Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance

[Display omitted] •A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large contact angle.•A high interfacial solar evaporation rate is achieved.•The HPCNF has excellent salt-rejection and hence long-term evaporation sta...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 612; pp. 66 - 75
Main Authors Zhang, Wei-miao, Yan, Jun, Su, Qin, Han, Jiang, Gao, Jie-feng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large contact angle.•A high interfacial solar evaporation rate is achieved.•The HPCNF has excellent salt-rejection and hence long-term evaporation stability.•Solar desalination can be conducted in high salinity and corrosive conditions. Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m−2h−1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.
AbstractList Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m⁻²h⁻¹ and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.
Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m-2h-1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m-2h-1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.
Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m h and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.
[Display omitted] •A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large contact angle.•A high interfacial solar evaporation rate is achieved.•The HPCNF has excellent salt-rejection and hence long-term evaporation stability.•Solar desalination can be conducted in high salinity and corrosive conditions. Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m−2h−1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.
Author Su, Qin
Zhang, Wei-miao
Han, Jiang
Yan, Jun
Gao, Jie-feng
Author_xml – sequence: 1
  givenname: Wei-miao
  surname: Zhang
  fullname: Zhang, Wei-miao
  organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
– sequence: 2
  givenname: Jun
  surname: Yan
  fullname: Yan, Jun
  organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
– sequence: 3
  givenname: Qin
  surname: Su
  fullname: Su, Qin
  organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
– sequence: 4
  givenname: Jiang
  surname: Han
  fullname: Han, Jiang
  organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
– sequence: 5
  givenname: Jie-feng
  surname: Gao
  fullname: Gao, Jie-feng
  email: jfgao@yzu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34974259$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKc_L8ACeckmwXYSJ5bYoApapErdlLXlnxvGo8QOtmdoH4G3xukUFiwqVr7S_c6R7zln6MQHDwi9paSmhPIPu3pnXKoZYbSmrCaieYU2lIiu6ilpTtCGlE0letGforOUdoRQ2nXiDTptWtG3rBMb9Ovm0cawbIN2Bitv8RJi2CdsVNTBY698GJ2GiGeYdVQe8Bgi3rrvW7xALPOsvAGcwqRiZaM7gMfO57JSxqkJw0EVR5VdMfvp8hbDg4FpAp9xUlPGEZJLefW4QK9HNSW4fH7P0bcvn--vbqrbu-uvV59uK9MMIlfcUt62GsxgO8WEUdwQTRvWt6O2PfSGaj4OorVm6AZiG066FkaulbIMOm2ac_T-6LvE8GMPKcvZpfVP5bhyuWS84W3fNnz4D5Ry1gs6kIK-e0b3egYrl-hmFR_ln6QLwI6AiSGlCONfhBK51il3cq1TrnVKymSps4iGf0TG5acwc1Rueln68SiFkuXBQZTJOCg5WxfBZGmDe0n-G7WRvto
CitedBy_id crossref_primary_10_1016_j_jcis_2023_03_114
crossref_primary_10_1002_cssc_202400518
crossref_primary_10_1021_acsestengg_3c00297
crossref_primary_10_1016_j_colsurfa_2024_135282
crossref_primary_10_1021_acsami_4c16924
crossref_primary_10_1016_j_apcatb_2023_122786
crossref_primary_10_1016_j_desal_2023_116639
crossref_primary_10_1016_j_cej_2024_153694
crossref_primary_10_1016_j_ces_2022_118330
crossref_primary_10_1016_j_ces_2022_118175
crossref_primary_10_1002_eom2_12517
crossref_primary_10_1039_D3TA05474H
crossref_primary_10_1016_j_gee_2024_05_005
crossref_primary_10_1007_s40843_022_2407_2
crossref_primary_10_1016_j_rser_2024_114370
crossref_primary_10_1021_acsanm_4c02526
crossref_primary_10_1016_j_solmat_2023_112361
crossref_primary_10_1002_adma_202410290
crossref_primary_10_1039_D2GC02568J
crossref_primary_10_2139_ssrn_4172994
crossref_primary_10_1016_j_jcis_2022_04_074
crossref_primary_10_1016_j_desal_2022_116003
crossref_primary_10_1039_D2TA03321F
crossref_primary_10_26599_NRE_2023_9120062
crossref_primary_10_1002_cssc_202400111
crossref_primary_10_1016_j_desal_2024_117339
crossref_primary_10_1038_s43246_024_00544_x
crossref_primary_10_1016_j_jcis_2022_11_145
crossref_primary_10_1021_acsaenm_2c00192
crossref_primary_10_1021_acsami_4c19058
crossref_primary_10_1007_s10854_023_10676_4
crossref_primary_10_1021_acsomega_4c03024
crossref_primary_10_1016_S1872_5805_23_60778_4
crossref_primary_10_1002_adfm_202304580
crossref_primary_10_1016_j_solener_2024_112374
crossref_primary_10_3389_fenrg_2023_1298837
crossref_primary_10_1016_j_seppur_2024_130488
crossref_primary_10_2139_ssrn_4118506
crossref_primary_10_1016_j_colsurfa_2024_135256
crossref_primary_10_1016_j_jece_2022_108616
crossref_primary_10_1016_j_desal_2022_115686
crossref_primary_10_1016_j_cej_2024_151814
crossref_primary_10_1016_j_jcis_2024_11_241
crossref_primary_10_1016_j_ijbiomac_2024_129403
crossref_primary_10_1016_j_cej_2023_145679
crossref_primary_10_1016_j_coco_2022_101320
crossref_primary_10_1007_s10965_023_03594_w
crossref_primary_10_1007_s42765_022_00172_5
crossref_primary_10_1016_j_cej_2024_155762
crossref_primary_10_3389_fchem_2024_1454367
crossref_primary_10_1039_D4RA05241B
crossref_primary_10_1016_j_applthermaleng_2023_121311
crossref_primary_10_1016_j_desal_2024_117998
crossref_primary_10_1021_acs_iecr_2c03170
Cites_doi 10.1016/j.matchemphys.2012.05.074
10.1016/j.scitotenv.2020.143546
10.1039/C8TA08259F
10.1016/j.colsurfa.2018.04.017
10.1016/j.seppur.2020.116595
10.1016/j.joule.2018.12.023
10.1039/C8TA08829B
10.1039/D0NJ02968H
10.1021/acssuschemeng.9b06603
10.1021/cm502886t
10.1073/pnas.1613031113
10.1002/chem.201904563
10.1002/aenm.201702884
10.1021/acsami.0c16596
10.1039/C8NR05916K
10.1039/C6RA04090J
10.1016/j.solmat.2020.110814
10.1016/j.solener.2020.09.013
10.1016/j.cej.2020.126898
10.1007/s10853-020-05108-1
10.1016/j.chemosphere.2021.130719
10.1039/D0TA09368H
10.1016/j.joule.2020.02.014
10.1021/acsami.7b15125
10.1039/D1QM00101A
10.1021/acs.iecr.1c01100
10.1016/j.colsurfa.2020.125224
10.1002/asia.201701343
10.1039/C9TA08850D
10.1021/acs.chemmater.8b01702
10.1039/C6RA15076D
10.1016/j.desal.2021.115224
10.1016/j.memsci.2020.118500
10.1002/smtd.201800176
10.1021/acsami.9b12806
10.1038/s41598-017-04651-3
10.1016/j.carbon.2016.06.067
10.1016/j.solmat.2020.110591
10.1016/j.compositesb.2019.107580
10.1016/j.solener.2019.10.065
10.1016/j.carbon.2021.02.081
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.12.093
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 75
ExternalDocumentID 34974259
10_1016_j_jcis_2021_12_093
S0021979721022311
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-6d1644bec8d5a29ca6c0b13274fbd7e7c1b6f894dc8580d36054ef6baad2e5bc3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 18:01:11 EDT 2025
Fri Jul 11 02:32:23 EDT 2025
Thu Apr 03 07:03:17 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Tue Jul 01 01:19:16 EDT 2025
Fri Feb 23 02:43:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon nanofiber
Porous structure
Solar absorber
Hydrophobic
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-6d1644bec8d5a29ca6c0b13274fbd7e7c1b6f894dc8580d36054ef6baad2e5bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34974259
PQID 2616279180
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2636474368
proquest_miscellaneous_2616279180
pubmed_primary_34974259
crossref_primary_10_1016_j_jcis_2021_12_093
crossref_citationtrail_10_1016_j_jcis_2021_12_093
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_12_093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wu, Liang, Zhang, Zhang, Zhu (b0185) 2020; 215
Jiang, Liu, Li, Kuang, Xu, Chen, Huang, Jia, Zhao, Hitz, Zhou, Yang, Cui, Hu (b0070) 2018; 10
Zu, Shen, Wang, Zou, Lian, Zhang, Liu, Zhang (b0140) 2014; 26
Gao, Li, Chen, Yang, Kuang, Jia, Song, Hitz, Liu, Huang, Yu, Yang, Hu (b0170) 2019; 3
Huang, Zhang, Xiao, Luo, Li, Wang, Xue, Gao (b0030) 2020; 614
Li, Zhang, Zhang, Huo, Liang, Wu, Liu, Gao, Pang, Xue (b0125) 2020; 8
Li, Luo, Huang, Lin, Wang, Hu, Tang, Xue, Gao, Mai (b0205) 2020; 181
Liu, Chen, Xu, Yao, Xie, Cheng, Miao, Wang (b0115) 2021; 2
Yan, Xiao, Chen, Wu, Gao, Xue (b0160) 2021; 516
Zhang, Li, Bai, Wang, Liang, Fu, Wu (b0135) 2018; 6
Li, Fang, Wang, Lin, Han, Wang, Liu (b0155) 2021; 9
Li, Wang, Lin, Xu, Li, Liang, Zhao, Lin, Zhu, Liu, Zhou, Zhu, Zhu (b0010) 2020; 4
He, Liu, Wang, Qin, Yu (b0075) 2021; 5
Fan, Yang, Ni, Han, Guo, Zhang (b0085) 2016; 107
Fang, Liu, Gu, Liu, Zhang, Su, Zhang (b0145) 2018; 30
Zhu, Kou, Liu, Wang, Macharia, Zhu, Wu, Liu, Chen (b0065) 2019; 11
Wu, Zhang, Wu, Han, Wu, Ji, Zhou, Diao, Chen (b0105) 2020; 56
Ni, Zhao, Wang, Wu, Wang, Liao, Yang, Diao (b0120) 2017; 12
Xu, Hu, Zhuang, Wang, Li, Zhou, Zhu, Zhu (b0040) 2018; 8
Zhu, Sun, Wu, Su, Su, Qu, Xie, Chen, Diao (b0095) 2016; 6
Syed, Tang, Meng (b0220) 2017; 7
Zhao, Du, Zhou, Sun, Jia, Yuan, Song, Zhou, Zhao, Yang (b0015) 2020; 8
Chen, Kuang, Hu (b0005) 2019; 3
Wu, Xu, Qian, Diao, Chen (b0035) 2020; 44
Huo, Luo, Huang, Zhang, Gao, Long, Gao (b0080) 2020; 603
Li, Song, Zhang, Xu, Guo, Zhang, Gao, Pang, Xue (b0100) 2020; 26
Huang, Ling, Su, Song, Wang, Tang, Westerhoff, Ye (b0110) 2020; 12
Luo, Gao, Luo, Wang, Huang, Guo, Lai, Lin, Li, Gao (b0210) 2021; 406
Li, Fang, Xi, Chen, Liu (b0175) 2019; 7
Li, Xu, Tang, Zhou, Zhu, Zhu, Zhu (b0150) 2016; 113
Cheng, Wang, Liu, He, Balakin (b0045) 2019; 194
Liang, Liu, Ding, Wen, Wang, Shao, Hong, Liu (b0190) 2021; 280
Liu, Liu, Wang, Qin, Yu (b0060) 2021; 177
Yin, Hsin, Guo, Zhang, Huang, Zhang (b0195) 2021; 759
Wang, Huang, Li, Gao, Xue, Li, Mai (b0025) 2018; 549
Fan, Lv, Xu, Huang, Yang, Wang, Xiao, Song (b0055) 2020; 209
Zhu, Chen, Sun, Liu, Wu, Su, Qu, Xie, Wang, Su, Diao (b0090) 2016; 6
Xie, Wu, Wang, Lu, Li, Cao, Cheng (b0200) 2020; 21
Qi, Wang, Wang, Yu (b0180) 2020; 239
Du, Liu, Yu, Gao, Xu, Wang, Wang, Han (b0130) 2012; 135
Li, Zhou, Wang, Zhao, Ma, Leng, Wang, Bai (b0050) 2020; 55
Fillet, Nicolas, Fierro, Celzard (b0020) 2021; 219
Kiriarachchi, Awad, Hassan, Bobb, Lin, El-Shall (b0165) 2018; 10
Zhang, Yuan, Qi, Zhao, Zhang, Ouyang (b0215) 2021; 60
Li (10.1016/j.jcis.2021.12.093_b0205) 2020; 181
Wu (10.1016/j.jcis.2021.12.093_b0185) 2020; 215
Fan (10.1016/j.jcis.2021.12.093_b0085) 2016; 107
Li (10.1016/j.jcis.2021.12.093_b0010) 2020; 4
Wu (10.1016/j.jcis.2021.12.093_b0105) 2020; 56
Xu (10.1016/j.jcis.2021.12.093_b0040) 2018; 8
Gao (10.1016/j.jcis.2021.12.093_b0170) 2019; 3
Li (10.1016/j.jcis.2021.12.093_b0125) 2020; 8
Kiriarachchi (10.1016/j.jcis.2021.12.093_b0165) 2018; 10
Yan (10.1016/j.jcis.2021.12.093_b0160) 2021; 516
Liu (10.1016/j.jcis.2021.12.093_b0060) 2021; 177
Huo (10.1016/j.jcis.2021.12.093_b0080) 2020; 603
Wu (10.1016/j.jcis.2021.12.093_b0035) 2020; 44
Zhang (10.1016/j.jcis.2021.12.093_b0135) 2018; 6
Fan (10.1016/j.jcis.2021.12.093_b0055) 2020; 209
Du (10.1016/j.jcis.2021.12.093_b0130) 2012; 135
Li (10.1016/j.jcis.2021.12.093_b0050) 2020; 55
Ni (10.1016/j.jcis.2021.12.093_b0120) 2017; 12
Fillet (10.1016/j.jcis.2021.12.093_b0020) 2021; 219
Li (10.1016/j.jcis.2021.12.093_b0100) 2020; 26
Zu (10.1016/j.jcis.2021.12.093_b0140) 2014; 26
Li (10.1016/j.jcis.2021.12.093_b0175) 2019; 7
Syed (10.1016/j.jcis.2021.12.093_b0220) 2017; 7
Chen (10.1016/j.jcis.2021.12.093_b0005) 2019; 3
Wang (10.1016/j.jcis.2021.12.093_b0025) 2018; 549
Huang (10.1016/j.jcis.2021.12.093_b0110) 2020; 12
Qi (10.1016/j.jcis.2021.12.093_b0180) 2020; 239
Zhu (10.1016/j.jcis.2021.12.093_b0090) 2016; 6
Jiang (10.1016/j.jcis.2021.12.093_b0070) 2018; 10
Xie (10.1016/j.jcis.2021.12.093_b0200) 2020; 21
Huang (10.1016/j.jcis.2021.12.093_b0030) 2020; 614
Yin (10.1016/j.jcis.2021.12.093_b0195) 2021; 759
Luo (10.1016/j.jcis.2021.12.093_b0210) 2021; 406
Zhang (10.1016/j.jcis.2021.12.093_b0215) 2021; 60
Liu (10.1016/j.jcis.2021.12.093_b0115) 2021; 2
Fang (10.1016/j.jcis.2021.12.093_b0145) 2018; 30
Cheng (10.1016/j.jcis.2021.12.093_b0045) 2019; 194
Zhu (10.1016/j.jcis.2021.12.093_b0095) 2016; 6
Liang (10.1016/j.jcis.2021.12.093_b0190) 2021; 280
Zhao (10.1016/j.jcis.2021.12.093_b0015) 2020; 8
Zhu (10.1016/j.jcis.2021.12.093_b0065) 2019; 11
Li (10.1016/j.jcis.2021.12.093_b0150) 2016; 113
He (10.1016/j.jcis.2021.12.093_b0075) 2021; 5
Li (10.1016/j.jcis.2021.12.093_b0155) 2021; 9
References_xml – volume: 8
  start-page: 4362
  year: 2020
  end-page: 4370
  ident: b0015
  article-title: Structurally Ordered AgNPs@C3N4/GO Membranes toward Solar-Driven Freshwater Generation
  publication-title: ACS Sustain. Chem. Eng.
– volume: 113
  start-page: 13953
  year: 2016
  end-page: 13958
  ident: b0150
  article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path
  publication-title: PNAS
– volume: 7
  start-page: 586
  year: 2019
  end-page: 593
  ident: b0175
  article-title: Ultra-robust carbon fibers for multi-media purification via solar-evaporation
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 390
  year: 2021
  end-page: 399
  ident: b0155
  article-title: Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 8430
  year: 2021
  end-page: 8441
  ident: b0215
  article-title: Functionalized Modified BN@F-SiC Particle-Incorporating Epoxy: An Effective Hydrophobic Antiwear and Anticorrosion Coating Material
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 4403
  year: 2017
  ident: b0220
  article-title: Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application
  publication-title: Sci. Rep.
– volume: 549
  start-page: 205
  year: 2018
  end-page: 211
  ident: b0025
  article-title: TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 181
  year: 2020
  ident: b0205
  article-title: A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring
  publication-title: Compos. B. Eng.
– volume: 10
  start-page: 18531
  year: 2018
  end-page: 18539
  ident: b0165
  article-title: Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment
  publication-title: Nanoscale
– volume: 55
  start-page: 15551
  year: 2020
  end-page: 15561
  ident: b0050
  article-title: Assembly of Janus complex with low-cost and salt rejection for solar-thermal water evaporation
  publication-title: J. Mater. Sci.
– volume: 6
  start-page: 58529
  year: 2016
  end-page: 58540
  ident: b0090
  article-title: Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries
  publication-title: RSC Adv.
– volume: 26
  start-page: 5761
  year: 2014
  end-page: 5772
  ident: b0140
  article-title: Robust, Highly Thermally Stable, Core-Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts
  publication-title: Chem. Mater.
– volume: 12
  start-page: 3128
  year: 2017
  end-page: 3134
  ident: b0120
  article-title: Coaxial Carbon/MnO2 Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries
  publication-title: Chem. Asian J.
– volume: 21
  year: 2020
  ident: b0200
  article-title: Facile fabrication of acid-resistant and hydrophobic Fe3O4@SiO2@C magnetic particles for valid oil-water separation application
  publication-title: Surf. Interfaces
– volume: 5
  start-page: 3673
  year: 2021
  end-page: 3680
  ident: b0075
  article-title: One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation
  publication-title: Mater. Chem. Front.
– volume: 2
  year: 2021
  ident: b0115
  article-title: Salt-Rejecting Solar Interfacial Evaporation
  publication-title: Cell Rep.-Phys. Sci.
– volume: 26
  start-page: 3326
  year: 2020
  end-page: 3334
  ident: b0100
  article-title: Microporous Carbon Nanofibers Derived from Poly(acrylonitrile-co-acrylic acid) for High-Performance Supercapacitors
  publication-title: Chem. Eur. J.
– volume: 406
  year: 2021
  ident: b0210
  article-title: Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 141
  year: 2020
  end-page: 144
  ident: b0105
  article-title: Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance
  publication-title: ChemComm
– volume: 3
  start-page: 683
  year: 2019
  end-page: 718
  ident: b0005
  article-title: Challenges and Opportunities for Solar Evaporation
  publication-title: Joule
– volume: 8
  start-page: 2463
  year: 2020
  end-page: 2471
  ident: b0125
  article-title: Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 239
  year: 2020
  ident: b0180
  article-title: Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane
  publication-title: Sep. Purif. Technol.
– volume: 194
  start-page: 415
  year: 2019
  end-page: 430
  ident: b0045
  article-title: Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane
  publication-title: Sol. Energy
– volume: 280
  year: 2021
  ident: b0190
  article-title: A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination
  publication-title: Chemosphere
– volume: 30
  start-page: 6217
  year: 2018
  end-page: 6221
  ident: b0145
  article-title: Hierarchical Porous Carbonized Lotus Seedpods for Highly Efficient Solar Steam Generation
  publication-title: Chem. Mater.
– volume: 215
  year: 2020
  ident: b0185
  article-title: Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carbonization
  publication-title: Sol. Energy Mater Sol. Cells
– volume: 177
  start-page: 199
  year: 2021
  end-page: 206
  ident: b0060
  article-title: Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation
  publication-title: Carbon
– volume: 3
  start-page: 1800176
  year: 2019
  ident: b0170
  article-title: Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement
  publication-title: Small Methods
– volume: 44
  start-page: 17053
  year: 2020
  end-page: 17061
  ident: b0035
  article-title: Fabrication of Fe7S8/C flexible nanofibers with nano-buffered spaces and their application in Li-ion batteries
  publication-title: New J. Chem.
– volume: 135
  start-page: 884
  year: 2012
  end-page: 891
  ident: b0130
  article-title: The electromagnetic properties and microwave absorption of mesoporous carbon
  publication-title: Mater. Chem. Phys.
– volume: 4
  start-page: 928
  year: 2020
  end-page: 937
  ident: b0010
  article-title: Over 10 kg m
  publication-title: Joule
– volume: 11
  start-page: 35005
  year: 2019
  end-page: 35014
  ident: b0065
  article-title: Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater
  publication-title: ACS Appl. Mater. Interfaces
– volume: 209
  start-page: 325
  year: 2020
  end-page: 333
  ident: b0055
  article-title: Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation
  publication-title: Sol. Energy
– volume: 516
  year: 2021
  ident: b0160
  article-title: Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators
  publication-title: Desalination
– volume: 603
  year: 2020
  ident: b0080
  article-title: Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 12
  start-page: 51864
  year: 2020
  end-page: 51872
  ident: b0110
  article-title: Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  start-page: 629
  year: 2016
  end-page: 637
  ident: b0085
  article-title: Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors
  publication-title: Carbon
– volume: 759
  year: 2021
  ident: b0195
  article-title: Facile and low-cost ceramic fiber-based carbon-carbon composite for solar evaporation
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 23263
  year: 2018
  end-page: 23269
  ident: b0135
  article-title: Synthesis of mesoporous Fe3Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation
  publication-title: J. Mater. Chem. A
– volume: 614
  year: 2020
  ident: b0030
  article-title: Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 1702884
  year: 2018
  ident: b0040
  article-title: Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination
  publication-title: Adv. Energy Mater.
– volume: 219
  start-page: 110814
  year: 2021
  ident: b0020
  article-title: A review of natural materials for solar evaporation
  publication-title: Sol. Energy Mater Sol. Cells
– volume: 10
  start-page: 1104
  year: 2018
  end-page: 1112
  ident: b0070
  article-title: Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 83185
  year: 2016
  end-page: 83195
  ident: b0095
  article-title: Graphitized porous carbon nanofibers prepared by electrospinning as anode materials for lithium ion batteries
  publication-title: RSC Adv.
– volume: 135
  start-page: 884
  issue: 2-3
  year: 2012
  ident: 10.1016/j.jcis.2021.12.093_b0130
  article-title: The electromagnetic properties and microwave absorption of mesoporous carbon
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.05.074
– volume: 759
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0195
  article-title: Facile and low-cost ceramic fiber-based carbon-carbon composite for solar evaporation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143546
– volume: 21
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0200
  article-title: Facile fabrication of acid-resistant and hydrophobic Fe3O4@SiO2@C magnetic particles for valid oil-water separation application
  publication-title: Surf. Interfaces
– volume: 6
  start-page: 23263
  issue: 46
  year: 2018
  ident: 10.1016/j.jcis.2021.12.093_b0135
  article-title: Synthesis of mesoporous Fe3Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08259F
– volume: 549
  start-page: 205
  year: 2018
  ident: 10.1016/j.jcis.2021.12.093_b0025
  article-title: TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.04.017
– volume: 239
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0180
  article-title: Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116595
– volume: 3
  start-page: 683
  issue: 3
  year: 2019
  ident: 10.1016/j.jcis.2021.12.093_b0005
  article-title: Challenges and Opportunities for Solar Evaporation
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.023
– volume: 7
  start-page: 586
  issue: 2
  year: 2019
  ident: 10.1016/j.jcis.2021.12.093_b0175
  article-title: Ultra-robust carbon fibers for multi-media purification via solar-evaporation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08829B
– volume: 44
  start-page: 17053
  issue: 39
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0035
  article-title: Fabrication of Fe7S8/C flexible nanofibers with nano-buffered spaces and their application in Li-ion batteries
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ02968H
– volume: 8
  start-page: 4362
  issue: 11
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0015
  article-title: Structurally Ordered AgNPs@C3N4/GO Membranes toward Solar-Driven Freshwater Generation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06603
– volume: 26
  start-page: 5761
  issue: 19
  year: 2014
  ident: 10.1016/j.jcis.2021.12.093_b0140
  article-title: Robust, Highly Thermally Stable, Core-Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts
  publication-title: Chem. Mater.
  doi: 10.1021/cm502886t
– volume: 113
  start-page: 13953
  issue: 49
  year: 2016
  ident: 10.1016/j.jcis.2021.12.093_b0150
  article-title: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path
  publication-title: PNAS
  doi: 10.1073/pnas.1613031113
– volume: 26
  start-page: 3326
  issue: 15
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0100
  article-title: Microporous Carbon Nanofibers Derived from Poly(acrylonitrile-co-acrylic acid) for High-Performance Supercapacitors
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201904563
– volume: 8
  start-page: 1702884
  year: 2018
  ident: 10.1016/j.jcis.2021.12.093_b0040
  article-title: Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702884
– volume: 12
  start-page: 51864
  issue: 46
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0110
  article-title: Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c16596
– volume: 10
  start-page: 18531
  issue: 39
  year: 2018
  ident: 10.1016/j.jcis.2021.12.093_b0165
  article-title: Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment
  publication-title: Nanoscale
  doi: 10.1039/C8NR05916K
– volume: 6
  start-page: 58529
  issue: 63
  year: 2016
  ident: 10.1016/j.jcis.2021.12.093_b0090
  article-title: Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04090J
– volume: 219
  start-page: 110814
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0020
  article-title: A review of natural materials for solar evaporation
  publication-title: Sol. Energy Mater Sol. Cells
  doi: 10.1016/j.solmat.2020.110814
– volume: 209
  start-page: 325
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0055
  article-title: Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.09.013
– volume: 406
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0210
  article-title: Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126898
– volume: 55
  start-page: 15551
  issue: 32
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0050
  article-title: Assembly of Janus complex with low-cost and salt rejection for solar-thermal water evaporation
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05108-1
– volume: 280
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0190
  article-title: A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130719
– volume: 9
  start-page: 390
  issue: 1
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0155
  article-title: Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09368H
– volume: 4
  start-page: 928
  issue: 4
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0010
  article-title: Over 10 kg m−2 h−1 Evaporation Rate Enabled by a 3D Interconnected Porous Carbon Foam
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.014
– volume: 10
  start-page: 1104
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2021.12.093_b0070
  article-title: Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15125
– volume: 5
  start-page: 3673
  issue: 9
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0075
  article-title: One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00101A
– volume: 60
  start-page: 8430
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0215
  article-title: Functionalized Modified BN@F-SiC Particle-Incorporating Epoxy: An Effective Hydrophobic Antiwear and Anticorrosion Coating Material
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c01100
– volume: 603
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0080
  article-title: Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2020.125224
– volume: 56
  start-page: 141
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0105
  article-title: Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance
  publication-title: ChemComm
– volume: 12
  start-page: 3128
  issue: 24
  year: 2017
  ident: 10.1016/j.jcis.2021.12.093_b0120
  article-title: Coaxial Carbon/MnO2 Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201701343
– volume: 8
  start-page: 2463
  issue: 5
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0125
  article-title: Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08850D
– volume: 2
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0115
  article-title: Salt-Rejecting Solar Interfacial Evaporation
  publication-title: Cell Rep.-Phys. Sci.
– volume: 30
  start-page: 6217
  issue: 18
  year: 2018
  ident: 10.1016/j.jcis.2021.12.093_b0145
  article-title: Hierarchical Porous Carbonized Lotus Seedpods for Highly Efficient Solar Steam Generation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01702
– volume: 6
  start-page: 83185
  issue: 86
  year: 2016
  ident: 10.1016/j.jcis.2021.12.093_b0095
  article-title: Graphitized porous carbon nanofibers prepared by electrospinning as anode materials for lithium ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA15076D
– volume: 516
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0160
  article-title: Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.115224
– volume: 614
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0030
  article-title: Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118500
– volume: 3
  start-page: 1800176
  year: 2019
  ident: 10.1016/j.jcis.2021.12.093_b0170
  article-title: Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement
  publication-title: Small Methods
  doi: 10.1002/smtd.201800176
– volume: 11
  start-page: 35005
  issue: 38
  year: 2019
  ident: 10.1016/j.jcis.2021.12.093_b0065
  article-title: Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12806
– volume: 7
  start-page: 4403
  year: 2017
  ident: 10.1016/j.jcis.2021.12.093_b0220
  article-title: Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04651-3
– volume: 107
  start-page: 629
  year: 2016
  ident: 10.1016/j.jcis.2021.12.093_b0085
  article-title: Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.067
– volume: 215
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0185
  article-title: Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carbonization
  publication-title: Sol. Energy Mater Sol. Cells
  doi: 10.1016/j.solmat.2020.110591
– volume: 181
  year: 2020
  ident: 10.1016/j.jcis.2021.12.093_b0205
  article-title: A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring
  publication-title: Compos. B. Eng.
  doi: 10.1016/j.compositesb.2019.107580
– volume: 194
  start-page: 415
  year: 2019
  ident: 10.1016/j.jcis.2021.12.093_b0045
  article-title: Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.10.065
– volume: 177
  start-page: 199
  year: 2021
  ident: 10.1016/j.jcis.2021.12.093_b0060
  article-title: Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.02.081
SSID ssj0011559
Score 2.576822
Snippet [Display omitted] •A hydrophobic macro/meso porous carbon nanofiber (HPCNF) membrane is prepared.•The HPCNF exhibits a high sunlight absorption and a large...
Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66
SubjectTerms absorption
Carbon nanofiber
carbon nanofibers
corrosion
evaporation rate
freshwater
Hydrophobic
hydrophobicity
industry
irradiation
light intensity
Porous structure
seawater
Solar absorber
solar radiation
steam
sublimation
Title Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance
URI https://dx.doi.org/10.1016/j.jcis.2021.12.093
https://www.ncbi.nlm.nih.gov/pubmed/34974259
https://www.proquest.com/docview/2616279180
https://www.proquest.com/docview/2636474368
Volume 612
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdAeKkppu6VFrtQbSlk7juMc0apoAcGpSNwsf6qLwBuFtGovvfOvmcnHtj2wB66RHTl-k_E8e-aZkM-cRcXymGciFyITBuiOUrLKgvU8iFhx3-13nF_I-aU4vSquNshsrIXBtMrB9_c-vfPWw5PDYTYP68UCa3zhbytRfQbWobyr7xWiRCv_8meV5sHw2K1P82AZth4KZ_ocr2u3QMluzrotwSp_bHF6LPjsFqHjbfJyiB7pUT_AV2QjpB2yNRsvbdshL_7RF3xN7ue_fbOsvy_twlGTPIVgG5g-daaxy0STSWBaNjT0NtwCa06BQghLUcGY1n8LCugd0t_MN-gYKepLNNHgTjsNP009mBDFDV0afnUHAamld-ampUDlMTyFd-ySy-Ov32bzbLh7IXMQwrSZ9MCjBACsfGF45Yx0UwvMtRTR-jKUjlkZVSW8U4Wa-hxYkQhRWmMA48K6_A3ZTMsU3hHKnAeaJngZIxNlJW0lneK2EM5KGbmaEDZOunaDMDnej3Gjxwy0a41AaQRKM64BqAk5WPWpe1mOta2LEUv9n3FpWDfW9vs0Aq8BR5xBgAJw0vBBkpcVU9N1bVCbHxX-J-RtbzWrseYCeBwwz_dPHNkeec6xDgNFJ4sPZLNtfoSPEB21dr8z_33y7OjkbH7xAMYkETE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcqA9VC19LX25Um9VxNpxHOeIVqBQYE8gcbP8VBdBNgppBT-Bf92ZPLblwB56jezI8ed45hvPfCbkG2dRsTSmiUiFSIQBuqOULJJgPQ8iFtx38Y6zhSwvxI_L7HKLzMdaGEyrHPb-fk_vduvhyf4wm_v1cok1vvC35ag-A3YoxfrebVSnyiZk--D4pFysDxPw5K3P9GAJdhhqZ_o0ryu3RNVuzrqoYJE-ZZ-e8j87O3T0krwYHEh60I_xFdkK1S7ZmY_3tu2S5_9IDL4mD-W9b1b1z5VdOmoqT8HfBrJPnWnsqqKVqWB12dDQm3ADxLkKFLxYiiLGtP5bU0BvkQEnvsG9kaLERBMNBttp-G3qYRVRjOnScNedBVQtvTXXLQU2jx4qvOMNuTg6PJ-XyXD9QuLAi2kT6YFKCcBY-czwwhnpZhbIay6i9XnIHbMyqkJ4pzI18ykQIxGitMYAzJl16VsyqVZVeE8ocx6YmuB5jEzkhbSFdIrbTDgrZeRqStg46doN2uR4Rca1HpPQrjQCpREozbgGoKbk-7pP3StzbGydjVjqR-tLg-nY2O_rCLwGHHEGAQrAScMHSZ4XTM02tUF5fhT5n5J3_apZjzUVQOWAfO7958i-kJ3y_OxUnx4vTj6QZxzLMlCDMvtIJm3zK3wCZ6m1n4ef4Q8OBhPi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+and+porous+carbon+nanofiber+membrane+for+high+performance+solar-driven+interfacial+evaporation+with+excellent+salt+resistance&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhang%2C+Wei-Miao&rft.au=Yan%2C+Jun&rft.au=Su%2C+Qin&rft.au=Han%2C+Jiang&rft.date=2022-04-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=612&rft.spage=66&rft_id=info:doi/10.1016%2Fj.jcis.2021.12.093&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon