Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents
Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-e...
Saved in:
Published in | Journal of cleaner production Vol. 388; p. 135696 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-economic analyses are limited for emerging carbon capture technologies. Here, four CO2-Binding Organic Liquids (CO2BOLs), all water-lean solvents were presented as promising options towards energy-effective and low-cost carbon capture from point sources. Rigorous solvent property and process models were developed in Aspen Plus for a coal-fired power plant with CO2BOL-based carbon capture unit. Techno-economic analyses were conducted in 2018 US pricing basis. The results suggest that water-lean formulations can minimize water condensation and vaporization, leading to a 36% energy saving compared with aqueous amines. Indeed, these CO2BOLs can capture up to 97–99% CO2 from coal fired plant. The estimated carbon capture cost is about $40/tonne CO2 at 90–97% carbon capture rate, about 12–23% less expensive than the conventional aqueous amine technology. The comparison between these CO2BOLs showed that in addition to vapor liquid equilibrium and kinetics (key properties for aqueous solvents), viscosity, volatility, and hydrophobicity, also have strong impacts on the performance of water-lean solvents. The methods presented in this work can be used to evaluate other emerging carbon capture technologies, while the results linking costs and performance of carbon capture solvents with their properties. Further, this work identifies research directions and targets for further reductions in total costs of capture from either cost or energy perspectives for these leading water-lean solvents.
[Display omitted]
•Developed process models for four water-lean point-source carbon capture solvents.•Conducted techno-economic comparison and provided cost breakdowns for different solvents.•Water-lean solvents can enable up to 36% energy saving for carbon capture.•Water-lean solvents can enable about 12–23% reduction in carbon capture cost. |
---|---|
AbstractList | Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-economic analyses are limited for emerging carbon capture technologies. Here, four CO₂-Binding Organic Liquids (CO₂BOLs), all water-lean solvents were presented as promising options towards energy-effective and low-cost carbon capture from point sources. Rigorous solvent property and process models were developed in Aspen Plus for a coal-fired power plant with CO₂BOL-based carbon capture unit. Techno-economic analyses were conducted in 2018 US pricing basis. The results suggest that water-lean formulations can minimize water condensation and vaporization, leading to a 36% energy saving compared with aqueous amines. Indeed, these CO₂BOLs can capture up to 97–99% CO₂ from coal fired plant. The estimated carbon capture cost is about $40/tonne CO₂ at 90–97% carbon capture rate, about 12–23% less expensive than the conventional aqueous amine technology. The comparison between these CO₂BOLs showed that in addition to vapor liquid equilibrium and kinetics (key properties for aqueous solvents), viscosity, volatility, and hydrophobicity, also have strong impacts on the performance of water-lean solvents. The methods presented in this work can be used to evaluate other emerging carbon capture technologies, while the results linking costs and performance of carbon capture solvents with their properties. Further, this work identifies research directions and targets for further reductions in total costs of capture from either cost or energy perspectives for these leading water-lean solvents. Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-economic analyses are limited for emerging carbon capture technologies. Here, four CO2-Binding Organic Liquids (CO2BOLs), all water-lean solvents were presented as promising options towards energy-effective and low-cost carbon capture from point sources. Rigorous solvent property and process models were developed in Aspen Plus for a coal-fired power plant with CO2BOL-based carbon capture unit. Techno-economic analyses were conducted in 2018 US pricing basis. The results suggest that water-lean formulations can minimize water condensation and vaporization, leading to a 36% energy saving compared with aqueous amines. Indeed, these CO2BOLs can capture up to 97–99% CO2 from coal fired plant. The estimated carbon capture cost is about $40/tonne CO2 at 90–97% carbon capture rate, about 12–23% less expensive than the conventional aqueous amine technology. The comparison between these CO2BOLs showed that in addition to vapor liquid equilibrium and kinetics (key properties for aqueous solvents), viscosity, volatility, and hydrophobicity, also have strong impacts on the performance of water-lean solvents. The methods presented in this work can be used to evaluate other emerging carbon capture technologies, while the results linking costs and performance of carbon capture solvents with their properties. Further, this work identifies research directions and targets for further reductions in total costs of capture from either cost or energy perspectives for these leading water-lean solvents. [Display omitted] •Developed process models for four water-lean point-source carbon capture solvents.•Conducted techno-economic comparison and provided cost breakdowns for different solvents.•Water-lean solvents can enable up to 36% energy saving for carbon capture.•Water-lean solvents can enable about 12–23% reduction in carbon capture cost. |
ArticleNumber | 135696 |
Author | Mathias, Paul M. Koech, Phillip K. Heldebrant, David J. Malhotra, Deepika Zwoster, Andy Jiang, Yuan Zheng, Richard F. Barpaga, Dushyant Freeman, Charlies J. |
Author_xml | – sequence: 1 givenname: Yuan surname: Jiang fullname: Jiang, Yuan organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA – sequence: 2 givenname: Paul M. surname: Mathias fullname: Mathias, Paul M. organization: Fluor Corporation, Aliso Viejo, CA, 92656, USA – sequence: 3 givenname: Richard F. orcidid: 0000-0002-5427-1303 surname: Zheng fullname: Zheng, Richard F. organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA – sequence: 4 givenname: Charlies J. surname: Freeman fullname: Freeman, Charlies J. organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA – sequence: 5 givenname: Dushyant surname: Barpaga fullname: Barpaga, Dushyant organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA – sequence: 6 givenname: Deepika surname: Malhotra fullname: Malhotra, Deepika organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA – sequence: 7 givenname: Phillip K. surname: Koech fullname: Koech, Phillip K. organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA – sequence: 8 givenname: Andy surname: Zwoster fullname: Zwoster, Andy organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA – sequence: 9 givenname: David J. surname: Heldebrant fullname: Heldebrant, David J. email: david.heldebrant@pnnl.gov organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA |
BookMark | eNqFkEFLYzEUhYM4YNuZnzCQpZt0cl_ee3nBhYjoKAhudDshzbtPUtKkJmml_35S6sqNq8OF8x0u35ychxiQkN_Al8Ch_7Nerq3HbYrLhjfNEkTXq_6MzGCQioEc-nMy46pTrO-a_oLMc15zDpLLdkb-3QVMbweG04S2uD1SE0bq4wezMRdqTVrFUGNbdgnplOKGbqMLheW4SxYzxWBWHke6OtAPUzAxjybQHP0eQ8k_yY_J-Iy_PnNBXu_vXm4f2NPz38fbmydmxaAKk51B2dZ_7QggoBP1GEGMrbASTAuq52rVCDspaaSBFls-gLJGqWFs1dSJBbk87VYL7zvMRW9ctui9CRh3WR836zwIXqvdqWpTzDnhpLfJbUw6aOD66FOv9adPffSpTz4rd_WFs66Y4mIoyTj_LX19orFa2DtMOluHweLoUhWvx-i-WfgPiNeXNA |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_172433 crossref_primary_10_1016_j_jclepro_2024_141359 crossref_primary_10_1016_j_clet_2024_100842 crossref_primary_10_1021_acs_analchem_3c02281 crossref_primary_10_1016_j_enbuild_2024_114966 crossref_primary_10_1016_j_cej_2025_159692 crossref_primary_10_1016_j_energy_2023_128352 crossref_primary_10_1016_j_eti_2023_103217 crossref_primary_10_1016_j_fuel_2024_130929 crossref_primary_10_1016_j_jgsce_2024_205400 crossref_primary_10_1016_j_seppur_2023_125310 crossref_primary_10_1029_2024EF004891 crossref_primary_10_2478_rtuect_2023_0040 crossref_primary_10_1016_j_energy_2025_135232 crossref_primary_10_1021_acs_langmuir_3c02043 crossref_primary_10_1002_eem2_12832 crossref_primary_10_1016_j_cep_2023_109532 crossref_primary_10_3389_fenvs_2023_1204690 crossref_primary_10_1016_j_cej_2024_148545 crossref_primary_10_1021_acs_iecr_4c01143 crossref_primary_10_1016_j_cej_2024_158297 crossref_primary_10_1021_acsami_4c16898 crossref_primary_10_1016_j_seta_2024_103626 crossref_primary_10_1093_ijlct_ctae160 crossref_primary_10_1002_cssc_202402199 crossref_primary_10_1016_j_est_2023_109770 crossref_primary_10_1016_j_seppur_2024_127783 crossref_primary_10_1038_s41570_024_00587_1 crossref_primary_10_1016_j_cherd_2024_06_005 |
Cites_doi | 10.1039/c3ee41016a 10.1039/D0EE02585B 10.1021/ie202668k 10.1021/ie050063w 10.1021/acs.iecr.5b02243 10.1126/science.1176731 10.1016/j.egypro.2013.06.092 10.1016/j.egypro.2015.12.336 10.1016/j.egypro.2013.06.587 10.1016/j.ijggc.2021.103279 10.1021/acssuschemeng.1c08401 10.1039/C7EE02342A 10.1016/j.cep.2016.05.012 10.1088/1748-9326/aa6de5 10.1016/j.chemosphere.2021.130097 10.1016/j.ijggc.2013.03.002 10.1038/s41560-020-00771-9 10.1002/cssc.201500288 10.1016/S0255-2701(02)00168-X 10.1016/j.egypro.2011.01.190 10.1002/aic.11316 10.1016/j.egypro.2013.05.139 10.1016/j.joule.2019.08.014 10.22381/emfm17120224 10.1021/acs.iecr.5b03405 10.1039/C3EE42350F 10.1016/j.egypro.2014.11.160 10.1021/acs.iecr.5b04379 10.1016/j.cej.2011.02.012 10.1038/s41560-021-00922-6 10.1016/j.cherd.2010.11.011 10.1016/j.apenergy.2016.12.084 10.1016/j.apenergy.2019.113941 10.1021/acs.chemrev.6b00768 10.1016/j.egypro.2014.11.063 10.1016/j.cej.2011.02.011 10.1021/acs.iecr.7b00213 |
ContentType | Journal Article |
Copyright | 2023 Battelle Memorial Institute, The Author(s) |
Copyright_xml | – notice: 2023 Battelle Memorial Institute, The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2022.135696 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2022_135696 S0959652622052702 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c389t-75ae74187cd113153741d13d43c71a419609b23cf97a7a14e40819ca998d49f53 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Aug 22 20:23:35 EDT 2025 Thu Apr 24 22:52:22 EDT 2025 Tue Jul 01 04:42:25 EDT 2025 Fri Feb 23 02:36:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Techno-economic analysis Water-lean solvent Process modeling Post-combustion carbon capture Process configurations |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-75ae74187cd113153741d13d43c71a419609b23cf97a7a14e40819ca998d49f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5427-1303 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0959652622052702 |
PQID | 3153187130 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153187130 crossref_primary_10_1016_j_jclepro_2022_135696 crossref_citationtrail_10_1016_j_jclepro_2022_135696 elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_135696 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-15 |
PublicationDateYYYYMMDD | 2023-02-15 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Morton, Laird, Northington (bib31) 2013; 37 Thompson, Xiao, Sarma, Nguyen, Ruelas, Liu (bib42) 2022 Walters, Edgar, Rochelle (bib46) 2016; 107 Van Wagener, Rochelle (bib43) 2011; 89 Heldebrant, Koech, Rainbolt, Zheng, Smurthwaite, Freeman, Oss, Leito (bib10) 2011; 171 Sakwattanapong, Aroonwilas, Veawab (bib35) 2005; 44 Høisæter, Vevelstad, Braakhuis, Knuutila (bib13) 2022; 61 Lin, Rochelle (bib23) 2014; 63 Mathias, Afshar, Zheng, Bearden, Freeman, Andrea, Koech, Kutnyakov, Zwoster, Smith, Jessop, Nik, Heldebrant (bib27) 2013; 6 Deutz, Bardow (bib5) 2021; 6 Stavkova, Marousek (bib39) 2021; 276 Van Wagener, Rochelle (bib44) 2011; 4 Heldebrant (bib7) 2020 Lail, Tanthana, Coleman (bib21) 2014; 63 Wilcox, Psarras, Liguori (bib48) 2017; 12 Schneider, Sander, Gorak (bib37) 2003; 42 Kliestik, Zvarikova, Lazaroiu (bib19) 2022; 17 Kohl, Riesenfeld (bib20) 1997 Walters, Dunia, Edgar, Rochelle (bib45) 2013; 37 Scherffius, Reddy, Klumpyan, Armpriester (bib36) 2013; 37 Mathias (bib26) 2016; 55 Walters, Lin, Sachde, Edgar, Rochelle (bib47) 2016; 55 Boot-Handford, Abanades, Anthony, Blunt, Brandani, Mac Dowell, Fernández, Ferrari, Gross, Hallett, Haszeldine, Heptonstall, Lyngfelt, Makuch, Mangano, Porter, Pourkashanian, Rochelle, Shah, Yao, Fennell (bib3) 2014; 7 Singh, Hao, Liu, Wei, Xu, Wei, Li, Lu, Ku (bib38) 2019; 3 Heldebrant, Koech, Glezakou, Rousseau, Malhotra, Cantu (bib9) 2017; 117 Heldebrant, Zheng, Koech, Jiang, Malhotra (bib11) 2021 Rochelle, Chen, Freeman, Van Wagener, Xu, Voice (bib33) 2011; 171 James, Keairns, Turner, Woods, Kuehn, Zeolle (bib15) 2019 Jiang, Bhattacharyya (bib16) 2017; 189 Zhang, Turton, Bhattacharyya (bib50) 2016; 55 Jiang, Zheng, Barpaga, Koech, Malhotra, Mathias, Freeman, Zwoster, Heldebrant (bib18) 2022 Ahn, Luberti, Liu, Brandani (bib1) 2013; 16 Lieberman (bib22) 2021 Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett, Hallett, Herzog, Jackson, Kemper, Krevor, Maitland, Matuszewski, Metcalfe, Petit, Puxty, Reimer, Reiner, Rubin, Scott, Shah, Smit, Trusler, Webley, Wilcox, Mac Dowell (bib4) 2018; 11 Haslback, Kuehn, Lewis, Pinkerton, Simpson, Turner, Varghese, Woods (bib6) 2013 (bib14) 2014 Barpaga, Jiang, Zheng, Malhotra, Koech, Zwoster, Mathias, Heldebrant (bib2) 2022; 10 Stowe, Hwang (bib40) 2017; 56 Jiang, Mathias, Freeman, Swisher, Zheng, Whyatt, Heldebrant (bib17) 2021; 106 Oyenekan, Rochelle (bib32) 2007; 53 Rochelle (bib34) 2009; 325 Zheng, Barpaga, Mathias, Malhotra, Koech, Jiang, Bhakta, Lail, A Rayer, Whyatt, Freeman, Zwoster, Weitz, Heldebrant (bib51) 2020; 13 Wu, Wang, Liao, Shen, Li (bib49) 2020; 257 Madhu, Pauliuk, Dhathri, Creutzig (bib24) 2021; 6 Heldebranta, Glezakoua, Koech, Mathias, Cantua, Rousseaua, Malhotra, Bhakta, Bearden, Freeman, Zheng (bib12) 2014; 63 Swisher (bib41) 2021 Heldebrant (bib8) 2020 Mathias, O'Connell (bib28) 2012; 51 Mathias, Zheng, Heldebrant, Zwoster, Whyatt, Freeman, Bearden, Koech (bib29) 2015; 8 (bib30) 2022 Mathias (10.1016/j.jclepro.2022.135696_bib26) 2016; 55 (10.1016/j.jclepro.2022.135696_bib30) 2022 Lieberman (10.1016/j.jclepro.2022.135696_bib22) Barpaga (10.1016/j.jclepro.2022.135696_bib2) 2022; 10 Bui (10.1016/j.jclepro.2022.135696_bib4) 2018; 11 Wilcox (10.1016/j.jclepro.2022.135696_bib48) 2017; 12 Swisher (10.1016/j.jclepro.2022.135696_bib41) 2021 Heldebrant (10.1016/j.jclepro.2022.135696_bib10) 2011; 171 Stowe (10.1016/j.jclepro.2022.135696_bib40) 2017; 56 Heldebrant (10.1016/j.jclepro.2022.135696_bib8) 2020 Kliestik (10.1016/j.jclepro.2022.135696_bib19) 2022; 17 Heldebranta (10.1016/j.jclepro.2022.135696_bib12) 2014; 63 Stavkova (10.1016/j.jclepro.2022.135696_bib39) 2021; 276 Heldebrant (10.1016/j.jclepro.2022.135696_bib11) 2021 James (10.1016/j.jclepro.2022.135696_bib15) 2019 Haslback (10.1016/j.jclepro.2022.135696_bib6) 2013 Van Wagener (10.1016/j.jclepro.2022.135696_bib44) 2011; 4 Heldebrant (10.1016/j.jclepro.2022.135696_bib7) 2020 Mathias (10.1016/j.jclepro.2022.135696_bib29) 2015; 8 Jiang (10.1016/j.jclepro.2022.135696_bib16) 2017; 189 Zhang (10.1016/j.jclepro.2022.135696_bib50) 2016; 55 Walters (10.1016/j.jclepro.2022.135696_bib45) 2013; 37 Jiang (10.1016/j.jclepro.2022.135696_bib18) 2022 Thompson (10.1016/j.jclepro.2022.135696_bib42) 2022 Oyenekan (10.1016/j.jclepro.2022.135696_bib32) 2007; 53 Walters (10.1016/j.jclepro.2022.135696_bib47) 2016; 55 Boot-Handford (10.1016/j.jclepro.2022.135696_bib3) 2014; 7 Rochelle (10.1016/j.jclepro.2022.135696_bib34) 2009; 325 Wu (10.1016/j.jclepro.2022.135696_bib49) 2020; 257 Van Wagener (10.1016/j.jclepro.2022.135696_bib43) 2011; 89 Mathias (10.1016/j.jclepro.2022.135696_bib27) 2013; 6 Schneider (10.1016/j.jclepro.2022.135696_bib37) 2003; 42 Rochelle (10.1016/j.jclepro.2022.135696_bib33) 2011; 171 Heldebrant (10.1016/j.jclepro.2022.135696_bib9) 2017; 117 Scherffius (10.1016/j.jclepro.2022.135696_bib36) 2013; 37 Zheng (10.1016/j.jclepro.2022.135696_bib51) 2020; 13 Deutz (10.1016/j.jclepro.2022.135696_bib5) 2021; 6 Morton (10.1016/j.jclepro.2022.135696_bib31) 2013; 37 Mathias (10.1016/j.jclepro.2022.135696_bib28) 2012; 51 Lail (10.1016/j.jclepro.2022.135696_bib21) 2014; 63 Lin (10.1016/j.jclepro.2022.135696_bib23) 2014; 63 Walters (10.1016/j.jclepro.2022.135696_bib46) 2016; 107 Sakwattanapong (10.1016/j.jclepro.2022.135696_bib35) 2005; 44 Jiang (10.1016/j.jclepro.2022.135696_bib17) 2021; 106 Ahn (10.1016/j.jclepro.2022.135696_bib1) 2013; 16 Madhu (10.1016/j.jclepro.2022.135696_bib24) 2021; 6 (10.1016/j.jclepro.2022.135696_bib14) 2014 Singh (10.1016/j.jclepro.2022.135696_bib38) 2019; 3 Kohl (10.1016/j.jclepro.2022.135696_bib20) 1997 Høisæter (10.1016/j.jclepro.2022.135696_bib13) 2022; 61 |
References_xml | – volume: 42 start-page: 955 year: 2003 end-page: 964 ident: bib37 article-title: Dynamic simulation of industrial reactive absorption processes publication-title: Chem. Eng. Process: Process Intensif. – year: 1997 ident: bib20 article-title: Gas Purification – volume: 63 start-page: 1504 year: 2014 end-page: 1513 ident: bib23 article-title: Optimization of advance flash stripper for CO2 capture using piperazine publication-title: Energy Proc. – volume: 325 start-page: 1152 year: 2009 end-page: 1654 ident: bib34 article-title: Amine scrubbing for CO2 capture publication-title: Science – volume: 55 start-page: 1690 year: 2016 end-page: 1700 ident: bib47 article-title: Control relevant model of amine scrubbing for CO publication-title: Ind. Eng. Chem. Res. – volume: 276 year: 2021 ident: bib39 article-title: Novel sorbent shows promising financial results on P recovery from sludge water publication-title: Chemosphere – volume: 11 start-page: 1062 year: 2018 end-page: 1176 ident: bib4 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy Environ. Sci. – volume: 63 start-page: 8144 year: 2014 end-page: 8152 ident: bib12 publication-title: Energy Proc. – volume: 53 start-page: 3144 year: 2007 end-page: 3154 ident: bib32 article-title: Alternative stripper configurations for CO2 capture by aqueous amines publication-title: AIChE J. – volume: 106 year: 2021 ident: bib17 article-title: Techno-economic comparison of various process configurations for post-combustion carbon capture using a single-component water-lean solvent publication-title: Int. J. Greenh. Gas Control – volume: 107 start-page: 1 year: 2016 end-page: 10 ident: bib46 article-title: Dynamic modeling and control of an intercooled absorber for post-combustion CO2 capture publication-title: Chem. Eng. Process. Process Intensif. – volume: 171 start-page: 794 year: 2011 end-page: 800 ident: bib10 article-title: Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture publication-title: Chem. Eng. J. – year: 2021 ident: bib22 article-title: 1.5 or 2 degrees Celsius of additional global warming: does it make a difference? – volume: 4 start-page: 1323 year: 2011 end-page: 1330 ident: bib44 article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine publication-title: Energy Proc. – year: 2020 ident: bib7 article-title: Low-Viscosity, Water-Lean CO2BOLs with Polarity-Swing Assisted Regeneration Carbon Capture 2020 Integrated Review Webinar – year: 2013 ident: bib6 article-title: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2a – volume: 37 start-page: 6553 year: 2013 end-page: 6561 ident: bib36 article-title: Large-scale CO2 capture demonstration plant using fluor's econamine FG PlusSM technology at NRG's WA parish electric generating station publication-title: Energy Proc. – volume: 16 start-page: 29 year: 2013 end-page: 40 ident: bib1 article-title: Process configuration studies of the amine capture process for coal-fired power plants publication-title: Int. J. Greenh. Gas Control – volume: 17 start-page: 57 year: 2022 end-page: 69 ident: bib19 article-title: Data-driven machine learning and neural network algorithms in the retailing environment: consumer engagement, experience, and purchase behaviors publication-title: Econ. Manag. Financ. Mark. – year: 2021 ident: bib11 article-title: Parametric testing of CO2-binding organic liquids (CO2BOLs) to enable industry adoption publication-title: Quarter. Prog. Rep. – volume: 6 start-page: 203 year: 2021 end-page: 213 ident: bib5 article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption publication-title: Nat. Energy – volume: 117 start-page: 9594 year: 2017 end-page: 9624 ident: bib9 article-title: Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook publication-title: Chem. Rev. – volume: 7 start-page: 130 year: 2014 end-page: 189 ident: bib3 article-title: Carbon capture and storage update publication-title: Energy Environ. Sci. – volume: 6 start-page: 1035 year: 2021 end-page: 1044 ident: bib24 article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment publication-title: Nat. Energy – volume: 51 start-page: 5090 year: 2012 end-page: 5097 ident: bib28 article-title: The gibbs–helmholtz equation and the thermodynamic consistency of chemical absorption data publication-title: Ind. Eng. Chem. Res. – volume: 61 start-page: 16179 year: 2022 end-page: 16192 ident: bib13 article-title: Impact of solvent on the thermal stability of amines publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 2154 year: 2019 end-page: 2164 ident: bib38 article-title: Large-scale affordable CO2 capture is possible by 2030 publication-title: Joule – year: 2021 ident: bib41 article-title: Engineering-Scale Test of a Water-Lean Solvent for Post-Combustion Capture publication-title: Project DE-FE0031945, U.S. Department of Energy Carbon Management and Natural Gas & Oil Research Project Review Meeting – volume: 89 start-page: 1639 year: 2011 end-page: 1646 ident: bib43 article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine publication-title: Chem. Eng. Res. Des. – year: 2020 ident: bib8 article-title: Molecular Refinement of Transformational Solvents for CO2 Separations, Carbon Capture 2020 Integrated Review Webinar – volume: 6 start-page: 2233 year: 2013 ident: bib27 article-title: Improving the regeneration of CO2-binding organic liquids with a polarity change publication-title: Energy Environ. Sci. – volume: 12 year: 2017 ident: bib48 article-title: Assessment of reasonable opportunities for direct air capture publication-title: Environ. Res. Lett. – volume: 63 start-page: 580 year: 2014 end-page: 594 ident: bib21 article-title: Non-aqueous solvent (NAS) CO2 capture process publication-title: Energy Proc. – volume: 10 start-page: 4522 year: 2022 end-page: 4528 ident: bib2 article-title: Evaluation of a third generation single-component water-lean diamine solvent for post-combustion CO2 capture publication-title: ACS Sustain. Chem. Eng. – year: 2019 ident: bib15 article-title: Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity – volume: 257 year: 2020 ident: bib49 article-title: Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation publication-title: Appl. Energy – volume: 55 start-page: 1292 year: 2016 end-page: 1308 ident: bib50 article-title: Development of model and model-predictive control of an MEA-based postcombustion CO publication-title: Ind. Eng. Chem. Res. – year: 2014 ident: bib14 article-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 44 start-page: 4465 year: 2005 end-page: 4473 ident: bib35 article-title: Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines publication-title: Ind. Eng. Chem. Res. – year: 2022 ident: bib18 article-title: ≤ $40/tonne CO2 point-source carbon capture with three water-lean CO2BOL solvents publication-title: 16th International Conference on Greenhouse Gas Control Technologies GHGT-16 Lyon, France – volume: 189 start-page: 433 year: 2017 end-page: 448 ident: bib16 article-title: Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS) publication-title: Appl. Energy – year: 2022 ident: bib30 article-title: Meet the Solvent that Captures up to 99.8% of CO2 Emissions – volume: 37 start-page: 525 year: 2013 end-page: 539 ident: bib31 article-title: The national carbon capture center: cost effective test bed for carbon capture R&D publication-title: Energy Proc. – year: 2022 ident: bib42 article-title: Mass transfer intensification through increased surface wetting and liquid turbulence using 3D printing structured packing for CO2 capture publication-title: 16th International Conference on Greenhouse Gas Control Technologies GHGT-16 – volume: 55 start-page: 1076 year: 2016 end-page: 1087 ident: bib26 article-title: The gibbs–helmholtz equation in chemical process technology publication-title: Ind. Eng. Chem. Res. – volume: 171 start-page: 725 year: 2011 end-page: 733 ident: bib33 article-title: Aqueous piperazine as the new standard for CO2 capture technology publication-title: Chem. Eng. J. – volume: 8 start-page: 3617 year: 2015 end-page: 3625 ident: bib29 article-title: Measuring the absorption rate of CO2 in nonaqueous CO publication-title: ChemSusChem – volume: 37 start-page: 2133 year: 2013 end-page: 2144 ident: bib45 article-title: Two-stage flash for CO2 regeneration: dynamic modeling and pilot plant validation publication-title: Energy Proc. – volume: 13 start-page: 4106 year: 2020 end-page: 4113 ident: bib51 article-title: A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation publication-title: Energy Environ. Sci. – volume: 56 start-page: 6887 year: 2017 end-page: 6899 ident: bib40 article-title: Fundamental understanding of CO2 capture and regeneration in aqueous amines from first-principles studies: recent progress and remaining challenges publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 2233 issue: 7 year: 2013 ident: 10.1016/j.jclepro.2022.135696_bib27 article-title: Improving the regeneration of CO2-binding organic liquids with a polarity change publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41016a – year: 2022 ident: 10.1016/j.jclepro.2022.135696_bib18 article-title: ≤ $40/tonne CO2 point-source carbon capture with three water-lean CO2BOL solvents – year: 2021 ident: 10.1016/j.jclepro.2022.135696_bib11 article-title: Parametric testing of CO2-binding organic liquids (CO2BOLs) to enable industry adoption publication-title: Quarter. Prog. Rep. – volume: 13 start-page: 4106 issue: 11 year: 2020 ident: 10.1016/j.jclepro.2022.135696_bib51 article-title: A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02585B – year: 2022 ident: 10.1016/j.jclepro.2022.135696_bib30 – volume: 51 start-page: 5090 issue: 13 year: 2012 ident: 10.1016/j.jclepro.2022.135696_bib28 article-title: The gibbs–helmholtz equation and the thermodynamic consistency of chemical absorption data publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202668k – volume: 44 start-page: 4465 issue: 12 year: 2005 ident: 10.1016/j.jclepro.2022.135696_bib35 article-title: Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050063w – volume: 55 start-page: 1292 issue: 5 year: 2016 ident: 10.1016/j.jclepro.2022.135696_bib50 article-title: Development of model and model-predictive control of an MEA-based postcombustion CO2 capture process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b02243 – volume: 325 start-page: 1152 issue: 5948 year: 2009 ident: 10.1016/j.jclepro.2022.135696_bib34 article-title: Amine scrubbing for CO2 capture publication-title: Science doi: 10.1126/science.1176731 – volume: 37 start-page: 2133 year: 2013 ident: 10.1016/j.jclepro.2022.135696_bib45 article-title: Two-stage flash for CO2 regeneration: dynamic modeling and pilot plant validation publication-title: Energy Proc. doi: 10.1016/j.egypro.2013.06.092 – volume: 63 start-page: 8144 year: 2014 ident: 10.1016/j.jclepro.2022.135696_bib12 publication-title: Energy Proc. doi: 10.1016/j.egypro.2015.12.336 – volume: 37 start-page: 6553 year: 2013 ident: 10.1016/j.jclepro.2022.135696_bib36 article-title: Large-scale CO2 capture demonstration plant using fluor's econamine FG PlusSM technology at NRG's WA parish electric generating station publication-title: Energy Proc. doi: 10.1016/j.egypro.2013.06.587 – volume: 106 year: 2021 ident: 10.1016/j.jclepro.2022.135696_bib17 article-title: Techno-economic comparison of various process configurations for post-combustion carbon capture using a single-component water-lean solvent publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2021.103279 – volume: 10 start-page: 4522 issue: 14 year: 2022 ident: 10.1016/j.jclepro.2022.135696_bib2 article-title: Evaluation of a third generation single-component water-lean diamine solvent for post-combustion CO2 capture publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c08401 – volume: 11 start-page: 1062 issue: 5 year: 2018 ident: 10.1016/j.jclepro.2022.135696_bib4 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02342A – year: 2020 ident: 10.1016/j.jclepro.2022.135696_bib8 – year: 2021 ident: 10.1016/j.jclepro.2022.135696_bib41 article-title: Engineering-Scale Test of a Water-Lean Solvent for Post-Combustion Capture – year: 2019 ident: 10.1016/j.jclepro.2022.135696_bib15 – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.jclepro.2022.135696_bib46 article-title: Dynamic modeling and control of an intercooled absorber for post-combustion CO2 capture publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2016.05.012 – volume: 12 issue: 6 year: 2017 ident: 10.1016/j.jclepro.2022.135696_bib48 article-title: Assessment of reasonable opportunities for direct air capture publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa6de5 – volume: 276 year: 2021 ident: 10.1016/j.jclepro.2022.135696_bib39 article-title: Novel sorbent shows promising financial results on P recovery from sludge water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130097 – volume: 16 start-page: 29 year: 2013 ident: 10.1016/j.jclepro.2022.135696_bib1 article-title: Process configuration studies of the amine capture process for coal-fired power plants publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2013.03.002 – volume: 6 start-page: 203 issue: 2 year: 2021 ident: 10.1016/j.jclepro.2022.135696_bib5 article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption publication-title: Nat. Energy doi: 10.1038/s41560-020-00771-9 – volume: 8 start-page: 3617 issue: 21 year: 2015 ident: 10.1016/j.jclepro.2022.135696_bib29 article-title: Measuring the absorption rate of CO2 in nonaqueous CO2-binding organic liquid solvents with a wetted-wall apparatus publication-title: ChemSusChem doi: 10.1002/cssc.201500288 – volume: 42 start-page: 955 issue: 12 year: 2003 ident: 10.1016/j.jclepro.2022.135696_bib37 article-title: Dynamic simulation of industrial reactive absorption processes publication-title: Chem. Eng. Process: Process Intensif. doi: 10.1016/S0255-2701(02)00168-X – volume: 4 start-page: 1323 year: 2011 ident: 10.1016/j.jclepro.2022.135696_bib44 article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine publication-title: Energy Proc. doi: 10.1016/j.egypro.2011.01.190 – volume: 53 start-page: 3144 issue: 12 year: 2007 ident: 10.1016/j.jclepro.2022.135696_bib32 article-title: Alternative stripper configurations for CO2 capture by aqueous amines publication-title: AIChE J. doi: 10.1002/aic.11316 – volume: 61 start-page: 16179 issue: 43 year: 2022 ident: 10.1016/j.jclepro.2022.135696_bib13 article-title: Impact of solvent on the thermal stability of amines publication-title: Ind. Eng. Chem. Res. – volume: 37 start-page: 525 year: 2013 ident: 10.1016/j.jclepro.2022.135696_bib31 article-title: The national carbon capture center: cost effective test bed for carbon capture R&D publication-title: Energy Proc. doi: 10.1016/j.egypro.2013.05.139 – volume: 3 start-page: 2154 issue: 9 year: 2019 ident: 10.1016/j.jclepro.2022.135696_bib38 article-title: Large-scale affordable CO2 capture is possible by 2030 publication-title: Joule doi: 10.1016/j.joule.2019.08.014 – year: 2014 ident: 10.1016/j.jclepro.2022.135696_bib14 – ident: 10.1016/j.jclepro.2022.135696_bib22 – volume: 17 start-page: 57 issue: 1 year: 2022 ident: 10.1016/j.jclepro.2022.135696_bib19 article-title: Data-driven machine learning and neural network algorithms in the retailing environment: consumer engagement, experience, and purchase behaviors publication-title: Econ. Manag. Financ. Mark. doi: 10.22381/emfm17120224 – year: 2013 ident: 10.1016/j.jclepro.2022.135696_bib6 – year: 1997 ident: 10.1016/j.jclepro.2022.135696_bib20 – volume: 55 start-page: 1076 issue: 4 year: 2016 ident: 10.1016/j.jclepro.2022.135696_bib26 article-title: The gibbs–helmholtz equation in chemical process technology publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03405 – year: 2022 ident: 10.1016/j.jclepro.2022.135696_bib42 article-title: Mass transfer intensification through increased surface wetting and liquid turbulence using 3D printing structured packing for CO2 capture – volume: 7 start-page: 130 issue: 1 year: 2014 ident: 10.1016/j.jclepro.2022.135696_bib3 article-title: Carbon capture and storage update publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42350F – volume: 63 start-page: 1504 year: 2014 ident: 10.1016/j.jclepro.2022.135696_bib23 article-title: Optimization of advance flash stripper for CO2 capture using piperazine publication-title: Energy Proc. doi: 10.1016/j.egypro.2014.11.160 – volume: 55 start-page: 1690 issue: 6 year: 2016 ident: 10.1016/j.jclepro.2022.135696_bib47 article-title: Control relevant model of amine scrubbing for CO2 capture from power plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04379 – volume: 171 start-page: 794 issue: 3 year: 2011 ident: 10.1016/j.jclepro.2022.135696_bib10 article-title: Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.012 – volume: 6 start-page: 1035 issue: 11 year: 2021 ident: 10.1016/j.jclepro.2022.135696_bib24 article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment publication-title: Nat. Energy doi: 10.1038/s41560-021-00922-6 – volume: 89 start-page: 1639 issue: 9 year: 2011 ident: 10.1016/j.jclepro.2022.135696_bib43 article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.11.011 – year: 2020 ident: 10.1016/j.jclepro.2022.135696_bib7 – volume: 189 start-page: 433 year: 2017 ident: 10.1016/j.jclepro.2022.135696_bib16 article-title: Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS) publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.084 – volume: 257 year: 2020 ident: 10.1016/j.jclepro.2022.135696_bib49 article-title: Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113941 – volume: 117 start-page: 9594 issue: 14 year: 2017 ident: 10.1016/j.jclepro.2022.135696_bib9 article-title: Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00768 – volume: 63 start-page: 580 year: 2014 ident: 10.1016/j.jclepro.2022.135696_bib21 article-title: Non-aqueous solvent (NAS) CO2 capture process publication-title: Energy Proc. doi: 10.1016/j.egypro.2014.11.063 – volume: 171 start-page: 725 issue: 3 year: 2011 ident: 10.1016/j.jclepro.2022.135696_bib33 article-title: Aqueous piperazine as the new standard for CO2 capture technology publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.011 – volume: 56 start-page: 6887 issue: 24 year: 2017 ident: 10.1016/j.jclepro.2022.135696_bib40 article-title: Fundamental understanding of CO2 capture and regeneration in aqueous amines from first-principles studies: recent progress and remaining challenges publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00213 |
SSID | ssj0017074 |
Score | 2.546655 |
Snippet | Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 135696 |
SubjectTerms | carbon carbon dioxide coal condensation (phase transition) energy hydrophobicity liquids Post-combustion carbon capture power plants Process configurations Process modeling solvents Techno-economic analysis vapors viscosity volatilization water content Water-lean solvent |
Title | Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents |
URI | https://dx.doi.org/10.1016/j.jclepro.2022.135696 https://www.proquest.com/docview/3153187130 |
Volume | 388 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn_gmgte0zSa7qUcplaroRQVPhrwWWspuabcUL_52Z_bhC0HwtOyyCcuX2ZnJZL4ZQs5Ty8Espo5ZbxyTMlLMSClYTwZhUi6CL2O6d_fJ8EnePMfPK6TfcGEwrbLW_ZVOL7V1_aRTo9mZjkadB4xgJXGUIFUUWVXIYJcKpbz99pHmwVW3qsSM4S58-5PF0xm3xzAZKCrYJkYRdoBIsHb_7_bph6Yuzc_VJtmo_UZ6WX3aFlkJ2TZZ_1JNcIe8DEoeH6tSNECLUZN5OsmXzOXzgjozs3kGlykeGlDkldBpPsoKVgXw5zSUPCpP7Stdggs6Y5NgMgrCiTmR813ydDV47A9Z3T6BOfBCCqZiE7A2jXKecwGaDW48F14Kp7iRHGvN2Ui49EIZZbgMEt0DZ2AD5uVFGos90sryLOwTmibWCAOeYtz10iey522kYPFDJGwIvHdAZAOadnVtcWxxMdFNEtlY11hrxFpXWB-Q9sewaVVc468BvWZF9Dcp0WAA_hp61qyghj8Ij0VMFvLFXCM0gBIY88P_T39E1rARPeZz8_iYtIrZIpyAu1LY01IeT8nq5fXt8P4d_rLrPA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyNBEC40HtTDsrvuou6rhb22sad7ZpKjiBJXzWUTyMmmXwMJYSYkI8F_b9U8XBUhsKdhBqoZqru_qq6u-grgd2YFmsXMceuN40pFKTdKSd5TQZpMyOCrmO7dMBmM1Z9JPNmCi7YWhtIqG-yvMb1C6-ZLt9FmdzGddv9SBCuJo4RKRamqaht2iJ0q7sDO-fXNYPh8mZCe1WTMFPEigX-FPN3Z6QzHQ6zCk2IUUROIhOj73zdRb8C6skBXH-FD4zqy8_rvPsFWyD_D_gtCwQO4v6xK-XidpYFAxkzu2bxYc1esSubM0hY5PhZ0b8CotIQtimle8jqGv2KhKqXyzD6yNXqhSz4PJme4PiktcvUFxleXo4sBbzoocIeOSMnT2ASip0mdF0IiuOGLF9Ir6VJhlCC6ORtJl_VTkxqhgiIPwRk8g3nVz2L5FTp5kYdDYFlijTToLMZnXvlE9byNUpz_EEkbgugdgWqVpl1DL05dLua6zSOb6UbXmnSta10fwemz2KLm19gk0GtnRL9aKBptwCbRk3YGNW4iuhkxeSgeVppUg1pCe378_8P_gt3B6O5W314Pb77BHvWlp_RuEX-HTrl8CD_Qeyntz2Z1PgEQhu3t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-effective+and+low-cost+carbon+capture+from+point-sources+enabled+by+water-lean+solvents&rft.jtitle=Journal+of+cleaner+production&rft.au=Jiang%2C+Yuan&rft.au=Mathias%2C+Paul+M.&rft.au=Zheng%2C+Richard+F.&rft.au=Freeman%2C+Charlies+J.&rft.date=2023-02-15&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=388&rft_id=info:doi/10.1016%2Fj.jclepro.2022.135696&rft.externalDocID=S0959652622052702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |