Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance
[Display omitted] •A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large contact angle.•A high interfacial solar evaporation rate is achieved.•The HPCNF has excellent salt-rejection and hence long-term evaporation sta...
Saved in:
Published in | Journal of colloid and interface science Vol. 612; pp. 66 - 75 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large contact angle.•A high interfacial solar evaporation rate is achieved.•The HPCNF has excellent salt-rejection and hence long-term evaporation stability.•Solar desalination can be conducted in high salinity and corrosive conditions.
Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m−2h−1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation. |
---|---|
AbstractList | Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m⁻²h⁻¹ and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation. Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m-2h-1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m-2h-1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation. Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m h and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation. [Display omitted] •A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large contact angle.•A high interfacial solar evaporation rate is achieved.•The HPCNF has excellent salt-rejection and hence long-term evaporation stability.•Solar desalination can be conducted in high salinity and corrosive conditions. Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m−2h−1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation. |
Author | Su, Qin Zhang, Wei-miao Han, Jiang Yan, Jun Gao, Jie-feng |
Author_xml | – sequence: 1 givenname: Wei-miao surname: Zhang fullname: Zhang, Wei-miao organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China – sequence: 2 givenname: Jun surname: Yan fullname: Yan, Jun organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China – sequence: 3 givenname: Qin surname: Su fullname: Su, Qin organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China – sequence: 4 givenname: Jiang surname: Han fullname: Han, Jiang organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China – sequence: 5 givenname: Jie-feng surname: Gao fullname: Gao, Jie-feng email: jfgao@yzu.edu.cn organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34974259$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKc_L8ACeckmwXYSJ5bYoApapErdlLXlnxvGo8QOtmdoH4G3xukUFiwqVr7S_c6R7zln6MQHDwi9paSmhPIPu3pnXKoZYbSmrCaieYU2lIiu6ilpTtCGlE0letGforOUdoRQ2nXiDTptWtG3rBMb9Ovm0cawbIN2Bitv8RJi2CdsVNTBY698GJ2GiGeYdVQe8Bgi3rrvW7xALPOsvAGcwqRiZaM7gMfO57JSxqkJw0EVR5VdMfvp8hbDg4FpAp9xUlPGEZJLefW4QK9HNSW4fH7P0bcvn--vbqrbu-uvV59uK9MMIlfcUt62GsxgO8WEUdwQTRvWt6O2PfSGaj4OorVm6AZiG066FkaulbIMOm2ac_T-6LvE8GMPKcvZpfVP5bhyuWS84W3fNnz4D5Ry1gs6kIK-e0b3egYrl-hmFR_ln6QLwI6AiSGlCONfhBK51il3cq1TrnVKymSps4iGf0TG5acwc1Rueln68SiFkuXBQZTJOCg5WxfBZGmDe0n-G7WRvto |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_03_114 crossref_primary_10_1002_cssc_202400518 crossref_primary_10_1021_acsestengg_3c00297 crossref_primary_10_1016_j_colsurfa_2024_135282 crossref_primary_10_1021_acsami_4c16924 crossref_primary_10_1016_j_apcatb_2023_122786 crossref_primary_10_1016_j_desal_2023_116639 crossref_primary_10_1016_j_cej_2024_153694 crossref_primary_10_1016_j_ces_2022_118330 crossref_primary_10_1016_j_ces_2022_118175 crossref_primary_10_1002_eom2_12517 crossref_primary_10_1039_D3TA05474H crossref_primary_10_1016_j_gee_2024_05_005 crossref_primary_10_1007_s40843_022_2407_2 crossref_primary_10_1016_j_rser_2024_114370 crossref_primary_10_1021_acsanm_4c02526 crossref_primary_10_1016_j_solmat_2023_112361 crossref_primary_10_1002_adma_202410290 crossref_primary_10_1039_D2GC02568J crossref_primary_10_2139_ssrn_4172994 crossref_primary_10_1016_j_jcis_2022_04_074 crossref_primary_10_1016_j_desal_2022_116003 crossref_primary_10_1039_D2TA03321F crossref_primary_10_26599_NRE_2023_9120062 crossref_primary_10_1002_cssc_202400111 crossref_primary_10_1016_j_desal_2024_117339 crossref_primary_10_1038_s43246_024_00544_x crossref_primary_10_1016_j_jcis_2022_11_145 crossref_primary_10_1021_acsaenm_2c00192 crossref_primary_10_1021_acsami_4c19058 crossref_primary_10_1007_s10854_023_10676_4 crossref_primary_10_1021_acsomega_4c03024 crossref_primary_10_1016_S1872_5805_23_60778_4 crossref_primary_10_1002_adfm_202304580 crossref_primary_10_1016_j_solener_2024_112374 crossref_primary_10_3389_fenrg_2023_1298837 crossref_primary_10_1016_j_seppur_2024_130488 crossref_primary_10_2139_ssrn_4118506 crossref_primary_10_1016_j_colsurfa_2024_135256 crossref_primary_10_1016_j_jece_2022_108616 crossref_primary_10_1016_j_desal_2022_115686 crossref_primary_10_1016_j_cej_2024_151814 crossref_primary_10_1016_j_jcis_2024_11_241 crossref_primary_10_1016_j_ijbiomac_2024_129403 crossref_primary_10_1016_j_cej_2023_145679 crossref_primary_10_1016_j_coco_2022_101320 crossref_primary_10_1007_s10965_023_03594_w crossref_primary_10_1007_s42765_022_00172_5 crossref_primary_10_1016_j_cej_2024_155762 crossref_primary_10_3389_fchem_2024_1454367 crossref_primary_10_1039_D4RA05241B crossref_primary_10_1016_j_applthermaleng_2023_121311 crossref_primary_10_1016_j_desal_2024_117998 crossref_primary_10_1021_acs_iecr_2c03170 |
Cites_doi | 10.1016/j.matchemphys.2012.05.074 10.1016/j.scitotenv.2020.143546 10.1039/C8TA08259F 10.1016/j.colsurfa.2018.04.017 10.1016/j.seppur.2020.116595 10.1016/j.joule.2018.12.023 10.1039/C8TA08829B 10.1039/D0NJ02968H 10.1021/acssuschemeng.9b06603 10.1021/cm502886t 10.1073/pnas.1613031113 10.1002/chem.201904563 10.1002/aenm.201702884 10.1021/acsami.0c16596 10.1039/C8NR05916K 10.1039/C6RA04090J 10.1016/j.solmat.2020.110814 10.1016/j.solener.2020.09.013 10.1016/j.cej.2020.126898 10.1007/s10853-020-05108-1 10.1016/j.chemosphere.2021.130719 10.1039/D0TA09368H 10.1016/j.joule.2020.02.014 10.1021/acsami.7b15125 10.1039/D1QM00101A 10.1021/acs.iecr.1c01100 10.1016/j.colsurfa.2020.125224 10.1002/asia.201701343 10.1039/C9TA08850D 10.1021/acs.chemmater.8b01702 10.1039/C6RA15076D 10.1016/j.desal.2021.115224 10.1016/j.memsci.2020.118500 10.1002/smtd.201800176 10.1021/acsami.9b12806 10.1038/s41598-017-04651-3 10.1016/j.carbon.2016.06.067 10.1016/j.solmat.2020.110591 10.1016/j.compositesb.2019.107580 10.1016/j.solener.2019.10.065 10.1016/j.carbon.2021.02.081 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.12.093 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 75 |
ExternalDocumentID | 34974259 10_1016_j_jcis_2021_12_093 S0021979721022311 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-6d1644bec8d5a29ca6c0b13274fbd7e7c1b6f894dc8580d36054ef6baad2e5bc3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Jul 10 18:01:11 EDT 2025 Fri Jul 11 02:32:23 EDT 2025 Thu Apr 03 07:03:17 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Jul 01 01:19:16 EDT 2025 Fri Feb 23 02:43:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon nanofiber Porous structure Solar absorber Hydrophobic |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-6d1644bec8d5a29ca6c0b13274fbd7e7c1b6f894dc8580d36054ef6baad2e5bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34974259 |
PQID | 2616279180 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636474368 proquest_miscellaneous_2616279180 pubmed_primary_34974259 crossref_primary_10_1016_j_jcis_2021_12_093 crossref_citationtrail_10_1016_j_jcis_2021_12_093 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_12_093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wu, Liang, Zhang, Zhang, Zhu (b0185) 2020; 215 Jiang, Liu, Li, Kuang, Xu, Chen, Huang, Jia, Zhao, Hitz, Zhou, Yang, Cui, Hu (b0070) 2018; 10 Zu, Shen, Wang, Zou, Lian, Zhang, Liu, Zhang (b0140) 2014; 26 Gao, Li, Chen, Yang, Kuang, Jia, Song, Hitz, Liu, Huang, Yu, Yang, Hu (b0170) 2019; 3 Huang, Zhang, Xiao, Luo, Li, Wang, Xue, Gao (b0030) 2020; 614 Li, Zhang, Zhang, Huo, Liang, Wu, Liu, Gao, Pang, Xue (b0125) 2020; 8 Li, Luo, Huang, Lin, Wang, Hu, Tang, Xue, Gao, Mai (b0205) 2020; 181 Liu, Chen, Xu, Yao, Xie, Cheng, Miao, Wang (b0115) 2021; 2 Yan, Xiao, Chen, Wu, Gao, Xue (b0160) 2021; 516 Zhang, Li, Bai, Wang, Liang, Fu, Wu (b0135) 2018; 6 Li, Fang, Wang, Lin, Han, Wang, Liu (b0155) 2021; 9 Li, Wang, Lin, Xu, Li, Liang, Zhao, Lin, Zhu, Liu, Zhou, Zhu, Zhu (b0010) 2020; 4 He, Liu, Wang, Qin, Yu (b0075) 2021; 5 Fan, Yang, Ni, Han, Guo, Zhang (b0085) 2016; 107 Fang, Liu, Gu, Liu, Zhang, Su, Zhang (b0145) 2018; 30 Zhu, Kou, Liu, Wang, Macharia, Zhu, Wu, Liu, Chen (b0065) 2019; 11 Wu, Zhang, Wu, Han, Wu, Ji, Zhou, Diao, Chen (b0105) 2020; 56 Ni, Zhao, Wang, Wu, Wang, Liao, Yang, Diao (b0120) 2017; 12 Xu, Hu, Zhuang, Wang, Li, Zhou, Zhu, Zhu (b0040) 2018; 8 Zhu, Sun, Wu, Su, Su, Qu, Xie, Chen, Diao (b0095) 2016; 6 Syed, Tang, Meng (b0220) 2017; 7 Zhao, Du, Zhou, Sun, Jia, Yuan, Song, Zhou, Zhao, Yang (b0015) 2020; 8 Chen, Kuang, Hu (b0005) 2019; 3 Wu, Xu, Qian, Diao, Chen (b0035) 2020; 44 Huo, Luo, Huang, Zhang, Gao, Long, Gao (b0080) 2020; 603 Li, Song, Zhang, Xu, Guo, Zhang, Gao, Pang, Xue (b0100) 2020; 26 Huang, Ling, Su, Song, Wang, Tang, Westerhoff, Ye (b0110) 2020; 12 Luo, Gao, Luo, Wang, Huang, Guo, Lai, Lin, Li, Gao (b0210) 2021; 406 Li, Fang, Xi, Chen, Liu (b0175) 2019; 7 Li, Xu, Tang, Zhou, Zhu, Zhu, Zhu (b0150) 2016; 113 Cheng, Wang, Liu, He, Balakin (b0045) 2019; 194 Liang, Liu, Ding, Wen, Wang, Shao, Hong, Liu (b0190) 2021; 280 Liu, Liu, Wang, Qin, Yu (b0060) 2021; 177 Yin, Hsin, Guo, Zhang, Huang, Zhang (b0195) 2021; 759 Wang, Huang, Li, Gao, Xue, Li, Mai (b0025) 2018; 549 Fan, Lv, Xu, Huang, Yang, Wang, Xiao, Song (b0055) 2020; 209 Zhu, Chen, Sun, Liu, Wu, Su, Qu, Xie, Wang, Su, Diao (b0090) 2016; 6 Xie, Wu, Wang, Lu, Li, Cao, Cheng (b0200) 2020; 21 Qi, Wang, Wang, Yu (b0180) 2020; 239 Du, Liu, Yu, Gao, Xu, Wang, Wang, Han (b0130) 2012; 135 Li, Zhou, Wang, Zhao, Ma, Leng, Wang, Bai (b0050) 2020; 55 Fillet, Nicolas, Fierro, Celzard (b0020) 2021; 219 Kiriarachchi, Awad, Hassan, Bobb, Lin, El-Shall (b0165) 2018; 10 Zhang, Yuan, Qi, Zhao, Zhang, Ouyang (b0215) 2021; 60 Li (10.1016/j.jcis.2021.12.093_b0205) 2020; 181 Wu (10.1016/j.jcis.2021.12.093_b0185) 2020; 215 Fan (10.1016/j.jcis.2021.12.093_b0085) 2016; 107 Li (10.1016/j.jcis.2021.12.093_b0010) 2020; 4 Wu (10.1016/j.jcis.2021.12.093_b0105) 2020; 56 Xu (10.1016/j.jcis.2021.12.093_b0040) 2018; 8 Gao (10.1016/j.jcis.2021.12.093_b0170) 2019; 3 Li (10.1016/j.jcis.2021.12.093_b0125) 2020; 8 Kiriarachchi (10.1016/j.jcis.2021.12.093_b0165) 2018; 10 Yan (10.1016/j.jcis.2021.12.093_b0160) 2021; 516 Liu (10.1016/j.jcis.2021.12.093_b0060) 2021; 177 Huo (10.1016/j.jcis.2021.12.093_b0080) 2020; 603 Wu (10.1016/j.jcis.2021.12.093_b0035) 2020; 44 Zhang (10.1016/j.jcis.2021.12.093_b0135) 2018; 6 Fan (10.1016/j.jcis.2021.12.093_b0055) 2020; 209 Du (10.1016/j.jcis.2021.12.093_b0130) 2012; 135 Li (10.1016/j.jcis.2021.12.093_b0050) 2020; 55 Ni (10.1016/j.jcis.2021.12.093_b0120) 2017; 12 Fillet (10.1016/j.jcis.2021.12.093_b0020) 2021; 219 Li (10.1016/j.jcis.2021.12.093_b0100) 2020; 26 Zu (10.1016/j.jcis.2021.12.093_b0140) 2014; 26 Li (10.1016/j.jcis.2021.12.093_b0175) 2019; 7 Syed (10.1016/j.jcis.2021.12.093_b0220) 2017; 7 Chen (10.1016/j.jcis.2021.12.093_b0005) 2019; 3 Wang (10.1016/j.jcis.2021.12.093_b0025) 2018; 549 Huang (10.1016/j.jcis.2021.12.093_b0110) 2020; 12 Qi (10.1016/j.jcis.2021.12.093_b0180) 2020; 239 Zhu (10.1016/j.jcis.2021.12.093_b0090) 2016; 6 Jiang (10.1016/j.jcis.2021.12.093_b0070) 2018; 10 Xie (10.1016/j.jcis.2021.12.093_b0200) 2020; 21 Huang (10.1016/j.jcis.2021.12.093_b0030) 2020; 614 Yin (10.1016/j.jcis.2021.12.093_b0195) 2021; 759 Luo (10.1016/j.jcis.2021.12.093_b0210) 2021; 406 Zhang (10.1016/j.jcis.2021.12.093_b0215) 2021; 60 Liu (10.1016/j.jcis.2021.12.093_b0115) 2021; 2 Fang (10.1016/j.jcis.2021.12.093_b0145) 2018; 30 Cheng (10.1016/j.jcis.2021.12.093_b0045) 2019; 194 Zhu (10.1016/j.jcis.2021.12.093_b0095) 2016; 6 Liang (10.1016/j.jcis.2021.12.093_b0190) 2021; 280 Zhao (10.1016/j.jcis.2021.12.093_b0015) 2020; 8 Zhu (10.1016/j.jcis.2021.12.093_b0065) 2019; 11 Li (10.1016/j.jcis.2021.12.093_b0150) 2016; 113 He (10.1016/j.jcis.2021.12.093_b0075) 2021; 5 Li (10.1016/j.jcis.2021.12.093_b0155) 2021; 9 |
References_xml | – volume: 8 start-page: 4362 year: 2020 end-page: 4370 ident: b0015 article-title: Structurally Ordered AgNPs@C3N4/GO Membranes toward Solar-Driven Freshwater Generation publication-title: ACS Sustain. Chem. Eng. – volume: 113 start-page: 13953 year: 2016 end-page: 13958 ident: b0150 article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path publication-title: PNAS – volume: 7 start-page: 586 year: 2019 end-page: 593 ident: b0175 article-title: Ultra-robust carbon fibers for multi-media purification via solar-evaporation publication-title: J. Mater. Chem. A – volume: 9 start-page: 390 year: 2021 end-page: 399 ident: b0155 article-title: Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays publication-title: J. Mater. Chem. A – volume: 60 start-page: 8430 year: 2021 end-page: 8441 ident: b0215 article-title: Functionalized Modified BN@F-SiC Particle-Incorporating Epoxy: An Effective Hydrophobic Antiwear and Anticorrosion Coating Material publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 4403 year: 2017 ident: b0220 article-title: Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application publication-title: Sci. Rep. – volume: 549 start-page: 205 year: 2018 end-page: 211 ident: b0025 article-title: TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 181 year: 2020 ident: b0205 article-title: A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring publication-title: Compos. B. Eng. – volume: 10 start-page: 18531 year: 2018 end-page: 18539 ident: b0165 article-title: Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment publication-title: Nanoscale – volume: 55 start-page: 15551 year: 2020 end-page: 15561 ident: b0050 article-title: Assembly of Janus complex with low-cost and salt rejection for solar-thermal water evaporation publication-title: J. Mater. Sci. – volume: 6 start-page: 58529 year: 2016 end-page: 58540 ident: b0090 article-title: Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries publication-title: RSC Adv. – volume: 26 start-page: 5761 year: 2014 end-page: 5772 ident: b0140 article-title: Robust, Highly Thermally Stable, Core-Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts publication-title: Chem. Mater. – volume: 12 start-page: 3128 year: 2017 end-page: 3134 ident: b0120 article-title: Coaxial Carbon/MnO2 Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries publication-title: Chem. Asian J. – volume: 21 year: 2020 ident: b0200 article-title: Facile fabrication of acid-resistant and hydrophobic Fe3O4@SiO2@C magnetic particles for valid oil-water separation application publication-title: Surf. Interfaces – volume: 5 start-page: 3673 year: 2021 end-page: 3680 ident: b0075 article-title: One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation publication-title: Mater. Chem. Front. – volume: 2 year: 2021 ident: b0115 article-title: Salt-Rejecting Solar Interfacial Evaporation publication-title: Cell Rep.-Phys. Sci. – volume: 26 start-page: 3326 year: 2020 end-page: 3334 ident: b0100 article-title: Microporous Carbon Nanofibers Derived from Poly(acrylonitrile-co-acrylic acid) for High-Performance Supercapacitors publication-title: Chem. Eur. J. – volume: 406 year: 2021 ident: b0210 article-title: Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics publication-title: Chem. Eng. J. – volume: 56 start-page: 141 year: 2020 end-page: 144 ident: b0105 article-title: Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance publication-title: ChemComm – volume: 3 start-page: 683 year: 2019 end-page: 718 ident: b0005 article-title: Challenges and Opportunities for Solar Evaporation publication-title: Joule – volume: 8 start-page: 2463 year: 2020 end-page: 2471 ident: b0125 article-title: Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors publication-title: J. Mater. Chem. A – volume: 239 year: 2020 ident: b0180 article-title: Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane publication-title: Sep. Purif. Technol. – volume: 194 start-page: 415 year: 2019 end-page: 430 ident: b0045 article-title: Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane publication-title: Sol. Energy – volume: 280 year: 2021 ident: b0190 article-title: A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination publication-title: Chemosphere – volume: 30 start-page: 6217 year: 2018 end-page: 6221 ident: b0145 article-title: Hierarchical Porous Carbonized Lotus Seedpods for Highly Efficient Solar Steam Generation publication-title: Chem. Mater. – volume: 215 year: 2020 ident: b0185 article-title: Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carbonization publication-title: Sol. Energy Mater Sol. Cells – volume: 177 start-page: 199 year: 2021 end-page: 206 ident: b0060 article-title: Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation publication-title: Carbon – volume: 3 start-page: 1800176 year: 2019 ident: b0170 article-title: Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement publication-title: Small Methods – volume: 44 start-page: 17053 year: 2020 end-page: 17061 ident: b0035 article-title: Fabrication of Fe7S8/C flexible nanofibers with nano-buffered spaces and their application in Li-ion batteries publication-title: New J. Chem. – volume: 135 start-page: 884 year: 2012 end-page: 891 ident: b0130 article-title: The electromagnetic properties and microwave absorption of mesoporous carbon publication-title: Mater. Chem. Phys. – volume: 4 start-page: 928 year: 2020 end-page: 937 ident: b0010 article-title: Over 10 kg m publication-title: Joule – volume: 11 start-page: 35005 year: 2019 end-page: 35014 ident: b0065 article-title: Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater publication-title: ACS Appl. Mater. Interfaces – volume: 209 start-page: 325 year: 2020 end-page: 333 ident: b0055 article-title: Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation publication-title: Sol. Energy – volume: 516 year: 2021 ident: b0160 article-title: Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators publication-title: Desalination – volume: 603 year: 2020 ident: b0080 article-title: Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 12 start-page: 51864 year: 2020 end-page: 51872 ident: b0110 article-title: Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation publication-title: ACS Appl. Mater. Interfaces – volume: 107 start-page: 629 year: 2016 end-page: 637 ident: b0085 article-title: Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors publication-title: Carbon – volume: 759 year: 2021 ident: b0195 article-title: Facile and low-cost ceramic fiber-based carbon-carbon composite for solar evaporation publication-title: Sci. Total Environ. – volume: 6 start-page: 23263 year: 2018 end-page: 23269 ident: b0135 article-title: Synthesis of mesoporous Fe3Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation publication-title: J. Mater. Chem. A – volume: 614 year: 2020 ident: b0030 article-title: Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion publication-title: J. Membr. Sci. – volume: 8 start-page: 1702884 year: 2018 ident: b0040 article-title: Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination publication-title: Adv. Energy Mater. – volume: 219 start-page: 110814 year: 2021 ident: b0020 article-title: A review of natural materials for solar evaporation publication-title: Sol. Energy Mater Sol. Cells – volume: 10 start-page: 1104 year: 2018 end-page: 1112 ident: b0070 article-title: Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 83185 year: 2016 end-page: 83195 ident: b0095 article-title: Graphitized porous carbon nanofibers prepared by electrospinning as anode materials for lithium ion batteries publication-title: RSC Adv. – volume: 135 start-page: 884 issue: 2-3 year: 2012 ident: 10.1016/j.jcis.2021.12.093_b0130 article-title: The electromagnetic properties and microwave absorption of mesoporous carbon publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2012.05.074 – volume: 759 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0195 article-title: Facile and low-cost ceramic fiber-based carbon-carbon composite for solar evaporation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143546 – volume: 21 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0200 article-title: Facile fabrication of acid-resistant and hydrophobic Fe3O4@SiO2@C magnetic particles for valid oil-water separation application publication-title: Surf. Interfaces – volume: 6 start-page: 23263 issue: 46 year: 2018 ident: 10.1016/j.jcis.2021.12.093_b0135 article-title: Synthesis of mesoporous Fe3Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08259F – volume: 549 start-page: 205 year: 2018 ident: 10.1016/j.jcis.2021.12.093_b0025 article-title: TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.04.017 – volume: 239 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0180 article-title: Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116595 – volume: 3 start-page: 683 issue: 3 year: 2019 ident: 10.1016/j.jcis.2021.12.093_b0005 article-title: Challenges and Opportunities for Solar Evaporation publication-title: Joule doi: 10.1016/j.joule.2018.12.023 – volume: 7 start-page: 586 issue: 2 year: 2019 ident: 10.1016/j.jcis.2021.12.093_b0175 article-title: Ultra-robust carbon fibers for multi-media purification via solar-evaporation publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08829B – volume: 44 start-page: 17053 issue: 39 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0035 article-title: Fabrication of Fe7S8/C flexible nanofibers with nano-buffered spaces and their application in Li-ion batteries publication-title: New J. Chem. doi: 10.1039/D0NJ02968H – volume: 8 start-page: 4362 issue: 11 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0015 article-title: Structurally Ordered AgNPs@C3N4/GO Membranes toward Solar-Driven Freshwater Generation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06603 – volume: 26 start-page: 5761 issue: 19 year: 2014 ident: 10.1016/j.jcis.2021.12.093_b0140 article-title: Robust, Highly Thermally Stable, Core-Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts publication-title: Chem. Mater. doi: 10.1021/cm502886t – volume: 113 start-page: 13953 issue: 49 year: 2016 ident: 10.1016/j.jcis.2021.12.093_b0150 article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path publication-title: PNAS doi: 10.1073/pnas.1613031113 – volume: 26 start-page: 3326 issue: 15 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0100 article-title: Microporous Carbon Nanofibers Derived from Poly(acrylonitrile-co-acrylic acid) for High-Performance Supercapacitors publication-title: Chem. Eur. J. doi: 10.1002/chem.201904563 – volume: 8 start-page: 1702884 year: 2018 ident: 10.1016/j.jcis.2021.12.093_b0040 article-title: Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702884 – volume: 12 start-page: 51864 issue: 46 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0110 article-title: Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c16596 – volume: 10 start-page: 18531 issue: 39 year: 2018 ident: 10.1016/j.jcis.2021.12.093_b0165 article-title: Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment publication-title: Nanoscale doi: 10.1039/C8NR05916K – volume: 6 start-page: 58529 issue: 63 year: 2016 ident: 10.1016/j.jcis.2021.12.093_b0090 article-title: Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA04090J – volume: 219 start-page: 110814 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0020 article-title: A review of natural materials for solar evaporation publication-title: Sol. Energy Mater Sol. Cells doi: 10.1016/j.solmat.2020.110814 – volume: 209 start-page: 325 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0055 article-title: Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation publication-title: Sol. Energy doi: 10.1016/j.solener.2020.09.013 – volume: 406 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0210 article-title: Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126898 – volume: 55 start-page: 15551 issue: 32 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0050 article-title: Assembly of Janus complex with low-cost and salt rejection for solar-thermal water evaporation publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05108-1 – volume: 280 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0190 article-title: A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130719 – volume: 9 start-page: 390 issue: 1 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0155 article-title: Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09368H – volume: 4 start-page: 928 issue: 4 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0010 article-title: Over 10 kg m−2 h−1 Evaporation Rate Enabled by a 3D Interconnected Porous Carbon Foam publication-title: Joule doi: 10.1016/j.joule.2020.02.014 – volume: 10 start-page: 1104 issue: 1 year: 2018 ident: 10.1016/j.jcis.2021.12.093_b0070 article-title: Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15125 – volume: 5 start-page: 3673 issue: 9 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0075 article-title: One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00101A – volume: 60 start-page: 8430 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0215 article-title: Functionalized Modified BN@F-SiC Particle-Incorporating Epoxy: An Effective Hydrophobic Antiwear and Anticorrosion Coating Material publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c01100 – volume: 603 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0080 article-title: Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.125224 – volume: 56 start-page: 141 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0105 article-title: Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance publication-title: ChemComm – volume: 12 start-page: 3128 issue: 24 year: 2017 ident: 10.1016/j.jcis.2021.12.093_b0120 article-title: Coaxial Carbon/MnO2 Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries publication-title: Chem. Asian J. doi: 10.1002/asia.201701343 – volume: 8 start-page: 2463 issue: 5 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0125 article-title: Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08850D – volume: 2 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0115 article-title: Salt-Rejecting Solar Interfacial Evaporation publication-title: Cell Rep.-Phys. Sci. – volume: 30 start-page: 6217 issue: 18 year: 2018 ident: 10.1016/j.jcis.2021.12.093_b0145 article-title: Hierarchical Porous Carbonized Lotus Seedpods for Highly Efficient Solar Steam Generation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01702 – volume: 6 start-page: 83185 issue: 86 year: 2016 ident: 10.1016/j.jcis.2021.12.093_b0095 article-title: Graphitized porous carbon nanofibers prepared by electrospinning as anode materials for lithium ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA15076D – volume: 516 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0160 article-title: Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators publication-title: Desalination doi: 10.1016/j.desal.2021.115224 – volume: 614 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0030 article-title: Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118500 – volume: 3 start-page: 1800176 year: 2019 ident: 10.1016/j.jcis.2021.12.093_b0170 article-title: Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement publication-title: Small Methods doi: 10.1002/smtd.201800176 – volume: 11 start-page: 35005 issue: 38 year: 2019 ident: 10.1016/j.jcis.2021.12.093_b0065 article-title: Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12806 – volume: 7 start-page: 4403 year: 2017 ident: 10.1016/j.jcis.2021.12.093_b0220 article-title: Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application publication-title: Sci. Rep. doi: 10.1038/s41598-017-04651-3 – volume: 107 start-page: 629 year: 2016 ident: 10.1016/j.jcis.2021.12.093_b0085 article-title: Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2016.06.067 – volume: 215 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0185 article-title: Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carbonization publication-title: Sol. Energy Mater Sol. Cells doi: 10.1016/j.solmat.2020.110591 – volume: 181 year: 2020 ident: 10.1016/j.jcis.2021.12.093_b0205 article-title: A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring publication-title: Compos. B. Eng. doi: 10.1016/j.compositesb.2019.107580 – volume: 194 start-page: 415 year: 2019 ident: 10.1016/j.jcis.2021.12.093_b0045 article-title: Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane publication-title: Sol. Energy doi: 10.1016/j.solener.2019.10.065 – volume: 177 start-page: 199 year: 2021 ident: 10.1016/j.jcis.2021.12.093_b0060 article-title: Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation publication-title: Carbon doi: 10.1016/j.carbon.2021.02.081 |
SSID | ssj0011559 |
Score | 2.576822 |
Snippet | [Display omitted]
•A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large... Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 66 |
SubjectTerms | absorption Carbon nanofiber carbon nanofibers corrosion evaporation rate freshwater Hydrophobic hydrophobicity industry irradiation light intensity Porous structure seawater Solar absorber solar radiation steam sublimation |
Title | Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance |
URI | https://dx.doi.org/10.1016/j.jcis.2021.12.093 https://www.ncbi.nlm.nih.gov/pubmed/34974259 https://www.proquest.com/docview/2616279180 https://www.proquest.com/docview/2636474368 |
Volume | 612 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdAeKkppu6VFrtQbSlk7juMc0apoAcGpSNwsf6qLwBuFtGovvfOvmcnHtj2wB66RHTl-k_E8e-aZkM-cRcXymGciFyITBuiOUrLKgvU8iFhx3-13nF_I-aU4vSquNshsrIXBtMrB9_c-vfPWw5PDYTYP68UCa3zhbytRfQbWobyr7xWiRCv_8meV5sHw2K1P82AZth4KZ_ocr2u3QMluzrotwSp_bHF6LPjsFqHjbfJyiB7pUT_AV2QjpB2yNRsvbdshL_7RF3xN7ue_fbOsvy_twlGTPIVgG5g-daaxy0STSWBaNjT0NtwCa06BQghLUcGY1n8LCugd0t_MN-gYKepLNNHgTjsNP009mBDFDV0afnUHAamld-ampUDlMTyFd-ySy-Ov32bzbLh7IXMQwrSZ9MCjBACsfGF45Yx0UwvMtRTR-jKUjlkZVSW8U4Wa-hxYkQhRWmMA48K6_A3ZTMsU3hHKnAeaJngZIxNlJW0lneK2EM5KGbmaEDZOunaDMDnej3Gjxwy0a41AaQRKM64BqAk5WPWpe1mOta2LEUv9n3FpWDfW9vs0Aq8BR5xBgAJw0vBBkpcVU9N1bVCbHxX-J-RtbzWrseYCeBwwz_dPHNkeec6xDgNFJ4sPZLNtfoSPEB21dr8z_33y7OjkbH7xAMYkETE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcqA9VC19LX25Um9VxNpxHOeIVqBQYE8gcbP8VBdBNgppBT-Bf92ZPLblwB56jezI8ed45hvPfCbkG2dRsTSmiUiFSIQBuqOULJJgPQ8iFtx38Y6zhSwvxI_L7HKLzMdaGEyrHPb-fk_vduvhyf4wm_v1cok1vvC35ag-A3YoxfrebVSnyiZk--D4pFysDxPw5K3P9GAJdhhqZ_o0ryu3RNVuzrqoYJE-ZZ-e8j87O3T0krwYHEh60I_xFdkK1S7ZmY_3tu2S5_9IDL4mD-W9b1b1z5VdOmoqT8HfBrJPnWnsqqKVqWB12dDQm3ADxLkKFLxYiiLGtP5bU0BvkQEnvsG9kaLERBMNBttp-G3qYRVRjOnScNedBVQtvTXXLQU2jx4qvOMNuTg6PJ-XyXD9QuLAi2kT6YFKCcBY-czwwhnpZhbIay6i9XnIHbMyqkJ4pzI18ykQIxGitMYAzJl16VsyqVZVeE8ocx6YmuB5jEzkhbSFdIrbTDgrZeRqStg46doN2uR4Rca1HpPQrjQCpREozbgGoKbk-7pP3StzbGydjVjqR-tLg-nY2O_rCLwGHHEGAQrAScMHSZ4XTM02tUF5fhT5n5J3_apZjzUVQOWAfO7958i-kJ3y_OxUnx4vTj6QZxzLMlCDMvtIJm3zK3wCZ6m1n4ef4Q8OBhPi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+and+porous+carbon+nanofiber+membrane+for+high+performance+solar-driven+interfacial+evaporation+with+excellent+salt+resistance&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhang%2C+Wei-Miao&rft.au=Yan%2C+Jun&rft.au=Su%2C+Qin&rft.au=Han%2C+Jiang&rft.date=2022-04-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=612&rft.spage=66&rft_id=info:doi/10.1016%2Fj.jcis.2021.12.093&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |