Running on uneven ground: leg adjustment to vertical steps and self-stability

Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring–mass models predict that running can be self-stable. In simulations, this self-stability allows for running on une...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 211; no. 18; pp. 2989 - 3000
Main Authors Grimmer, Sten, Ernst, Michael, Günther, Michael, Blickhan, Reinhard
Format Journal Article
LanguageEnglish
Published England 15.09.2008
Subjects
Online AccessGet full text
ISSN0022-0949
1477-9145
DOI10.1242/jeb.014357

Cover

Abstract Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring–mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring–mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring–mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring–mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics.
AbstractList Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring–mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring–mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring–mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring–mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics.
Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring-mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring-mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring-mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring-mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics.Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring-mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring-mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring-mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring-mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics.
Author Blickhan, Reinhard
Günther, Michael
Ernst, Michael
Grimmer, Sten
Author_xml – sequence: 1
  givenname: Sten
  surname: Grimmer
  fullname: Grimmer, Sten
  organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany
– sequence: 2
  givenname: Michael
  surname: Ernst
  fullname: Ernst, Michael
  organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany
– sequence: 3
  givenname: Michael
  surname: Günther
  fullname: Günther, Michael
  organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany, Eberhard-Karls-Universität, Institut für Sportwissenschaft,Arbeitsbereich III, Wilhelmstraße 124, D-72074 Tübingen,Germany
– sequence: 4
  givenname: Reinhard
  surname: Blickhan
  fullname: Blickhan, Reinhard
  organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18775936$$D View this record in MEDLINE/PubMed
BookMark eNplkDtPwzAYRS0Eog9Y-AHIEwNSiu3Yic2GKl5SERKC2bKdL5Wr1CmxU6n_nqAWBrjLXc69w5mg49AGQOiCkhllnN2swM4I5bkoj9CY8rLMFOXiGI0JYSwjiqsRmsS4IkMKwU_RiMqyFCovxujlrQ_BhyVuA-4DbCHgZdf2obrFDSyxqVZ9TGsICacWb6FL3pkGxwSbiE2ocISmzmIy1jc-7c7QSW2aCOeHnqKPh_v3-VO2eH18nt8tMpdLlbJSVUQBo1ZKQ1he0JybkhaUUMGssDIHx1khaykEqZxUhaidVVCAc9LSyuZTdLX_3XTtZw8x6bWPDprGBGj7qAslGJWcDuDlAeztGiq96fzadDv9I2AAyB5wXRtjB7V2Ppnk25A64xtNif52rAfHeu94mFz_mfy-_oe_ADvDfDw
CitedBy_id crossref_primary_10_1016_j_jbiomech_2021_110527
crossref_primary_10_1017_S1755254011000122
crossref_primary_10_1088_1748_3182_7_4_046010
crossref_primary_10_1088_1748_3190_ac9a1a
crossref_primary_10_1016_j_gaitpost_2023_12_005
crossref_primary_10_1371_journal_pone_0051888
crossref_primary_10_1016_j_humov_2016_07_002
crossref_primary_10_1016_j_jbiomech_2013_06_019
crossref_primary_10_1519_JSC_0000000000004128
crossref_primary_10_1017_jpa_2016_33
crossref_primary_10_1123_jab_2020_0076
crossref_primary_10_1123_jab_29_5_616
crossref_primary_10_1109_TRO_2012_2230992
crossref_primary_10_1016_j_jtbi_2011_10_011
crossref_primary_10_1242_jeb_092668
crossref_primary_10_1242_jeb_161158
crossref_primary_10_1242_jeb_106518
crossref_primary_10_3389_fspor_2024_1403770
crossref_primary_10_1080_02640414_2011_591416
crossref_primary_10_1016_j_jbiomech_2009_08_014
crossref_primary_10_1088_1748_3182_5_1_016004
crossref_primary_10_1242_jeb_072314
crossref_primary_10_1242_jeb_113688
crossref_primary_10_1016_j_gaitpost_2011_07_019
crossref_primary_10_1016_j_cub_2008_09_050
crossref_primary_10_1093_icb_icu058
crossref_primary_10_1242_jeb_065557
crossref_primary_10_1016_j_humov_2013_02_009
crossref_primary_10_3390_app10113741
crossref_primary_10_1123_jab_28_6_718
crossref_primary_10_1016_j_asd_2020_100983
crossref_primary_10_1242_jeb_195172
crossref_primary_10_1016_j_jtbi_2021_110714
crossref_primary_10_1115_1_4024991
crossref_primary_10_1098_rsif_2016_0529
crossref_primary_10_1371_journal_pone_0065788
crossref_primary_10_1123_jab_2016_0322
crossref_primary_10_1123_ijatt_17_6_14
crossref_primary_10_1242_jeb_042515
crossref_primary_10_3390_robotics12040109
crossref_primary_10_1007_s11071_010_9757_8
crossref_primary_10_1016_j_humov_2019_102546
crossref_primary_10_1088_1748_3182_7_4_046002
crossref_primary_10_1242_jeb_085399
crossref_primary_10_1242_jeb_219667
crossref_primary_10_1016_j_humov_2010_01_003
crossref_primary_10_1016_j_jbiomech_2016_05_017
crossref_primary_10_1080_02640414_2012_710755
crossref_primary_10_1242_jeb_237073
crossref_primary_10_1016_j_ptsp_2011_09_004
crossref_primary_10_1242_jeb_195511
crossref_primary_10_1111_1365_2435_13969
crossref_primary_10_1371_journal_pone_0190135
crossref_primary_10_1242_jeb_102640
crossref_primary_10_1519_JSC_0000000000004178
crossref_primary_10_1016_j_jbiomech_2013_10_039
crossref_primary_10_1103_PhysRevResearch_7_013303
crossref_primary_10_1007_s10846_013_9877_8
crossref_primary_10_1088_1748_3190_aa50b0
crossref_primary_10_1016_j_jtbi_2011_09_021
crossref_primary_10_1524_auto_2012_1040
crossref_primary_10_3390_machines11020236
crossref_primary_10_1088_1748_3182_9_3_036020
crossref_primary_10_1016_j_humov_2018_04_003
crossref_primary_10_1103_PhysRevE_89_012716
crossref_primary_10_1007_s00419_010_0458_z
crossref_primary_10_1016_j_jevs_2022_103897
crossref_primary_10_1371_journal_pone_0100399
crossref_primary_10_1016_S1672_6529_11_60115_7
crossref_primary_10_3390_app13042157
crossref_primary_10_1016_j_jsv_2012_09_021
crossref_primary_10_1098_rsos_181729
crossref_primary_10_1111_brv_13105
crossref_primary_10_1088_1748_3182_8_4_046006
crossref_primary_10_1016_j_jbiomech_2015_01_051
crossref_primary_10_1242_jeb_202119
crossref_primary_10_1242_jeb_044180
crossref_primary_10_1016_j_humov_2014_05_012
crossref_primary_10_1016_j_jbiomech_2022_111283
crossref_primary_10_1016_j_gaitpost_2016_05_017
crossref_primary_10_1016_j_humov_2010_04_007
crossref_primary_10_1016_j_jtbi_2011_04_029
crossref_primary_10_1088_1748_3182_9_3_036018
crossref_primary_10_1016_j_jbiomech_2019_05_021
crossref_primary_10_1016_j_jtbi_2020_110227
crossref_primary_10_1088_1748_3182_5_2_026006
crossref_primary_10_1016_j_jbiomech_2018_12_036
crossref_primary_10_1007_s00421_013_2805_6
crossref_primary_10_1007_s40279_013_0093_2
crossref_primary_10_1242_jeb_026880
crossref_primary_10_7554_eLife_38371
crossref_primary_10_1007_s42087_022_00324_4
crossref_primary_10_1098_rspb_2023_0200
crossref_primary_10_1016_j_jbiomech_2022_111276
crossref_primary_10_1098_rspb_2014_1405
crossref_primary_10_1371_journal_pone_0168545
crossref_primary_10_1242_jeb_228288
crossref_primary_10_15366_rimcafd2022_88_009
Cites_doi 10.1016/S0021-9290(01)00245-7
10.1152/jappl.1997.82.1.13
10.1152/jappl.1991.71.6.2127
10.1098/rspb.1990.0030
10.1152/japplphysiol.00393.2004
10.2307/2279169
10.1242/jeb.202.23.3325
10.1016/0021-9290(90)90042-2
10.1007/BF00124244
10.1152/jappl.1998.85.3.1044
10.1016/S0021-9290(99)00078-0
10.1142/S0219519403000831
10.1242/jeb.00463
10.1073/pnas.0601473103
10.1134/S1560354707050048
10.1080/00222895.1996.9941743
10.1007/s004220000180
10.1109/ROBOT.1997.620084
10.1098/rspb.2003.2454
10.1007/s00285-004-0269-3
10.1242/jeb.185.1.71
10.1152/jn.1981.45.2.267
10.1177/027836499000900206
10.1016/j.jtbi.2004.08.015
10.1016/S0021-9290(99)00192-X
10.1098/rspb.1998.0388
10.1177/0278364904041323
10.1152/jappl.1997.82.1.15
10.1016/0021-9290(79)90056-3
10.1007/978-3-540-36119-0_19
10.1242/jeb.205.18.2803
10.1242/jeb.005801
10.1007/s00422-001-0300-3
10.1016/j.ijfatigue.2006.09.020
10.1007/s11071-006-9030-3
10.1098/rsta.2006.1911
10.1016/S0021-9290(99)00137-2
10.1177/0278364905056194
10.1177/0278364906069045
10.1007/s004220000181
10.1007/s00422-003-0403-0
10.1242/jeb.00048
10.1016/0021-9290(80)90033-0
10.1080/01621459.1937.10503522
10.1111/j.1469-7793.1999.00307.x
10.1098/rspb.2006.3637
10.1016/S0167-2789(01)00271-8
10.1006/jtbi.1999.0949
10.1137/050626594
10.1016/0021-9290(89)90224-8
10.1126/science.2740914
10.1242/jeb.01986
10.1016/0021-9290(95)00029-1
10.1007/978-3-540-36119-0_18
10.1002/ca.10064
10.1152/japplphysiol.01164.2000
10.20965/jrm.2007.p0374
10.1016/0966-6362(93)90042-Y
10.1007/BF00197760
10.1152/japplphysiol.00003.2004
10.1016/S0021-9290(02)00183-5
10.1007/s00422-003-0404-z
10.1093/icb/42.1.149
10.1098/rstb.1999.0437
10.1109/TRO.2005.855990
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1242/jeb.014357
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9145
EndPage 3000
ExternalDocumentID 18775936
10_1242_jeb_014357
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
186
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6TJ
AAFWJ
AAYXX
ABDNZ
ABPPZ
ABRJW
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADVGF
ADXHL
AEILP
AENEX
AETEA
AFRAH
AGCDD
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
H~9
INIJC
KQ8
N9A
O9-
OHT
OK1
P2P
PQQKQ
RCB
RHI
RXW
S10
SJN
TAE
TN5
TR2
TWZ
UKR
UPT
W8F
WH7
WOQ
XJT
XSW
YQT
YR2
YVO
YZZ
ZCA
ZY4
~02
.55
.GJ
3O-
AAUTI
AAYJJ
ABJNI
ACPVT
ACYGS
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
MVM
NPM
UBC
VH1
X7M
XOL
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c389t-79d09e21b88a0236134a71610152b5b83ec4268f8550dc8965fcb9e6ecc8b1db3
ISSN 0022-0949
IngestDate Thu Sep 04 23:48:42 EDT 2025
Mon Jul 21 05:56:20 EDT 2025
Tue Jul 01 01:57:36 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-79d09e21b88a0236134a71610152b5b83ec4268f8550dc8965fcb9e6ecc8b1db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18775936
PQID 69521841
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_69521841
pubmed_primary_18775936
crossref_citationtrail_10_1242_jeb_014357
crossref_primary_10_1242_jeb_014357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-15
PublicationDateYYYYMMDD 2008-09-15
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-15
  day: 15
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of experimental biology
PublicationTitleAlternate J Exp Biol
PublicationYear 2008
References 2021042511290697000_REF47
2021042511290697000_REF48
2021042511290697000_REF49
2021042511290697000_REF43
2021042511290697000_REF44
2021042511290697000_REF45
2021042511290697000_REF46
2021042511290697000_REF40
2021042511290697000_REF41
2021042511290697000_REF42
2021042511290697000_REF70
2021042511290697000_REF71
2021042511290697000_REF36
2021042511290697000_REF37
2021042511290697000_REF38
2021042511290697000_REF39
2021042511290697000_REF32
2021042511290697000_REF33
2021042511290697000_REF34
2021042511290697000_REF35
2021042511290697000_REF72
2021042511290697000_REF73
2021042511290697000_REF30
2021042511290697000_REF31
2021042511290697000_REF60
2021042511290697000_REF2
2021042511290697000_REF29
2021042511290697000_REF1
2021042511290697000_REF4
2021042511290697000_REF3
2021042511290697000_REF25
2021042511290697000_REF69
2021042511290697000_REF26
2021042511290697000_REF27
2021042511290697000_REF28
2021042511290697000_REF21
2021042511290697000_REF65
2021042511290697000_REF22
2021042511290697000_REF66
2021042511290697000_REF23
2021042511290697000_REF67
2021042511290697000_REF24
2021042511290697000_REF68
2021042511290697000_REF61
2021042511290697000_REF62
2021042511290697000_REF63
2021042511290697000_REF20
2021042511290697000_REF64
2021042511290697000_REF9
2021042511290697000_REF6
2021042511290697000_REF5
2021042511290697000_REF8
2021042511290697000_REF7
2021042511290697000_REF18
2021042511290697000_REF19
2021042511290697000_REF14
2021042511290697000_REF58
2021042511290697000_REF15
2021042511290697000_REF59
2021042511290697000_REF16
2021042511290697000_REF17
2021042511290697000_REF10
2021042511290697000_REF54
2021042511290697000_REF11
2021042511290697000_REF55
2021042511290697000_REF12
2021042511290697000_REF56
2021042511290697000_REF13
2021042511290697000_REF57
2021042511290697000_REF50
2021042511290697000_REF51
2021042511290697000_REF52
2021042511290697000_REF53
References_xml – ident: 2021042511290697000_REF64
– ident: 2021042511290697000_REF66
  doi: 10.1016/S0021-9290(01)00245-7
– ident: 2021042511290697000_REF1
  doi: 10.1152/jappl.1997.82.1.13
– ident: 2021042511290697000_REF18
  doi: 10.1152/jappl.1991.71.6.2127
– ident: 2021042511290697000_REF46
  doi: 10.1098/rspb.1990.0030
– ident: 2021042511290697000_REF50
  doi: 10.1152/japplphysiol.00393.2004
– ident: 2021042511290697000_REF24
  doi: 10.2307/2279169
– ident: 2021042511290697000_REF25
  doi: 10.1242/jeb.202.23.3325
– ident: 2021042511290697000_REF48
  doi: 10.1016/0021-9290(90)90042-2
– ident: 2021042511290697000_REF10
  doi: 10.1007/BF00124244
– ident: 2021042511290697000_REF19
  doi: 10.1152/jappl.1998.85.3.1044
– ident: 2021042511290697000_REF22
  doi: 10.1016/S0021-9290(99)00078-0
– ident: 2021042511290697000_REF35
  doi: 10.1142/S0219519403000831
– ident: 2021042511290697000_REF67
  doi: 10.1242/jeb.00463
– ident: 2021042511290697000_REF13
  doi: 10.1073/pnas.0601473103
– ident: 2021042511290697000_REF63
  doi: 10.1134/S1560354707050048
– ident: 2021042511290697000_REF55
  doi: 10.1080/00222895.1996.9941743
– ident: 2021042511290697000_REF57
  doi: 10.1007/s004220000180
– ident: 2021042511290697000_REF53
  doi: 10.1109/ROBOT.1997.620084
– ident: 2021042511290697000_REF29
  doi: 10.1098/rspb.2003.2454
– ident: 2021042511290697000_REF36
  doi: 10.1007/s00285-004-0269-3
– ident: 2021042511290697000_REF17
  doi: 10.1242/jeb.185.1.71
– ident: 2021042511290697000_REF38
  doi: 10.1152/jn.1981.45.2.267
– ident: 2021042511290697000_REF47
  doi: 10.1177/027836499000900206
– ident: 2021042511290697000_REF30
  doi: 10.1016/j.jtbi.2004.08.015
– ident: 2021042511290697000_REF15
  doi: 10.1016/S0021-9290(99)00192-X
– ident: 2021042511290697000_REF54
– ident: 2021042511290697000_REF21
  doi: 10.1098/rspb.1998.0388
– ident: 2021042511290697000_REF12
  doi: 10.1177/0278364904041323
– ident: 2021042511290697000_REF20
  doi: 10.1152/jappl.1997.82.1.15
– ident: 2021042511290697000_REF33
  doi: 10.1016/0021-9290(79)90056-3
– ident: 2021042511290697000_REF72
  doi: 10.1007/978-3-540-36119-0_19
– ident: 2021042511290697000_REF39
  doi: 10.1242/jeb.205.18.2803
– ident: 2021042511290697000_REF4
  doi: 10.1242/jeb.005801
– ident: 2021042511290697000_REF60
  doi: 10.1007/s00422-001-0300-3
– ident: 2021042511290697000_REF40
  doi: 10.1016/j.ijfatigue.2006.09.020
– ident: 2021042511290697000_REF2
  doi: 10.1007/s11071-006-9030-3
– ident: 2021042511290697000_REF9
  doi: 10.1098/rsta.2006.1911
– ident: 2021042511290697000_REF65
  doi: 10.1016/S0021-9290(99)00137-2
– ident: 2021042511290697000_REF8
– ident: 2021042511290697000_REF61
  doi: 10.1177/0278364905056194
– ident: 2021042511290697000_REF62
  doi: 10.1177/0278364906069045
– ident: 2021042511290697000_REF37
– ident: 2021042511290697000_REF56
  doi: 10.1007/s004220000181
– ident: 2021042511290697000_REF71
  doi: 10.1007/s00422-003-0403-0
– ident: 2021042511290697000_REF43
  doi: 10.1242/jeb.00048
– ident: 2021042511290697000_REF11
  doi: 10.1016/0021-9290(80)90033-0
– ident: 2021042511290697000_REF23
  doi: 10.1080/01621459.1937.10503522
– ident: 2021042511290697000_REF45
  doi: 10.1111/j.1469-7793.1999.00307.x
– ident: 2021042511290697000_REF31
  doi: 10.1098/rspb.2006.3637
– ident: 2021042511290697000_REF27
– ident: 2021042511290697000_REF58
  doi: 10.1016/S0167-2789(01)00271-8
– ident: 2021042511290697000_REF70
  doi: 10.1006/jtbi.1999.0949
– ident: 2021042511290697000_REF32
  doi: 10.1137/050626594
– ident: 2021042511290697000_REF69
– ident: 2021042511290697000_REF6
  doi: 10.1016/0021-9290(89)90224-8
– ident: 2021042511290697000_REF3
  doi: 10.1126/science.2740914
– ident: 2021042511290697000_REF14
  doi: 10.1242/jeb.01986
– ident: 2021042511290697000_REF73
– ident: 2021042511290697000_REF16
  doi: 10.1016/0021-9290(95)00029-1
– ident: 2021042511290697000_REF68
  doi: 10.1007/978-3-540-36119-0_18
– ident: 2021042511290697000_REF44
  doi: 10.1002/ca.10064
– ident: 2021042511290697000_REF41
  doi: 10.1152/japplphysiol.01164.2000
– ident: 2021042511290697000_REF28
– ident: 2021042511290697000_REF51
  doi: 10.20965/jrm.2007.p0374
– ident: 2021042511290697000_REF52
  doi: 10.1016/0966-6362(93)90042-Y
– ident: 2021042511290697000_REF7
  doi: 10.1007/BF00197760
– ident: 2021042511290697000_REF5
  doi: 10.1152/japplphysiol.00003.2004
– ident: 2021042511290697000_REF34
  doi: 10.1016/S0021-9290(02)00183-5
– ident: 2021042511290697000_REF59
  doi: 10.1007/s00422-003-0404-z
– ident: 2021042511290697000_REF26
  doi: 10.1093/icb/42.1.149
– ident: 2021042511290697000_REF42
  doi: 10.1098/rstb.1999.0437
– ident: 2021042511290697000_REF49
  doi: 10.1109/TRO.2005.855990
SSID ssj0000654
Score 2.2799797
Snippet Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2989
SubjectTerms Adaptation, Physiological
Biomechanical Phenomena
Computer Simulation
Elasticity
Gait - physiology
Humans
Joints - physiology
Leg - physiology
Male
Models, Biological
Muscle Contraction - physiology
Running - physiology
Title Running on uneven ground: leg adjustment to vertical steps and self-stability
URI https://www.ncbi.nlm.nih.gov/pubmed/18775936
https://www.proquest.com/docview/69521841
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc60KS9oME-KANmaXuZqrCkcT68t4GY0CamfYDEWxS7DnQrbkWdB_jrubOdJh0gbXuJqthyqrtfLnf23e8IeSsSEYWCVUEWR3HAeFUGIg6roIRQIwL88IRj7fDx1_TolH0-S856vaqTtVQbsSdv7q0r-R-twj3QK1bJ_oNmF4vCDfgN-oUraBiuf6XjH7VtOIQb_rVGKqYBFmlo27Z5os4H5ehXPXdp5OBi2s7LtgjSqJmjZp6rSRWAf2gzZJcOeDuO6lITAE_a1KbtjC99_5Wfpq0qO7zSrpakm5WP0_Fcfv9AG4-UP4b3J2P5-8KfTKmxbkr-F9sSNofCFWZ2ygQgduRdUzv0htVh6psZeNvrjSd33YTuWHVwI9CqK7GHbISO0Lqj3tml1W-UZxn2J2y_bIt8w2boEVkdZpk9zv_yPe98sRPWsMrjX_Y0tvDY9-1DkV7WL7PswzwQmFgH5eQpWfMKox8dTNZJT-kN8tj1Gr1-Ro49WOhUUwcW6sDygQJUaAsVaqa0gQq1UKEAFboMlefk9NPhycFR4HtpBBJcUhNkfBRyNYxEnpfYNCCKWQmCAIOcDOF9zWMlwVfLK-S3G8mcp0klBVcpvOG5iEYifkFW9FSrTUKzEoJgiFI5lxCdg3suE8bSUIYyZSkTok_eNdIppCeax34nkwIDThBqAUItnFD75M1i7szRq9w763Uj5AKsHx5plVpN63mR8gT3KKI-eelk367idbX14Mgr8qQF7jZZMVe12gEP04hdC49bsqZ5dA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Running+on+uneven+ground%3A+leg+adjustment+to+vertical+steps+and+self-stability&rft.jtitle=Journal+of+experimental+biology&rft.au=Grimmer%2C+Sten&rft.au=Ernst%2C+Michael&rft.au=G%C3%BCnther%2C+Michael&rft.au=Blickhan%2C+Reinhard&rft.date=2008-09-15&rft.issn=0022-0949&rft.volume=211&rft.issue=Pt+18&rft.spage=2989&rft_id=info:doi/10.1242%2Fjeb.014357&rft_id=info%3Apmid%2F18775936&rft.externalDocID=18775936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0949&client=summon