Extended Poisson–Tweedie: Properties and regression models for count data
We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form μ + ϕ μ p , where μ is the mean and ϕ and p are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estima...
Saved in:
Published in | Statistical modelling Vol. 18; no. 1; pp. 24 - 49 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi, India
SAGE Publications
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1471-082X 1477-0342 |
DOI | 10.1177/1471082X17715718 |
Cover
Loading…
Abstract | We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form
μ
+
ϕ
μ
p
, where
μ
is the mean and
ϕ
and
p
are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter
ϕ
. Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials. |
---|---|
AbstractList | We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form [Formula: see text], where [Formula: see text] is the mean and [Formula: see text] and [Formula: see text] are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter [Formula: see text]. Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials. We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form μ + ϕ μ p , where μ is the mean and ϕ and p are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter ϕ . Furthermore, the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under-, equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an R implementation and the datasets as supplementary materials. |
Author | Jørgensen, Bent Kokonendji, Célestin C. Hinde, John Bonat, Wagner H. Demétrio, Clarice G. B. |
Author_xml | – sequence: 1 givenname: Wagner H. surname: Bonat fullname: Bonat, Wagner H. email: wbonat@ufpr.br – sequence: 2 givenname: Bent surname: Jørgensen fullname: Jørgensen, Bent – sequence: 3 givenname: Célestin C. surname: Kokonendji fullname: Kokonendji, Célestin C. – sequence: 4 givenname: John surname: Hinde fullname: Hinde, John – sequence: 5 givenname: Clarice G. B. surname: Demétrio fullname: Demétrio, Clarice G. B. |
BookMark | eNp9kM1KAzEUhYNUsK3uXeYFRnOT6WTGnZT6gwW7qOBuyM9tSWmTkqSoO9_BN_RJnFpXgq7u4d7zXThnQHo-eCTkHNgFgJSXUEpgNX_uNIwk1Eek361kwUTJe98aiv39hAxSWjHGQVZNnzxMXjN6i5bOgksp-M_3j_kLonV4RWcxbDFmh4kqb2nEZcSUXPB0EyyuE12ESE3Y-UytyuqUHC_UOuHZzxySp5vJfHxXTB9v78fX08KIuslFpbiqlAImBZaC2wYM0w2XBuuyElyglhoarVEbPTJQCiY7G2sQjLSKGzEk7PDXxJBSxEW7jW6j4lsLrN2X0f4uo0OqX4hxWeUuSo7Krf8DiwOY1BLbVdhF30X72_8FqwJzVA |
CitedBy_id | crossref_primary_10_1002_bimj_202100157 crossref_primary_10_3390_axioms12090813 crossref_primary_10_1186_s40488_017_0068_1 crossref_primary_10_1007_s11222_023_10244_0 crossref_primary_10_1080_02664763_2020_1779193 crossref_primary_10_1007_s41096_024_00199_4 crossref_primary_10_1016_j_tra_2024_104145 crossref_primary_10_1080_03610926_2025_2464081 crossref_primary_10_1016_j_tranpol_2024_02_006 crossref_primary_10_1186_s12889_021_10637_8 crossref_primary_10_1371_journal_pone_0263515 crossref_primary_10_1007_s00362_021_01253_0 crossref_primary_10_1007_s13253_017_0284_7 crossref_primary_10_1007_s10182_020_00375_4 crossref_primary_10_1007_s10182_019_00350_8 crossref_primary_10_1111_bmsp_12184 crossref_primary_10_1002_gepi_22526 crossref_primary_10_1109_TITS_2022_3171730 crossref_primary_10_1080_02664763_2020_1820960 crossref_primary_10_1139_cjfas_2018_0188 crossref_primary_10_1002_wics_1496 crossref_primary_10_1007_s11749_022_00801_6 crossref_primary_10_1080_00949655_2023_2184474 crossref_primary_10_3390_math10214101 crossref_primary_10_1016_j_aap_2020_105456 crossref_primary_10_1051_ps_2021001 crossref_primary_10_15446_rce_v47n1_101952 crossref_primary_10_1080_03610918_2021_1934020 crossref_primary_10_1214_20_BJPS487 crossref_primary_10_3390_d14050320 crossref_primary_10_1007_s13571_024_00325_z crossref_primary_10_1080_19439962_2023_2278063 crossref_primary_10_1007_s13253_019_00360_8 crossref_primary_10_4025_actasciagron_v42i1_43734 crossref_primary_10_1002_nafm_10300 crossref_primary_10_1007_s10519_021_10095_3 crossref_primary_10_1038_s41598_019_52433_w crossref_primary_10_1139_cjce_2023_0436 crossref_primary_10_1007_s11192_021_03864_8 crossref_primary_10_1007_s00442_020_04649_1 crossref_primary_10_1515_ijb_2018_0119 crossref_primary_10_1080_02664763_2022_2064439 crossref_primary_10_1080_03610926_2020_1811335 crossref_primary_10_1016_j_cie_2022_108104 crossref_primary_10_1080_02331888_2022_2084095 crossref_primary_10_1177_1471082X19838651 crossref_primary_10_1111_1365_2745_13518 crossref_primary_10_3390_cli11110223 crossref_primary_10_1080_03610918_2021_1898635 crossref_primary_10_1080_00031305_2022_2106305 crossref_primary_10_1214_19_BJPS458 crossref_primary_10_3390_math12172674 crossref_primary_10_1016_j_spl_2018_09_010 crossref_primary_10_1080_03610926_2019_1682162 crossref_primary_10_3390_math9050555 crossref_primary_10_1139_cjce_2023_0508 crossref_primary_10_1177_1471082X20936017 |
Cites_doi | 10.2143/AST.32.1.1020 10.1111/j.2044-8317.2011.02031.x 10.1016/j.csda.2016.01.007 10.1186/1471-2105-14-254 10.1214/09-AOAS306 10.1016/0378-3758(78)90026-5 10.1016/S0167-9473(98)00007-3 10.1016/j.spl.2009.04.011 10.1093/biomet/73.1.13 10.1111/j.1467-9469.2004.00375.x 10.1016/j.csda.2008.07.043 10.1007/s00411-006-0036-5 10.1006/jmva.1997.1731 10.1080/02664763.2014.922168 10.1007/s10182-015-0250-z 10.1111/j.2517-6161.1987.tb01685.x 10.1002/bimj.201400233 10.1002/env.1036 10.2307/2344614 10.2307/2531734 10.1111/rssc.12145 10.18637/jss.v027.i08 10.1016/j.stamet.2006.10.001 10.1080/00949655.2017.1318876 |
ContentType | Journal Article |
Copyright | 2018 SAGE Publications |
Copyright_xml | – notice: 2018 SAGE Publications |
DBID | AAYXX CITATION |
DOI | 10.1177/1471082X17715718 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1477-0342 |
EndPage | 49 |
ExternalDocumentID | 10_1177_1471082X17715718 10.1177_1471082X17715718 |
GroupedDBID | -TM .2L 01A 0R~ 123 1~K 29Q 31W 31X 4.4 54M 56W 5VS 7WY 88I 8FE 8FG 8FL 8R4 8R5 8V8 AADIR AADUE AAGLT AAJPV AAQDB AAQXI AARIX AATAA ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJCF ABKRH ABPNF ABQPY ABQXT ABRHV ABTDE ABUJY ABUWG ACDXX ACFUR ACFZE ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUIR ADDLC ADEBD ADNMO ADNON ADRRZ ADTOS ADYCS AEDXQ AEMOZ AENEX AEOBU AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS AMVHM ANDLU ARAPS ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN AZQEC B8T B8Z BDZRT BENPR BEZIV BGLVJ BMVBW BPACV BPHCQ CAG CCPQU CEADM COF CS3 DG~ DOPDO DV7 DV8 DWQXO EBS EJD EMI EST F5P FEDTE FHBDP FRNLG GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ J8X J9A K1G K60 K6V K6~ K7- L6V M0C M2P M7S N9A O9- P.B P2P P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS Q2X Q7P ROL S01 SASJQ SAUOL SCNPE SFC SFK SFT SGU SGV SHB SPJ SSDHQ TH9 TN5 ZPLXX ZPPRI ~32 AAYXX ACCVC AJGYC AMNSR CITATION |
ID | FETCH-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3 |
ISSN | 1471-082X |
IngestDate | Tue Jul 01 05:20:12 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Tue Jun 17 22:48:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Estimating functions underdispersion overdispersion count data Poisson–Tweedie distribution |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-6a2a6aa1073e432d91c0b927ce846323eb7b19bbebcb5c1430743209e1c7da2c3 |
OpenAccessLink | http://hdl.handle.net/10379/10475 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1177_1471082X17715718 crossref_citationtrail_10_1177_1471082X17715718 sage_journals_10_1177_1471082X17715718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New Delhi, India |
PublicationPlace_xml | – name: New Delhi, India |
PublicationTitle | Statistical modelling |
PublicationYear | 2018 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Zeviani, Ribeiro, Bonat, Shimakura, Muniz 2014; 41 Loeys, Moerkerke, De Smet, Buysse 2012; 65 Oliveira, Einbeck, Higueras, Ainsbury, Puig, Rothkamm 2016; 58 Bonat, Jrgensen 2016; 65 Rigby, Stasinopoulos, Akantziliotou 2008; 53 Smyth, JØrgensen 2002; 32 Zhu, Joe 2009; 79 Esnaola, Puig, Gonzalez, Castelo, Gonzalez 2013; 14 Kokonendji, Dossou-Gbete, Demétrio 2004; 28 Kalktawi, Vinciotti, Yu 2015 Bonat, Kokonendji 2017; 87 Hinde, Demétrio 1998; 27 Jørgensen, Kokonendji 2016; 100 Yuan, Jennrich 1998; 65 Zeger, Liang, Albert 1988; 44 Wedderburn 1974; 61 Jrgensen, Knudsen 2004; 31 Godambe, Thompson 1978; 2 Sellers, Raim 2016; 99 Zeileis, Kleiber, Jackman 2008; 27 Sellers, Shmueli 2010; 4 Liang, Zeger 1986; 73 Kokonendji, Demétrio, Zocchi 2007; 4 Jørgensen 1987; 49 Heimers, Brede, Giesen, Homann 2006; 45 El-Shaarawi, Zhu, Joe 2011; 22 bibr10-1471082X17715718 bibr28-1471082X17715718 bibr23-1471082X17715718 Wedderburn RWM (bibr30-1471082X17715718) 1974; 61 bibr6-1471082X17715718 bibr32-1471082X17715718 bibr19-1471082X17715718 bibr1-1471082X17715718 Kalktawi HS (bibr15-1471082X17715718) 2015 bibr5-1471082X17715718 bibr35-1471082X17715718 bibr14-1471082X17715718 bibr27-1471082X17715718 bibr18-1471082X17715718 Neter J (bibr22-1471082X17715718) 1996 bibr31-1471082X17715718 bibr9-1471082X17715718 bibr4-1471082X17715718 Kokonendji CC (bibr17-1471082X17715718) 2004; 28 bibr26-1471082X17715718 bibr13-1471082X17715718 bibr8-1471082X17715718 bibr25-1471082X17715718 bibr21-1471082X17715718 bibr34-1471082X17715718 Jørgensen B (bibr12-1471082X17715718) 1997 bibr16-1471082X17715718 bibr24-1471082X17715718 bibr3-1471082X17715718 bibr29-1471082X17715718 bibr7-1471082X17715718 bibr11-1471082X17715718 bibr2-1471082X17715718 McCullagh P (bibr20-1471082X17715718) 1989 bibr33-1471082X17715718 |
References_xml | – volume: 44 start-page: 1049 year: 1988 end-page: 60 article-title: Models for longitudinal data: A generalized estimating equation approach – volume: 4 start-page: 277 year: 2007 end-page: 91 article-title: On Hinde–Demétrio regression models for overdispersed count data – volume: 65 start-page: 649 year: 2016 end-page: 75 article-title: Multivariate covariance generalized linear models – volume: 32 start-page: 143 year: 2002 end-page: 57 article-title: Fitting Tweedie's compound Poisson model to insurance claims data: Dispersion modelling – volume: 53 start-page: 381 year: 2008 end-page: 93 article-title: A framework for modelling overdispersed count data, including the Poissonshifted generalized inverse Gaussian distribution – volume: 65 start-page: 163 year: 2012 end-page: 80 article-title: The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression – volume: 61 start-page: 439 year: 1974 end-page: 47 article-title: Quasi-likelihood functions, generalized linear models, and the gaussnewton method – volume: 41 start-page: 2616 year: 2014 end-page: 26 article-title: The gamma-count distribution in the analysis of experimental underdispersed data – volume: 58 start-page: 259 year: 2016 end-page: 79 article-title: Zero-inflated regression models for radiation- induced chromosome aberration data: A comparative study – volume: 31 start-page: 93 year: 2004 end-page: 114 article-title: Parameter orthogonality and bias adjustment for estimating functions – volume: 87 start-page: 2138 year: 2017 end-page: 52 article-title: Flexible Tweedie regression models for continuous data – volume: 49 start-page: 127 year: 1987 end-page: 62 article-title: Exponential dispersion models – volume: 65 start-page: 245 year: 1998 end-page: 60 article-title: Asymptotics of estimating equations under natural conditions – volume: 45 start-page: 45 year: 2006 end-page: 54 article-title: Chromosome aberration analysis and the influence of mitotic delay after simulated partial-body exposure with high doses of sparsely and densely ionising radiation – volume: 27 start-page: 151 year: 1998 end-page: 70 article-title: Overdispersion: Models and estimation – volume: 100 start-page: 43 year: 2016 end-page: 78 article-title: Discrete dispersion models and their Tweedie asymptotics – volume: 4 start-page: 943 year: 2010 end-page: 61 article-title: A flexible regression model for count data – volume: 14 start-page: 254 year: 2013 end-page: 76 article-title: A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated rna-seq experiments – volume: 28 start-page: 201 year: 2004 end-page: 14 article-title: Some discrete exponential dispersion models: PoissonTweedie and HindeDemétrio classes – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models – volume: 22 start-page: 152 year: 2011 end-page: 64 article-title: Modelling species abundance using the Poisson–Tweedie family – volume: 27 start-page: 1 year: 2008 end-page: 25 article-title: Regression models for count data in R – year: 2015 – volume: 99 start-page: 68 year: 2016 end-page: 80 article-title: A flexible zero-inflated model to address data dispersion – volume: 2 start-page: 95 year: 1978 end-page: 104 article-title: Some aspects of the theory of estimating equations – volume: 79 start-page: 1695 year: 2009 end-page: 1703 article-title: Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family – volume-title: Generalized linear models, 2nd edition (Chapman & Hall/ CRC Monographs on Statistics & Applied Probability) year: 1989 ident: bibr20-1471082X17715718 – ident: bibr29-1471082X17715718 doi: 10.2143/AST.32.1.1020 – volume-title: Applied linear statistical models year: 1996 ident: bibr22-1471082X17715718 – ident: bibr24-1471082X17715718 – ident: bibr19-1471082X17715718 doi: 10.1111/j.2044-8317.2011.02031.x – ident: bibr5-1471082X17715718 – volume-title: The theory of dispersion models year: 1997 ident: bibr12-1471082X17715718 – ident: bibr27-1471082X17715718 doi: 10.1016/j.csda.2016.01.007 – ident: bibr7-1471082X17715718 doi: 10.1186/1471-2105-14-254 – year: 2015 ident: bibr15-1471082X17715718 publication-title: A simple and adaptive dispersion regression model for count data – ident: bibr28-1471082X17715718 doi: 10.1214/09-AOAS306 – ident: bibr8-1471082X17715718 doi: 10.1016/0378-3758(78)90026-5 – ident: bibr10-1471082X17715718 doi: 10.1016/S0167-9473(98)00007-3 – ident: bibr1-1471082X17715718 – ident: bibr35-1471082X17715718 doi: 10.1016/j.spl.2009.04.011 – ident: bibr18-1471082X17715718 doi: 10.1093/biomet/73.1.13 – ident: bibr13-1471082X17715718 doi: 10.1111/j.1467-9469.2004.00375.x – ident: bibr26-1471082X17715718 doi: 10.1016/j.csda.2008.07.043 – ident: bibr9-1471082X17715718 doi: 10.1007/s00411-006-0036-5 – ident: bibr31-1471082X17715718 doi: 10.1006/jmva.1997.1731 – ident: bibr34-1471082X17715718 doi: 10.1080/02664763.2014.922168 – ident: bibr14-1471082X17715718 doi: 10.1007/s10182-015-0250-z – ident: bibr11-1471082X17715718 doi: 10.1111/j.2517-6161.1987.tb01685.x – ident: bibr23-1471082X17715718 doi: 10.1002/bimj.201400233 – ident: bibr6-1471082X17715718 doi: 10.1002/env.1036 – ident: bibr21-1471082X17715718 doi: 10.2307/2344614 – ident: bibr32-1471082X17715718 doi: 10.2307/2531734 – ident: bibr25-1471082X17715718 – ident: bibr3-1471082X17715718 doi: 10.1111/rssc.12145 – volume: 61 start-page: 439 year: 1974 ident: bibr30-1471082X17715718 publication-title: Biometrika – ident: bibr33-1471082X17715718 doi: 10.18637/jss.v027.i08 – ident: bibr16-1471082X17715718 doi: 10.1016/j.stamet.2006.10.001 – volume: 28 start-page: 201 year: 2004 ident: bibr17-1471082X17715718 publication-title: Statistics and Operations Research Transactions – ident: bibr4-1471082X17715718 doi: 10.1080/00949655.2017.1318876 – ident: bibr2-1471082X17715718 |
SSID | ssj0021769 |
Score | 2.3863013 |
Snippet | We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form
μ
+
ϕ... We propose a new class of discrete generalized linear models based on the class of Poisson–Tweedie factorial dispersion models with variance of the form... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 24 |
Title | Extended Poisson–Tweedie: Properties and regression models for count data |
URI | https://journals.sagepub.com/doi/full/10.1177/1471082X17715718 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuMwFLVK2cAC8ZjR8JQXaCQUBZI4aRp2UIEqUEcdqWjKqrIdg4SqgEoREiu-Af6QL-Fe23EfwAjYRKnlOq3vyfWxfe8xIdsMccE45m3luR-LJPazQMKdlFLlSZpzncfd-lNrnsUn3aRbqTyNRS3dDcWufHg3r-Q7VoUysCtmyX7Bsq5RKIB7sC9cwcJw_ZSNj-wKtte-hv4DEmcjF1jnHgclnXbextX2AcqmmlBydWkiXwtzCI6WY_D0iRGezVNzZBWJqNZxxgwTrNwvxzkdX1hw7cD_8ctCDbzmrgvGwc33wzpmddrlncOx6JrTa6Ck8KuvdBhBw2zU91Hro_Aaro0mqjhOhArblYmwXgYzO2cKA58PFKNrxpqyLPVRdvB9D-yQZt1pPDYwG2nTty4_NaIBQJXgUfApTFLb4IS69tSo52IRQyt4Pt3CDJmNYOoRVcnswXn7b8tN48NUH5To_t1o83tvuo0JsjMWKajJS2eRLNhZBz0wEFoiFVUsk_mWk-y9XSGnJZioBdPL47OF0T4dgYgCiOgIRNSAiAKIqAYRRRD9IGfHR51G07cnbfgSCOvQr_GI1zgPwd-rmEV5FspAZFEqFdBTFjElUhFmQighRSKBYiPxjIJMhRLe5kiyn6RaAHh-EZoGsh6IiwuVSx5zEYtYBoyhyD94BcbzVbJXdklPWhl6PA2l3_vIEKtkx33jxkiw_Kfub-zlnn1Jbz-suPaFRtfJ3AjeG6Q6HNypTaCiQ7FlsfEKYOmAUQ |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHNSDbyM-92BMPBTbbkupN2IgKJRgAgl6IfvCg6YYKDHx5H_wH_pLnG1LRYzGeNvDbDOZnd35djvzDcAJ1X5Bma7bktJwuOsYvilwJIRQ0vUki-u4g1ap3nWue25vptVXasFxUadVoUbxYZ3tbl0njqcphq0eji0XD9ZFyJd1MUIO8pXb9k2Q3bYsL-5np-UNPeHzH-W3b3yJSTMJXXGMqa3B3VS7JLXkoTiJULGXOeLGf6m_Dqsp8iSVxFU2YEGFm7ASZLSt4y1oVNMncdIe4oIMw_fXt86zjm_qgrT1s_1I868SFkoyUvdJCm1I4m46Y4Lwl8StJ4hOO92Gbq3auawbabcFQyBoiYwSs1mJMbwOUuVQW_qWMLlve0IhRKE2Vdzjls-54oK7AmGWBh-26StL4Iragu5ALhyGaheIZ4qyyQcDJQVzGHe4I0xKNdE7egZlsgDnU3v3RUpFrjtiPPatlH183kwFOMtmPCU0HL_Inmrr96dr8aPg3l8Fj2Gp3gma_eZVq7EPy4iZykni9gHkotFEHSIuifhR6oEfaevWpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0oJEYXvo34nIUxcVFoZ1pK3RGFoAipCSS4IvPChaYQWmLiyn_wD_0S77QDKkZj3HVxp5nOvZ17ZubMuQidUB0XlOl7W1JaLvdcK7AFPAkhlPR8ydJ73K12udF1r3tez3Bz9F0YM4JxUdOqoEfpZK3_7pEclMwZY8mBGRVSVw-eHQ8m10WUhzxFSA7lq3fhbWu24nL8tKadtrd0g49zym_v-JKXPpG60jxTX8uKqcapPKGmlzwUJwl07nlOvPHfn7COVg0CxdUsZDbQgoo20UprJt8ab6FmzWyN43AIjhlGby-vnSed59Q5DvX2_VjrsGIWSTxW9xmVNsJpVZ0YAwzGaQkKrOmn26hbr3UuGpapumAJAC-JVWaElRmDZSFVLiUycITNA-ILBVCFEqq4z52Ac8UF9wTALQ1CiB0oR4BniaA7KBcNI7WLsG-Lis0HAyUFcxl3uStsSrXgO0QIZbKAStMx7wsjSa4rYzz2HaNCPj9MBXQ2azHK5Dh-sT3VHuhP_fGj4d5fDY_RUnhZ799ctZv7aBmgUyXjbx-gXDKeqEOAJwk_MkH4Dpau2Rs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+Poisson%E2%80%93Tweedie%3A+Properties+and+regression+models+for+count+data&rft.jtitle=Statistical+modelling&rft.au=Bonat%2C+Wagner+H.&rft.au=J%C3%B8rgensen%2C+Bent&rft.au=Kokonendji%2C+C%C3%A9lestin+C.&rft.au=Hinde%2C+John&rft.date=2018-02-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=18&rft.issue=1&rft.spage=24&rft.epage=49&rft_id=info:doi/10.1177%2F1471082X17715718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X17715718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon |