Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents

Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-e...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 388; p. 135696
Main Authors Jiang, Yuan, Mathias, Paul M., Zheng, Richard F., Freeman, Charlies J., Barpaga, Dushyant, Malhotra, Deepika, Koech, Phillip K., Zwoster, Andy, Heldebrant, David J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-economic analyses are limited for emerging carbon capture technologies. Here, four CO2-Binding Organic Liquids (CO2BOLs), all water-lean solvents were presented as promising options towards energy-effective and low-cost carbon capture from point sources. Rigorous solvent property and process models were developed in Aspen Plus for a coal-fired power plant with CO2BOL-based carbon capture unit. Techno-economic analyses were conducted in 2018 US pricing basis. The results suggest that water-lean formulations can minimize water condensation and vaporization, leading to a 36% energy saving compared with aqueous amines. Indeed, these CO2BOLs can capture up to 97–99% CO2 from coal fired plant. The estimated carbon capture cost is about $40/tonne CO2 at 90–97% carbon capture rate, about 12–23% less expensive than the conventional aqueous amine technology. The comparison between these CO2BOLs showed that in addition to vapor liquid equilibrium and kinetics (key properties for aqueous solvents), viscosity, volatility, and hydrophobicity, also have strong impacts on the performance of water-lean solvents. The methods presented in this work can be used to evaluate other emerging carbon capture technologies, while the results linking costs and performance of carbon capture solvents with their properties. Further, this work identifies research directions and targets for further reductions in total costs of capture from either cost or energy perspectives for these leading water-lean solvents. [Display omitted] •Developed process models for four water-lean point-source carbon capture solvents.•Conducted techno-economic comparison and provided cost breakdowns for different solvents.•Water-lean solvents can enable up to 36% energy saving for carbon capture.•Water-lean solvents can enable about 12–23% reduction in carbon capture cost.
AbstractList Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-economic analyses are limited for emerging carbon capture technologies. Here, four CO₂-Binding Organic Liquids (CO₂BOLs), all water-lean solvents were presented as promising options towards energy-effective and low-cost carbon capture from point sources. Rigorous solvent property and process models were developed in Aspen Plus for a coal-fired power plant with CO₂BOL-based carbon capture unit. Techno-economic analyses were conducted in 2018 US pricing basis. The results suggest that water-lean formulations can minimize water condensation and vaporization, leading to a 36% energy saving compared with aqueous amines. Indeed, these CO₂BOLs can capture up to 97–99% CO₂ from coal fired plant. The estimated carbon capture cost is about $40/tonne CO₂ at 90–97% carbon capture rate, about 12–23% less expensive than the conventional aqueous amine technology. The comparison between these CO₂BOLs showed that in addition to vapor liquid equilibrium and kinetics (key properties for aqueous solvents), viscosity, volatility, and hydrophobicity, also have strong impacts on the performance of water-lean solvents. The methods presented in this work can be used to evaluate other emerging carbon capture technologies, while the results linking costs and performance of carbon capture solvents with their properties. Further, this work identifies research directions and targets for further reductions in total costs of capture from either cost or energy perspectives for these leading water-lean solvents.
Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their formulations. Emerging technologies are in demand to enable a transition to a low-carbon global economy. However, rigorous process modeling and techno-economic analyses are limited for emerging carbon capture technologies. Here, four CO2-Binding Organic Liquids (CO2BOLs), all water-lean solvents were presented as promising options towards energy-effective and low-cost carbon capture from point sources. Rigorous solvent property and process models were developed in Aspen Plus for a coal-fired power plant with CO2BOL-based carbon capture unit. Techno-economic analyses were conducted in 2018 US pricing basis. The results suggest that water-lean formulations can minimize water condensation and vaporization, leading to a 36% energy saving compared with aqueous amines. Indeed, these CO2BOLs can capture up to 97–99% CO2 from coal fired plant. The estimated carbon capture cost is about $40/tonne CO2 at 90–97% carbon capture rate, about 12–23% less expensive than the conventional aqueous amine technology. The comparison between these CO2BOLs showed that in addition to vapor liquid equilibrium and kinetics (key properties for aqueous solvents), viscosity, volatility, and hydrophobicity, also have strong impacts on the performance of water-lean solvents. The methods presented in this work can be used to evaluate other emerging carbon capture technologies, while the results linking costs and performance of carbon capture solvents with their properties. Further, this work identifies research directions and targets for further reductions in total costs of capture from either cost or energy perspectives for these leading water-lean solvents. [Display omitted] •Developed process models for four water-lean point-source carbon capture solvents.•Conducted techno-economic comparison and provided cost breakdowns for different solvents.•Water-lean solvents can enable up to 36% energy saving for carbon capture.•Water-lean solvents can enable about 12–23% reduction in carbon capture cost.
ArticleNumber 135696
Author Mathias, Paul M.
Koech, Phillip K.
Heldebrant, David J.
Malhotra, Deepika
Zwoster, Andy
Jiang, Yuan
Zheng, Richard F.
Barpaga, Dushyant
Freeman, Charlies J.
Author_xml – sequence: 1
  givenname: Yuan
  surname: Jiang
  fullname: Jiang, Yuan
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
– sequence: 2
  givenname: Paul M.
  surname: Mathias
  fullname: Mathias, Paul M.
  organization: Fluor Corporation, Aliso Viejo, CA, 92656, USA
– sequence: 3
  givenname: Richard F.
  orcidid: 0000-0002-5427-1303
  surname: Zheng
  fullname: Zheng, Richard F.
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
– sequence: 4
  givenname: Charlies J.
  surname: Freeman
  fullname: Freeman, Charlies J.
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
– sequence: 5
  givenname: Dushyant
  surname: Barpaga
  fullname: Barpaga, Dushyant
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
– sequence: 6
  givenname: Deepika
  surname: Malhotra
  fullname: Malhotra, Deepika
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
– sequence: 7
  givenname: Phillip K.
  surname: Koech
  fullname: Koech, Phillip K.
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
– sequence: 8
  givenname: Andy
  surname: Zwoster
  fullname: Zwoster, Andy
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
– sequence: 9
  givenname: David J.
  surname: Heldebrant
  fullname: Heldebrant, David J.
  email: david.heldebrant@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA, 99352, USA
BookMark eNqFkEFLYzEUhYM4YNuZnzCQpZt0cl_ee3nBhYjoKAhudDshzbtPUtKkJmml_35S6sqNq8OF8x0u35ychxiQkN_Al8Ch_7Nerq3HbYrLhjfNEkTXq_6MzGCQioEc-nMy46pTrO-a_oLMc15zDpLLdkb-3QVMbweG04S2uD1SE0bq4wezMRdqTVrFUGNbdgnplOKGbqMLheW4SxYzxWBWHke6OtAPUzAxjybQHP0eQ8k_yY_J-Iy_PnNBXu_vXm4f2NPz38fbmydmxaAKk51B2dZ_7QggoBP1GEGMrbASTAuq52rVCDspaaSBFls-gLJGqWFs1dSJBbk87VYL7zvMRW9ctui9CRh3WR836zwIXqvdqWpTzDnhpLfJbUw6aOD66FOv9adPffSpTz4rd_WFs66Y4mIoyTj_LX19orFa2DtMOluHweLoUhWvx-i-WfgPiNeXNA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_172433
crossref_primary_10_1016_j_jclepro_2024_141359
crossref_primary_10_1016_j_clet_2024_100842
crossref_primary_10_1021_acs_analchem_3c02281
crossref_primary_10_1016_j_enbuild_2024_114966
crossref_primary_10_1016_j_cej_2025_159692
crossref_primary_10_1016_j_energy_2023_128352
crossref_primary_10_1016_j_eti_2023_103217
crossref_primary_10_1016_j_fuel_2024_130929
crossref_primary_10_1016_j_jgsce_2024_205400
crossref_primary_10_1016_j_seppur_2023_125310
crossref_primary_10_1029_2024EF004891
crossref_primary_10_2478_rtuect_2023_0040
crossref_primary_10_1016_j_energy_2025_135232
crossref_primary_10_1021_acs_langmuir_3c02043
crossref_primary_10_1002_eem2_12832
crossref_primary_10_1016_j_cep_2023_109532
crossref_primary_10_3389_fenvs_2023_1204690
crossref_primary_10_1016_j_cej_2024_148545
crossref_primary_10_1021_acs_iecr_4c01143
crossref_primary_10_1016_j_cej_2024_158297
crossref_primary_10_1021_acsami_4c16898
crossref_primary_10_1016_j_seta_2024_103626
crossref_primary_10_1093_ijlct_ctae160
crossref_primary_10_1002_cssc_202402199
crossref_primary_10_1016_j_est_2023_109770
crossref_primary_10_1016_j_seppur_2024_127783
crossref_primary_10_1038_s41570_024_00587_1
crossref_primary_10_1016_j_cherd_2024_06_005
Cites_doi 10.1039/c3ee41016a
10.1039/D0EE02585B
10.1021/ie202668k
10.1021/ie050063w
10.1021/acs.iecr.5b02243
10.1126/science.1176731
10.1016/j.egypro.2013.06.092
10.1016/j.egypro.2015.12.336
10.1016/j.egypro.2013.06.587
10.1016/j.ijggc.2021.103279
10.1021/acssuschemeng.1c08401
10.1039/C7EE02342A
10.1016/j.cep.2016.05.012
10.1088/1748-9326/aa6de5
10.1016/j.chemosphere.2021.130097
10.1016/j.ijggc.2013.03.002
10.1038/s41560-020-00771-9
10.1002/cssc.201500288
10.1016/S0255-2701(02)00168-X
10.1016/j.egypro.2011.01.190
10.1002/aic.11316
10.1016/j.egypro.2013.05.139
10.1016/j.joule.2019.08.014
10.22381/emfm17120224
10.1021/acs.iecr.5b03405
10.1039/C3EE42350F
10.1016/j.egypro.2014.11.160
10.1021/acs.iecr.5b04379
10.1016/j.cej.2011.02.012
10.1038/s41560-021-00922-6
10.1016/j.cherd.2010.11.011
10.1016/j.apenergy.2016.12.084
10.1016/j.apenergy.2019.113941
10.1021/acs.chemrev.6b00768
10.1016/j.egypro.2014.11.063
10.1016/j.cej.2011.02.011
10.1021/acs.iecr.7b00213
ContentType Journal Article
Copyright 2023 Battelle Memorial Institute, The Author(s)
Copyright_xml – notice: 2023 Battelle Memorial Institute, The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2022.135696
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2022_135696
S0959652622052702
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c389t-75ae74187cd113153741d13d43c71a419609b23cf97a7a14e40819ca998d49f53
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Fri Aug 22 20:23:35 EDT 2025
Thu Apr 24 22:52:22 EDT 2025
Tue Jul 01 04:42:25 EDT 2025
Fri Feb 23 02:36:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Techno-economic analysis
Water-lean solvent
Process modeling
Post-combustion carbon capture
Process configurations
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-75ae74187cd113153741d13d43c71a419609b23cf97a7a14e40819ca998d49f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5427-1303
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0959652622052702
PQID 3153187130
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153187130
crossref_primary_10_1016_j_jclepro_2022_135696
crossref_citationtrail_10_1016_j_jclepro_2022_135696
elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_135696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Morton, Laird, Northington (bib31) 2013; 37
Thompson, Xiao, Sarma, Nguyen, Ruelas, Liu (bib42) 2022
Walters, Edgar, Rochelle (bib46) 2016; 107
Van Wagener, Rochelle (bib43) 2011; 89
Heldebrant, Koech, Rainbolt, Zheng, Smurthwaite, Freeman, Oss, Leito (bib10) 2011; 171
Sakwattanapong, Aroonwilas, Veawab (bib35) 2005; 44
Høisæter, Vevelstad, Braakhuis, Knuutila (bib13) 2022; 61
Lin, Rochelle (bib23) 2014; 63
Mathias, Afshar, Zheng, Bearden, Freeman, Andrea, Koech, Kutnyakov, Zwoster, Smith, Jessop, Nik, Heldebrant (bib27) 2013; 6
Deutz, Bardow (bib5) 2021; 6
Stavkova, Marousek (bib39) 2021; 276
Van Wagener, Rochelle (bib44) 2011; 4
Heldebrant (bib7) 2020
Lail, Tanthana, Coleman (bib21) 2014; 63
Wilcox, Psarras, Liguori (bib48) 2017; 12
Schneider, Sander, Gorak (bib37) 2003; 42
Kliestik, Zvarikova, Lazaroiu (bib19) 2022; 17
Kohl, Riesenfeld (bib20) 1997
Walters, Dunia, Edgar, Rochelle (bib45) 2013; 37
Scherffius, Reddy, Klumpyan, Armpriester (bib36) 2013; 37
Mathias (bib26) 2016; 55
Walters, Lin, Sachde, Edgar, Rochelle (bib47) 2016; 55
Boot-Handford, Abanades, Anthony, Blunt, Brandani, Mac Dowell, Fernández, Ferrari, Gross, Hallett, Haszeldine, Heptonstall, Lyngfelt, Makuch, Mangano, Porter, Pourkashanian, Rochelle, Shah, Yao, Fennell (bib3) 2014; 7
Singh, Hao, Liu, Wei, Xu, Wei, Li, Lu, Ku (bib38) 2019; 3
Heldebrant, Koech, Glezakou, Rousseau, Malhotra, Cantu (bib9) 2017; 117
Heldebrant, Zheng, Koech, Jiang, Malhotra (bib11) 2021
Rochelle, Chen, Freeman, Van Wagener, Xu, Voice (bib33) 2011; 171
James, Keairns, Turner, Woods, Kuehn, Zeolle (bib15) 2019
Jiang, Bhattacharyya (bib16) 2017; 189
Zhang, Turton, Bhattacharyya (bib50) 2016; 55
Jiang, Zheng, Barpaga, Koech, Malhotra, Mathias, Freeman, Zwoster, Heldebrant (bib18) 2022
Ahn, Luberti, Liu, Brandani (bib1) 2013; 16
Lieberman (bib22) 2021
Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett, Hallett, Herzog, Jackson, Kemper, Krevor, Maitland, Matuszewski, Metcalfe, Petit, Puxty, Reimer, Reiner, Rubin, Scott, Shah, Smit, Trusler, Webley, Wilcox, Mac Dowell (bib4) 2018; 11
Haslback, Kuehn, Lewis, Pinkerton, Simpson, Turner, Varghese, Woods (bib6) 2013
(bib14) 2014
Barpaga, Jiang, Zheng, Malhotra, Koech, Zwoster, Mathias, Heldebrant (bib2) 2022; 10
Stowe, Hwang (bib40) 2017; 56
Jiang, Mathias, Freeman, Swisher, Zheng, Whyatt, Heldebrant (bib17) 2021; 106
Oyenekan, Rochelle (bib32) 2007; 53
Rochelle (bib34) 2009; 325
Zheng, Barpaga, Mathias, Malhotra, Koech, Jiang, Bhakta, Lail, A Rayer, Whyatt, Freeman, Zwoster, Weitz, Heldebrant (bib51) 2020; 13
Wu, Wang, Liao, Shen, Li (bib49) 2020; 257
Madhu, Pauliuk, Dhathri, Creutzig (bib24) 2021; 6
Heldebranta, Glezakoua, Koech, Mathias, Cantua, Rousseaua, Malhotra, Bhakta, Bearden, Freeman, Zheng (bib12) 2014; 63
Swisher (bib41) 2021
Heldebrant (bib8) 2020
Mathias, O'Connell (bib28) 2012; 51
Mathias, Zheng, Heldebrant, Zwoster, Whyatt, Freeman, Bearden, Koech (bib29) 2015; 8
(bib30) 2022
Mathias (10.1016/j.jclepro.2022.135696_bib26) 2016; 55
(10.1016/j.jclepro.2022.135696_bib30) 2022
Lieberman (10.1016/j.jclepro.2022.135696_bib22)
Barpaga (10.1016/j.jclepro.2022.135696_bib2) 2022; 10
Bui (10.1016/j.jclepro.2022.135696_bib4) 2018; 11
Wilcox (10.1016/j.jclepro.2022.135696_bib48) 2017; 12
Swisher (10.1016/j.jclepro.2022.135696_bib41) 2021
Heldebrant (10.1016/j.jclepro.2022.135696_bib10) 2011; 171
Stowe (10.1016/j.jclepro.2022.135696_bib40) 2017; 56
Heldebrant (10.1016/j.jclepro.2022.135696_bib8) 2020
Kliestik (10.1016/j.jclepro.2022.135696_bib19) 2022; 17
Heldebranta (10.1016/j.jclepro.2022.135696_bib12) 2014; 63
Stavkova (10.1016/j.jclepro.2022.135696_bib39) 2021; 276
Heldebrant (10.1016/j.jclepro.2022.135696_bib11) 2021
James (10.1016/j.jclepro.2022.135696_bib15) 2019
Haslback (10.1016/j.jclepro.2022.135696_bib6) 2013
Van Wagener (10.1016/j.jclepro.2022.135696_bib44) 2011; 4
Heldebrant (10.1016/j.jclepro.2022.135696_bib7) 2020
Mathias (10.1016/j.jclepro.2022.135696_bib29) 2015; 8
Jiang (10.1016/j.jclepro.2022.135696_bib16) 2017; 189
Zhang (10.1016/j.jclepro.2022.135696_bib50) 2016; 55
Walters (10.1016/j.jclepro.2022.135696_bib45) 2013; 37
Jiang (10.1016/j.jclepro.2022.135696_bib18) 2022
Thompson (10.1016/j.jclepro.2022.135696_bib42) 2022
Oyenekan (10.1016/j.jclepro.2022.135696_bib32) 2007; 53
Walters (10.1016/j.jclepro.2022.135696_bib47) 2016; 55
Boot-Handford (10.1016/j.jclepro.2022.135696_bib3) 2014; 7
Rochelle (10.1016/j.jclepro.2022.135696_bib34) 2009; 325
Wu (10.1016/j.jclepro.2022.135696_bib49) 2020; 257
Van Wagener (10.1016/j.jclepro.2022.135696_bib43) 2011; 89
Mathias (10.1016/j.jclepro.2022.135696_bib27) 2013; 6
Schneider (10.1016/j.jclepro.2022.135696_bib37) 2003; 42
Rochelle (10.1016/j.jclepro.2022.135696_bib33) 2011; 171
Heldebrant (10.1016/j.jclepro.2022.135696_bib9) 2017; 117
Scherffius (10.1016/j.jclepro.2022.135696_bib36) 2013; 37
Zheng (10.1016/j.jclepro.2022.135696_bib51) 2020; 13
Deutz (10.1016/j.jclepro.2022.135696_bib5) 2021; 6
Morton (10.1016/j.jclepro.2022.135696_bib31) 2013; 37
Mathias (10.1016/j.jclepro.2022.135696_bib28) 2012; 51
Lail (10.1016/j.jclepro.2022.135696_bib21) 2014; 63
Lin (10.1016/j.jclepro.2022.135696_bib23) 2014; 63
Walters (10.1016/j.jclepro.2022.135696_bib46) 2016; 107
Sakwattanapong (10.1016/j.jclepro.2022.135696_bib35) 2005; 44
Jiang (10.1016/j.jclepro.2022.135696_bib17) 2021; 106
Ahn (10.1016/j.jclepro.2022.135696_bib1) 2013; 16
Madhu (10.1016/j.jclepro.2022.135696_bib24) 2021; 6
(10.1016/j.jclepro.2022.135696_bib14) 2014
Singh (10.1016/j.jclepro.2022.135696_bib38) 2019; 3
Kohl (10.1016/j.jclepro.2022.135696_bib20) 1997
Høisæter (10.1016/j.jclepro.2022.135696_bib13) 2022; 61
References_xml – volume: 42
  start-page: 955
  year: 2003
  end-page: 964
  ident: bib37
  article-title: Dynamic simulation of industrial reactive absorption processes
  publication-title: Chem. Eng. Process: Process Intensif.
– year: 1997
  ident: bib20
  article-title: Gas Purification
– volume: 63
  start-page: 1504
  year: 2014
  end-page: 1513
  ident: bib23
  article-title: Optimization of advance flash stripper for CO2 capture using piperazine
  publication-title: Energy Proc.
– volume: 325
  start-page: 1152
  year: 2009
  end-page: 1654
  ident: bib34
  article-title: Amine scrubbing for CO2 capture
  publication-title: Science
– volume: 55
  start-page: 1690
  year: 2016
  end-page: 1700
  ident: bib47
  article-title: Control relevant model of amine scrubbing for CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 276
  year: 2021
  ident: bib39
  article-title: Novel sorbent shows promising financial results on P recovery from sludge water
  publication-title: Chemosphere
– volume: 11
  start-page: 1062
  year: 2018
  end-page: 1176
  ident: bib4
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energy Environ. Sci.
– volume: 63
  start-page: 8144
  year: 2014
  end-page: 8152
  ident: bib12
  publication-title: Energy Proc.
– volume: 53
  start-page: 3144
  year: 2007
  end-page: 3154
  ident: bib32
  article-title: Alternative stripper configurations for CO2 capture by aqueous amines
  publication-title: AIChE J.
– volume: 106
  year: 2021
  ident: bib17
  article-title: Techno-economic comparison of various process configurations for post-combustion carbon capture using a single-component water-lean solvent
  publication-title: Int. J. Greenh. Gas Control
– volume: 107
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib46
  article-title: Dynamic modeling and control of an intercooled absorber for post-combustion CO2 capture
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 171
  start-page: 794
  year: 2011
  end-page: 800
  ident: bib10
  article-title: Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture
  publication-title: Chem. Eng. J.
– year: 2021
  ident: bib22
  article-title: 1.5 or 2 degrees Celsius of additional global warming: does it make a difference?
– volume: 4
  start-page: 1323
  year: 2011
  end-page: 1330
  ident: bib44
  article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine
  publication-title: Energy Proc.
– year: 2020
  ident: bib7
  article-title: Low-Viscosity, Water-Lean CO2BOLs with Polarity-Swing Assisted Regeneration Carbon Capture 2020 Integrated Review Webinar
– year: 2013
  ident: bib6
  article-title: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2a
– volume: 37
  start-page: 6553
  year: 2013
  end-page: 6561
  ident: bib36
  article-title: Large-scale CO2 capture demonstration plant using fluor's econamine FG PlusSM technology at NRG's WA parish electric generating station
  publication-title: Energy Proc.
– volume: 16
  start-page: 29
  year: 2013
  end-page: 40
  ident: bib1
  article-title: Process configuration studies of the amine capture process for coal-fired power plants
  publication-title: Int. J. Greenh. Gas Control
– volume: 17
  start-page: 57
  year: 2022
  end-page: 69
  ident: bib19
  article-title: Data-driven machine learning and neural network algorithms in the retailing environment: consumer engagement, experience, and purchase behaviors
  publication-title: Econ. Manag. Financ. Mark.
– year: 2021
  ident: bib11
  article-title: Parametric testing of CO2-binding organic liquids (CO2BOLs) to enable industry adoption
  publication-title: Quarter. Prog. Rep.
– volume: 6
  start-page: 203
  year: 2021
  end-page: 213
  ident: bib5
  article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption
  publication-title: Nat. Energy
– volume: 117
  start-page: 9594
  year: 2017
  end-page: 9624
  ident: bib9
  article-title: Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook
  publication-title: Chem. Rev.
– volume: 7
  start-page: 130
  year: 2014
  end-page: 189
  ident: bib3
  article-title: Carbon capture and storage update
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1035
  year: 2021
  end-page: 1044
  ident: bib24
  article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment
  publication-title: Nat. Energy
– volume: 51
  start-page: 5090
  year: 2012
  end-page: 5097
  ident: bib28
  article-title: The gibbs–helmholtz equation and the thermodynamic consistency of chemical absorption data
  publication-title: Ind. Eng. Chem. Res.
– volume: 61
  start-page: 16179
  year: 2022
  end-page: 16192
  ident: bib13
  article-title: Impact of solvent on the thermal stability of amines
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 2154
  year: 2019
  end-page: 2164
  ident: bib38
  article-title: Large-scale affordable CO2 capture is possible by 2030
  publication-title: Joule
– year: 2021
  ident: bib41
  article-title: Engineering-Scale Test of a Water-Lean Solvent for Post-Combustion Capture
  publication-title: Project DE-FE0031945, U.S. Department of Energy Carbon Management and Natural Gas & Oil Research Project Review Meeting
– volume: 89
  start-page: 1639
  year: 2011
  end-page: 1646
  ident: bib43
  article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine
  publication-title: Chem. Eng. Res. Des.
– year: 2020
  ident: bib8
  article-title: Molecular Refinement of Transformational Solvents for CO2 Separations, Carbon Capture 2020 Integrated Review Webinar
– volume: 6
  start-page: 2233
  year: 2013
  ident: bib27
  article-title: Improving the regeneration of CO2-binding organic liquids with a polarity change
  publication-title: Energy Environ. Sci.
– volume: 12
  year: 2017
  ident: bib48
  article-title: Assessment of reasonable opportunities for direct air capture
  publication-title: Environ. Res. Lett.
– volume: 63
  start-page: 580
  year: 2014
  end-page: 594
  ident: bib21
  article-title: Non-aqueous solvent (NAS) CO2 capture process
  publication-title: Energy Proc.
– volume: 10
  start-page: 4522
  year: 2022
  end-page: 4528
  ident: bib2
  article-title: Evaluation of a third generation single-component water-lean diamine solvent for post-combustion CO2 capture
  publication-title: ACS Sustain. Chem. Eng.
– year: 2019
  ident: bib15
  article-title: Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity
– volume: 257
  year: 2020
  ident: bib49
  article-title: Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation
  publication-title: Appl. Energy
– volume: 55
  start-page: 1292
  year: 2016
  end-page: 1308
  ident: bib50
  article-title: Development of model and model-predictive control of an MEA-based postcombustion CO
  publication-title: Ind. Eng. Chem. Res.
– year: 2014
  ident: bib14
  article-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 44
  start-page: 4465
  year: 2005
  end-page: 4473
  ident: bib35
  article-title: Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines
  publication-title: Ind. Eng. Chem. Res.
– year: 2022
  ident: bib18
  article-title: ≤ $40/tonne CO2 point-source carbon capture with three water-lean CO2BOL solvents
  publication-title: 16th International Conference on Greenhouse Gas Control Technologies GHGT-16 Lyon, France
– volume: 189
  start-page: 433
  year: 2017
  end-page: 448
  ident: bib16
  article-title: Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)
  publication-title: Appl. Energy
– year: 2022
  ident: bib30
  article-title: Meet the Solvent that Captures up to 99.8% of CO2 Emissions
– volume: 37
  start-page: 525
  year: 2013
  end-page: 539
  ident: bib31
  article-title: The national carbon capture center: cost effective test bed for carbon capture R&D
  publication-title: Energy Proc.
– year: 2022
  ident: bib42
  article-title: Mass transfer intensification through increased surface wetting and liquid turbulence using 3D printing structured packing for CO2 capture
  publication-title: 16th International Conference on Greenhouse Gas Control Technologies GHGT-16
– volume: 55
  start-page: 1076
  year: 2016
  end-page: 1087
  ident: bib26
  article-title: The gibbs–helmholtz equation in chemical process technology
  publication-title: Ind. Eng. Chem. Res.
– volume: 171
  start-page: 725
  year: 2011
  end-page: 733
  ident: bib33
  article-title: Aqueous piperazine as the new standard for CO2 capture technology
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 3617
  year: 2015
  end-page: 3625
  ident: bib29
  article-title: Measuring the absorption rate of CO2 in nonaqueous CO
  publication-title: ChemSusChem
– volume: 37
  start-page: 2133
  year: 2013
  end-page: 2144
  ident: bib45
  article-title: Two-stage flash for CO2 regeneration: dynamic modeling and pilot plant validation
  publication-title: Energy Proc.
– volume: 13
  start-page: 4106
  year: 2020
  end-page: 4113
  ident: bib51
  article-title: A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation
  publication-title: Energy Environ. Sci.
– volume: 56
  start-page: 6887
  year: 2017
  end-page: 6899
  ident: bib40
  article-title: Fundamental understanding of CO2 capture and regeneration in aqueous amines from first-principles studies: recent progress and remaining challenges
  publication-title: Ind. Eng. Chem. Res.
– volume: 6
  start-page: 2233
  issue: 7
  year: 2013
  ident: 10.1016/j.jclepro.2022.135696_bib27
  article-title: Improving the regeneration of CO2-binding organic liquids with a polarity change
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41016a
– year: 2022
  ident: 10.1016/j.jclepro.2022.135696_bib18
  article-title: ≤ $40/tonne CO2 point-source carbon capture with three water-lean CO2BOL solvents
– year: 2021
  ident: 10.1016/j.jclepro.2022.135696_bib11
  article-title: Parametric testing of CO2-binding organic liquids (CO2BOLs) to enable industry adoption
  publication-title: Quarter. Prog. Rep.
– volume: 13
  start-page: 4106
  issue: 11
  year: 2020
  ident: 10.1016/j.jclepro.2022.135696_bib51
  article-title: A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02585B
– year: 2022
  ident: 10.1016/j.jclepro.2022.135696_bib30
– volume: 51
  start-page: 5090
  issue: 13
  year: 2012
  ident: 10.1016/j.jclepro.2022.135696_bib28
  article-title: The gibbs–helmholtz equation and the thermodynamic consistency of chemical absorption data
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202668k
– volume: 44
  start-page: 4465
  issue: 12
  year: 2005
  ident: 10.1016/j.jclepro.2022.135696_bib35
  article-title: Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050063w
– volume: 55
  start-page: 1292
  issue: 5
  year: 2016
  ident: 10.1016/j.jclepro.2022.135696_bib50
  article-title: Development of model and model-predictive control of an MEA-based postcombustion CO2 capture process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b02243
– volume: 325
  start-page: 1152
  issue: 5948
  year: 2009
  ident: 10.1016/j.jclepro.2022.135696_bib34
  article-title: Amine scrubbing for CO2 capture
  publication-title: Science
  doi: 10.1126/science.1176731
– volume: 37
  start-page: 2133
  year: 2013
  ident: 10.1016/j.jclepro.2022.135696_bib45
  article-title: Two-stage flash for CO2 regeneration: dynamic modeling and pilot plant validation
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2013.06.092
– volume: 63
  start-page: 8144
  year: 2014
  ident: 10.1016/j.jclepro.2022.135696_bib12
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2015.12.336
– volume: 37
  start-page: 6553
  year: 2013
  ident: 10.1016/j.jclepro.2022.135696_bib36
  article-title: Large-scale CO2 capture demonstration plant using fluor's econamine FG PlusSM technology at NRG's WA parish electric generating station
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2013.06.587
– volume: 106
  year: 2021
  ident: 10.1016/j.jclepro.2022.135696_bib17
  article-title: Techno-economic comparison of various process configurations for post-combustion carbon capture using a single-component water-lean solvent
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2021.103279
– volume: 10
  start-page: 4522
  issue: 14
  year: 2022
  ident: 10.1016/j.jclepro.2022.135696_bib2
  article-title: Evaluation of a third generation single-component water-lean diamine solvent for post-combustion CO2 capture
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c08401
– volume: 11
  start-page: 1062
  issue: 5
  year: 2018
  ident: 10.1016/j.jclepro.2022.135696_bib4
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02342A
– year: 2020
  ident: 10.1016/j.jclepro.2022.135696_bib8
– year: 2021
  ident: 10.1016/j.jclepro.2022.135696_bib41
  article-title: Engineering-Scale Test of a Water-Lean Solvent for Post-Combustion Capture
– year: 2019
  ident: 10.1016/j.jclepro.2022.135696_bib15
– volume: 107
  start-page: 1
  year: 2016
  ident: 10.1016/j.jclepro.2022.135696_bib46
  article-title: Dynamic modeling and control of an intercooled absorber for post-combustion CO2 capture
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2016.05.012
– volume: 12
  issue: 6
  year: 2017
  ident: 10.1016/j.jclepro.2022.135696_bib48
  article-title: Assessment of reasonable opportunities for direct air capture
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa6de5
– volume: 276
  year: 2021
  ident: 10.1016/j.jclepro.2022.135696_bib39
  article-title: Novel sorbent shows promising financial results on P recovery from sludge water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130097
– volume: 16
  start-page: 29
  year: 2013
  ident: 10.1016/j.jclepro.2022.135696_bib1
  article-title: Process configuration studies of the amine capture process for coal-fired power plants
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2013.03.002
– volume: 6
  start-page: 203
  issue: 2
  year: 2021
  ident: 10.1016/j.jclepro.2022.135696_bib5
  article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00771-9
– volume: 8
  start-page: 3617
  issue: 21
  year: 2015
  ident: 10.1016/j.jclepro.2022.135696_bib29
  article-title: Measuring the absorption rate of CO2 in nonaqueous CO2-binding organic liquid solvents with a wetted-wall apparatus
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500288
– volume: 42
  start-page: 955
  issue: 12
  year: 2003
  ident: 10.1016/j.jclepro.2022.135696_bib37
  article-title: Dynamic simulation of industrial reactive absorption processes
  publication-title: Chem. Eng. Process: Process Intensif.
  doi: 10.1016/S0255-2701(02)00168-X
– volume: 4
  start-page: 1323
  year: 2011
  ident: 10.1016/j.jclepro.2022.135696_bib44
  article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2011.01.190
– volume: 53
  start-page: 3144
  issue: 12
  year: 2007
  ident: 10.1016/j.jclepro.2022.135696_bib32
  article-title: Alternative stripper configurations for CO2 capture by aqueous amines
  publication-title: AIChE J.
  doi: 10.1002/aic.11316
– volume: 61
  start-page: 16179
  issue: 43
  year: 2022
  ident: 10.1016/j.jclepro.2022.135696_bib13
  article-title: Impact of solvent on the thermal stability of amines
  publication-title: Ind. Eng. Chem. Res.
– volume: 37
  start-page: 525
  year: 2013
  ident: 10.1016/j.jclepro.2022.135696_bib31
  article-title: The national carbon capture center: cost effective test bed for carbon capture R&D
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2013.05.139
– volume: 3
  start-page: 2154
  issue: 9
  year: 2019
  ident: 10.1016/j.jclepro.2022.135696_bib38
  article-title: Large-scale affordable CO2 capture is possible by 2030
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.014
– year: 2014
  ident: 10.1016/j.jclepro.2022.135696_bib14
– ident: 10.1016/j.jclepro.2022.135696_bib22
– volume: 17
  start-page: 57
  issue: 1
  year: 2022
  ident: 10.1016/j.jclepro.2022.135696_bib19
  article-title: Data-driven machine learning and neural network algorithms in the retailing environment: consumer engagement, experience, and purchase behaviors
  publication-title: Econ. Manag. Financ. Mark.
  doi: 10.22381/emfm17120224
– year: 2013
  ident: 10.1016/j.jclepro.2022.135696_bib6
– year: 1997
  ident: 10.1016/j.jclepro.2022.135696_bib20
– volume: 55
  start-page: 1076
  issue: 4
  year: 2016
  ident: 10.1016/j.jclepro.2022.135696_bib26
  article-title: The gibbs–helmholtz equation in chemical process technology
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03405
– year: 2022
  ident: 10.1016/j.jclepro.2022.135696_bib42
  article-title: Mass transfer intensification through increased surface wetting and liquid turbulence using 3D printing structured packing for CO2 capture
– volume: 7
  start-page: 130
  issue: 1
  year: 2014
  ident: 10.1016/j.jclepro.2022.135696_bib3
  article-title: Carbon capture and storage update
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42350F
– volume: 63
  start-page: 1504
  year: 2014
  ident: 10.1016/j.jclepro.2022.135696_bib23
  article-title: Optimization of advance flash stripper for CO2 capture using piperazine
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2014.11.160
– volume: 55
  start-page: 1690
  issue: 6
  year: 2016
  ident: 10.1016/j.jclepro.2022.135696_bib47
  article-title: Control relevant model of amine scrubbing for CO2 capture from power plants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04379
– volume: 171
  start-page: 794
  issue: 3
  year: 2011
  ident: 10.1016/j.jclepro.2022.135696_bib10
  article-title: Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.02.012
– volume: 6
  start-page: 1035
  issue: 11
  year: 2021
  ident: 10.1016/j.jclepro.2022.135696_bib24
  article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00922-6
– volume: 89
  start-page: 1639
  issue: 9
  year: 2011
  ident: 10.1016/j.jclepro.2022.135696_bib43
  article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.11.011
– year: 2020
  ident: 10.1016/j.jclepro.2022.135696_bib7
– volume: 189
  start-page: 433
  year: 2017
  ident: 10.1016/j.jclepro.2022.135696_bib16
  article-title: Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.084
– volume: 257
  year: 2020
  ident: 10.1016/j.jclepro.2022.135696_bib49
  article-title: Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113941
– volume: 117
  start-page: 9594
  issue: 14
  year: 2017
  ident: 10.1016/j.jclepro.2022.135696_bib9
  article-title: Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00768
– volume: 63
  start-page: 580
  year: 2014
  ident: 10.1016/j.jclepro.2022.135696_bib21
  article-title: Non-aqueous solvent (NAS) CO2 capture process
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2014.11.063
– volume: 171
  start-page: 725
  issue: 3
  year: 2011
  ident: 10.1016/j.jclepro.2022.135696_bib33
  article-title: Aqueous piperazine as the new standard for CO2 capture technology
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.02.011
– volume: 56
  start-page: 6887
  issue: 24
  year: 2017
  ident: 10.1016/j.jclepro.2022.135696_bib40
  article-title: Fundamental understanding of CO2 capture and regeneration in aqueous amines from first-principles studies: recent progress and remaining challenges
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00213
SSID ssj0017074
Score 2.546655
Snippet Aqueous amines, as the most mature carbon capture technology, are subject to high energy and cost penalties due to the large water content in their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135696
SubjectTerms carbon
carbon dioxide
coal
condensation (phase transition)
energy
hydrophobicity
liquids
Post-combustion carbon capture
power plants
Process configurations
Process modeling
solvents
Techno-economic analysis
vapors
viscosity
volatilization
water content
Water-lean solvent
Title Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents
URI https://dx.doi.org/10.1016/j.jclepro.2022.135696
https://www.proquest.com/docview/3153187130
Volume 388
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn_gmgte0zSa7qUcplaroRQVPhrwWWspuabcUL_52Z_bhC0HwtOyyCcuX2ZnJZL4ZQs5Ty8Espo5ZbxyTMlLMSClYTwZhUi6CL2O6d_fJ8EnePMfPK6TfcGEwrbLW_ZVOL7V1_aRTo9mZjkadB4xgJXGUIFUUWVXIYJcKpbz99pHmwVW3qsSM4S58-5PF0xm3xzAZKCrYJkYRdoBIsHb_7_bph6Yuzc_VJtmo_UZ6WX3aFlkJ2TZZ_1JNcIe8DEoeH6tSNECLUZN5OsmXzOXzgjozs3kGlykeGlDkldBpPsoKVgXw5zSUPCpP7Stdggs6Y5NgMgrCiTmR813ydDV47A9Z3T6BOfBCCqZiE7A2jXKecwGaDW48F14Kp7iRHGvN2Ui49EIZZbgMEt0DZ2AD5uVFGos90sryLOwTmibWCAOeYtz10iey522kYPFDJGwIvHdAZAOadnVtcWxxMdFNEtlY11hrxFpXWB-Q9sewaVVc468BvWZF9Dcp0WAA_hp61qyghj8Ij0VMFvLFXCM0gBIY88P_T39E1rARPeZz8_iYtIrZIpyAu1LY01IeT8nq5fXt8P4d_rLrPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyNBEC40HtTDsrvuou6rhb22sad7ZpKjiBJXzWUTyMmmXwMJYSYkI8F_b9U8XBUhsKdhBqoZqru_qq6u-grgd2YFmsXMceuN40pFKTdKSd5TQZpMyOCrmO7dMBmM1Z9JPNmCi7YWhtIqG-yvMb1C6-ZLt9FmdzGddv9SBCuJo4RKRamqaht2iJ0q7sDO-fXNYPh8mZCe1WTMFPEigX-FPN3Z6QzHQ6zCk2IUUROIhOj73zdRb8C6skBXH-FD4zqy8_rvPsFWyD_D_gtCwQO4v6xK-XidpYFAxkzu2bxYc1esSubM0hY5PhZ0b8CotIQtimle8jqGv2KhKqXyzD6yNXqhSz4PJme4PiktcvUFxleXo4sBbzoocIeOSMnT2ASip0mdF0IiuOGLF9Ir6VJhlCC6ORtJl_VTkxqhgiIPwRk8g3nVz2L5FTp5kYdDYFlijTToLMZnXvlE9byNUpz_EEkbgugdgWqVpl1DL05dLua6zSOb6UbXmnSta10fwemz2KLm19gk0GtnRL9aKBptwCbRk3YGNW4iuhkxeSgeVppUg1pCe378_8P_gt3B6O5W314Pb77BHvWlp_RuEX-HTrl8CD_Qeyntz2Z1PgEQhu3t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-effective+and+low-cost+carbon+capture+from+point-sources+enabled+by+water-lean+solvents&rft.jtitle=Journal+of+cleaner+production&rft.au=Jiang%2C+Yuan&rft.au=Mathias%2C+Paul+M.&rft.au=Zheng%2C+Richard+F.&rft.au=Freeman%2C+Charlies+J.&rft.date=2023-02-15&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=388&rft_id=info:doi/10.1016%2Fj.jclepro.2022.135696&rft.externalDocID=S0959652622052702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon