Running on uneven ground: leg adjustment to vertical steps and self-stability
Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring–mass models predict that running can be self-stable. In simulations, this self-stability allows for running on une...
Saved in:
Published in | Journal of experimental biology Vol. 211; no. 18; pp. 2989 - 3000 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
15.09.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-0949 1477-9145 |
DOI | 10.1242/jeb.014357 |
Cover
Abstract | Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring–mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring–mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring–mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring–mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics. |
---|---|
AbstractList | Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring–mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring–mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring–mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring–mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics. Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring-mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring-mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring-mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring-mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics.Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring-mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use this property of the mechanical system in such an irregular environment is, however, unclear. One way to approach this question is to study how the leg stiffness in stance and the leg orientation in flight are changed in response to ground perturbations. Here, for 11 human subjects we studied two consecutive contacts during running on uneven ground with a force plate of adjustable height (step of +5, +10 and +15 cm). We found that runners adjust their leg stiffness to the height of a vertical step. The adjustment is characterized by a 9% increase in leg stiffness in preparation for the perturbation and by a systematic decrease in proportion to the step height. At the highest vertical step (+15 cm), leg stiffness was reduced by about 26%. We also observed that the angle of attack decreased from 68 deg. to 62 deg. with increasing ground height. These leg adjustments are in accordance with the predictions of a stable spring-mass system. Furthermore, we could describe the identified leg forces and leg compressions with a simple spring-mass simulation for a given body mass, leg stiffness, angle of attack and initial conditions. We compared the experimental findings with the self-stabilizing properties of the spring-mass model, and discuss how humans use a combination of strategies that include purely mechanical self-stabilization and active neuromuscular control. Finally, beyond self-stability, we suggest that control may apply to smooth centre of mass kinematics. |
Author | Blickhan, Reinhard Günther, Michael Ernst, Michael Grimmer, Sten |
Author_xml | – sequence: 1 givenname: Sten surname: Grimmer fullname: Grimmer, Sten organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany – sequence: 2 givenname: Michael surname: Ernst fullname: Ernst, Michael organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany – sequence: 3 givenname: Michael surname: Günther fullname: Günther, Michael organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany, Eberhard-Karls-Universität, Institut für Sportwissenschaft,Arbeitsbereich III, Wilhelmstraße 124, D-72074 Tübingen,Germany – sequence: 4 givenname: Reinhard surname: Blickhan fullname: Blickhan, Reinhard organization: Friedrich-Schiller-Universität, Institut für Sportwissenschaft,Lehrstuhl für Bewegungswissenschaft, Seidelstraße 20, D-07749 Jena,Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18775936$$D View this record in MEDLINE/PubMed |
BookMark | eNplkDtPwzAYRS0Eog9Y-AHIEwNSiu3Yic2GKl5SERKC2bKdL5Wr1CmxU6n_nqAWBrjLXc69w5mg49AGQOiCkhllnN2swM4I5bkoj9CY8rLMFOXiGI0JYSwjiqsRmsS4IkMKwU_RiMqyFCovxujlrQ_BhyVuA-4DbCHgZdf2obrFDSyxqVZ9TGsICacWb6FL3pkGxwSbiE2ocISmzmIy1jc-7c7QSW2aCOeHnqKPh_v3-VO2eH18nt8tMpdLlbJSVUQBo1ZKQ1he0JybkhaUUMGssDIHx1khaykEqZxUhaidVVCAc9LSyuZTdLX_3XTtZw8x6bWPDprGBGj7qAslGJWcDuDlAeztGiq96fzadDv9I2AAyB5wXRtjB7V2Ppnk25A64xtNif52rAfHeu94mFz_mfy-_oe_ADvDfDw |
CitedBy_id | crossref_primary_10_1016_j_jbiomech_2021_110527 crossref_primary_10_1017_S1755254011000122 crossref_primary_10_1088_1748_3182_7_4_046010 crossref_primary_10_1088_1748_3190_ac9a1a crossref_primary_10_1016_j_gaitpost_2023_12_005 crossref_primary_10_1371_journal_pone_0051888 crossref_primary_10_1016_j_humov_2016_07_002 crossref_primary_10_1016_j_jbiomech_2013_06_019 crossref_primary_10_1519_JSC_0000000000004128 crossref_primary_10_1017_jpa_2016_33 crossref_primary_10_1123_jab_2020_0076 crossref_primary_10_1123_jab_29_5_616 crossref_primary_10_1109_TRO_2012_2230992 crossref_primary_10_1016_j_jtbi_2011_10_011 crossref_primary_10_1242_jeb_092668 crossref_primary_10_1242_jeb_161158 crossref_primary_10_1242_jeb_106518 crossref_primary_10_3389_fspor_2024_1403770 crossref_primary_10_1080_02640414_2011_591416 crossref_primary_10_1016_j_jbiomech_2009_08_014 crossref_primary_10_1088_1748_3182_5_1_016004 crossref_primary_10_1242_jeb_072314 crossref_primary_10_1242_jeb_113688 crossref_primary_10_1016_j_gaitpost_2011_07_019 crossref_primary_10_1016_j_cub_2008_09_050 crossref_primary_10_1093_icb_icu058 crossref_primary_10_1242_jeb_065557 crossref_primary_10_1016_j_humov_2013_02_009 crossref_primary_10_3390_app10113741 crossref_primary_10_1123_jab_28_6_718 crossref_primary_10_1016_j_asd_2020_100983 crossref_primary_10_1242_jeb_195172 crossref_primary_10_1016_j_jtbi_2021_110714 crossref_primary_10_1115_1_4024991 crossref_primary_10_1098_rsif_2016_0529 crossref_primary_10_1371_journal_pone_0065788 crossref_primary_10_1123_jab_2016_0322 crossref_primary_10_1123_ijatt_17_6_14 crossref_primary_10_1242_jeb_042515 crossref_primary_10_3390_robotics12040109 crossref_primary_10_1007_s11071_010_9757_8 crossref_primary_10_1016_j_humov_2019_102546 crossref_primary_10_1088_1748_3182_7_4_046002 crossref_primary_10_1242_jeb_085399 crossref_primary_10_1242_jeb_219667 crossref_primary_10_1016_j_humov_2010_01_003 crossref_primary_10_1016_j_jbiomech_2016_05_017 crossref_primary_10_1080_02640414_2012_710755 crossref_primary_10_1242_jeb_237073 crossref_primary_10_1016_j_ptsp_2011_09_004 crossref_primary_10_1242_jeb_195511 crossref_primary_10_1111_1365_2435_13969 crossref_primary_10_1371_journal_pone_0190135 crossref_primary_10_1242_jeb_102640 crossref_primary_10_1519_JSC_0000000000004178 crossref_primary_10_1016_j_jbiomech_2013_10_039 crossref_primary_10_1103_PhysRevResearch_7_013303 crossref_primary_10_1007_s10846_013_9877_8 crossref_primary_10_1088_1748_3190_aa50b0 crossref_primary_10_1016_j_jtbi_2011_09_021 crossref_primary_10_1524_auto_2012_1040 crossref_primary_10_3390_machines11020236 crossref_primary_10_1088_1748_3182_9_3_036020 crossref_primary_10_1016_j_humov_2018_04_003 crossref_primary_10_1103_PhysRevE_89_012716 crossref_primary_10_1007_s00419_010_0458_z crossref_primary_10_1016_j_jevs_2022_103897 crossref_primary_10_1371_journal_pone_0100399 crossref_primary_10_1016_S1672_6529_11_60115_7 crossref_primary_10_3390_app13042157 crossref_primary_10_1016_j_jsv_2012_09_021 crossref_primary_10_1098_rsos_181729 crossref_primary_10_1111_brv_13105 crossref_primary_10_1088_1748_3182_8_4_046006 crossref_primary_10_1016_j_jbiomech_2015_01_051 crossref_primary_10_1242_jeb_202119 crossref_primary_10_1242_jeb_044180 crossref_primary_10_1016_j_humov_2014_05_012 crossref_primary_10_1016_j_jbiomech_2022_111283 crossref_primary_10_1016_j_gaitpost_2016_05_017 crossref_primary_10_1016_j_humov_2010_04_007 crossref_primary_10_1016_j_jtbi_2011_04_029 crossref_primary_10_1088_1748_3182_9_3_036018 crossref_primary_10_1016_j_jbiomech_2019_05_021 crossref_primary_10_1016_j_jtbi_2020_110227 crossref_primary_10_1088_1748_3182_5_2_026006 crossref_primary_10_1016_j_jbiomech_2018_12_036 crossref_primary_10_1007_s00421_013_2805_6 crossref_primary_10_1007_s40279_013_0093_2 crossref_primary_10_1242_jeb_026880 crossref_primary_10_7554_eLife_38371 crossref_primary_10_1007_s42087_022_00324_4 crossref_primary_10_1098_rspb_2023_0200 crossref_primary_10_1016_j_jbiomech_2022_111276 crossref_primary_10_1098_rspb_2014_1405 crossref_primary_10_1371_journal_pone_0168545 crossref_primary_10_1242_jeb_228288 crossref_primary_10_15366_rimcafd2022_88_009 |
Cites_doi | 10.1016/S0021-9290(01)00245-7 10.1152/jappl.1997.82.1.13 10.1152/jappl.1991.71.6.2127 10.1098/rspb.1990.0030 10.1152/japplphysiol.00393.2004 10.2307/2279169 10.1242/jeb.202.23.3325 10.1016/0021-9290(90)90042-2 10.1007/BF00124244 10.1152/jappl.1998.85.3.1044 10.1016/S0021-9290(99)00078-0 10.1142/S0219519403000831 10.1242/jeb.00463 10.1073/pnas.0601473103 10.1134/S1560354707050048 10.1080/00222895.1996.9941743 10.1007/s004220000180 10.1109/ROBOT.1997.620084 10.1098/rspb.2003.2454 10.1007/s00285-004-0269-3 10.1242/jeb.185.1.71 10.1152/jn.1981.45.2.267 10.1177/027836499000900206 10.1016/j.jtbi.2004.08.015 10.1016/S0021-9290(99)00192-X 10.1098/rspb.1998.0388 10.1177/0278364904041323 10.1152/jappl.1997.82.1.15 10.1016/0021-9290(79)90056-3 10.1007/978-3-540-36119-0_19 10.1242/jeb.205.18.2803 10.1242/jeb.005801 10.1007/s00422-001-0300-3 10.1016/j.ijfatigue.2006.09.020 10.1007/s11071-006-9030-3 10.1098/rsta.2006.1911 10.1016/S0021-9290(99)00137-2 10.1177/0278364905056194 10.1177/0278364906069045 10.1007/s004220000181 10.1007/s00422-003-0403-0 10.1242/jeb.00048 10.1016/0021-9290(80)90033-0 10.1080/01621459.1937.10503522 10.1111/j.1469-7793.1999.00307.x 10.1098/rspb.2006.3637 10.1016/S0167-2789(01)00271-8 10.1006/jtbi.1999.0949 10.1137/050626594 10.1016/0021-9290(89)90224-8 10.1126/science.2740914 10.1242/jeb.01986 10.1016/0021-9290(95)00029-1 10.1007/978-3-540-36119-0_18 10.1002/ca.10064 10.1152/japplphysiol.01164.2000 10.20965/jrm.2007.p0374 10.1016/0966-6362(93)90042-Y 10.1007/BF00197760 10.1152/japplphysiol.00003.2004 10.1016/S0021-9290(02)00183-5 10.1007/s00422-003-0404-z 10.1093/icb/42.1.149 10.1098/rstb.1999.0437 10.1109/TRO.2005.855990 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1242/jeb.014357 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9145 |
EndPage | 3000 |
ExternalDocumentID | 18775936 10_1242_jeb_014357 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 186 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6TJ AAFWJ AAYXX ABDNZ ABPPZ ABRJW ACGFS ACIWK ACNCT ACPRK ADBBV ADVGF ADXHL AEILP AENEX AETEA AFRAH AGCDD AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ H~9 INIJC KQ8 N9A O9- OHT OK1 P2P PQQKQ RCB RHI RXW S10 SJN TAE TN5 TR2 TWZ UKR UPT W8F WH7 WOQ XJT XSW YQT YR2 YVO YZZ ZCA ZY4 ~02 .55 .GJ 3O- AAUTI AAYJJ ABJNI ACPVT ACYGS AFFNX AI. CGR CUY CVF ECM EIF MVM NPM UBC VH1 X7M XOL ZGI ZXP 7X8 |
ID | FETCH-LOGICAL-c389t-79d09e21b88a0236134a71610152b5b83ec4268f8550dc8965fcb9e6ecc8b1db3 |
ISSN | 0022-0949 |
IngestDate | Thu Sep 04 23:48:42 EDT 2025 Mon Jul 21 05:56:20 EDT 2025 Tue Jul 01 01:57:36 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-79d09e21b88a0236134a71610152b5b83ec4268f8550dc8965fcb9e6ecc8b1db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18775936 |
PQID | 69521841 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_69521841 pubmed_primary_18775936 crossref_citationtrail_10_1242_jeb_014357 crossref_primary_10_1242_jeb_014357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-09-15 |
PublicationDateYYYYMMDD | 2008-09-15 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of experimental biology |
PublicationTitleAlternate | J Exp Biol |
PublicationYear | 2008 |
References | 2021042511290697000_REF47 2021042511290697000_REF48 2021042511290697000_REF49 2021042511290697000_REF43 2021042511290697000_REF44 2021042511290697000_REF45 2021042511290697000_REF46 2021042511290697000_REF40 2021042511290697000_REF41 2021042511290697000_REF42 2021042511290697000_REF70 2021042511290697000_REF71 2021042511290697000_REF36 2021042511290697000_REF37 2021042511290697000_REF38 2021042511290697000_REF39 2021042511290697000_REF32 2021042511290697000_REF33 2021042511290697000_REF34 2021042511290697000_REF35 2021042511290697000_REF72 2021042511290697000_REF73 2021042511290697000_REF30 2021042511290697000_REF31 2021042511290697000_REF60 2021042511290697000_REF2 2021042511290697000_REF29 2021042511290697000_REF1 2021042511290697000_REF4 2021042511290697000_REF3 2021042511290697000_REF25 2021042511290697000_REF69 2021042511290697000_REF26 2021042511290697000_REF27 2021042511290697000_REF28 2021042511290697000_REF21 2021042511290697000_REF65 2021042511290697000_REF22 2021042511290697000_REF66 2021042511290697000_REF23 2021042511290697000_REF67 2021042511290697000_REF24 2021042511290697000_REF68 2021042511290697000_REF61 2021042511290697000_REF62 2021042511290697000_REF63 2021042511290697000_REF20 2021042511290697000_REF64 2021042511290697000_REF9 2021042511290697000_REF6 2021042511290697000_REF5 2021042511290697000_REF8 2021042511290697000_REF7 2021042511290697000_REF18 2021042511290697000_REF19 2021042511290697000_REF14 2021042511290697000_REF58 2021042511290697000_REF15 2021042511290697000_REF59 2021042511290697000_REF16 2021042511290697000_REF17 2021042511290697000_REF10 2021042511290697000_REF54 2021042511290697000_REF11 2021042511290697000_REF55 2021042511290697000_REF12 2021042511290697000_REF56 2021042511290697000_REF13 2021042511290697000_REF57 2021042511290697000_REF50 2021042511290697000_REF51 2021042511290697000_REF52 2021042511290697000_REF53 |
References_xml | – ident: 2021042511290697000_REF64 – ident: 2021042511290697000_REF66 doi: 10.1016/S0021-9290(01)00245-7 – ident: 2021042511290697000_REF1 doi: 10.1152/jappl.1997.82.1.13 – ident: 2021042511290697000_REF18 doi: 10.1152/jappl.1991.71.6.2127 – ident: 2021042511290697000_REF46 doi: 10.1098/rspb.1990.0030 – ident: 2021042511290697000_REF50 doi: 10.1152/japplphysiol.00393.2004 – ident: 2021042511290697000_REF24 doi: 10.2307/2279169 – ident: 2021042511290697000_REF25 doi: 10.1242/jeb.202.23.3325 – ident: 2021042511290697000_REF48 doi: 10.1016/0021-9290(90)90042-2 – ident: 2021042511290697000_REF10 doi: 10.1007/BF00124244 – ident: 2021042511290697000_REF19 doi: 10.1152/jappl.1998.85.3.1044 – ident: 2021042511290697000_REF22 doi: 10.1016/S0021-9290(99)00078-0 – ident: 2021042511290697000_REF35 doi: 10.1142/S0219519403000831 – ident: 2021042511290697000_REF67 doi: 10.1242/jeb.00463 – ident: 2021042511290697000_REF13 doi: 10.1073/pnas.0601473103 – ident: 2021042511290697000_REF63 doi: 10.1134/S1560354707050048 – ident: 2021042511290697000_REF55 doi: 10.1080/00222895.1996.9941743 – ident: 2021042511290697000_REF57 doi: 10.1007/s004220000180 – ident: 2021042511290697000_REF53 doi: 10.1109/ROBOT.1997.620084 – ident: 2021042511290697000_REF29 doi: 10.1098/rspb.2003.2454 – ident: 2021042511290697000_REF36 doi: 10.1007/s00285-004-0269-3 – ident: 2021042511290697000_REF17 doi: 10.1242/jeb.185.1.71 – ident: 2021042511290697000_REF38 doi: 10.1152/jn.1981.45.2.267 – ident: 2021042511290697000_REF47 doi: 10.1177/027836499000900206 – ident: 2021042511290697000_REF30 doi: 10.1016/j.jtbi.2004.08.015 – ident: 2021042511290697000_REF15 doi: 10.1016/S0021-9290(99)00192-X – ident: 2021042511290697000_REF54 – ident: 2021042511290697000_REF21 doi: 10.1098/rspb.1998.0388 – ident: 2021042511290697000_REF12 doi: 10.1177/0278364904041323 – ident: 2021042511290697000_REF20 doi: 10.1152/jappl.1997.82.1.15 – ident: 2021042511290697000_REF33 doi: 10.1016/0021-9290(79)90056-3 – ident: 2021042511290697000_REF72 doi: 10.1007/978-3-540-36119-0_19 – ident: 2021042511290697000_REF39 doi: 10.1242/jeb.205.18.2803 – ident: 2021042511290697000_REF4 doi: 10.1242/jeb.005801 – ident: 2021042511290697000_REF60 doi: 10.1007/s00422-001-0300-3 – ident: 2021042511290697000_REF40 doi: 10.1016/j.ijfatigue.2006.09.020 – ident: 2021042511290697000_REF2 doi: 10.1007/s11071-006-9030-3 – ident: 2021042511290697000_REF9 doi: 10.1098/rsta.2006.1911 – ident: 2021042511290697000_REF65 doi: 10.1016/S0021-9290(99)00137-2 – ident: 2021042511290697000_REF8 – ident: 2021042511290697000_REF61 doi: 10.1177/0278364905056194 – ident: 2021042511290697000_REF62 doi: 10.1177/0278364906069045 – ident: 2021042511290697000_REF37 – ident: 2021042511290697000_REF56 doi: 10.1007/s004220000181 – ident: 2021042511290697000_REF71 doi: 10.1007/s00422-003-0403-0 – ident: 2021042511290697000_REF43 doi: 10.1242/jeb.00048 – ident: 2021042511290697000_REF11 doi: 10.1016/0021-9290(80)90033-0 – ident: 2021042511290697000_REF23 doi: 10.1080/01621459.1937.10503522 – ident: 2021042511290697000_REF45 doi: 10.1111/j.1469-7793.1999.00307.x – ident: 2021042511290697000_REF31 doi: 10.1098/rspb.2006.3637 – ident: 2021042511290697000_REF27 – ident: 2021042511290697000_REF58 doi: 10.1016/S0167-2789(01)00271-8 – ident: 2021042511290697000_REF70 doi: 10.1006/jtbi.1999.0949 – ident: 2021042511290697000_REF32 doi: 10.1137/050626594 – ident: 2021042511290697000_REF69 – ident: 2021042511290697000_REF6 doi: 10.1016/0021-9290(89)90224-8 – ident: 2021042511290697000_REF3 doi: 10.1126/science.2740914 – ident: 2021042511290697000_REF14 doi: 10.1242/jeb.01986 – ident: 2021042511290697000_REF73 – ident: 2021042511290697000_REF16 doi: 10.1016/0021-9290(95)00029-1 – ident: 2021042511290697000_REF68 doi: 10.1007/978-3-540-36119-0_18 – ident: 2021042511290697000_REF44 doi: 10.1002/ca.10064 – ident: 2021042511290697000_REF41 doi: 10.1152/japplphysiol.01164.2000 – ident: 2021042511290697000_REF28 – ident: 2021042511290697000_REF51 doi: 10.20965/jrm.2007.p0374 – ident: 2021042511290697000_REF52 doi: 10.1016/0966-6362(93)90042-Y – ident: 2021042511290697000_REF7 doi: 10.1007/BF00197760 – ident: 2021042511290697000_REF5 doi: 10.1152/japplphysiol.00003.2004 – ident: 2021042511290697000_REF34 doi: 10.1016/S0021-9290(02)00183-5 – ident: 2021042511290697000_REF59 doi: 10.1007/s00422-003-0404-z – ident: 2021042511290697000_REF26 doi: 10.1093/icb/42.1.149 – ident: 2021042511290697000_REF42 doi: 10.1098/rstb.1999.0437 – ident: 2021042511290697000_REF49 doi: 10.1109/TRO.2005.855990 |
SSID | ssj0000654 |
Score | 2.2799797 |
Snippet | Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2989 |
SubjectTerms | Adaptation, Physiological Biomechanical Phenomena Computer Simulation Elasticity Gait - physiology Humans Joints - physiology Leg - physiology Male Models, Biological Muscle Contraction - physiology Running - physiology |
Title | Running on uneven ground: leg adjustment to vertical steps and self-stability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18775936 https://www.proquest.com/docview/69521841 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc60KS9oME-KANmaXuZqrCkcT68t4GY0CamfYDEWxS7DnQrbkWdB_jrubOdJh0gbXuJqthyqrtfLnf23e8IeSsSEYWCVUEWR3HAeFUGIg6roIRQIwL88IRj7fDx1_TolH0-S856vaqTtVQbsSdv7q0r-R-twj3QK1bJ_oNmF4vCDfgN-oUraBiuf6XjH7VtOIQb_rVGKqYBFmlo27Z5os4H5ehXPXdp5OBi2s7LtgjSqJmjZp6rSRWAf2gzZJcOeDuO6lITAE_a1KbtjC99_5Wfpq0qO7zSrpakm5WP0_Fcfv9AG4-UP4b3J2P5-8KfTKmxbkr-F9sSNofCFWZ2ygQgduRdUzv0htVh6psZeNvrjSd33YTuWHVwI9CqK7GHbISO0Lqj3tml1W-UZxn2J2y_bIt8w2boEVkdZpk9zv_yPe98sRPWsMrjX_Y0tvDY9-1DkV7WL7PswzwQmFgH5eQpWfMKox8dTNZJT-kN8tj1Gr1-Ro49WOhUUwcW6sDygQJUaAsVaqa0gQq1UKEAFboMlefk9NPhycFR4HtpBBJcUhNkfBRyNYxEnpfYNCCKWQmCAIOcDOF9zWMlwVfLK-S3G8mcp0klBVcpvOG5iEYifkFW9FSrTUKzEoJgiFI5lxCdg3suE8bSUIYyZSkTok_eNdIppCeax34nkwIDThBqAUItnFD75M1i7szRq9w763Uj5AKsHx5plVpN63mR8gT3KKI-eelk367idbX14Mgr8qQF7jZZMVe12gEP04hdC49bsqZ5dA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Running+on+uneven+ground%3A+leg+adjustment+to+vertical+steps+and+self-stability&rft.jtitle=Journal+of+experimental+biology&rft.au=Grimmer%2C+Sten&rft.au=Ernst%2C+Michael&rft.au=G%C3%BCnther%2C+Michael&rft.au=Blickhan%2C+Reinhard&rft.date=2008-09-15&rft.issn=0022-0949&rft.volume=211&rft.issue=Pt+18&rft.spage=2989&rft_id=info:doi/10.1242%2Fjeb.014357&rft_id=info%3Apmid%2F18775936&rft.externalDocID=18775936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0949&client=summon |