Extended Poisson–Tweedie: Properties and regression models for count data

We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form μ + ϕ μ p , where μ is the mean and ϕ and p are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estima...

Full description

Saved in:
Bibliographic Details
Published inStatistical modelling Vol. 18; no. 1; pp. 24 - 49
Main Authors Bonat, Wagner H., Jørgensen, Bent, Kokonendji, Célestin C., Hinde, John, Demétrio, Clarice G. B.
Format Journal Article
LanguageEnglish
Published New Delhi, India SAGE Publications 01.02.2018
Subjects
Online AccessGet full text
ISSN1471-082X
1477-0342
DOI10.1177/1471082X17715718

Cover

Loading…
Abstract We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form μ + ϕ μ p , where μ is the mean and ϕ and p are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter ϕ . Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials.
AbstractList We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form [Formula: see text], where [Formula: see text] is the mean and [Formula: see text] and [Formula: see text] are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter [Formula: see text]. Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials.
We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form μ + ϕ μ p , where μ is the mean and ϕ and p are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter ϕ . Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials.
Author Jørgensen, Bent
Kokonendji, Célestin C.
Hinde, John
Bonat, Wagner H.
Demétrio, Clarice G. B.
Author_xml – sequence: 1
  givenname: Wagner H.
  surname: Bonat
  fullname: Bonat, Wagner H.
  email: wbonat@ufpr.br
– sequence: 2
  givenname: Bent
  surname: Jørgensen
  fullname: Jørgensen, Bent
– sequence: 3
  givenname: Célestin C.
  surname: Kokonendji
  fullname: Kokonendji, Célestin C.
– sequence: 4
  givenname: John
  surname: Hinde
  fullname: Hinde, John
– sequence: 5
  givenname: Clarice G. B.
  surname: Demétrio
  fullname: Demétrio, Clarice G. B.
BookMark eNp9kM1KAzEUhYNUsK3uXeYFRnOT6WTGnZT6gwW7qOBuyM9tSWmTkqSoO9_BN_RJnFpXgq7u4d7zXThnQHo-eCTkHNgFgJSXUEpgNX_uNIwk1Eek361kwUTJe98aiv39hAxSWjHGQVZNnzxMXjN6i5bOgksp-M_3j_kLonV4RWcxbDFmh4kqb2nEZcSUXPB0EyyuE12ESE3Y-UytyuqUHC_UOuHZzxySp5vJfHxXTB9v78fX08KIuslFpbiqlAImBZaC2wYM0w2XBuuyElyglhoarVEbPTJQCiY7G2sQjLSKGzEk7PDXxJBSxEW7jW6j4lsLrN2X0f4uo0OqX4hxWeUuSo7Krf8DiwOY1BLbVdhF30X72_8FqwJzVA
CitedBy_id crossref_primary_10_1002_bimj_202100157
crossref_primary_10_3390_axioms12090813
crossref_primary_10_1186_s40488_017_0068_1
crossref_primary_10_1007_s11222_023_10244_0
crossref_primary_10_1080_02664763_2020_1779193
crossref_primary_10_1007_s41096_024_00199_4
crossref_primary_10_1016_j_tra_2024_104145
crossref_primary_10_1080_03610926_2025_2464081
crossref_primary_10_1016_j_tranpol_2024_02_006
crossref_primary_10_1186_s12889_021_10637_8
crossref_primary_10_1371_journal_pone_0263515
crossref_primary_10_1007_s00362_021_01253_0
crossref_primary_10_1007_s13253_017_0284_7
crossref_primary_10_1007_s10182_020_00375_4
crossref_primary_10_1007_s10182_019_00350_8
crossref_primary_10_1111_bmsp_12184
crossref_primary_10_1002_gepi_22526
crossref_primary_10_1109_TITS_2022_3171730
crossref_primary_10_1080_02664763_2020_1820960
crossref_primary_10_1139_cjfas_2018_0188
crossref_primary_10_1002_wics_1496
crossref_primary_10_1007_s11749_022_00801_6
crossref_primary_10_1080_00949655_2023_2184474
crossref_primary_10_3390_math10214101
crossref_primary_10_1016_j_aap_2020_105456
crossref_primary_10_1051_ps_2021001
crossref_primary_10_15446_rce_v47n1_101952
crossref_primary_10_1080_03610918_2021_1934020
crossref_primary_10_1214_20_BJPS487
crossref_primary_10_3390_d14050320
crossref_primary_10_1007_s13571_024_00325_z
crossref_primary_10_1080_19439962_2023_2278063
crossref_primary_10_1007_s13253_019_00360_8
crossref_primary_10_4025_actasciagron_v42i1_43734
crossref_primary_10_1002_nafm_10300
crossref_primary_10_1007_s10519_021_10095_3
crossref_primary_10_1038_s41598_019_52433_w
crossref_primary_10_1139_cjce_2023_0436
crossref_primary_10_1007_s11192_021_03864_8
crossref_primary_10_1007_s00442_020_04649_1
crossref_primary_10_1515_ijb_2018_0119
crossref_primary_10_1080_02664763_2022_2064439
crossref_primary_10_1080_03610926_2020_1811335
crossref_primary_10_1016_j_cie_2022_108104
crossref_primary_10_1080_02331888_2022_2084095
crossref_primary_10_1177_1471082X19838651
crossref_primary_10_1111_1365_2745_13518
crossref_primary_10_3390_cli11110223
crossref_primary_10_1080_03610918_2021_1898635
crossref_primary_10_1080_00031305_2022_2106305
crossref_primary_10_1214_19_BJPS458
crossref_primary_10_3390_math12172674
crossref_primary_10_1016_j_spl_2018_09_010
crossref_primary_10_1080_03610926_2019_1682162
crossref_primary_10_3390_math9050555
crossref_primary_10_1139_cjce_2023_0508
crossref_primary_10_1177_1471082X20936017
Cites_doi 10.2143/AST.32.1.1020
10.1111/j.2044-8317.2011.02031.x
10.1016/j.csda.2016.01.007
10.1186/1471-2105-14-254
10.1214/09-AOAS306
10.1016/0378-3758(78)90026-5
10.1016/S0167-9473(98)00007-3
10.1016/j.spl.2009.04.011
10.1093/biomet/73.1.13
10.1111/j.1467-9469.2004.00375.x
10.1016/j.csda.2008.07.043
10.1007/s00411-006-0036-5
10.1006/jmva.1997.1731
10.1080/02664763.2014.922168
10.1007/s10182-015-0250-z
10.1111/j.2517-6161.1987.tb01685.x
10.1002/bimj.201400233
10.1002/env.1036
10.2307/2344614
10.2307/2531734
10.1111/rssc.12145
10.18637/jss.v027.i08
10.1016/j.stamet.2006.10.001
10.1080/00949655.2017.1318876
ContentType Journal Article
Copyright 2018 SAGE Publications
Copyright_xml – notice: 2018 SAGE Publications
DBID AAYXX
CITATION
DOI 10.1177/1471082X17715718
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1477-0342
EndPage 49
ExternalDocumentID 10_1177_1471082X17715718
10.1177_1471082X17715718
GroupedDBID -TM
.2L
01A
0R~
123
1~K
29Q
31W
31X
4.4
54M
56W
5VS
7WY
88I
8FE
8FG
8FL
8R4
8R5
8V8
AADIR
AADUE
AAGLT
AAJPV
AAQDB
AAQXI
AARIX
AATAA
ABAWP
ABCCA
ABCJG
ABEIX
ABFXH
ABHQH
ABIDT
ABJCF
ABKRH
ABPNF
ABQPY
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ACDXX
ACFUR
ACFZE
ACGFS
ACGOD
ACIWK
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUIR
ADDLC
ADEBD
ADNMO
ADNON
ADRRZ
ADTOS
ADYCS
AEDXQ
AEMOZ
AENEX
AEOBU
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ANDLU
ARAPS
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
AZQEC
B8T
B8Z
BDZRT
BENPR
BEZIV
BGLVJ
BMVBW
BPACV
BPHCQ
CAG
CCPQU
CEADM
COF
CS3
DG~
DOPDO
DV7
DV8
DWQXO
EBS
EJD
EMI
EST
F5P
FEDTE
FHBDP
FRNLG
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HF~
HVGLF
HZ~
J8X
J9A
K1G
K60
K6V
K6~
K7-
L6V
M0C
M2P
M7S
N9A
O9-
P.B
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
Q2X
Q7P
ROL
S01
SASJQ
SAUOL
SCNPE
SFC
SFK
SFT
SGU
SGV
SHB
SPJ
SSDHQ
TH9
TN5
ZPLXX
ZPPRI
~32
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
ID FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3
ISSN 1471-082X
IngestDate Tue Jul 01 05:20:12 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Tue Jun 17 22:48:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Estimating functions
underdispersion
overdispersion
count data
Poisson–Tweedie distribution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3
OpenAccessLink http://hdl.handle.net/10379/10475
PageCount 26
ParticipantIDs crossref_primary_10_1177_1471082X17715718
crossref_citationtrail_10_1177_1471082X17715718
sage_journals_10_1177_1471082X17715718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New Delhi, India
PublicationPlace_xml – name: New Delhi, India
PublicationTitle Statistical modelling
PublicationYear 2018
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Zeviani, Ribeiro, Bonat, Shimakura, Muniz 2014; 41
Loeys, Moerkerke, De Smet, Buysse 2012; 65
Oliveira, Einbeck, Higueras, Ainsbury, Puig, Rothkamm 2016; 58
Bonat, Jrgensen 2016; 65
Rigby, Stasinopoulos, Akantziliotou 2008; 53
Smyth, JØrgensen 2002; 32
Zhu, Joe 2009; 79
Esnaola, Puig, Gonzalez, Castelo, Gonzalez 2013; 14
Kokonendji, Dossou-Gbete, Demétrio 2004; 28
Kalktawi, Vinciotti, Yu 2015
Bonat, Kokonendji 2017; 87
Hinde, Demétrio 1998; 27
Jørgensen, Kokonendji 2016; 100
Yuan, Jennrich 1998; 65
Zeger, Liang, Albert 1988; 44
Wedderburn 1974; 61
Jrgensen, Knudsen 2004; 31
Godambe, Thompson 1978; 2
Sellers, Raim 2016; 99
Zeileis, Kleiber, Jackman 2008; 27
Sellers, Shmueli 2010; 4
Liang, Zeger 1986; 73
Kokonendji, Demétrio, Zocchi 2007; 4
Jørgensen 1987; 49
Heimers, Brede, Giesen, Homann 2006; 45
El-Shaarawi, Zhu, Joe 2011; 22
bibr10-1471082X17715718
bibr28-1471082X17715718
bibr23-1471082X17715718
Wedderburn RWM (bibr30-1471082X17715718) 1974; 61
bibr6-1471082X17715718
bibr32-1471082X17715718
bibr19-1471082X17715718
bibr1-1471082X17715718
Kalktawi HS (bibr15-1471082X17715718) 2015
bibr5-1471082X17715718
bibr35-1471082X17715718
bibr14-1471082X17715718
bibr27-1471082X17715718
bibr18-1471082X17715718
Neter J (bibr22-1471082X17715718) 1996
bibr31-1471082X17715718
bibr9-1471082X17715718
bibr4-1471082X17715718
Kokonendji CC (bibr17-1471082X17715718) 2004; 28
bibr26-1471082X17715718
bibr13-1471082X17715718
bibr8-1471082X17715718
bibr25-1471082X17715718
bibr21-1471082X17715718
bibr34-1471082X17715718
Jørgensen B (bibr12-1471082X17715718) 1997
bibr16-1471082X17715718
bibr24-1471082X17715718
bibr3-1471082X17715718
bibr29-1471082X17715718
bibr7-1471082X17715718
bibr11-1471082X17715718
bibr2-1471082X17715718
McCullagh P (bibr20-1471082X17715718) 1989
bibr33-1471082X17715718
References_xml – volume: 44
  start-page: 1049
  year: 1988
  end-page: 60
  article-title: Models for longitudinal data: A generalized estimating equation approach
– volume: 4
  start-page: 277
  year: 2007
  end-page: 91
  article-title: On Hinde–Demétrio regression models for overdispersed count data
– volume: 65
  start-page: 649
  year: 2016
  end-page: 75
  article-title: Multivariate covariance generalized linear models
– volume: 32
  start-page: 143
  year: 2002
  end-page: 57
  article-title: Fitting Tweedie's compound Poisson model to insurance claims data: Dispersion modelling
– volume: 53
  start-page: 381
  year: 2008
  end-page: 93
  article-title: A framework for modelling overdispersed count data, including the Poissonshifted generalized inverse Gaussian distribution
– volume: 65
  start-page: 163
  year: 2012
  end-page: 80
  article-title: The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression
– volume: 61
  start-page: 439
  year: 1974
  end-page: 47
  article-title: Quasi-likelihood functions, generalized linear models, and the gaussnewton method
– volume: 41
  start-page: 2616
  year: 2014
  end-page: 26
  article-title: The gamma-count distribution in the analysis of experimental underdispersed data
– volume: 58
  start-page: 259
  year: 2016
  end-page: 79
  article-title: Zero-inflated regression models for radiation- induced chromosome aberration data: A comparative study
– volume: 31
  start-page: 93
  year: 2004
  end-page: 114
  article-title: Parameter orthogonality and bias adjustment for estimating functions
– volume: 87
  start-page: 2138
  year: 2017
  end-page: 52
  article-title: Flexible Tweedie regression models for continuous data
– volume: 49
  start-page: 127
  year: 1987
  end-page: 62
  article-title: Exponential dispersion models
– volume: 65
  start-page: 245
  year: 1998
  end-page: 60
  article-title: Asymptotics of estimating equations under natural conditions
– volume: 45
  start-page: 45
  year: 2006
  end-page: 54
  article-title: Chromosome aberration analysis and the influence of mitotic delay after simulated partial-body exposure with high doses of sparsely and densely ionising radiation
– volume: 27
  start-page: 151
  year: 1998
  end-page: 70
  article-title: Overdispersion: Models and estimation
– volume: 100
  start-page: 43
  year: 2016
  end-page: 78
  article-title: Discrete dispersion models and their Tweedie asymptotics
– volume: 4
  start-page: 943
  year: 2010
  end-page: 61
  article-title: A flexible regression model for count data
– volume: 14
  start-page: 254
  year: 2013
  end-page: 76
  article-title: A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated rna-seq experiments
– volume: 28
  start-page: 201
  year: 2004
  end-page: 14
  article-title: Some discrete exponential dispersion models: PoissonTweedie and HindeDemétrio classes
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
– volume: 22
  start-page: 152
  year: 2011
  end-page: 64
  article-title: Modelling species abundance using the Poisson–Tweedie family
– volume: 27
  start-page: 1
  year: 2008
  end-page: 25
  article-title: Regression models for count data in R
– year: 2015
– volume: 99
  start-page: 68
  year: 2016
  end-page: 80
  article-title: A flexible zero-inflated model to address data dispersion
– volume: 2
  start-page: 95
  year: 1978
  end-page: 104
  article-title: Some aspects of the theory of estimating equations
– volume: 79
  start-page: 1695
  year: 2009
  end-page: 1703
  article-title: Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family
– volume-title: Generalized linear models, 2nd edition (Chapman & Hall/ CRC Monographs on Statistics & Applied Probability)
  year: 1989
  ident: bibr20-1471082X17715718
– ident: bibr29-1471082X17715718
  doi: 10.2143/AST.32.1.1020
– volume-title: Applied linear statistical models
  year: 1996
  ident: bibr22-1471082X17715718
– ident: bibr24-1471082X17715718
– ident: bibr19-1471082X17715718
  doi: 10.1111/j.2044-8317.2011.02031.x
– ident: bibr5-1471082X17715718
– volume-title: The theory of dispersion models
  year: 1997
  ident: bibr12-1471082X17715718
– ident: bibr27-1471082X17715718
  doi: 10.1016/j.csda.2016.01.007
– ident: bibr7-1471082X17715718
  doi: 10.1186/1471-2105-14-254
– year: 2015
  ident: bibr15-1471082X17715718
  publication-title: A simple and adaptive dispersion regression model for count data
– ident: bibr28-1471082X17715718
  doi: 10.1214/09-AOAS306
– ident: bibr8-1471082X17715718
  doi: 10.1016/0378-3758(78)90026-5
– ident: bibr10-1471082X17715718
  doi: 10.1016/S0167-9473(98)00007-3
– ident: bibr1-1471082X17715718
– ident: bibr35-1471082X17715718
  doi: 10.1016/j.spl.2009.04.011
– ident: bibr18-1471082X17715718
  doi: 10.1093/biomet/73.1.13
– ident: bibr13-1471082X17715718
  doi: 10.1111/j.1467-9469.2004.00375.x
– ident: bibr26-1471082X17715718
  doi: 10.1016/j.csda.2008.07.043
– ident: bibr9-1471082X17715718
  doi: 10.1007/s00411-006-0036-5
– ident: bibr31-1471082X17715718
  doi: 10.1006/jmva.1997.1731
– ident: bibr34-1471082X17715718
  doi: 10.1080/02664763.2014.922168
– ident: bibr14-1471082X17715718
  doi: 10.1007/s10182-015-0250-z
– ident: bibr11-1471082X17715718
  doi: 10.1111/j.2517-6161.1987.tb01685.x
– ident: bibr23-1471082X17715718
  doi: 10.1002/bimj.201400233
– ident: bibr6-1471082X17715718
  doi: 10.1002/env.1036
– ident: bibr21-1471082X17715718
  doi: 10.2307/2344614
– ident: bibr32-1471082X17715718
  doi: 10.2307/2531734
– ident: bibr25-1471082X17715718
– ident: bibr3-1471082X17715718
  doi: 10.1111/rssc.12145
– volume: 61
  start-page: 439
  year: 1974
  ident: bibr30-1471082X17715718
  publication-title: Biometrika
– ident: bibr33-1471082X17715718
  doi: 10.18637/jss.v027.i08
– ident: bibr16-1471082X17715718
  doi: 10.1016/j.stamet.2006.10.001
– volume: 28
  start-page: 201
  year: 2004
  ident: bibr17-1471082X17715718
  publication-title: Statistics and Operations Research Transactions
– ident: bibr4-1471082X17715718
  doi: 10.1080/00949655.2017.1318876
– ident: bibr2-1471082X17715718
SSID ssj0021769
Score 2.3863013
Snippet We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form μ + ϕ...
We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 24
Title Extended Poisson–Tweedie: Properties and regression models for count data
URI https://journals.sagepub.com/doi/full/10.1177/1471082X17715718
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuMwFLVK2cAC8ZjR8JQXaCQUBZI4aRp2UIEqUEcdqWjKqrIdg4SqgEoREiu-Af6QL-Fe23EfwAjYRKnlOq3vyfWxfe8xIdsMccE45m3luR-LJPazQMKdlFLlSZpzncfd-lNrnsUn3aRbqTyNRS3dDcWufHg3r-Q7VoUysCtmyX7Bsq5RKIB7sC9cwcJw_ZSNj-wKtte-hv4DEmcjF1jnHgclnXbextX2AcqmmlBydWkiXwtzCI6WY_D0iRGezVNzZBWJqNZxxgwTrNwvxzkdX1hw7cD_8ctCDbzmrgvGwc33wzpmddrlncOx6JrTa6Ck8KuvdBhBw2zU91Hro_Aaro0mqjhOhArblYmwXgYzO2cKA58PFKNrxpqyLPVRdvB9D-yQZt1pPDYwG2nTty4_NaIBQJXgUfApTFLb4IS69tSo52IRQyt4Pt3CDJmNYOoRVcnswXn7b8tN48NUH5To_t1o83tvuo0JsjMWKajJS2eRLNhZBz0wEFoiFVUsk_mWk-y9XSGnJZioBdPL47OF0T4dgYgCiOgIRNSAiAKIqAYRRRD9IGfHR51G07cnbfgSCOvQr_GI1zgPwd-rmEV5FspAZFEqFdBTFjElUhFmQighRSKBYiPxjIJMhRLe5kiyn6RaAHh-EZoGsh6IiwuVSx5zEYtYBoyhyD94BcbzVbJXdklPWhl6PA2l3_vIEKtkx33jxkiw_Kfub-zlnn1Jbz-suPaFRtfJ3AjeG6Q6HNypTaCiQ7FlsfEKYOmAUQ
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHNSDbyM-92BMPBTbbkupN2IgKJRgAgl6IfvCg6YYKDHx5H_wH_pLnG1LRYzGeNvDbDOZnd35djvzDcAJ1X5Bma7bktJwuOsYvilwJIRQ0vUki-u4g1ap3nWue25vptVXasFxUadVoUbxYZ3tbl0njqcphq0eji0XD9ZFyJd1MUIO8pXb9k2Q3bYsL-5np-UNPeHzH-W3b3yJSTMJXXGMqa3B3VS7JLXkoTiJULGXOeLGf6m_Dqsp8iSVxFU2YEGFm7ASZLSt4y1oVNMncdIe4oIMw_fXt86zjm_qgrT1s_1I868SFkoyUvdJCm1I4m46Y4Lwl8StJ4hOO92Gbq3auawbabcFQyBoiYwSs1mJMbwOUuVQW_qWMLlve0IhRKE2Vdzjls-54oK7AmGWBh-26StL4Iragu5ALhyGaheIZ4qyyQcDJQVzGHe4I0xKNdE7egZlsgDnU3v3RUpFrjtiPPatlH183kwFOMtmPCU0HL_Inmrr96dr8aPg3l8Fj2Gp3gma_eZVq7EPy4iZykni9gHkotFEHSIuifhR6oEfaevWpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0oJEYXvo34nIUxcVFoZ1pK3RGFoAipCSS4IvPChaYQWmLiyn_wD_0S77QDKkZj3HVxp5nOvZ17ZubMuQidUB0XlOl7W1JaLvdcK7AFPAkhlPR8ydJ73K12udF1r3tez3Bz9F0YM4JxUdOqoEfpZK3_7pEclMwZY8mBGRVSVw-eHQ8m10WUhzxFSA7lq3fhbWu24nL8tKadtrd0g49zym_v-JKXPpG60jxTX8uKqcapPKGmlzwUJwl07nlOvPHfn7COVg0CxdUsZDbQgoo20UprJt8ab6FmzWyN43AIjhlGby-vnSed59Q5DvX2_VjrsGIWSTxW9xmVNsJpVZ0YAwzGaQkKrOmn26hbr3UuGpapumAJAC-JVWaElRmDZSFVLiUycITNA-ILBVCFEqq4z52Ac8UF9wTALQ1CiB0oR4BniaA7KBcNI7WLsG-Lis0HAyUFcxl3uStsSrXgO0QIZbKAStMx7wsjSa4rYzz2HaNCPj9MBXQ2azHK5Dh-sT3VHuhP_fGj4d5fDY_RUnhZ799ctZv7aBmgUyXjbx-gXDKeqEOAJwk_MkH4Dpau2Rs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+Poisson%E2%80%93Tweedie%3A+Properties+and+regression+models+for+count+data&rft.jtitle=Statistical+modelling&rft.au=Bonat%2C+Wagner+H.&rft.au=J%C3%B8rgensen%2C+Bent&rft.au=Kokonendji%2C+C%C3%A9lestin+C.&rft.au=Hinde%2C+John&rft.date=2018-02-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=18&rft.issue=1&rft.spage=24&rft.epage=49&rft_id=info:doi/10.1177%2F1471082X17715718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X17715718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon