bios.2024.116790_bib8 article-title: Cardiovascular disease recognition based on heartbeat segmentation and selection process publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph182010952 – volume: 17 start-page: 1680 year: 2011 ident: 10.1016/j.bios.2024.116790_bib75 article-title: Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo publication-title: Nat. Med. doi: 10.1038/nm.2555 – volume: 159 start-page: 174 year: 2016 ident: 10.1016/j.bios.2024.116790_bib24 article-title: AlN-based flexible piezoelectric skin for energy harvesting from human motion publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2016.03.041 – volume: 25 year: 2023 ident: 10.1016/j.bios.2024.116790_bib35 article-title: Self-powered wearable micropyramid piezoelectric film sensor for real-time monitoring of blood pressure publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202200873 – volume: 3 year: 2018 ident: 10.1016/j.bios.2024.116790_bib39 article-title: Sensitive and wearable optical microfiber sensor for human health monitoring publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800296 – volume: 1 start-page: 5203 year: 2018 ident: 10.1016/j.bios.2024.116790_bib4 article-title: Flexible piezoelectric energy-harvesting exploiting biocompatible AlN thin films grown onto Spin-coated polyimide layers publication-title: ACS Appl. Energy Mater. – volume: 40 start-page: 307 year: 2016 ident: 10.1016/j.bios.2024.116790_bib26 article-title: Role of computed tomography screening for detection of coronary artery disease publication-title: Clin. Imag. doi: 10.1016/j.clinimag.2015.07.002 – volume: 45 start-page: 154 year: 2018 ident: 10.1016/j.bios.2024.116790_bib42 article-title: Arterial stiffness in chronic kidney disease and end-stage renal disease publication-title: Blood Purif. doi: 10.1159/000485146 – volume: 132 start-page: 1667 year: 2015 ident: 10.1016/j.bios.2024.116790_bib57 article-title: Global and regional patterns in cardiovascular mortality from 1990 to 2013 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.008720 – start-page: 1 year: 2017 ident: 10.1016/j.bios.2024.116790_bib33 article-title: Wearable pulse wave velocity sensor using flexible piezoelectric film array – volume: 65 start-page: 1731 year: 2016 ident: 10.1016/j.bios.2024.116790_bib72 article-title: Diabetes and risk of arterial stiffness: a mendelian randomization analysis publication-title: Diabetes doi: 10.2337/db15-1533 – year: 2023 ident: 10.1016/j.bios.2024.116790_bib34 article-title: Detection of cardiovascular disease from clinical parameters using a one-dimensional convolutional neural network publication-title: Bioengineering doi: 10.3390/bioengineering10070796 – volume: 31 start-page: R1 year: 2010 ident: 10.1016/j.bios.2024.116790_bib6 article-title: Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/1/R01 – volume: 39 start-page: 10 year: 2002 ident: 10.1016/j.bios.2024.116790_bib10 article-title: Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients publication-title: Hypertension doi: 10.1161/hy0102.099031 – volume: 37 start-page: 1007 year: 2012 ident: 10.1016/j.bios.2024.116790_bib20 article-title: Thin-film piezoelectric MEMS publication-title: MRS Bull. doi: 10.1557/mrs.2012.273 – volume: 34 start-page: 1 year: 2022 ident: 10.1016/j.bios.2024.116790_bib73 article-title: Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring publication-title: Adv. Mater. doi: 10.1002/adma.202110291 – ident: 10.1016/j.bios.2024.116790_bib13 – volume: 57 start-page: 1511 year: 2011 ident: 10.1016/j.bios.2024.116790_bib14 article-title: Aortic stiffness: current understanding and future directions publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2010.12.017 – volume: 13 start-page: 29174 year: 2023 ident: 10.1016/j.bios.2024.116790_bib28 article-title: Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis publication-title: RSC Adv. doi: 10.1039/D3RA05932D – volume: 2313612 start-page: 1 year: 2024 ident: 10.1016/j.bios.2024.116790_bib67 article-title: Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring publication-title: Adv. Mater. – volume: 29 year: 2017 ident: 10.1016/j.bios.2024.116790_bib53 article-title: Microtopography-guided conductive patterns of liquid-driven graphene nanoplatelet networks for stretchable and skin-conformal sensor array publication-title: Adv. Mater. doi: 10.1002/adma.201606453 – volume: 43 start-page: 11 year: 2020 ident: 10.1016/j.bios.2024.116790_bib55 article-title: Non-invasive continuous blood pressure monitoring systems: current and proposed technology issues and challenges publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-019-00813-x – volume: 33 year: 2015 ident: 10.1016/j.bios.2024.116790_bib27 article-title: Clinical assessment of arterial stiffness with cardio-ankle vascular index: theory and applications publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000000651 – volume: 93 start-page: 898 year: 1996 ident: 10.1016/j.bios.2024.116790_bib12 article-title: Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease publication-title: Circulation doi: 10.1161/01.CIR.93.5.898 – volume: 103 start-page: 987 year: 2001 ident: 10.1016/j.bios.2024.116790_bib23 article-title: Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure publication-title: Circulation doi: 10.1161/01.CIR.103.7.987 – volume: 21 start-page: 1301 year: 1986 ident: 10.1016/j.bios.2024.116790_bib3 article-title: The thermal stability of AlN publication-title: J. Mater. Sci. doi: 10.1007/BF00553267 – volume: 32 year: 2022 ident: 10.1016/j.bios.2024.116790_bib74 article-title: Piezoelectric approaches for wearable continuous blood pressure monitoring: a review publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/ac87ba – volume: 18 start-page: 2808 year: 2008 ident: 10.1016/j.bios.2024.116790_bib36 article-title: Diagnostic accuracy of stress myocardial perfusion MRI and late gadolinium-enhanced MRI for detecting flow-limiting coronary artery disease: a multicenter study publication-title: Eur. Radiol. doi: 10.1007/s00330-008-1097-4 – volume: 31 start-page: 1921 year: 2008 ident: 10.1016/j.bios.2024.116790_bib59 article-title: Evaluation of the cardio-ankle vascular index, a new indicator of arterial stiffness independent of blood pressure, in obesity and metabolic syndrome publication-title: Hypertens. Res. doi: 10.1291/hypres.31.1921 – volume: 4 year: 2023 ident: 10.1016/j.bios.2024.116790_bib76 article-title: Flexible electronics for cardiovascular healthcare monitoring publication-title: Innov – volume: 26 start-page: 603 year: 2019 ident: 10.1016/j.bios.2024.116790_bib63 article-title: Comparison of cardio–ankle vascular index (CAVI) and CAVI0 in large healthy and hypertensive populations publication-title: J. Atherosclerosis Thromb. doi: 10.5551/jat.48314 – volume: 14 start-page: 5009 year: 2023 ident: 10.1016/j.bios.2024.116790_bib40 article-title: Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure publication-title: Nat. Commun. doi: 10.1038/s41467-023-40763-3 – start-page: 43 year: 2019 ident: 10.1016/j.bios.2024.116790_bib18 – volume: 10 year: 2020 ident: 10.1016/j.bios.2024.116790_bib56 article-title: Cardio-ankle vascular index (CAVI) measured by a new device: protocol for a validation study publication-title: BMJ Open doi: 10.1136/bmjopen-2020-038581 – volume: 13 year: 2023 ident: 10.1016/j.bios.2024.116790_bib70 article-title: Assessment of aortic to peripheral vascular stiffness and gradient by segmented upper limb PWV in healthy and hypertensive individuals publication-title: Sci. Rep. – volume: 86 start-page: 1204 year: 2009 ident: 10.1016/j.bios.2024.116790_bib22 article-title: AlN on polysilicon piezoelectric cantilevers for sensors/actuators publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.12.075 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.bios.2024.116790_bib30 article-title: Are lead-free piezoelectrics more environmentally friendly? publication-title: MRS Commun doi: 10.1557/mrc.2017.10 – start-page: 1 year: 2013 ident: 10.1016/j.bios.2024.116790_bib21 article-title: Development of piezo-electric sensor based noninvasive low cost Arterial Pulse Analyzer – volume: 94 start-page: 1 year: 2015 ident: 10.1016/j.bios.2024.116790_bib38 article-title: Heart-carotid pulse wave velocity a useful index of atherosclerosis in Chinese hypertensive patients publication-title: Med. (United States) – volume: 11 year: 2021 ident: 10.1016/j.bios.2024.116790_bib41 article-title: Determination of aortic pulse transit time based on waveform decomposition of radial pressure wave publication-title: Sci. Rep. – volume: 22 start-page: 60 year: 2002 ident: 10.1016/j.bios.2024.116790_bib46 article-title: Monitoring arterial blood pressure: what you may not Know publication-title: Crit. Care Nurse doi: 10.4037/ccn2002.22.2.60 – volume: 80 start-page: 265 year: 2008 ident: 10.1016/j.bios.2024.116790_bib29 article-title: Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2007.12.016 – volume: 5 start-page: 88 year: 2017 ident: 10.1016/j.bios.2024.116790_bib19 article-title: Associations between type 2 diabetes mellitus and arterial stiffness: a prospective analysis based on the Maine-syracuse study publication-title: Pulse doi: 10.1159/000479560 – volume: 29 start-page: 1 year: 2017 ident: 10.1016/j.bios.2024.116790_bib52 article-title: Self-powered real-time arterial pulse monitoring using Ultrathin epidermal piezoelectric sensors publication-title: Adv. Mater. doi: 10.1002/adma.201702308 – start-page: 6458 year: 2011 ident: 10.1016/j.bios.2024.116790_bib68 article-title: Carotid-radial pulse wave velocity as a discriminator of intrinsic wall alterations during evaluation of endothelial function by flow-mediated dilatation publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS – year: 2023 ident: 10.1016/j.bios.2024.116790_bib32 article-title: Using mean arterial pressure in hypertension diagnosis versus using either systolic or diastolic blood pressure measurements publication-title: Biomedicines doi: 10.3390/biomedicines11030849 – start-page: 1 year: 2022 ident: 10.1016/j.bios.2024.116790_bib1 article-title: Design of piezoelectric heart rate monitoring sensor for wearable applications – volume: 102 year: 2022 ident: 10.1016/j.bios.2024.116790_bib37 article-title: Flexible sensors and machine learning for heart monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107632 – year: 2022 ident: 10.1016/j.bios.2024.116790_bib44 article-title: Blood pressure measurement: from cuff-based to contactless monitoring publication-title: Healthcare doi: 10.3390/healthcare10102113 – volume: 42 start-page: 2345 year: 2021 ident: 10.1016/j.bios.2024.116790_bib60 article-title: A new invasive method to assess pulse wave velocity during cardiac catheterization publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehab724.2345 – volume: 128 start-page: 177 year: 2014 ident: 10.1016/j.bios.2024.116790_bib5 article-title: Cardiovascular disease detection using bio-sensing techniques publication-title: Talanta doi: 10.1016/j.talanta.2014.04.060 – year: 2017 ident: 10.1016/j.bios.2024.116790_bib62 article-title: Cuff-less and continuous blood pressure monitoring: a methodological review publication-title: Technologies doi: 10.3390/technologies5020021 – volume: 10 year: 2021 ident: 10.1016/j.bios.2024.116790_bib16 article-title: Flexible wearable sensors for cardiovascular health monitoring publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202100116 – volume: 795 year: 2017 ident: 10.1016/j.bios.2024.116790_bib61 article-title: Design of heart rate monitor based on piezoelectric sensor using an Arduino publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/795/1/012016 – volume: 18 start-page: 465 year: 2021 ident: 10.1016/j.bios.2024.116790_bib66 article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-00503-2 – volume: 35 year: 2023 ident: 10.1016/j.bios.2024.116790_bib47 article-title: Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring publication-title: Adv. Mater. doi: 10.1002/adma.202301627 – volume: 31 start-page: 1267 year: 2010 ident: 10.1016/j.bios.2024.116790_bib64 article-title: Arterial stiffness: a brief review publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2010.123 – year: 2022 ident: 10.1016/j.bios.2024.116790_bib71 article-title: Calculation of an improved stiffness index using decomposed radial pulse and digital volume pulse signals publication-title: J. Personalized Med. doi: 10.3390/jpm12111768 – volume: 2 start-page: 687 year: 2018 ident: 10.1016/j.bios.2024.116790_bib69 article-title: Monitoring of the central blood pressure waveform via a conformal ultrasonic device publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0287-x – volume: 178 start-page: 1163 year: 2018 ident: 10.1016/j.bios.2024.116790_bib7 article-title: Screening for cardiovascular disease risk with electrocardiography publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2018.2773 – volume: 9 start-page: 8392 year: 2019 ident: 10.1016/j.bios.2024.116790_bib51 article-title: Soft and flexible piezoelectric smart patch for vascular graft monitoring based on Aluminum Nitride thin film publication-title: Sci. Rep. doi: 10.1038/s41598-019-44784-1 – volume: 13 start-page: 385 year: 2004 ident: 10.1016/j.bios.2024.116790_bib43 article-title: Lead free piezoelectric materials publication-title: J. Electroceram. doi: 10.1007/s10832-004-5130-y – year: 2022 ident: 10.1016/j.bios.2024.116790_bib50 – year: 2015 ident: 10.1016/j.bios.2024.116790_bib58 article-title: Blood pressure and arterial wall mechanics in cardiovascular diseases publication-title: Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases – volume: 21 start-page: 70 year: 2012 ident: 10.1016/j.bios.2024.116790_bib25 article-title: Cardiac computed tomography—evidence, limitations and clinical application publication-title: Heart Lung Circ. doi: 10.1016/j.hlc.2011.08.070 – volume: 29 start-page: 1 year: 2019 ident: 10.1016/j.bios.2024.116790_bib15 article-title: High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201970258 – volume: 12 start-page: 16951 year: 2024 ident: 10.1016/j.bios.2024.116790_bib65 article-title: Monitoring cardiovascular physiology using bio-compatible AlN piezoelectric skin sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3359058 – volume: 13 start-page: 8605 year: 2023 ident: 10.1016/j.bios.2024.116790_bib31 article-title: Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations publication-title: Sci. Rep. doi: 10.1038/s41598-023-35492-y – volume: 21 start-page: 16 year: 2019 ident: 10.1016/j.bios.2024.116790_bib45 article-title: Cardio-ankle vascular index and cardiovascular disease: systematic review and meta-analysis of prospective and cross-sectional studies publication-title: J. Clin. Hypertens. doi: 10.1111/jch.13425 – volume: 128 start-page: 864 year: 2021 ident: 10.1016/j.bios.2024.116790_bib9 article-title: Arterial stiffness and cardiovascular risk in hypertension publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.121.318061 – volume: 5 start-page: 4496 year: 2014 ident: 10.1016/j.bios.2024.116790_bib17 article-title: Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring publication-title: Nat. Commun. doi: 10.1038/ncomms5496 – start-page: 59 year: 2021 ident: 10.1016/j.bios.2024.116790_bib54 article-title: Heart sound monitoring based on a piezoelectric mems acoustic sensor – volume: 349 start-page: 60 year: 2003 ident: 10.1016/j.bios.2024.116790_bib48 article-title: Cardiovascular disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra035098 – volume: 6 start-page: 1761 year: 2021 ident: 10.1016/j.bios.2024.116790_bib49 article-title: Conformable AlN piezoelectric sensors as a non-invasive Approach for Swallowing Disorder assessment publication-title: ACS Sens. doi: 10.1021/acssensors.0c02339 – volume: vol. 17 start-page: 116 year: 2008 ident: 10.1016/j.bios.2024.116790_bib11 |
SSID | ssj0007190 |
Score | 2.492638 |
Snippet | Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116790 |
SubjectTerms | Adult Aluminum nitride Arteries Biosensing Techniques - instrumentation biosensors Blood pressure Blood Pressure - physiology Cardiovascular Diseases - diagnosis Cardiovascular parameters early diagnosis echocardiography electrocardiography electrodes Equipment Design Flexible piezoelectric sensor Health monitoring Heart Rate Humans Male males Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods patients Pulse Wave Analysis - instrumentation Pulse wave velocity tibia |
Title | Enhancing cardiovascular health monitoring: Simultaneous multi-artery cardiac markers recording with flexible and bio-compatible AlN piezoelectric sensors |
URI | https://dx.doi.org/10.1016/j.bios.2024.116790 https://www.ncbi.nlm.nih.gov/pubmed/39332253 https://www.proquest.com/docview/3110730282 https://www.proquest.com/docview/3154252564 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiQ4IChfy0dlJG7IXa_trBNuq6rVAtJeSqXeLHvsQNA2We1uD-XAD-HX4rGTQg_dA9doHDkZe_zGfn5DyPtaa3Ci9MxLbZmKKxyzog7MSatg4sXU2USQXUzn5-rzRXGxR46HuzBIq-xjf47pKVr3T8b93xyvmmZ8hhJ6EYygohzXEbXjDXalcZQf_fpL89CTvM-Cento3V-cyRwv13Qo2S3UUTqO4HctTneBz7QInT4mj3r0SGe5g0_IXmgPyP1cT_L6gDz8R13wKfl90n5HNY32G4VbrFOaLz_SyzSf0fgjPWuQWmjb0F1taGIZssT2vM5tLdBLJPKsNzRv6-BbcQ-X1qio6ZaB2tbT-KUssdq36dFsuaCrJvzscrGdBugmZs3devOMnJ-efD2es74UA4OIaLasnIAHHrGDA6-iB31MK7nTtbWqCBwCSEychJXBCpjWyleFRiTpgLuq9EI-J_tt14aXhNYcXG1DVerKKQsW9fy5F15CGWrBYUQmgw8M9DrlWC5jaQZC2g-DfjPoN5P9NiIfbtqsskrHTuticK25NdZMXEZ2tns3jAMTJyGerGS3GIlZtMT0dZdNEeNjRJhqRF7kQXTTV1lJDKzy1X_27DV5ILAucdoaekP2t-ur8DaCpa07TLPhkNybffoyX_wBjoMX1A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4anRDsgGD8WNkAI3FDoa7tNMlu1bSpY6OXbdJuln8FgrqkarvD-FP4a_Gzk4od1sOukR05efZ737M_fw_gS5llRrPcJpZnKhE-wiWKlS7RXAkztGykVSDITkeTK_H9Or3egqPuLgzSKlvfH3168Nbtk0H7NwfzqhpcoISeByOoKEczj9qfwDaqU6U92B6fnk2ma4ecDeNWC0ruYYf27kykeemqQdVuJr6FEwn6UHx6CH-GOHTyEl60AJKM4xhfwZard-FpLCl5tws7_wkMvoa_x_UvFNSofxJzj3hK4v1HchOWNDY-JBcVsgtV7ZrbJQlEwyQQPu9iX2XIDXJ5FksSd3bwrbiNS0oU1dQzR1Rtif_SJBDbV-HReDYl88r9aWK9ncqQpU-cm8XyDVydHF8eTZK2GkNiPKhZJfnQWEM9fNDGCm9E6zNLqrNSKZE6apzhmDsxxZ1iZlQKW6QZgkltqC5yy_hb6NVN7faAlNToUrkizwotlFEo6U8ts9zkrmTU9GHY2UCaVqocK2bMZMdJ-y3RbhLtJqPd-vB13WcehTo2tk4708p70036SLKx3-duHki_DvFwJZpFckykOWawm9qk3kV6kCn68C5OovVYecHRt_L3jxzZJ3g2ufxxLs9Pp2f78JxhmeKwU3QAvdXi1n3w2GmlP7Zr4x8NmhqF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+cardiovascular+health+monitoring%3A+Simultaneous+multi-artery+cardiac+markers+recording+with+flexible+and+bio-compatible+AlN+piezoelectric+sensors&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Cinquino%2C+Marco&rft.au=Demir%2C+Suleyman+Mahircan&rft.au=Shumba%2C+Angela+Tafadzwa&rft.au=Schioppa%2C+Enrico+Junior&rft.date=2025-01-01&rft.issn=1873-4235&rft.eissn=1873-4235&rft.volume=267&rft.spage=116790&rft_id=info:doi/10.1016%2Fj.bios.2024.116790&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |