Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention

Myofibroblasts are responsible for wound closure that occurs in healed acute wounds. However, their actions can result in disfiguring scar contractures, compromised organ function, and a tumor promoting stroma. Understanding the mechanisms regulating their contractile machinery, gene expression, and...

Full description

Saved in:
Bibliographic Details
Published inAdvances in wound care (New Rochelle, N.Y.) Vol. 2; no. 4; p. 122
Main Authors Van De Water, Livingston, Varney, Scott, Tomasek, James J
Format Journal Article
LanguageEnglish
Published United States 01.05.2013
Online AccessGet more information

Cover

Loading…
Abstract Myofibroblasts are responsible for wound closure that occurs in healed acute wounds. However, their actions can result in disfiguring scar contractures, compromised organ function, and a tumor promoting stroma. Understanding the mechanisms regulating their contractile machinery, gene expression, and lifespan is essential to develop new therapies to control their function. Mechanical stress and transforming growth factor beta-1 (TGF-β1) regulate myofibroblast differentiation from mesenchymal progenitors. As these precursor cells differentiate, they assemble a contractile apparatus to generate the force used to contract wounds. The mechanisms by which mechanical stress promote expression of contractile genes through the TGF-β1 and serum response factor pathways and offer therapeutic targets to limit myofibroblast function are being elucidated. Emerging evidence suggests that the integration of mechanical cues with intracellular signaling pathways is critical to myofibroblast function via its effects on gene expression, cellular contraction, and paracrine signaling with neighboring cells. In addition, while apoptosis is clearly one pathway that can limit myofibroblast lifespan, recent data suggest that pathogenic myofibroblasts can become senescent and adopt a more beneficial phenotype, or may revert to a quiescent state, thereby limiting their function. Given the important role that myofibroblasts play in pathologies as disparate as cutaneous scarring, organ fibrosis, and tumor progression, knowledge gained in the areas of intracellular signaling networks, mechanical signal transduction, extracellular matrix biology, and cell fate will support efforts to develop new therapies with a wide impact.
AbstractList Myofibroblasts are responsible for wound closure that occurs in healed acute wounds. However, their actions can result in disfiguring scar contractures, compromised organ function, and a tumor promoting stroma. Understanding the mechanisms regulating their contractile machinery, gene expression, and lifespan is essential to develop new therapies to control their function. Mechanical stress and transforming growth factor beta-1 (TGF-β1) regulate myofibroblast differentiation from mesenchymal progenitors. As these precursor cells differentiate, they assemble a contractile apparatus to generate the force used to contract wounds. The mechanisms by which mechanical stress promote expression of contractile genes through the TGF-β1 and serum response factor pathways and offer therapeutic targets to limit myofibroblast function are being elucidated. Emerging evidence suggests that the integration of mechanical cues with intracellular signaling pathways is critical to myofibroblast function via its effects on gene expression, cellular contraction, and paracrine signaling with neighboring cells. In addition, while apoptosis is clearly one pathway that can limit myofibroblast lifespan, recent data suggest that pathogenic myofibroblasts can become senescent and adopt a more beneficial phenotype, or may revert to a quiescent state, thereby limiting their function. Given the important role that myofibroblasts play in pathologies as disparate as cutaneous scarring, organ fibrosis, and tumor progression, knowledge gained in the areas of intracellular signaling networks, mechanical signal transduction, extracellular matrix biology, and cell fate will support efforts to develop new therapies with a wide impact.
Author Van De Water, Livingston
Varney, Scott
Tomasek, James J
Author_xml – sequence: 1
  givenname: Livingston
  surname: Van De Water
  fullname: Van De Water, Livingston
  organization: Center for Cell Biology and Cancer Research , Albany Medical College, Albany, New York
– sequence: 2
  givenname: Scott
  surname: Varney
  fullname: Varney, Scott
  organization: Center for Cell Biology and Cancer Research , Albany Medical College, Albany, New York
– sequence: 3
  givenname: James J
  surname: Tomasek
  fullname: Tomasek, James J
  organization: Department of Cell Biology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24527336$$D View this record in MEDLINE/PubMed
BookMark eNo1kEFPAjEUhHvACCJnb6Y_gMX2dXfZejNElATkIMYjactbqIF20-1COPvHZaPOZQ7zZSaZG9Jx3iEhd5yNOCvkw8k3bjMCxmHEhBQd0gOeQ8IlL7pkUNdf7KKccZ7za9KFNIOxEHmPfC_Q7JTzAbfNXkXrHfUljTuki7MvrQ5e71UdqXX0s52gE-9iUKYlh_TdqBCs2w6pukTTFq9t_UiXVeVDbJyNFmta-kDf8ERXOwyqwiZaQ2cuYjiia3tuyVWp9jUO_rxPPqbPq8lrMl--zCZP88SIQsZkbJAxo3layCIrJULJpOSZ0YLrscw1aKMgS9NMFihMJkEJAAk5qAzLXAjok_vf3qrRB9ysq2APKpzX_2_AD5x-ZQM
CitedBy_id crossref_primary_10_1242_jcs_170589
crossref_primary_10_1111_jsm_12904
crossref_primary_10_7717_peerj_12643
crossref_primary_10_2217_rme_14_54
crossref_primary_10_1016_j_bioactmat_2023_02_026
crossref_primary_10_3389_fmed_2015_00086
crossref_primary_10_1016_j_nano_2020_102263
crossref_primary_10_3390_cells7090142
crossref_primary_10_3390_ijms19041034
crossref_primary_10_1111_apha_14038
crossref_primary_10_1016_j_matbio_2023_12_004
crossref_primary_10_1111_wrr_12432
crossref_primary_10_3892_ijmm_2016_2582
crossref_primary_10_1016_j_cma_2016_04_034
crossref_primary_10_1111_wrr_12952
crossref_primary_10_1007_s10237_016_0821_2
crossref_primary_10_1016_j_matbio_2018_01_019
crossref_primary_10_18632_oncotarget_21234
crossref_primary_10_1093_biolre_ioad057
crossref_primary_10_1093_hmg_ddab323
crossref_primary_10_2147_IJN_S448667
crossref_primary_10_1089_ars_2014_6148
crossref_primary_10_1016_j_matbio_2014_11_004
crossref_primary_10_1371_journal_pone_0123689
crossref_primary_10_3390_molecules27196521
crossref_primary_10_1016_j_athoracsur_2017_08_030
crossref_primary_10_1016_j_mehy_2020_109746
crossref_primary_10_1007_s10753_024_02006_5
crossref_primary_10_1097_BCO_0000000000000420
crossref_primary_10_3390_biology13020109
crossref_primary_10_1016_j_bprint_2022_e00230
crossref_primary_10_1016_j_brainres_2016_12_004
crossref_primary_10_1016_j_biopha_2017_12_069
crossref_primary_10_1002_adfm_202305714
crossref_primary_10_1007_s00441_016_2446_2
crossref_primary_10_1016_j_placenta_2019_12_011
crossref_primary_10_29235_1814_6023_2022_19_3_278_289
crossref_primary_10_1063_1_5024895
crossref_primary_10_1002_smtd_202301518
crossref_primary_10_1186_s13287_019_1203_3
crossref_primary_10_1016_j_cobme_2019_06_003
crossref_primary_10_3390_ijms18122537
crossref_primary_10_3390_app10217878
crossref_primary_10_3390_cells10123509
crossref_primary_10_1097_SAP_0000000000002357
crossref_primary_10_1165_rcmb_2016_0065MA
crossref_primary_10_1167_iovs_18_25376
crossref_primary_10_1038_s41467_023_36437_9
crossref_primary_10_1093_burnst_tkac036
crossref_primary_10_1096_fj_202100040R
crossref_primary_10_1101_cshperspect_a041245
crossref_primary_10_3390_ijms20030538
crossref_primary_10_5966_sctm_2015_0367
crossref_primary_10_1007_s12257_016_0609_3
crossref_primary_10_3390_nano10061234
crossref_primary_10_3390_vetsci10010044
crossref_primary_10_1093_genetics_iyac030
crossref_primary_10_1016_j_biomaterials_2024_122668
crossref_primary_10_1097_PRS_0000000000007450
crossref_primary_10_2174_0929867326666190927120847
crossref_primary_10_1016_j_ceja_2021_100113
crossref_primary_10_3390_ijms18091915
crossref_primary_10_1016_S1283_078X_19_42742_9
crossref_primary_10_1115_1_4050915
crossref_primary_10_1186_s13578_019_0362_3
crossref_primary_10_12688_f1000research_8190_1
crossref_primary_10_1002_nau_23367
crossref_primary_10_1101_cshperspect_a041235
crossref_primary_10_1111_wrr_12585
crossref_primary_10_1126_sciadv_abc3012
crossref_primary_10_3390_microorganisms11082038
crossref_primary_10_1002_lary_25581
crossref_primary_10_1097_SAP_0000000000000449
crossref_primary_10_3390_jcm6010010
crossref_primary_10_1002_adhm_202300997
crossref_primary_10_1158_2767_9764_CRC_23_0571
crossref_primary_10_1016_j_msec_2020_111266
crossref_primary_10_1016_j_matbio_2021_01_003
crossref_primary_10_1177_0885328214560218
crossref_primary_10_1016_j_yacs_2021_01_010
crossref_primary_10_1007_s11033_016_4038_3
crossref_primary_10_1002_term_2842
crossref_primary_10_1016_j_pharmthera_2020_107511
crossref_primary_10_1016_j_jconrel_2022_03_027
crossref_primary_10_3390_cells10113123
crossref_primary_10_1111_cbdd_14287
crossref_primary_10_1038_s41584_023_01032_1
crossref_primary_10_1016_j_burns_2022_08_010
crossref_primary_10_1038_s41578_018_0066_z
crossref_primary_10_3390_ijms150713091
crossref_primary_10_1002_jor_24499
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2024052889
crossref_primary_10_4236_ojvm_2021_111002
crossref_primary_10_1038_jid_2015_24
crossref_primary_10_1016_j_pharmthera_2014_11_001
crossref_primary_10_3389_fsurg_2022_988843
crossref_primary_10_1038_s41467_020_15114_1
crossref_primary_10_1038_s41551_021_00709_w
crossref_primary_10_1097_PRS_0000000000004168
crossref_primary_10_1007_s00285_016_1075_4
crossref_primary_10_1155_2015_958695
crossref_primary_10_1007_s00204_018_2306_9
crossref_primary_10_1016_j_jbiomech_2014_07_015
crossref_primary_10_1021_acs_langmuir_1c03359
crossref_primary_10_1038_s41598_023_37776_9
crossref_primary_10_1063_1_4991738
crossref_primary_10_1093_asj_sjv177
crossref_primary_10_1097_GOX_0000000000004680
crossref_primary_10_3390_gels9060504
crossref_primary_10_1126_scitranslmed_aal3765
crossref_primary_10_1016_j_biopha_2020_110700
crossref_primary_10_1155_2021_9913210
crossref_primary_10_3390_biomedicines11020460
crossref_primary_10_1097_GOX_0000000000003871
crossref_primary_10_1016_j_biochi_2023_01_013
crossref_primary_10_12688_f1000research_18293_1
crossref_primary_10_3389_fcvm_2023_1142612
crossref_primary_10_1111_srt_12310
crossref_primary_10_3389_fcell_2021_736022
crossref_primary_10_1016_j_biochi_2018_05_005
crossref_primary_10_1016_j_bioadv_2023_213674
crossref_primary_10_1186_s40824_023_00439_x
crossref_primary_10_1126_sciadv_adh1890
crossref_primary_10_1146_annurev_cellbio_011723_021442
crossref_primary_10_1146_annurev_physiol_021317_121312
crossref_primary_10_1016_j_matbio_2018_02_020
crossref_primary_10_1016_j_pharmthera_2020_107575
crossref_primary_10_1155_2014_103923
crossref_primary_10_3390_cancers11050715
crossref_primary_10_1093_jbcr_irz158
crossref_primary_10_3390_ijms161024094
crossref_primary_10_1002_adhm_202101109
crossref_primary_10_1002_jor_24395
crossref_primary_10_1016_j_xjidi_2021_100020
crossref_primary_10_3389_fphar_2024_1390419
crossref_primary_10_1016_j_jid_2019_02_025
crossref_primary_10_2174_0929867325666180831165704
crossref_primary_10_3389_fmolb_2022_804680
crossref_primary_10_3390_biom11081095
crossref_primary_10_1016_j_immuni_2017_09_016
crossref_primary_10_3390_ijms22041933
crossref_primary_10_3390_ijerph19063302
crossref_primary_10_1016_j_ejphar_2015_01_011
crossref_primary_10_1016_j_actbio_2024_05_018
crossref_primary_10_3390_ijms222011293
crossref_primary_10_1126_sciadv_aao4881
crossref_primary_10_1002_jcb_26866
crossref_primary_10_1007_s13671_018_0234_9
crossref_primary_10_3390_biomedicines10010118
crossref_primary_10_1242_jcs_204628
crossref_primary_10_1371_journal_pone_0222683
crossref_primary_10_1002_jcp_28639
crossref_primary_10_1186_s41038_017_0080_1
crossref_primary_10_1007_s11010_021_04166_6
crossref_primary_10_1089_wound_2020_1287
crossref_primary_10_3389_fphar_2022_853289
crossref_primary_10_2174_1566524021666210309113650
crossref_primary_10_1038_s41584_019_0324_5
crossref_primary_10_1177_1535370218761628
crossref_primary_10_3390_biom11111682
crossref_primary_10_3389_fncel_2015_00303
crossref_primary_10_1016_S1293_2965_19_42709_6
crossref_primary_10_11131_2017_101299
crossref_primary_10_1177_1179064417709287
crossref_primary_10_1371_journal_pcbi_1010902
crossref_primary_10_1097_MNH_0000000000000138
crossref_primary_10_1098_rsif_2019_0570
crossref_primary_10_3390_polym12102230
crossref_primary_10_1016_j_lfs_2018_09_012
crossref_primary_10_1126_scitranslmed_abh2857
ContentType Journal Article
DBID NPM
DOI 10.1089/wound.2012.0393
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 24527336
Genre Review
GroupedDBID 0R~
1-M
4.4
ABBKN
ABJNI
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BNQNF
EBS
EJD
IM4
NPM
O9-
RML
ID FETCH-LOGICAL-c389t-7ce00cb148985f9e2f09915cb31b796b2bca2544598e3c592a3229262a5ef6332
ISSN 2162-1918
IngestDate Sat Sep 28 08:22:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-7ce00cb148985f9e2f09915cb31b796b2bca2544598e3c592a3229262a5ef6332
OpenAccessLink https://europepmc.org/articles/pmc3656629?pdf=render
PMID 24527336
ParticipantIDs pubmed_primary_24527336
PublicationCentury 2000
PublicationDate 2013-May
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Advances in wound care (New Rochelle, N.Y.)
PublicationTitleAlternate Adv Wound Care (New Rochelle)
PublicationYear 2013
SSID ssj0000601161
Score 2.3763978
SecondaryResourceType review_article
Snippet Myofibroblasts are responsible for wound closure that occurs in healed acute wounds. However, their actions can result in disfiguring scar contractures,...
SourceID pubmed
SourceType Index Database
StartPage 122
Title Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention
URI https://www.ncbi.nlm.nih.gov/pubmed/24527336
Volume 2
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYKe-FlArGxjR_yw95GWOLUic0bQiA0rSChInhDsWtL1URahaIJXvmj-Pe4s53WLZtge4mqOHEa3xf77vzdHSFfuRFpbplICgtfUzczKpFykCaDVCppeJkKhdHIvdPi5KL744pfdTpPEWvpbqL29MMf40r-R6pwDuSKUbL_INlpp3ACfoN84QgShuObZNwzGLc7anw9-aD6oSbZu4d-FdaKqW5dDYBLrJ6E4X2TxkcyOK-nrpom1DRB__kx3nI7dCS5szEq5ne1S7jquIjIhOzPorW8LzGwJWMV98CzChzP9rd7rGOXhao_5yNPPZ2L8rJtzS-Y_r5dVqFWyM8hOjtQOZ1d0bTkNEwpMfOQ38Ba_GtK-g1bXcGXkUXMQT_lsaxgCViQIp6fWQTDbjTXZj6g-cUakApMoepeEKl7bA_Dj-MrYRTHNw4SuO2M-SBfb11Iyt02LZGlUmDFkNPgJPIKAO5uoak_fZ82qZSQ3xf-GGajDp0tWDZOw-mvkvfBNKEHHmdrpGPqdfL4AmN0ZClgjM5hjA5r6jBGI4zt0hZhuxTwRVt87dM5dFFAFwVs0AhdNEbXB3JxfNQ_PElC4Y5Eg_47SUpt0lQrsLSl4FYaZsEOybhWeaZKWSimdOVS40lhcs0lq2BZwcSVFTe2yHP2kSzXo9p8ItSUpVZqkGkOdr3VVtq8m-bCFIaDITKoPpMNP2bXY5-d5bodzS9_bdkkKzPwbZF3FqYDsw265UTtOEk-A7E0e5s
link.rule.ids 780
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanoregulation+of+the+Myofibroblast+in+Wound+Contraction%2C+Scarring%2C+and+Fibrosis%3A+Opportunities+for+New+Therapeutic+Intervention&rft.jtitle=Advances+in+wound+care+%28New+Rochelle%2C+N.Y.%29&rft.au=Van+De+Water%2C+Livingston&rft.au=Varney%2C+Scott&rft.au=Tomasek%2C+James+J&rft.date=2013-05-01&rft.issn=2162-1918&rft.volume=2&rft.issue=4&rft.spage=122&rft_id=info:doi/10.1089%2Fwound.2012.0393&rft_id=info%3Apmid%2F24527336&rft_id=info%3Apmid%2F24527336&rft.externalDocID=24527336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-1918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-1918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-1918&client=summon