MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation

[Display omitted] •An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively inhibits the rapid recombination of electron-hole pairs.•The MF-MXene/PPy demonstrates high efficiency for water evaporation and pollutant de...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 636; pp. 291 - 304
Main Authors Mu, Xiaotong, Chen, Lihua, Qu, Nannan, Yu, Jiale, Jiang, Xiaoqian, Xiao, Chaohu, Luo, Xingping, Hasi, Qimeige
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively inhibits the rapid recombination of electron-hole pairs.•The MF-MXene/PPy demonstrates high efficiency for water evaporation and pollutant degradation.•The MF-MXene/PPy showed salt tolerance and salt collection during evaporation.•The superior activity is attributed to the synergy of photothermal and photocatalysis effect. The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m−1 K−1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m−2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h−1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
AbstractList The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m⁻¹ K⁻¹), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m⁻² illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m⁻²h⁻¹ and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m K ), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m h and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
[Display omitted] •An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively inhibits the rapid recombination of electron-hole pairs.•The MF-MXene/PPy demonstrates high efficiency for water evaporation and pollutant degradation.•The MF-MXene/PPy showed salt tolerance and salt collection during evaporation.•The superior activity is attributed to the synergy of photothermal and photocatalysis effect. The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m−1 K−1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m−2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h−1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
Author Xiao, Chaohu
Hasi, Qimeige
Chen, Lihua
Qu, Nannan
Yu, Jiale
Jiang, Xiaoqian
Luo, Xingping
Mu, Xiaotong
Author_xml – sequence: 1
  givenname: Xiaotong
  surname: Mu
  fullname: Mu, Xiaotong
– sequence: 2
  givenname: Lihua
  surname: Chen
  fullname: Chen, Lihua
  email: clh@xbmu.edu.cn
– sequence: 3
  givenname: Nannan
  surname: Qu
  fullname: Qu, Nannan
– sequence: 4
  givenname: Jiale
  surname: Yu
  fullname: Yu, Jiale
– sequence: 5
  givenname: Xiaoqian
  surname: Jiang
  fullname: Jiang, Xiaoqian
– sequence: 6
  givenname: Chaohu
  surname: Xiao
  fullname: Xiao, Chaohu
– sequence: 7
  givenname: Xingping
  surname: Luo
  fullname: Luo, Xingping
– sequence: 8
  givenname: Qimeige
  surname: Hasi
  fullname: Hasi, Qimeige
  email: ha2qimei@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36638569$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LHTEUxYMo-vzzBboos-xmnslkkkygmyLVFixuFNyFmNzYPGaSaZInvG_fjE83XVi4JHD5nQPnnlN0GGIAhD4RvCaY8MvNemN8Xne4o2tM6gwHaEWwZK0gmB6iFcYdaaWQ4gSd5rzBmBDG5DE6oZzTgXG5QvrXIwS4nOO4m3cpxREaE3UB20ww6skHaF3UU-NiasA5bzyE0vhQIDltvB4beNFzTLr4GBodbDP_jiVaeE7avi7P0ZHTY4aLt_8MPVx_v7_60d7e3fy8-nbbGjrI0jLLB8wIt0b0vWACnLSEakcJkwKEwb17MjWA5T1lfY81t9b0uKuvrrGAnqEve985xT9byEVNPhsYRx0gbrOqRpRIyhn-L9oJzoSQAxsq-vkN3T5NYNWc_KTTTr1fsALDHjAp5pzAKePLa_CStB8VwWopS23UUpZaylKY1Fm8u3-k7-4fir7uRVBv-eIhqbx0YsD6BKYoG_1H8r_u365n
CitedBy_id crossref_primary_10_1016_j_ceramint_2023_08_278
crossref_primary_10_1016_j_jallcom_2024_177482
crossref_primary_10_1039_D4TA00038B
crossref_primary_10_1016_j_cej_2024_149304
crossref_primary_10_1016_j_cej_2024_151940
crossref_primary_10_1016_j_cej_2024_156282
crossref_primary_10_1016_j_cej_2024_156563
crossref_primary_10_1002_adfm_202500800
crossref_primary_10_1016_j_ces_2024_120601
crossref_primary_10_1016_j_renene_2024_121926
crossref_primary_10_1039_D4SE00617H
crossref_primary_10_1016_j_seppur_2024_127454
crossref_primary_10_1016_j_cej_2025_161873
crossref_primary_10_1016_j_applthermaleng_2023_122332
crossref_primary_10_1016_j_seppur_2023_124588
crossref_primary_10_1021_acsomega_4c04849
crossref_primary_10_1016_j_desal_2025_118657
crossref_primary_10_1016_j_cej_2024_156929
crossref_primary_10_1016_j_indcrop_2024_118590
crossref_primary_10_1016_j_cej_2023_147158
crossref_primary_10_1016_j_carbon_2024_119972
crossref_primary_10_1021_acsestwater_4c00708
crossref_primary_10_1016_j_desal_2024_118472
crossref_primary_10_1016_j_jcis_2023_05_058
crossref_primary_10_1016_j_cej_2023_145337
crossref_primary_10_1016_j_carbpol_2023_121324
crossref_primary_10_1016_j_colsurfa_2025_136160
crossref_primary_10_1016_j_jece_2025_115619
crossref_primary_10_1016_j_seppur_2024_130936
crossref_primary_10_1016_j_compositesa_2023_107782
crossref_primary_10_1007_s40820_024_01612_0
crossref_primary_10_1016_j_seppur_2024_130975
crossref_primary_10_1016_j_seppur_2024_131344
crossref_primary_10_1002_adfm_202307533
crossref_primary_10_1016_j_greenca_2025_01_001
crossref_primary_10_3390_c10030086
crossref_primary_10_1016_j_jpowsour_2024_234688
crossref_primary_10_1039_D3CC02452K
crossref_primary_10_26599_NRE_2023_9120062
crossref_primary_10_1016_j_seppur_2023_124477
crossref_primary_10_1016_j_susmat_2024_e00941
crossref_primary_10_1016_j_jcis_2024_03_042
crossref_primary_10_1016_j_cej_2023_148289
crossref_primary_10_1021_acsami_3c18523
crossref_primary_10_1016_j_desal_2025_118565
crossref_primary_10_1016_j_cej_2024_149927
crossref_primary_10_1021_acsami_4c19137
crossref_primary_10_1002_cssc_202401307
crossref_primary_10_1016_j_desal_2023_117194
crossref_primary_10_1016_j_jcis_2023_11_052
crossref_primary_10_1016_j_jcis_2023_12_059
crossref_primary_10_1016_j_nanoen_2023_109180
crossref_primary_10_1016_j_synthmet_2024_117768
crossref_primary_10_1016_j_susmat_2025_e01280
crossref_primary_10_1016_j_seppur_2025_131425
crossref_primary_10_1016_j_matlet_2023_135828
crossref_primary_10_1016_j_jcis_2023_12_050
crossref_primary_10_1016_j_inoche_2023_111984
crossref_primary_10_1016_j_seppur_2024_129413
crossref_primary_10_1016_j_cej_2024_157511
crossref_primary_10_1016_j_jallcom_2023_172656
crossref_primary_10_1016_j_solener_2024_112853
crossref_primary_10_1021_acsami_3c12171
crossref_primary_10_1039_D4NR01750A
crossref_primary_10_1016_j_surfin_2024_104191
crossref_primary_10_1016_j_cej_2023_147025
crossref_primary_10_1016_j_desal_2024_118159
crossref_primary_10_1016_j_desal_2024_118356
crossref_primary_10_1021_acsestengg_3c00318
crossref_primary_10_1016_j_cej_2023_146522
crossref_primary_10_1016_j_desal_2024_118055
crossref_primary_10_1016_j_coco_2023_101741
crossref_primary_10_1021_acsaem_3c02894
crossref_primary_10_1016_j_jcis_2023_05_035
crossref_primary_10_1002_smtd_202401541
crossref_primary_10_1016_j_desal_2024_118053
crossref_primary_10_1016_j_ccr_2024_216089
crossref_primary_10_1016_j_chemosphere_2025_144064
crossref_primary_10_1016_j_jece_2024_112869
crossref_primary_10_1002_tcr_202300184
crossref_primary_10_1016_j_coco_2023_101746
crossref_primary_10_1016_j_flatc_2025_100825
crossref_primary_10_1016_j_ceramint_2024_09_120
crossref_primary_10_1002_adsu_202400142
crossref_primary_10_1007_s11706_024_0701_0
crossref_primary_10_1021_acsami_4c12476
crossref_primary_10_1016_j_seppur_2024_130273
crossref_primary_10_1016_j_desal_2023_116961
crossref_primary_10_1016_j_desal_2024_117312
crossref_primary_10_1016_j_chemosphere_2023_139550
crossref_primary_10_1016_j_jiec_2024_01_033
crossref_primary_10_1002_app_53879
crossref_primary_10_1021_acsami_4c00415
Cites_doi 10.1039/C8NR00313K
10.1002/adfm.202106978
10.1039/C9TC03309B
10.1016/j.seppur.2022.120989
10.1021/acsami.1c06810
10.1016/j.renene.2022.04.139
10.1016/j.mattod.2020.10.022
10.1016/j.solener.2022.08.036
10.1021/acsami.9b14793
10.1002/admt.202000065
10.1016/j.watres.2022.119011
10.1039/C9TA05859A
10.1016/j.jece.2022.108379
10.1002/solr.202100475
10.1002/cssc.201902775
10.1016/j.ijbiomac.2021.04.112
10.1016/j.jcis.2022.08.176
10.1021/acssuschemeng.8b02094
10.1016/j.jallcom.2019.06.243
10.1039/D1TA01045J
10.1016/j.solmat.2020.110574
10.1016/j.apsusc.2020.148006
10.1039/D1TA05058C
10.1016/j.eurpolymj.2019.05.021
10.1021/acsami.1c18379
10.1021/acs.langmuir.1c01647
10.1002/admi.201802040
10.1021/acsami.2c10946
10.1002/aenm.201802108
10.1021/acsami.9b18398
10.1016/j.cej.2021.130765
10.1039/D1SE01360B
10.1039/C8TA05569F
10.1016/j.jcis.2021.08.043
10.1002/adfm.202004460
10.1021/acsami.1c20747
10.1021/acs.langmuir.1c03102
10.1021/acs.est.2c03240
10.1016/j.apcatb.2018.04.061
10.1016/j.seppur.2022.120596
10.1016/j.cej.2021.133054
10.1016/j.apcatb.2021.120820
10.1016/j.apcatb.2021.120285
10.1021/acsami.1c21693
10.1016/j.ceramint.2021.03.319
10.1021/acsami.0c20202
10.1016/j.jece.2021.105787
10.1007/s40820-020-0411-9
10.1016/j.jcis.2022.06.143
10.1016/j.desal.2021.115228
10.1002/adfm.202102618
10.1016/j.ijbiomac.2021.08.203
10.1039/C9TA00176J
10.1016/j.cej.2021.131008
10.1016/j.seppur.2022.122166
10.1016/j.jcis.2022.01.078
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2023.01.018
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 304
ExternalDocumentID 36638569
10_1016_j_jcis_2023_01_018
S0021979723000188
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-5d680516dc744757ef9d13af31597e7c04fbc011d6435440a6ddc402ddca115e3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 12:09:38 EDT 2025
Fri Jul 11 07:31:46 EDT 2025
Thu Apr 03 07:10:09 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Tue Jul 01 04:18:59 EDT 2025
Fri Feb 23 02:36:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photodegradation
Solar-thermal conversion
Salt tolerance
Solar steam generation
MXene
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-5d680516dc744757ef9d13af31597e7c04fbc011d6435440a6ddc402ddca115e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36638569
PQID 2765779858
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3153193650
proquest_miscellaneous_2765779858
pubmed_primary_36638569
crossref_citationtrail_10_1016_j_jcis_2023_01_018
crossref_primary_10_1016_j_jcis_2023_01_018
elsevier_sciencedirect_doi_10_1016_j_jcis_2023_01_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Li, Bai, Wang, Li (b0005) 2021; 5
Wang, Zhao, Qin, Hu, Fan, Cao, Wang (b0190) 2019; 11
Chen, Xia, Du, Luo, Zhang, Li (b0015) 2020; 13
Ding, Wu, He, Yang, Gao, Yin, Ding (b0050) 2021; 9
Zhao, Zha, Pu, Bai, Bao, Liu, Yang, Yang (b0185) 2019; 7
Zhang, Zheng, Zhu, Wu, Zhang, Zhu (b0025) 2022; 193
Yang, Tan, Lu, Zeng, Ho (b0090) 2020; 30
Liu, Liu, An, Xiao, Zhai, Li (b0285) 2019; 802
Dong, Tan, Wang, Cai, Li, Sonne, Li (b0230) 2022; 223
Cheng, Wang, Liu, Shen, Schubert, Guo, Liu (b0145) 2022; 14
Ihsanullah (b0140) 2020; 12
Wang, Wei, Li, Chen, Mu, Sun, Zhu, Liang, Li (b0045) 2019; 7
Li, Chen, Huang, Xue, Li, Li, Chang, Wang, Li, Jia (b0310) 2021; 47
Li, Tian, Li, Liu, Li, Feng, Shu, Yu (b0250) 2022; 606
Li, Li, Qiu, Feng (b0275) 2022; 244
Wang, Xiao, Lu, Qu, Hasi, Zhang, Chen (b0110) 2022; 10
Zhan, Song, Zhou, Lu (b0160) 2019; 7
Chen, Li, Zhang (b0085) 2021; 13
Chen, Mu, Guo, Lu, Yang, Xiao, Hasi (b0075) 2022; 626
Xiong, Zhu, Wang, Chen, Yu (b0320) 2022; 32
Chen, Wei, Tian, Han, Li, Meng, Hasi (b0120) 2021; 37
Li, Feng, Wu, Wang, Yu (b0080) 2022; 292
Shi, Gao, Hu, Luo, Hu, Huang, Zhang, Wang (b0135) 2022; 287
Xia, Wei, Han, Tian, Xiao, Hasi, Zhang, Chen (b0265) 2022; 25
Li, Zhou, Mu, Wang, Sun, Zhu, Zhang, Li, Li (b0270) 2020; 12
Yan, Song, Li, Yang, Jia, Wang, Yang (b0295) 2022; 301
Ding, Zhou, Ong, WeiHo (b0105) 2021; 42
Hong, Guo, Yuan, Ji, Li, Lin, Pan (b0195) 2020; 18
Zhao, Yang, Yang, Tian, Que (b0255) 2018; 6
Lin, He, Jiang, Li, Wang, Wu, He, Wu (b0205) 2020; 8
Xiao, Hasi, Wang, Zhang, Li, Zhang, Chen, Li (b0245) 2022; 613
Xiao, Wang, Guo, Zhang, Hasi, Tian, Chen (b0125) 2022; 38
Ding, Feng, He, Liu, Hao, Gong, Niu, Qu (b0280) 2021; 5
My Tran, Thanh Hoai Ta, Sreedhar, Noh (b0200) 2021; 537
He, Guo (b0290) 2022; 629
Liu, Chen, Xu, Yao, Xie, Cheng, Miao, Wang (b0095) 2021; 2
Shi, Meng, Wang, Cheng, Zhang, Liao (b0055) 2022; 14
Zhou, Liu, Zhang, Tian, Zhan, Lu (b0155) 2019; 6
Zhang, Zhang, Shen, Ye, Cai, Wu (b0260) 2021; 9
Fan, Lu, Zhang, Xu, Lu, Tang, Yang (b0065) 2021; 295
Xia, Zhao, Hasi, Zhang, Li, Chen (b0115) 2021; 21
Khajevand, Azizian, Boukherroub (b0035) 2021; 13
Li, Tekell, Huang, Bertelsmann, Lau, Fan (b0150) 2018; 8
Choi, Soo Yoo, Hyuk Lee, Moon, Yoo (b0100) 2022; 302
Xiong, Zhu, Wang, Chen, Yu (b0235) 2021; 32
Guo, Wu, Gao, Li, Long (b0060) 2021; 189
Foo, Huang, Lim, Jiang, Altarawneh (b0300) 2019; 117
Wu, Wang, Wu, Zhao, Lu, Yang, Xu (b0020) 2021; 31
Wen, Zhang, Yan, Huang, Lin, Zhu, Wang, Zhou, Yang, Liu (b0130) 2021; 516
Zhou, Panatdasirisuk, Mathis, Anasori, Lu, Zhang, Liao, Gogotsi, Yang (b0165) 2018; 10
Guo, Wang, Wang, Wang, Li, Mei, Qian, Wang (b0040) 2022; 427
Dandan Hao, Bi, Cai (b0170) 2018; 6
Yang, Lin, Zabihi, Yang, Zhu (b0215) 2021; 181
Wang, Chang, Li, Wang, Deng (b0030) 2022; 14
Yu, Zeng, Zhou, Chen, Cong, Liu, Ji, Zhu, Xu (b0225) 2021; 426
Liu, Xia, Zhang, Guo, Zhang, Yu, Yang (b0070) 2021; 13
Zhao, Chen, Zhang, Hasi, Zhang, Luo, Li (b0010) 2020; 214
Yang, Zhou, Han, Feng, Ma, Han, Liu, Shen (b0220) 2021; 13
Yang, Lin, Zabihi, Yang (b0305) 2021; 181
Yu, Wu (b0210) 2020; 5
Zhang, Wong, An (b0180) 2022; 430
Zhang, Ma, Zhang, Dong, Zhou (b0315) 2018; 235
Cao, Wu, Zhu, Gupta, Martinez, Zhang, Ghim, Wang, Liu, Jun (b0175) 2021; 9
Pan, Li, Wang, Liu, Shen, Liu (b0240) 2022; 56
Yang (10.1016/j.jcis.2023.01.018_b0090) 2020; 30
Yang (10.1016/j.jcis.2023.01.018_b0215) 2021; 181
He (10.1016/j.jcis.2023.01.018_b0290) 2022; 629
Li (10.1016/j.jcis.2023.01.018_b0270) 2020; 12
Lin (10.1016/j.jcis.2023.01.018_b0205) 2020; 8
Wu (10.1016/j.jcis.2023.01.018_b0020) 2021; 31
Liu (10.1016/j.jcis.2023.01.018_b0070) 2021; 13
Yang (10.1016/j.jcis.2023.01.018_b0220) 2021; 13
Shi (10.1016/j.jcis.2023.01.018_b0135) 2022; 287
Xia (10.1016/j.jcis.2023.01.018_b0265) 2022; 25
Wang (10.1016/j.jcis.2023.01.018_b0045) 2019; 7
Wang (10.1016/j.jcis.2023.01.018_b0110) 2022; 10
Dandan Hao (10.1016/j.jcis.2023.01.018_b0170) 2018; 6
Zhan (10.1016/j.jcis.2023.01.018_b0160) 2019; 7
Li (10.1016/j.jcis.2023.01.018_b0250) 2022; 606
Wang (10.1016/j.jcis.2023.01.018_b0005) 2021; 5
Xiao (10.1016/j.jcis.2023.01.018_b0125) 2022; 38
Zhou (10.1016/j.jcis.2023.01.018_b0155) 2019; 6
Zhang (10.1016/j.jcis.2023.01.018_b0180) 2022; 430
Xiao (10.1016/j.jcis.2023.01.018_b0245) 2022; 613
Cheng (10.1016/j.jcis.2023.01.018_b0145) 2022; 14
Li (10.1016/j.jcis.2023.01.018_b0150) 2018; 8
Xiong (10.1016/j.jcis.2023.01.018_b0235) 2021; 32
Dong (10.1016/j.jcis.2023.01.018_b0230) 2022; 223
Liu (10.1016/j.jcis.2023.01.018_b0095) 2021; 2
Shi (10.1016/j.jcis.2023.01.018_b0055) 2022; 14
Ihsanullah (10.1016/j.jcis.2023.01.018_b0140) 2020; 12
Xia (10.1016/j.jcis.2023.01.018_b0115) 2021; 21
Hong (10.1016/j.jcis.2023.01.018_b0195) 2020; 18
Liu (10.1016/j.jcis.2023.01.018_b0285) 2019; 802
Pan (10.1016/j.jcis.2023.01.018_b0240) 2022; 56
Li (10.1016/j.jcis.2023.01.018_b0080) 2022; 292
Zhao (10.1016/j.jcis.2023.01.018_b0255) 2018; 6
Li (10.1016/j.jcis.2023.01.018_b0310) 2021; 47
Yang (10.1016/j.jcis.2023.01.018_b0305) 2021; 181
Chen (10.1016/j.jcis.2023.01.018_b0085) 2021; 13
Zhang (10.1016/j.jcis.2023.01.018_b0315) 2018; 235
Zhang (10.1016/j.jcis.2023.01.018_b0025) 2022; 193
Wang (10.1016/j.jcis.2023.01.018_b0190) 2019; 11
Zhao (10.1016/j.jcis.2023.01.018_b0010) 2020; 214
Choi (10.1016/j.jcis.2023.01.018_b0100) 2022; 302
Guo (10.1016/j.jcis.2023.01.018_b0060) 2021; 189
Zhang (10.1016/j.jcis.2023.01.018_b0260) 2021; 9
Ding (10.1016/j.jcis.2023.01.018_b0105) 2021; 42
Chen (10.1016/j.jcis.2023.01.018_b0075) 2022; 626
Ding (10.1016/j.jcis.2023.01.018_b0050) 2021; 9
Chen (10.1016/j.jcis.2023.01.018_b0120) 2021; 37
Cao (10.1016/j.jcis.2023.01.018_b0175) 2021; 9
Yu (10.1016/j.jcis.2023.01.018_b0225) 2021; 426
Ding (10.1016/j.jcis.2023.01.018_b0280) 2021; 5
Zhou (10.1016/j.jcis.2023.01.018_b0165) 2018; 10
Foo (10.1016/j.jcis.2023.01.018_b0300) 2019; 117
Chen (10.1016/j.jcis.2023.01.018_b0015) 2020; 13
Guo (10.1016/j.jcis.2023.01.018_b0040) 2022; 427
Fan (10.1016/j.jcis.2023.01.018_b0065) 2021; 295
Yu (10.1016/j.jcis.2023.01.018_b0210) 2020; 5
My Tran (10.1016/j.jcis.2023.01.018_b0200) 2021; 537
Wen (10.1016/j.jcis.2023.01.018_b0130) 2021; 516
Li (10.1016/j.jcis.2023.01.018_b0275) 2022; 244
Wang (10.1016/j.jcis.2023.01.018_b0030) 2022; 14
Khajevand (10.1016/j.jcis.2023.01.018_b0035) 2021; 13
Zhao (10.1016/j.jcis.2023.01.018_b0185) 2019; 7
Yan (10.1016/j.jcis.2023.01.018_b0295) 2022; 301
Xiong (10.1016/j.jcis.2023.01.018_b0320) 2022; 32
References_xml – volume: 427
  year: 2022
  ident: b0040
  article-title: Achieving steam and electrical power from solar energy by MoS
  publication-title: Chem. Eng. J.
– volume: 295
  year: 2021
  ident: b0065
  article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation
  publication-title: Appl. Catal. B: Environ.
– volume: 302
  year: 2022
  ident: b0100
  article-title: Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection
  publication-title: Sep. Purif. Technol.
– volume: 9
  start-page: 22585
  year: 2021
  end-page: 22596
  ident: b0175
  article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability
  publication-title: J. Mater. Chem. A
– volume: 21
  year: 2021
  ident: b0115
  article-title: Superhydrophilic and oil-repellent porous material based on halloysite nanotubes and wood fibers for efficient solar steam generation
  publication-title: Mater. Today Energy
– volume: 38
  start-page: 1888
  year: 2022
  end-page: 1896
  ident: b0125
  article-title: Coffee grounds-doped alginate porous materials for efficient solar steam generation
  publication-title: Langmuir
– volume: 301
  year: 2022
  ident: b0295
  article-title: Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation
  publication-title: Appl. Catal. B: Environ.
– volume: 802
  start-page: 445
  year: 2019
  end-page: 457
  ident: b0285
  article-title: Designed construction of Ti
  publication-title: J. Alloys Compd.
– volume: 181
  start-page: 1063
  year: 2021
  end-page: 1071
  ident: b0215
  article-title: High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization
  publication-title: Int. J. Biol. Macromol.
– volume: 7
  start-page: 9820
  year: 2019
  end-page: 9829
  ident: b0160
  article-title: Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding
  publication-title: J. Mater. Chem. C
– volume: 193
  start-page: 706
  year: 2022
  end-page: 714
  ident: b0025
  article-title: Insight into the role of the channel in photothermal materials for solar interfacial water evaporation
  publication-title: Renew. Energy
– volume: 42
  start-page: 178
  year: 2021
  ident: b0105
  article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization
  publication-title: Mater. Today
– volume: 629
  start-page: 508
  year: 2022
  end-page: 521
  ident: b0290
  article-title: Fabric-based superhydrophobic MXene@polypyrrole heater with superior dual-driving energy conversion
  publication-title: J. Colloid Interface Sci.
– volume: 292
  year: 2022
  ident: b0080
  article-title: Synergy of photothermal effect in integrated 0D Ti
  publication-title: Sep. Purif. Technol.
– volume: 12
  start-page: 798
  year: 2020
  end-page: 806
  ident: b0270
  article-title: Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 2000065
  year: 2020
  ident: b0210
  article-title: Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation
  publication-title: Adv. Mater. Technol.
– volume: 516
  year: 2021
  ident: b0130
  article-title: Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation
  publication-title: Desalination
– volume: 9
  start-page: 11241
  year: 2021
  end-page: 11247
  ident: b0050
  article-title: A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation
  publication-title: J. Mater. Chem. A
– volume: 606
  start-page: 748
  year: 2022
  end-page: 757
  ident: b0250
  article-title: An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency
  publication-title: J. Colloid Interface Sci.
– volume: 30
  start-page: 2004460
  year: 2020
  ident: b0090
  article-title: Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation
  publication-title: Adv. Funct. Mater.
– volume: 214
  year: 2020
  ident: b0010
  article-title: Functional oil-repellent photothermal materials based on nickel foam for efficient solar steam generation
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 10
  year: 2022
  ident: b0110
  article-title: Aligned aerogels with high salt-resistance and anti-biofouling for efficient solar evaporation
  publication-title: J. Environ. Chem. Eng.
– volume: 14
  start-page: 1
  year: 2022
  end-page: 16
  ident: b0145
  article-title: Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth
  publication-title: Nano-Micro Lett.
– volume: 31
  start-page: 2102618
  year: 2021
  ident: b0020
  article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 11818
  year: 2022
  end-page: 11826
  ident: b0240
  article-title: Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation
  publication-title: Environ. Sci. Technol.
– volume: 32
  start-page: 2106978
  year: 2021
  ident: b0235
  article-title: Tree-Inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 10446
  year: 2019
  end-page: 10455
  ident: b0185
  article-title: Macroporous three-dimensional MXene architectures for highly efficient solar steam generation
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 31680
  year: 2021
  end-page: 31690
  ident: b0035
  article-title: Naturally abundant green moss for highly efficient solar thermal generation of clean water
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 18311
  year: 2019
  end-page: 18317
  ident: b0045
  article-title: Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation
  publication-title: J. Mater. Chem. A
– volume: 25
  year: 2022
  ident: b0265
  article-title: An integrated solar absorber with salt-resistant and oleophobic based on PVDF composite membrane for solar steam generation
  publication-title: Mater. Today Energy
– volume: 244
  start-page: 322
  year: 2022
  end-page: 330
  ident: b0275
  article-title: High-efficiency wood-based evaporators for solar-driven interfacial evaporation
  publication-title: Sol. Energy
– volume: 287
  year: 2022
  ident: b0135
  article-title: Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles
  publication-title: Sep. Purif. Technol.
– volume: 426
  year: 2021
  ident: b0225
  article-title: A one-pot synthesis of nitrogen doped porous MXene/TiO
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 8909
  year: 2021
  end-page: 8918
  ident: b0220
  article-title: Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 6005
  year: 2018
  end-page: 6013
  ident: b0165
  article-title: Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage
  publication-title: Nanoscale
– volume: 5
  start-page: 5627
  year: 2021
  end-page: 5637
  ident: b0280
  article-title: A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment
  publication-title: Sustain. Energy Fuels
– volume: 5
  start-page: 2100475
  year: 2021
  ident: b0005
  article-title: Recent progress on the solar-driven interfacial evaporation based on natural products and synthetic polymers
  publication-title: Sol. RRL
– volume: 430
  year: 2022
  ident: b0180
  article-title: Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification
  publication-title: Chem. Eng. J.
– volume: 181
  start-page: 1063
  year: 2021
  end-page: 1071
  ident: b0305
  article-title: Meifang Zhu, High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization
  publication-title: Int. J. Biol. Macromol.
– volume: 13
  start-page: 493
  year: 2020
  end-page: 500
  ident: b0015
  article-title: Superhydrophilic and oleophobic porous architectures based on basalt fibers as oil-repellent photothermal materials for solar steam generation
  publication-title: ChemSusChem
– volume: 11
  start-page: 44249
  year: 2019
  end-page: 44262
  ident: b0190
  article-title: MIL-100(Fe)/Ti
  publication-title: ACS Appl. Mater. Interfaces
– volume: 626
  start-page: 35
  year: 2022
  end-page: 46
  ident: b0075
  article-title: MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 1802040
  year: 2019
  ident: b0155
  article-title: Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding
  publication-title: Adv. Mater. Interfaces
– volume: 117
  start-page: 227
  year: 2019
  end-page: 235
  ident: b0300
  article-title: Hydrostatic bath synthesis of conductive polypyrrole/reduced graphene oxide aerogel as compression sensor
  publication-title: Eur. Polym. J.
– volume: 9
  year: 2021
  ident: b0260
  article-title: Improving seawater desalination efficiency by solar driven interfacial evaporation based on biochar evaporator of Nannochloropsis oculata residue
  publication-title: J. Environ. Chem. Eng.
– volume: 14
  start-page: 4522
  year: 2022
  end-page: 4531
  ident: b0055
  article-title: Scalable fabrication of conjugated microporous polymer sponges for efficient solar steam generation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 37
  start-page: 10191
  year: 2021
  end-page: 10199
  ident: b0120
  article-title: Dual-functional graphene oxide-based photothermal materials with aligned channels and oleophobicity for efficient solar steam generation
  publication-title: Langmuir
– volume: 613
  start-page: 661
  year: 2022
  end-page: 670
  ident: b0245
  article-title: Hollow SiO
  publication-title: J. Colloid Interface Sci.
– volume: 8
  year: 2020
  ident: b0205
  article-title: Effective preparation of superhydrophilic-underwater superoleophobic nanoparticles/polymeric sponges for oil-water separation
  publication-title: Surf. Topogr.: Metrol. Prop.
– volume: 13
  start-page: 59518
  year: 2021
  end-page: 59526
  ident: b0085
  article-title: Design of a separated solar interfacial evaporation system for simultaneous water and salt collection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2020
  ident: b0195
  article-title: Recent progress of two-dimensional MXenes in photocatalytic applications: a review
  publication-title: Mater. Today Energy
– volume: 32
  year: 2022
  ident: b0320
  article-title: Tree-inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 10789
  year: 2018
  end-page: 10797
  ident: b0170
  article-title: Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation
  publication-title: ACS Sustain. Chem. Eng.
– volume: 223
  year: 2022
  ident: b0230
  article-title: Reviewing wood-based solar-driven interfacial evaporators for desalination
  publication-title: Water Res.
– volume: 2
  year: 2021
  ident: b0095
  article-title: Salt-rejecting solar interfacial evaporation
  publication-title: Cell Rep. Phys. Sci.
– volume: 14
  start-page: 44958
  year: 2022
  end-page: 44968
  ident: b0030
  article-title: Solar interface evaporation system assisted by mirror reflection heat collection based on sunflower shasing the sun
  publication-title: ACS Appl. Mater. Interfaces
– volume: 537
  year: 2021
  ident: b0200
  article-title: Ti
  publication-title: Appl. Surf. Sci.
– volume: 235
  start-page: 17
  year: 2018
  end-page: 25
  ident: b0315
  article-title: Multifunctional g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 189
  start-page: 910
  year: 2021
  end-page: 920
  ident: b0060
  article-title: Mechanistic study of Cr (VI) removal by modified alginate/GO composite via synergistic adsorption and photocatalytic reduction
  publication-title: Int. J. Biol. Macromol.
– volume: 13
  start-page: 55299
  year: 2021
  end-page: 55306
  ident: b0070
  article-title: Sunflower-stalk-based solar-driven evaporator with a confined 2D water channel and an enclosed thermal-insulating cellular structure for stable and efficient steam generation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 72
  year: 2020
  ident: b0140
  article-title: Potential of MXenes in water desalination: current status and perspectives
  publication-title: Nano-micro Lett.
– volume: 6
  start-page: 16196
  year: 2018
  end-page: 16204
  ident: b0255
  article-title: Hydrophobic surface enabled salt-blocking 2D Ti
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 19800
  year: 2021
  end-page: 19808
  ident: b0310
  article-title: Photothermal, photocatalytic, and anti-bacterial Ti-Ag-O nanoporous powders for interfacial solar driven water evaporation
  publication-title: Ceram. Int.
– volume: 8
  start-page: 1802108
  year: 2018
  ident: b0150
  article-title: Synergistic high-rate solar steaming and mercury removal with MoS
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 6005
  issue: 13
  year: 2018
  ident: 10.1016/j.jcis.2023.01.018_b0165
  article-title: Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage
  publication-title: Nanoscale
  doi: 10.1039/C8NR00313K
– volume: 32
  start-page: 2106978
  issue: 9
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0235
  article-title: Tree-Inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106978
– volume: 2
  issue: 1
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0095
  article-title: Salt-rejecting solar interfacial evaporation
  publication-title: Cell Rep. Phys. Sci.
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0145
  article-title: Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth
  publication-title: Nano-Micro Lett.
– volume: 18
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0195
  article-title: Recent progress of two-dimensional MXenes in photocatalytic applications: a review
  publication-title: Mater. Today Energy
– volume: 7
  start-page: 9820
  issue: 32
  year: 2019
  ident: 10.1016/j.jcis.2023.01.018_b0160
  article-title: Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03309B
– volume: 25
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0265
  article-title: An integrated solar absorber with salt-resistant and oleophobic based on PVDF composite membrane for solar steam generation
  publication-title: Mater. Today Energy
– volume: 292
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0080
  article-title: Synergy of photothermal effect in integrated 0D Ti2O3 nanoparticles/1D carboxylated carbon nanotubes for multifunctional water purification
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120989
– volume: 13
  start-page: 31680
  issue: 27
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0035
  article-title: Naturally abundant green moss for highly efficient solar thermal generation of clean water
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06810
– volume: 193
  start-page: 706
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0025
  article-title: Insight into the role of the channel in photothermal materials for solar interfacial water evaporation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.04.139
– volume: 42
  start-page: 178
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0105
  article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.10.022
– volume: 244
  start-page: 322
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0275
  article-title: High-efficiency wood-based evaporators for solar-driven interfacial evaporation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.08.036
– volume: 11
  start-page: 44249
  issue: 47
  year: 2019
  ident: 10.1016/j.jcis.2023.01.018_b0190
  article-title: MIL-100(Fe)/Ti3C2 MXene as a schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14793
– volume: 5
  start-page: 2000065
  issue: 6
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0210
  article-title: Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000065
– volume: 223
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0230
  article-title: Reviewing wood-based solar-driven interfacial evaporators for desalination
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119011
– volume: 7
  start-page: 18311
  issue: 31
  year: 2019
  ident: 10.1016/j.jcis.2023.01.018_b0045
  article-title: Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05859A
– volume: 10
  issue: 5
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0110
  article-title: Aligned aerogels with high salt-resistance and anti-biofouling for efficient solar evaporation
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108379
– volume: 5
  start-page: 2100475
  issue: 12
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0005
  article-title: Recent progress on the solar-driven interfacial evaporation based on natural products and synthetic polymers
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100475
– volume: 13
  start-page: 493
  issue: 3
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0015
  article-title: Superhydrophilic and oleophobic porous architectures based on basalt fibers as oil-repellent photothermal materials for solar steam generation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201902775
– volume: 181
  start-page: 1063
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0305
  article-title: Meifang Zhu, High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.04.112
– volume: 629
  start-page: 508
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0290
  article-title: Fabric-based superhydrophobic MXene@polypyrrole heater with superior dual-driving energy conversion
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.08.176
– volume: 6
  start-page: 10789
  issue: 8
  year: 2018
  ident: 10.1016/j.jcis.2023.01.018_b0170
  article-title: Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02094
– volume: 802
  start-page: 445
  year: 2019
  ident: 10.1016/j.jcis.2023.01.018_b0285
  article-title: Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.06.243
– volume: 9
  start-page: 11241
  issue: 18
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0050
  article-title: A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01045J
– volume: 214
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0010
  article-title: Functional oil-repellent photothermal materials based on nickel foam for efficient solar steam generation
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110574
– volume: 537
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0200
  article-title: Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148006
– volume: 9
  start-page: 22585
  issue: 39
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0175
  article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05058C
– volume: 117
  start-page: 227
  year: 2019
  ident: 10.1016/j.jcis.2023.01.018_b0300
  article-title: Hydrostatic bath synthesis of conductive polypyrrole/reduced graphene oxide aerogel as compression sensor
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.05.021
– volume: 13
  start-page: 59518
  issue: 49
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0085
  article-title: Design of a separated solar interfacial evaporation system for simultaneous water and salt collection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c18379
– volume: 37
  start-page: 10191
  issue: 33
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0120
  article-title: Dual-functional graphene oxide-based photothermal materials with aligned channels and oleophobicity for efficient solar steam generation
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c01647
– volume: 6
  start-page: 1802040
  issue: 6
  year: 2019
  ident: 10.1016/j.jcis.2023.01.018_b0155
  article-title: Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201802040
– volume: 14
  start-page: 44958
  issue: 39
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0030
  article-title: Solar interface evaporation system assisted by mirror reflection heat collection based on sunflower shasing the sun
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c10946
– volume: 8
  start-page: 1802108
  issue: 32
  year: 2018
  ident: 10.1016/j.jcis.2023.01.018_b0150
  article-title: Synergistic high-rate solar steaming and mercury removal with MoS2/C@ polyurethane composite cponges
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802108
– volume: 12
  start-page: 798
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0270
  article-title: Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18398
– volume: 426
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0225
  article-title: A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130765
– volume: 5
  start-page: 5627
  issue: 21
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0280
  article-title: A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D1SE01360B
– volume: 6
  start-page: 16196
  year: 2018
  ident: 10.1016/j.jcis.2023.01.018_b0255
  article-title: Hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05569F
– volume: 606
  start-page: 748
  issue: Pt 1
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0250
  article-title: An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.043
– volume: 30
  start-page: 2004460
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0090
  article-title: Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004460
– volume: 13
  start-page: 55299
  issue: 46
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0070
  article-title: Sunflower-stalk-based solar-driven evaporator with a confined 2D water channel and an enclosed thermal-insulating cellular structure for stable and efficient steam generation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c20747
– volume: 38
  start-page: 1888
  issue: 5
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0125
  article-title: Coffee grounds-doped alginate porous materials for efficient solar steam generation
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c03102
– volume: 56
  start-page: 11818
  issue: 16
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0240
  article-title: Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c03240
– volume: 235
  start-page: 17
  year: 2018
  ident: 10.1016/j.jcis.2023.01.018_b0315
  article-title: Multifunctional g-C3N4/graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.04.061
– volume: 287
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0135
  article-title: Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120596
– volume: 430
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0180
  article-title: Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133054
– volume: 301
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0295
  article-title: Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120820
– volume: 295
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0065
  article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120285
– volume: 14
  start-page: 4522
  issue: 3
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0055
  article-title: Scalable fabrication of conjugated microporous polymer sponges for efficient solar steam generation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c21693
– volume: 47
  start-page: 19800
  issue: 14
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0310
  article-title: Photothermal, photocatalytic, and anti-bacterial Ti-Ag-O nanoporous powders for interfacial solar driven water evaporation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.03.319
– volume: 13
  start-page: 8909
  issue: 7
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0220
  article-title: Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20202
– volume: 8
  issue: 4
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0205
  article-title: Effective preparation of superhydrophilic-underwater superoleophobic nanoparticles/polymeric sponges for oil-water separation
  publication-title: Surf. Topogr.: Metrol. Prop.
– volume: 9
  issue: 4
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0260
  article-title: Improving seawater desalination efficiency by solar driven interfacial evaporation based on biochar evaporator of Nannochloropsis oculata residue
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105787
– volume: 32
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0320
  article-title: Tree-inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106978
– volume: 12
  start-page: 72
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2023.01.018_b0140
  article-title: Potential of MXenes in water desalination: current status and perspectives
  publication-title: Nano-micro Lett.
  doi: 10.1007/s40820-020-0411-9
– volume: 626
  start-page: 35
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0075
  article-title: MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.06.143
– volume: 516
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0130
  article-title: Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.115228
– volume: 31
  start-page: 2102618
  issue: 34
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0020
  article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102618
– volume: 189
  start-page: 910
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0060
  article-title: Mechanistic study of Cr (VI) removal by modified alginate/GO composite via synergistic adsorption and photocatalytic reduction
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.08.203
– volume: 21
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0115
  article-title: Superhydrophilic and oil-repellent porous material based on halloysite nanotubes and wood fibers for efficient solar steam generation
  publication-title: Mater. Today Energy
– volume: 7
  start-page: 10446
  issue: 17
  year: 2019
  ident: 10.1016/j.jcis.2023.01.018_b0185
  article-title: Macroporous three-dimensional MXene architectures for highly efficient solar steam generation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00176J
– volume: 427
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0040
  article-title: Achieving steam and electrical power from solar energy by MoS2-based composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131008
– volume: 302
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0100
  article-title: Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122166
– volume: 181
  start-page: 1063
  year: 2021
  ident: 10.1016/j.jcis.2023.01.018_b0215
  article-title: High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.04.112
– volume: 613
  start-page: 661
  year: 2022
  ident: 10.1016/j.jcis.2023.01.018_b0245
  article-title: Hollow SiO2 microspheres in-situ doped poly(ionicliquid)s gels as efficient solar steam generators for desalination
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.01.078
SSID ssj0011559
Score 2.645514
Snippet [Display omitted] •An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively...
The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 291
SubjectTerms absorption
desalination
energy conversion
evaporation
foams
light
melamine
methyl orange
methylene blue
MXene
photocatalysis
Photodegradation
photolysis
polymerization
porosity
pyrroles
rhodamines
Salt tolerance
seawater
solar energy
Solar steam generation
Solar-thermal conversion
thermal conductivity
wastewater
wastewater treatment
Title MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation
URI https://dx.doi.org/10.1016/j.jcis.2023.01.018
https://www.ncbi.nlm.nih.gov/pubmed/36638569
https://www.proquest.com/docview/2765779858
https://www.proquest.com/docview/3153193650
Volume 636
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED-pBfFtfrOBNVpNmN5sepShV0ZNCb2GzD6zYJJQqePG3O5NHUdAehBBImIRlZnb2S3bmG4BTrcPYYZzjRvgux-iX8UyLhHsrpUu8IIpvyrZ4iAdP4nYohwvQb2thKK2yif11TK-idXPnotHmRTkaUY0vzjZFXbMIqCRU8CuEIi8__5yleYS07VaneYScpJvCmTrH68WMiLK7G1XUndT44_fF6S_wWS1C1-uw1qBHdlkPcAMWXL4Jy_22adsmrH7jF9wCfT90RINRvH6UHxNKJGSmQHBp2dihJ6Ag94UeMwSuzFVcErgEMWKQmHhN_9KZe9dl4yRM55aVz8W0sEQwUfdi2oan66vH_oA3PRW4QWgy5dLGCc7D2BpFVH_K-Z4NI-0jhDXKKRMInxnUmkWkIoUIdGytwW9MPGvUpYt2YDEvcrcHzEeBtl1nAtnV1LNEZybD90nlXU-bTHYgbJWZmoZwnPpevKZtZtlLSgZIyQBpEOKRdOBs9kxZ023MlZatjdIfTpPiejD3uZPWoCnah7ZIdO6KNxRSsVSql8g5MqgqjFsRQtsO7NbeMBtrhAAukXFv_58jO4AVuqLtqlAewuJ08uaOEPVMs-PKrY9h6fLmbvDwBd1sAoY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5S55D2UNI0D6dNu4XcyhLJ0mrlYzANTuz4lIBvy2ofxCGWhLEL-feZsVamgcaHgNBBmhXLzGj2k2b2G4BzrePMYZzjJvU9jtGv4IVOc-6tEC73KVF8U7XFJBvepzdTMd2BQbsXhsoqQ-xvYvo6WocrF0GbF_VsRnt88W2T1DWLgEqef4BdYqcSHdi9vB4NJ5tkAmXemkqPmNOAsHemKfN6NDNi7e4la_ZO6v3x__XpLfy5Xoeu9uFzAJDsspnjF9hx5QHsDdq-bQfw6R-Kwa-gb6eOmDCqp-f6eUG1hMxUiC8tmzt0BhTkvtJzhtiVuTWdBK5CjEgkFl7T73Tm_uo6-AnTpWX1Q7WsLHFMNO2YDuH-6s_dYMhDWwVuEJ0subBZjq9iZo0ktj_pfN_GifYJIhvppIlSXxjUmkWwItI00pm1Bj8z8axRly45gk5Zle4EmE8ibXvORKKnqW2JLkyBzxPSu742hehC3CpTmcA5Tq0vnlRbXPaoyACKDKCiGI-8C783Y-qGcWOrtGhtpF75jcIlYeu4X61BFdqHsiS6dNUKhWQmpOznYosMqgpDV4LotgvHjTds5poghstF1j9958x-wt7w7nasxteT0Tf4SHcoexWL79BZLlbuDEHQsvgRnPwFsB8FNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene%2Fpolypyrrole+coated+melamine-foam+for+efficient+interfacial+evaporation+and+photodegradation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Mu%2C+Xiaotong&rft.au=Chen%2C+Lihua&rft.au=Qu%2C+Nannan&rft.au=Yu%2C+Jiale&rft.date=2023-04-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=636&rft.spage=291&rft.epage=304&rft_id=info:doi/10.1016%2Fj.jcis.2023.01.018&rft.externalDocID=S0021979723000188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon