MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation
[Display omitted] •An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively inhibits the rapid recombination of electron-hole pairs.•The MF-MXene/PPy demonstrates high efficiency for water evaporation and pollutant de...
Saved in:
Published in | Journal of colloid and interface science Vol. 636; pp. 291 - 304 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively inhibits the rapid recombination of electron-hole pairs.•The MF-MXene/PPy demonstrates high efficiency for water evaporation and pollutant degradation.•The MF-MXene/PPy showed salt tolerance and salt collection during evaporation.•The superior activity is attributed to the synergy of photothermal and photocatalysis effect.
The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m−1 K−1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m−2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h−1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator. |
---|---|
AbstractList | The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m⁻¹ K⁻¹), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m⁻² illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m⁻²h⁻¹ and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator. The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator. The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m K ), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m h and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator. [Display omitted] •An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively inhibits the rapid recombination of electron-hole pairs.•The MF-MXene/PPy demonstrates high efficiency for water evaporation and pollutant degradation.•The MF-MXene/PPy showed salt tolerance and salt collection during evaporation.•The superior activity is attributed to the synergy of photothermal and photocatalysis effect. The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m−1 K−1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m−2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h−1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator. |
Author | Xiao, Chaohu Hasi, Qimeige Chen, Lihua Qu, Nannan Yu, Jiale Jiang, Xiaoqian Luo, Xingping Mu, Xiaotong |
Author_xml | – sequence: 1 givenname: Xiaotong surname: Mu fullname: Mu, Xiaotong – sequence: 2 givenname: Lihua surname: Chen fullname: Chen, Lihua email: clh@xbmu.edu.cn – sequence: 3 givenname: Nannan surname: Qu fullname: Qu, Nannan – sequence: 4 givenname: Jiale surname: Yu fullname: Yu, Jiale – sequence: 5 givenname: Xiaoqian surname: Jiang fullname: Jiang, Xiaoqian – sequence: 6 givenname: Chaohu surname: Xiao fullname: Xiao, Chaohu – sequence: 7 givenname: Xingping surname: Luo fullname: Luo, Xingping – sequence: 8 givenname: Qimeige surname: Hasi fullname: Hasi, Qimeige email: ha2qimei@163.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36638569$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9LHTEUxYMo-vzzBboos-xmnslkkkygmyLVFixuFNyFmNzYPGaSaZInvG_fjE83XVi4JHD5nQPnnlN0GGIAhD4RvCaY8MvNemN8Xne4o2tM6gwHaEWwZK0gmB6iFcYdaaWQ4gSd5rzBmBDG5DE6oZzTgXG5QvrXIwS4nOO4m3cpxREaE3UB20ww6skHaF3UU-NiasA5bzyE0vhQIDltvB4beNFzTLr4GBodbDP_jiVaeE7avi7P0ZHTY4aLt_8MPVx_v7_60d7e3fy8-nbbGjrI0jLLB8wIt0b0vWACnLSEakcJkwKEwb17MjWA5T1lfY81t9b0uKuvrrGAnqEve985xT9byEVNPhsYRx0gbrOqRpRIyhn-L9oJzoSQAxsq-vkN3T5NYNWc_KTTTr1fsALDHjAp5pzAKePLa_CStB8VwWopS23UUpZaylKY1Fm8u3-k7-4fir7uRVBv-eIhqbx0YsD6BKYoG_1H8r_u365n |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_08_278 crossref_primary_10_1016_j_jallcom_2024_177482 crossref_primary_10_1039_D4TA00038B crossref_primary_10_1016_j_cej_2024_149304 crossref_primary_10_1016_j_cej_2024_151940 crossref_primary_10_1016_j_cej_2024_156282 crossref_primary_10_1016_j_cej_2024_156563 crossref_primary_10_1002_adfm_202500800 crossref_primary_10_1016_j_ces_2024_120601 crossref_primary_10_1016_j_renene_2024_121926 crossref_primary_10_1039_D4SE00617H crossref_primary_10_1016_j_seppur_2024_127454 crossref_primary_10_1016_j_cej_2025_161873 crossref_primary_10_1016_j_applthermaleng_2023_122332 crossref_primary_10_1016_j_seppur_2023_124588 crossref_primary_10_1021_acsomega_4c04849 crossref_primary_10_1016_j_desal_2025_118657 crossref_primary_10_1016_j_cej_2024_156929 crossref_primary_10_1016_j_indcrop_2024_118590 crossref_primary_10_1016_j_cej_2023_147158 crossref_primary_10_1016_j_carbon_2024_119972 crossref_primary_10_1021_acsestwater_4c00708 crossref_primary_10_1016_j_desal_2024_118472 crossref_primary_10_1016_j_jcis_2023_05_058 crossref_primary_10_1016_j_cej_2023_145337 crossref_primary_10_1016_j_carbpol_2023_121324 crossref_primary_10_1016_j_colsurfa_2025_136160 crossref_primary_10_1016_j_jece_2025_115619 crossref_primary_10_1016_j_seppur_2024_130936 crossref_primary_10_1016_j_compositesa_2023_107782 crossref_primary_10_1007_s40820_024_01612_0 crossref_primary_10_1016_j_seppur_2024_130975 crossref_primary_10_1016_j_seppur_2024_131344 crossref_primary_10_1002_adfm_202307533 crossref_primary_10_1016_j_greenca_2025_01_001 crossref_primary_10_3390_c10030086 crossref_primary_10_1016_j_jpowsour_2024_234688 crossref_primary_10_1039_D3CC02452K crossref_primary_10_26599_NRE_2023_9120062 crossref_primary_10_1016_j_seppur_2023_124477 crossref_primary_10_1016_j_susmat_2024_e00941 crossref_primary_10_1016_j_jcis_2024_03_042 crossref_primary_10_1016_j_cej_2023_148289 crossref_primary_10_1021_acsami_3c18523 crossref_primary_10_1016_j_desal_2025_118565 crossref_primary_10_1016_j_cej_2024_149927 crossref_primary_10_1021_acsami_4c19137 crossref_primary_10_1002_cssc_202401307 crossref_primary_10_1016_j_desal_2023_117194 crossref_primary_10_1016_j_jcis_2023_11_052 crossref_primary_10_1016_j_jcis_2023_12_059 crossref_primary_10_1016_j_nanoen_2023_109180 crossref_primary_10_1016_j_synthmet_2024_117768 crossref_primary_10_1016_j_susmat_2025_e01280 crossref_primary_10_1016_j_seppur_2025_131425 crossref_primary_10_1016_j_matlet_2023_135828 crossref_primary_10_1016_j_jcis_2023_12_050 crossref_primary_10_1016_j_inoche_2023_111984 crossref_primary_10_1016_j_seppur_2024_129413 crossref_primary_10_1016_j_cej_2024_157511 crossref_primary_10_1016_j_jallcom_2023_172656 crossref_primary_10_1016_j_solener_2024_112853 crossref_primary_10_1021_acsami_3c12171 crossref_primary_10_1039_D4NR01750A crossref_primary_10_1016_j_surfin_2024_104191 crossref_primary_10_1016_j_cej_2023_147025 crossref_primary_10_1016_j_desal_2024_118159 crossref_primary_10_1016_j_desal_2024_118356 crossref_primary_10_1021_acsestengg_3c00318 crossref_primary_10_1016_j_cej_2023_146522 crossref_primary_10_1016_j_desal_2024_118055 crossref_primary_10_1016_j_coco_2023_101741 crossref_primary_10_1021_acsaem_3c02894 crossref_primary_10_1016_j_jcis_2023_05_035 crossref_primary_10_1002_smtd_202401541 crossref_primary_10_1016_j_desal_2024_118053 crossref_primary_10_1016_j_ccr_2024_216089 crossref_primary_10_1016_j_chemosphere_2025_144064 crossref_primary_10_1016_j_jece_2024_112869 crossref_primary_10_1002_tcr_202300184 crossref_primary_10_1016_j_coco_2023_101746 crossref_primary_10_1016_j_flatc_2025_100825 crossref_primary_10_1016_j_ceramint_2024_09_120 crossref_primary_10_1002_adsu_202400142 crossref_primary_10_1007_s11706_024_0701_0 crossref_primary_10_1021_acsami_4c12476 crossref_primary_10_1016_j_seppur_2024_130273 crossref_primary_10_1016_j_desal_2023_116961 crossref_primary_10_1016_j_desal_2024_117312 crossref_primary_10_1016_j_chemosphere_2023_139550 crossref_primary_10_1016_j_jiec_2024_01_033 crossref_primary_10_1002_app_53879 crossref_primary_10_1021_acsami_4c00415 |
Cites_doi | 10.1039/C8NR00313K 10.1002/adfm.202106978 10.1039/C9TC03309B 10.1016/j.seppur.2022.120989 10.1021/acsami.1c06810 10.1016/j.renene.2022.04.139 10.1016/j.mattod.2020.10.022 10.1016/j.solener.2022.08.036 10.1021/acsami.9b14793 10.1002/admt.202000065 10.1016/j.watres.2022.119011 10.1039/C9TA05859A 10.1016/j.jece.2022.108379 10.1002/solr.202100475 10.1002/cssc.201902775 10.1016/j.ijbiomac.2021.04.112 10.1016/j.jcis.2022.08.176 10.1021/acssuschemeng.8b02094 10.1016/j.jallcom.2019.06.243 10.1039/D1TA01045J 10.1016/j.solmat.2020.110574 10.1016/j.apsusc.2020.148006 10.1039/D1TA05058C 10.1016/j.eurpolymj.2019.05.021 10.1021/acsami.1c18379 10.1021/acs.langmuir.1c01647 10.1002/admi.201802040 10.1021/acsami.2c10946 10.1002/aenm.201802108 10.1021/acsami.9b18398 10.1016/j.cej.2021.130765 10.1039/D1SE01360B 10.1039/C8TA05569F 10.1016/j.jcis.2021.08.043 10.1002/adfm.202004460 10.1021/acsami.1c20747 10.1021/acs.langmuir.1c03102 10.1021/acs.est.2c03240 10.1016/j.apcatb.2018.04.061 10.1016/j.seppur.2022.120596 10.1016/j.cej.2021.133054 10.1016/j.apcatb.2021.120820 10.1016/j.apcatb.2021.120285 10.1021/acsami.1c21693 10.1016/j.ceramint.2021.03.319 10.1021/acsami.0c20202 10.1016/j.jece.2021.105787 10.1007/s40820-020-0411-9 10.1016/j.jcis.2022.06.143 10.1016/j.desal.2021.115228 10.1002/adfm.202102618 10.1016/j.ijbiomac.2021.08.203 10.1039/C9TA00176J 10.1016/j.cej.2021.131008 10.1016/j.seppur.2022.122166 10.1016/j.jcis.2022.01.078 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.01.018 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 304 |
ExternalDocumentID | 36638569 10_1016_j_jcis_2023_01_018 S0021979723000188 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-5d680516dc744757ef9d13af31597e7c04fbc011d6435440a6ddc402ddca115e3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 12:09:38 EDT 2025 Fri Jul 11 07:31:46 EDT 2025 Thu Apr 03 07:10:09 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Tue Jul 01 04:18:59 EDT 2025 Fri Feb 23 02:36:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photodegradation Solar-thermal conversion Salt tolerance Solar steam generation MXene |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-5d680516dc744757ef9d13af31597e7c04fbc011d6435440a6ddc402ddca115e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36638569 |
PQID | 2765779858 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3153193650 proquest_miscellaneous_2765779858 pubmed_primary_36638569 crossref_citationtrail_10_1016_j_jcis_2023_01_018 crossref_primary_10_1016_j_jcis_2023_01_018 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_01_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-15 |
PublicationDateYYYYMMDD | 2023-04-15 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Li, Bai, Wang, Li (b0005) 2021; 5 Wang, Zhao, Qin, Hu, Fan, Cao, Wang (b0190) 2019; 11 Chen, Xia, Du, Luo, Zhang, Li (b0015) 2020; 13 Ding, Wu, He, Yang, Gao, Yin, Ding (b0050) 2021; 9 Zhao, Zha, Pu, Bai, Bao, Liu, Yang, Yang (b0185) 2019; 7 Zhang, Zheng, Zhu, Wu, Zhang, Zhu (b0025) 2022; 193 Yang, Tan, Lu, Zeng, Ho (b0090) 2020; 30 Liu, Liu, An, Xiao, Zhai, Li (b0285) 2019; 802 Dong, Tan, Wang, Cai, Li, Sonne, Li (b0230) 2022; 223 Cheng, Wang, Liu, Shen, Schubert, Guo, Liu (b0145) 2022; 14 Ihsanullah (b0140) 2020; 12 Wang, Wei, Li, Chen, Mu, Sun, Zhu, Liang, Li (b0045) 2019; 7 Li, Chen, Huang, Xue, Li, Li, Chang, Wang, Li, Jia (b0310) 2021; 47 Li, Tian, Li, Liu, Li, Feng, Shu, Yu (b0250) 2022; 606 Li, Li, Qiu, Feng (b0275) 2022; 244 Wang, Xiao, Lu, Qu, Hasi, Zhang, Chen (b0110) 2022; 10 Zhan, Song, Zhou, Lu (b0160) 2019; 7 Chen, Li, Zhang (b0085) 2021; 13 Chen, Mu, Guo, Lu, Yang, Xiao, Hasi (b0075) 2022; 626 Xiong, Zhu, Wang, Chen, Yu (b0320) 2022; 32 Chen, Wei, Tian, Han, Li, Meng, Hasi (b0120) 2021; 37 Li, Feng, Wu, Wang, Yu (b0080) 2022; 292 Shi, Gao, Hu, Luo, Hu, Huang, Zhang, Wang (b0135) 2022; 287 Xia, Wei, Han, Tian, Xiao, Hasi, Zhang, Chen (b0265) 2022; 25 Li, Zhou, Mu, Wang, Sun, Zhu, Zhang, Li, Li (b0270) 2020; 12 Yan, Song, Li, Yang, Jia, Wang, Yang (b0295) 2022; 301 Ding, Zhou, Ong, WeiHo (b0105) 2021; 42 Hong, Guo, Yuan, Ji, Li, Lin, Pan (b0195) 2020; 18 Zhao, Yang, Yang, Tian, Que (b0255) 2018; 6 Lin, He, Jiang, Li, Wang, Wu, He, Wu (b0205) 2020; 8 Xiao, Hasi, Wang, Zhang, Li, Zhang, Chen, Li (b0245) 2022; 613 Xiao, Wang, Guo, Zhang, Hasi, Tian, Chen (b0125) 2022; 38 Ding, Feng, He, Liu, Hao, Gong, Niu, Qu (b0280) 2021; 5 My Tran, Thanh Hoai Ta, Sreedhar, Noh (b0200) 2021; 537 He, Guo (b0290) 2022; 629 Liu, Chen, Xu, Yao, Xie, Cheng, Miao, Wang (b0095) 2021; 2 Shi, Meng, Wang, Cheng, Zhang, Liao (b0055) 2022; 14 Zhou, Liu, Zhang, Tian, Zhan, Lu (b0155) 2019; 6 Zhang, Zhang, Shen, Ye, Cai, Wu (b0260) 2021; 9 Fan, Lu, Zhang, Xu, Lu, Tang, Yang (b0065) 2021; 295 Xia, Zhao, Hasi, Zhang, Li, Chen (b0115) 2021; 21 Khajevand, Azizian, Boukherroub (b0035) 2021; 13 Li, Tekell, Huang, Bertelsmann, Lau, Fan (b0150) 2018; 8 Choi, Soo Yoo, Hyuk Lee, Moon, Yoo (b0100) 2022; 302 Xiong, Zhu, Wang, Chen, Yu (b0235) 2021; 32 Guo, Wu, Gao, Li, Long (b0060) 2021; 189 Foo, Huang, Lim, Jiang, Altarawneh (b0300) 2019; 117 Wu, Wang, Wu, Zhao, Lu, Yang, Xu (b0020) 2021; 31 Wen, Zhang, Yan, Huang, Lin, Zhu, Wang, Zhou, Yang, Liu (b0130) 2021; 516 Zhou, Panatdasirisuk, Mathis, Anasori, Lu, Zhang, Liao, Gogotsi, Yang (b0165) 2018; 10 Guo, Wang, Wang, Wang, Li, Mei, Qian, Wang (b0040) 2022; 427 Dandan Hao, Bi, Cai (b0170) 2018; 6 Yang, Lin, Zabihi, Yang, Zhu (b0215) 2021; 181 Wang, Chang, Li, Wang, Deng (b0030) 2022; 14 Yu, Zeng, Zhou, Chen, Cong, Liu, Ji, Zhu, Xu (b0225) 2021; 426 Liu, Xia, Zhang, Guo, Zhang, Yu, Yang (b0070) 2021; 13 Zhao, Chen, Zhang, Hasi, Zhang, Luo, Li (b0010) 2020; 214 Yang, Zhou, Han, Feng, Ma, Han, Liu, Shen (b0220) 2021; 13 Yang, Lin, Zabihi, Yang (b0305) 2021; 181 Yu, Wu (b0210) 2020; 5 Zhang, Wong, An (b0180) 2022; 430 Zhang, Ma, Zhang, Dong, Zhou (b0315) 2018; 235 Cao, Wu, Zhu, Gupta, Martinez, Zhang, Ghim, Wang, Liu, Jun (b0175) 2021; 9 Pan, Li, Wang, Liu, Shen, Liu (b0240) 2022; 56 Yang (10.1016/j.jcis.2023.01.018_b0090) 2020; 30 Yang (10.1016/j.jcis.2023.01.018_b0215) 2021; 181 He (10.1016/j.jcis.2023.01.018_b0290) 2022; 629 Li (10.1016/j.jcis.2023.01.018_b0270) 2020; 12 Lin (10.1016/j.jcis.2023.01.018_b0205) 2020; 8 Wu (10.1016/j.jcis.2023.01.018_b0020) 2021; 31 Liu (10.1016/j.jcis.2023.01.018_b0070) 2021; 13 Yang (10.1016/j.jcis.2023.01.018_b0220) 2021; 13 Shi (10.1016/j.jcis.2023.01.018_b0135) 2022; 287 Xia (10.1016/j.jcis.2023.01.018_b0265) 2022; 25 Wang (10.1016/j.jcis.2023.01.018_b0045) 2019; 7 Wang (10.1016/j.jcis.2023.01.018_b0110) 2022; 10 Dandan Hao (10.1016/j.jcis.2023.01.018_b0170) 2018; 6 Zhan (10.1016/j.jcis.2023.01.018_b0160) 2019; 7 Li (10.1016/j.jcis.2023.01.018_b0250) 2022; 606 Wang (10.1016/j.jcis.2023.01.018_b0005) 2021; 5 Xiao (10.1016/j.jcis.2023.01.018_b0125) 2022; 38 Zhou (10.1016/j.jcis.2023.01.018_b0155) 2019; 6 Zhang (10.1016/j.jcis.2023.01.018_b0180) 2022; 430 Xiao (10.1016/j.jcis.2023.01.018_b0245) 2022; 613 Cheng (10.1016/j.jcis.2023.01.018_b0145) 2022; 14 Li (10.1016/j.jcis.2023.01.018_b0150) 2018; 8 Xiong (10.1016/j.jcis.2023.01.018_b0235) 2021; 32 Dong (10.1016/j.jcis.2023.01.018_b0230) 2022; 223 Liu (10.1016/j.jcis.2023.01.018_b0095) 2021; 2 Shi (10.1016/j.jcis.2023.01.018_b0055) 2022; 14 Ihsanullah (10.1016/j.jcis.2023.01.018_b0140) 2020; 12 Xia (10.1016/j.jcis.2023.01.018_b0115) 2021; 21 Hong (10.1016/j.jcis.2023.01.018_b0195) 2020; 18 Liu (10.1016/j.jcis.2023.01.018_b0285) 2019; 802 Pan (10.1016/j.jcis.2023.01.018_b0240) 2022; 56 Li (10.1016/j.jcis.2023.01.018_b0080) 2022; 292 Zhao (10.1016/j.jcis.2023.01.018_b0255) 2018; 6 Li (10.1016/j.jcis.2023.01.018_b0310) 2021; 47 Yang (10.1016/j.jcis.2023.01.018_b0305) 2021; 181 Chen (10.1016/j.jcis.2023.01.018_b0085) 2021; 13 Zhang (10.1016/j.jcis.2023.01.018_b0315) 2018; 235 Zhang (10.1016/j.jcis.2023.01.018_b0025) 2022; 193 Wang (10.1016/j.jcis.2023.01.018_b0190) 2019; 11 Zhao (10.1016/j.jcis.2023.01.018_b0010) 2020; 214 Choi (10.1016/j.jcis.2023.01.018_b0100) 2022; 302 Guo (10.1016/j.jcis.2023.01.018_b0060) 2021; 189 Zhang (10.1016/j.jcis.2023.01.018_b0260) 2021; 9 Ding (10.1016/j.jcis.2023.01.018_b0105) 2021; 42 Chen (10.1016/j.jcis.2023.01.018_b0075) 2022; 626 Ding (10.1016/j.jcis.2023.01.018_b0050) 2021; 9 Chen (10.1016/j.jcis.2023.01.018_b0120) 2021; 37 Cao (10.1016/j.jcis.2023.01.018_b0175) 2021; 9 Yu (10.1016/j.jcis.2023.01.018_b0225) 2021; 426 Ding (10.1016/j.jcis.2023.01.018_b0280) 2021; 5 Zhou (10.1016/j.jcis.2023.01.018_b0165) 2018; 10 Foo (10.1016/j.jcis.2023.01.018_b0300) 2019; 117 Chen (10.1016/j.jcis.2023.01.018_b0015) 2020; 13 Guo (10.1016/j.jcis.2023.01.018_b0040) 2022; 427 Fan (10.1016/j.jcis.2023.01.018_b0065) 2021; 295 Yu (10.1016/j.jcis.2023.01.018_b0210) 2020; 5 My Tran (10.1016/j.jcis.2023.01.018_b0200) 2021; 537 Wen (10.1016/j.jcis.2023.01.018_b0130) 2021; 516 Li (10.1016/j.jcis.2023.01.018_b0275) 2022; 244 Wang (10.1016/j.jcis.2023.01.018_b0030) 2022; 14 Khajevand (10.1016/j.jcis.2023.01.018_b0035) 2021; 13 Zhao (10.1016/j.jcis.2023.01.018_b0185) 2019; 7 Yan (10.1016/j.jcis.2023.01.018_b0295) 2022; 301 Xiong (10.1016/j.jcis.2023.01.018_b0320) 2022; 32 |
References_xml | – volume: 427 year: 2022 ident: b0040 article-title: Achieving steam and electrical power from solar energy by MoS publication-title: Chem. Eng. J. – volume: 295 year: 2021 ident: b0065 article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation publication-title: Appl. Catal. B: Environ. – volume: 302 year: 2022 ident: b0100 article-title: Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection publication-title: Sep. Purif. Technol. – volume: 9 start-page: 22585 year: 2021 end-page: 22596 ident: b0175 article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability publication-title: J. Mater. Chem. A – volume: 21 year: 2021 ident: b0115 article-title: Superhydrophilic and oil-repellent porous material based on halloysite nanotubes and wood fibers for efficient solar steam generation publication-title: Mater. Today Energy – volume: 38 start-page: 1888 year: 2022 end-page: 1896 ident: b0125 article-title: Coffee grounds-doped alginate porous materials for efficient solar steam generation publication-title: Langmuir – volume: 301 year: 2022 ident: b0295 article-title: Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation publication-title: Appl. Catal. B: Environ. – volume: 802 start-page: 445 year: 2019 end-page: 457 ident: b0285 article-title: Designed construction of Ti publication-title: J. Alloys Compd. – volume: 181 start-page: 1063 year: 2021 end-page: 1071 ident: b0215 article-title: High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization publication-title: Int. J. Biol. Macromol. – volume: 7 start-page: 9820 year: 2019 end-page: 9829 ident: b0160 article-title: Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding publication-title: J. Mater. Chem. C – volume: 193 start-page: 706 year: 2022 end-page: 714 ident: b0025 article-title: Insight into the role of the channel in photothermal materials for solar interfacial water evaporation publication-title: Renew. Energy – volume: 42 start-page: 178 year: 2021 ident: b0105 article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization publication-title: Mater. Today – volume: 629 start-page: 508 year: 2022 end-page: 521 ident: b0290 article-title: Fabric-based superhydrophobic MXene@polypyrrole heater with superior dual-driving energy conversion publication-title: J. Colloid Interface Sci. – volume: 292 year: 2022 ident: b0080 article-title: Synergy of photothermal effect in integrated 0D Ti publication-title: Sep. Purif. Technol. – volume: 12 start-page: 798 year: 2020 end-page: 806 ident: b0270 article-title: Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 2000065 year: 2020 ident: b0210 article-title: Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation publication-title: Adv. Mater. Technol. – volume: 516 year: 2021 ident: b0130 article-title: Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation publication-title: Desalination – volume: 9 start-page: 11241 year: 2021 end-page: 11247 ident: b0050 article-title: A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation publication-title: J. Mater. Chem. A – volume: 606 start-page: 748 year: 2022 end-page: 757 ident: b0250 article-title: An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency publication-title: J. Colloid Interface Sci. – volume: 30 start-page: 2004460 year: 2020 ident: b0090 article-title: Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation publication-title: Adv. Funct. Mater. – volume: 214 year: 2020 ident: b0010 article-title: Functional oil-repellent photothermal materials based on nickel foam for efficient solar steam generation publication-title: Sol. Energy Mater. Sol. Cells – volume: 10 year: 2022 ident: b0110 article-title: Aligned aerogels with high salt-resistance and anti-biofouling for efficient solar evaporation publication-title: J. Environ. Chem. Eng. – volume: 14 start-page: 1 year: 2022 end-page: 16 ident: b0145 article-title: Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth publication-title: Nano-Micro Lett. – volume: 31 start-page: 2102618 year: 2021 ident: b0020 article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation publication-title: Adv. Funct. Mater. – volume: 56 start-page: 11818 year: 2022 end-page: 11826 ident: b0240 article-title: Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation publication-title: Environ. Sci. Technol. – volume: 32 start-page: 2106978 year: 2021 ident: b0235 article-title: Tree-Inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification publication-title: Adv. Funct. Mater. – volume: 7 start-page: 10446 year: 2019 end-page: 10455 ident: b0185 article-title: Macroporous three-dimensional MXene architectures for highly efficient solar steam generation publication-title: J. Mater. Chem. A – volume: 13 start-page: 31680 year: 2021 end-page: 31690 ident: b0035 article-title: Naturally abundant green moss for highly efficient solar thermal generation of clean water publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 18311 year: 2019 end-page: 18317 ident: b0045 article-title: Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation publication-title: J. Mater. Chem. A – volume: 25 year: 2022 ident: b0265 article-title: An integrated solar absorber with salt-resistant and oleophobic based on PVDF composite membrane for solar steam generation publication-title: Mater. Today Energy – volume: 244 start-page: 322 year: 2022 end-page: 330 ident: b0275 article-title: High-efficiency wood-based evaporators for solar-driven interfacial evaporation publication-title: Sol. Energy – volume: 287 year: 2022 ident: b0135 article-title: Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles publication-title: Sep. Purif. Technol. – volume: 426 year: 2021 ident: b0225 article-title: A one-pot synthesis of nitrogen doped porous MXene/TiO publication-title: Chem. Eng. J. – volume: 13 start-page: 8909 year: 2021 end-page: 8918 ident: b0220 article-title: Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 6005 year: 2018 end-page: 6013 ident: b0165 article-title: Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage publication-title: Nanoscale – volume: 5 start-page: 5627 year: 2021 end-page: 5637 ident: b0280 article-title: A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment publication-title: Sustain. Energy Fuels – volume: 5 start-page: 2100475 year: 2021 ident: b0005 article-title: Recent progress on the solar-driven interfacial evaporation based on natural products and synthetic polymers publication-title: Sol. RRL – volume: 430 year: 2022 ident: b0180 article-title: Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification publication-title: Chem. Eng. J. – volume: 181 start-page: 1063 year: 2021 end-page: 1071 ident: b0305 article-title: Meifang Zhu, High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization publication-title: Int. J. Biol. Macromol. – volume: 13 start-page: 493 year: 2020 end-page: 500 ident: b0015 article-title: Superhydrophilic and oleophobic porous architectures based on basalt fibers as oil-repellent photothermal materials for solar steam generation publication-title: ChemSusChem – volume: 11 start-page: 44249 year: 2019 end-page: 44262 ident: b0190 article-title: MIL-100(Fe)/Ti publication-title: ACS Appl. Mater. Interfaces – volume: 626 start-page: 35 year: 2022 end-page: 46 ident: b0075 article-title: MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 1802040 year: 2019 ident: b0155 article-title: Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding publication-title: Adv. Mater. Interfaces – volume: 117 start-page: 227 year: 2019 end-page: 235 ident: b0300 article-title: Hydrostatic bath synthesis of conductive polypyrrole/reduced graphene oxide aerogel as compression sensor publication-title: Eur. Polym. J. – volume: 9 year: 2021 ident: b0260 article-title: Improving seawater desalination efficiency by solar driven interfacial evaporation based on biochar evaporator of Nannochloropsis oculata residue publication-title: J. Environ. Chem. Eng. – volume: 14 start-page: 4522 year: 2022 end-page: 4531 ident: b0055 article-title: Scalable fabrication of conjugated microporous polymer sponges for efficient solar steam generation publication-title: ACS Appl. Mater. Interfaces – volume: 37 start-page: 10191 year: 2021 end-page: 10199 ident: b0120 article-title: Dual-functional graphene oxide-based photothermal materials with aligned channels and oleophobicity for efficient solar steam generation publication-title: Langmuir – volume: 613 start-page: 661 year: 2022 end-page: 670 ident: b0245 article-title: Hollow SiO publication-title: J. Colloid Interface Sci. – volume: 8 year: 2020 ident: b0205 article-title: Effective preparation of superhydrophilic-underwater superoleophobic nanoparticles/polymeric sponges for oil-water separation publication-title: Surf. Topogr.: Metrol. Prop. – volume: 13 start-page: 59518 year: 2021 end-page: 59526 ident: b0085 article-title: Design of a separated solar interfacial evaporation system for simultaneous water and salt collection publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2020 ident: b0195 article-title: Recent progress of two-dimensional MXenes in photocatalytic applications: a review publication-title: Mater. Today Energy – volume: 32 year: 2022 ident: b0320 article-title: Tree-inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification publication-title: Adv. Funct. Mater. – volume: 6 start-page: 10789 year: 2018 end-page: 10797 ident: b0170 article-title: Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation publication-title: ACS Sustain. Chem. Eng. – volume: 223 year: 2022 ident: b0230 article-title: Reviewing wood-based solar-driven interfacial evaporators for desalination publication-title: Water Res. – volume: 2 year: 2021 ident: b0095 article-title: Salt-rejecting solar interfacial evaporation publication-title: Cell Rep. Phys. Sci. – volume: 14 start-page: 44958 year: 2022 end-page: 44968 ident: b0030 article-title: Solar interface evaporation system assisted by mirror reflection heat collection based on sunflower shasing the sun publication-title: ACS Appl. Mater. Interfaces – volume: 537 year: 2021 ident: b0200 article-title: Ti publication-title: Appl. Surf. Sci. – volume: 235 start-page: 17 year: 2018 end-page: 25 ident: b0315 article-title: Multifunctional g-C publication-title: Appl. Catal. B: Environ. – volume: 189 start-page: 910 year: 2021 end-page: 920 ident: b0060 article-title: Mechanistic study of Cr (VI) removal by modified alginate/GO composite via synergistic adsorption and photocatalytic reduction publication-title: Int. J. Biol. Macromol. – volume: 13 start-page: 55299 year: 2021 end-page: 55306 ident: b0070 article-title: Sunflower-stalk-based solar-driven evaporator with a confined 2D water channel and an enclosed thermal-insulating cellular structure for stable and efficient steam generation publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 72 year: 2020 ident: b0140 article-title: Potential of MXenes in water desalination: current status and perspectives publication-title: Nano-micro Lett. – volume: 6 start-page: 16196 year: 2018 end-page: 16204 ident: b0255 article-title: Hydrophobic surface enabled salt-blocking 2D Ti publication-title: J. Mater. Chem. A – volume: 47 start-page: 19800 year: 2021 end-page: 19808 ident: b0310 article-title: Photothermal, photocatalytic, and anti-bacterial Ti-Ag-O nanoporous powders for interfacial solar driven water evaporation publication-title: Ceram. Int. – volume: 8 start-page: 1802108 year: 2018 ident: b0150 article-title: Synergistic high-rate solar steaming and mercury removal with MoS publication-title: Adv. Energy Mater. – volume: 10 start-page: 6005 issue: 13 year: 2018 ident: 10.1016/j.jcis.2023.01.018_b0165 article-title: Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage publication-title: Nanoscale doi: 10.1039/C8NR00313K – volume: 32 start-page: 2106978 issue: 9 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0235 article-title: Tree-Inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106978 – volume: 2 issue: 1 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0095 article-title: Salt-rejecting solar interfacial evaporation publication-title: Cell Rep. Phys. Sci. – volume: 14 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0145 article-title: Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth publication-title: Nano-Micro Lett. – volume: 18 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0195 article-title: Recent progress of two-dimensional MXenes in photocatalytic applications: a review publication-title: Mater. Today Energy – volume: 7 start-page: 9820 issue: 32 year: 2019 ident: 10.1016/j.jcis.2023.01.018_b0160 article-title: Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03309B – volume: 25 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0265 article-title: An integrated solar absorber with salt-resistant and oleophobic based on PVDF composite membrane for solar steam generation publication-title: Mater. Today Energy – volume: 292 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0080 article-title: Synergy of photothermal effect in integrated 0D Ti2O3 nanoparticles/1D carboxylated carbon nanotubes for multifunctional water purification publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120989 – volume: 13 start-page: 31680 issue: 27 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0035 article-title: Naturally abundant green moss for highly efficient solar thermal generation of clean water publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06810 – volume: 193 start-page: 706 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0025 article-title: Insight into the role of the channel in photothermal materials for solar interfacial water evaporation publication-title: Renew. Energy doi: 10.1016/j.renene.2022.04.139 – volume: 42 start-page: 178 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0105 article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization publication-title: Mater. Today doi: 10.1016/j.mattod.2020.10.022 – volume: 244 start-page: 322 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0275 article-title: High-efficiency wood-based evaporators for solar-driven interfacial evaporation publication-title: Sol. Energy doi: 10.1016/j.solener.2022.08.036 – volume: 11 start-page: 44249 issue: 47 year: 2019 ident: 10.1016/j.jcis.2023.01.018_b0190 article-title: MIL-100(Fe)/Ti3C2 MXene as a schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14793 – volume: 5 start-page: 2000065 issue: 6 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0210 article-title: Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000065 – volume: 223 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0230 article-title: Reviewing wood-based solar-driven interfacial evaporators for desalination publication-title: Water Res. doi: 10.1016/j.watres.2022.119011 – volume: 7 start-page: 18311 issue: 31 year: 2019 ident: 10.1016/j.jcis.2023.01.018_b0045 article-title: Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05859A – volume: 10 issue: 5 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0110 article-title: Aligned aerogels with high salt-resistance and anti-biofouling for efficient solar evaporation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108379 – volume: 5 start-page: 2100475 issue: 12 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0005 article-title: Recent progress on the solar-driven interfacial evaporation based on natural products and synthetic polymers publication-title: Sol. RRL doi: 10.1002/solr.202100475 – volume: 13 start-page: 493 issue: 3 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0015 article-title: Superhydrophilic and oleophobic porous architectures based on basalt fibers as oil-repellent photothermal materials for solar steam generation publication-title: ChemSusChem doi: 10.1002/cssc.201902775 – volume: 181 start-page: 1063 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0305 article-title: Meifang Zhu, High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.04.112 – volume: 629 start-page: 508 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0290 article-title: Fabric-based superhydrophobic MXene@polypyrrole heater with superior dual-driving energy conversion publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.176 – volume: 6 start-page: 10789 issue: 8 year: 2018 ident: 10.1016/j.jcis.2023.01.018_b0170 article-title: Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02094 – volume: 802 start-page: 445 year: 2019 ident: 10.1016/j.jcis.2023.01.018_b0285 article-title: Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.243 – volume: 9 start-page: 11241 issue: 18 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0050 article-title: A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01045J – volume: 214 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0010 article-title: Functional oil-repellent photothermal materials based on nickel foam for efficient solar steam generation publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110574 – volume: 537 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0200 article-title: Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148006 – volume: 9 start-page: 22585 issue: 39 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0175 article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05058C – volume: 117 start-page: 227 year: 2019 ident: 10.1016/j.jcis.2023.01.018_b0300 article-title: Hydrostatic bath synthesis of conductive polypyrrole/reduced graphene oxide aerogel as compression sensor publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.05.021 – volume: 13 start-page: 59518 issue: 49 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0085 article-title: Design of a separated solar interfacial evaporation system for simultaneous water and salt collection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18379 – volume: 37 start-page: 10191 issue: 33 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0120 article-title: Dual-functional graphene oxide-based photothermal materials with aligned channels and oleophobicity for efficient solar steam generation publication-title: Langmuir doi: 10.1021/acs.langmuir.1c01647 – volume: 6 start-page: 1802040 issue: 6 year: 2019 ident: 10.1016/j.jcis.2023.01.018_b0155 article-title: Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201802040 – volume: 14 start-page: 44958 issue: 39 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0030 article-title: Solar interface evaporation system assisted by mirror reflection heat collection based on sunflower shasing the sun publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c10946 – volume: 8 start-page: 1802108 issue: 32 year: 2018 ident: 10.1016/j.jcis.2023.01.018_b0150 article-title: Synergistic high-rate solar steaming and mercury removal with MoS2/C@ polyurethane composite cponges publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802108 – volume: 12 start-page: 798 issue: 1 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0270 article-title: Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18398 – volume: 426 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0225 article-title: A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130765 – volume: 5 start-page: 5627 issue: 21 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0280 article-title: A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment publication-title: Sustain. Energy Fuels doi: 10.1039/D1SE01360B – volume: 6 start-page: 16196 year: 2018 ident: 10.1016/j.jcis.2023.01.018_b0255 article-title: Hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05569F – volume: 606 start-page: 748 issue: Pt 1 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0250 article-title: An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.043 – volume: 30 start-page: 2004460 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0090 article-title: Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004460 – volume: 13 start-page: 55299 issue: 46 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0070 article-title: Sunflower-stalk-based solar-driven evaporator with a confined 2D water channel and an enclosed thermal-insulating cellular structure for stable and efficient steam generation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c20747 – volume: 38 start-page: 1888 issue: 5 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0125 article-title: Coffee grounds-doped alginate porous materials for efficient solar steam generation publication-title: Langmuir doi: 10.1021/acs.langmuir.1c03102 – volume: 56 start-page: 11818 issue: 16 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0240 article-title: Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c03240 – volume: 235 start-page: 17 year: 2018 ident: 10.1016/j.jcis.2023.01.018_b0315 article-title: Multifunctional g-C3N4/graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.04.061 – volume: 287 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0135 article-title: Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120596 – volume: 430 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0180 article-title: Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133054 – volume: 301 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0295 article-title: Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120820 – volume: 295 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0065 article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120285 – volume: 14 start-page: 4522 issue: 3 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0055 article-title: Scalable fabrication of conjugated microporous polymer sponges for efficient solar steam generation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21693 – volume: 47 start-page: 19800 issue: 14 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0310 article-title: Photothermal, photocatalytic, and anti-bacterial Ti-Ag-O nanoporous powders for interfacial solar driven water evaporation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.03.319 – volume: 13 start-page: 8909 issue: 7 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0220 article-title: Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20202 – volume: 8 issue: 4 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0205 article-title: Effective preparation of superhydrophilic-underwater superoleophobic nanoparticles/polymeric sponges for oil-water separation publication-title: Surf. Topogr.: Metrol. Prop. – volume: 9 issue: 4 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0260 article-title: Improving seawater desalination efficiency by solar driven interfacial evaporation based on biochar evaporator of Nannochloropsis oculata residue publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105787 – volume: 32 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0320 article-title: Tree-inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106978 – volume: 12 start-page: 72 issue: 1 year: 2020 ident: 10.1016/j.jcis.2023.01.018_b0140 article-title: Potential of MXenes in water desalination: current status and perspectives publication-title: Nano-micro Lett. doi: 10.1007/s40820-020-0411-9 – volume: 626 start-page: 35 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0075 article-title: MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.06.143 – volume: 516 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0130 article-title: Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation publication-title: Desalination doi: 10.1016/j.desal.2021.115228 – volume: 31 start-page: 2102618 issue: 34 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0020 article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102618 – volume: 189 start-page: 910 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0060 article-title: Mechanistic study of Cr (VI) removal by modified alginate/GO composite via synergistic adsorption and photocatalytic reduction publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.08.203 – volume: 21 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0115 article-title: Superhydrophilic and oil-repellent porous material based on halloysite nanotubes and wood fibers for efficient solar steam generation publication-title: Mater. Today Energy – volume: 7 start-page: 10446 issue: 17 year: 2019 ident: 10.1016/j.jcis.2023.01.018_b0185 article-title: Macroporous three-dimensional MXene architectures for highly efficient solar steam generation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00176J – volume: 427 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0040 article-title: Achieving steam and electrical power from solar energy by MoS2-based composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131008 – volume: 302 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0100 article-title: Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122166 – volume: 181 start-page: 1063 year: 2021 ident: 10.1016/j.jcis.2023.01.018_b0215 article-title: High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.04.112 – volume: 613 start-page: 661 year: 2022 ident: 10.1016/j.jcis.2023.01.018_b0245 article-title: Hollow SiO2 microspheres in-situ doped poly(ionicliquid)s gels as efficient solar steam generators for desalination publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.078 |
SSID | ssj0011559 |
Score | 2.645514 |
Snippet | [Display omitted]
•An MXene/polypyrrole coated melamine-foam (MF-MXene/PPy) was successfully fabricated.•The π-π interaction between PPy and MXene effectively... The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 291 |
SubjectTerms | absorption desalination energy conversion evaporation foams light melamine methyl orange methylene blue MXene photocatalysis Photodegradation photolysis polymerization porosity pyrroles rhodamines Salt tolerance seawater solar energy Solar steam generation Solar-thermal conversion thermal conductivity wastewater wastewater treatment |
Title | MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation |
URI | https://dx.doi.org/10.1016/j.jcis.2023.01.018 https://www.ncbi.nlm.nih.gov/pubmed/36638569 https://www.proquest.com/docview/2765779858 https://www.proquest.com/docview/3153193650 |
Volume | 636 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED-pBfFtfrOBNVpNmN5sepShV0ZNCb2GzD6zYJJQqePG3O5NHUdAehBBImIRlZnb2S3bmG4BTrcPYYZzjRvgux-iX8UyLhHsrpUu8IIpvyrZ4iAdP4nYohwvQb2thKK2yif11TK-idXPnotHmRTkaUY0vzjZFXbMIqCRU8CuEIi8__5yleYS07VaneYScpJvCmTrH68WMiLK7G1XUndT44_fF6S_wWS1C1-uw1qBHdlkPcAMWXL4Jy_22adsmrH7jF9wCfT90RINRvH6UHxNKJGSmQHBp2dihJ6Ag94UeMwSuzFVcErgEMWKQmHhN_9KZe9dl4yRM55aVz8W0sEQwUfdi2oan66vH_oA3PRW4QWgy5dLGCc7D2BpFVH_K-Z4NI-0jhDXKKRMInxnUmkWkIoUIdGytwW9MPGvUpYt2YDEvcrcHzEeBtl1nAtnV1LNEZybD90nlXU-bTHYgbJWZmoZwnPpevKZtZtlLSgZIyQBpEOKRdOBs9kxZ023MlZatjdIfTpPiejD3uZPWoCnah7ZIdO6KNxRSsVSql8g5MqgqjFsRQtsO7NbeMBtrhAAukXFv_58jO4AVuqLtqlAewuJ08uaOEPVMs-PKrY9h6fLmbvDwBd1sAoY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5S55D2UNI0D6dNu4XcyhLJ0mrlYzANTuz4lIBvy2ofxCGWhLEL-feZsVamgcaHgNBBmhXLzGj2k2b2G4BzrePMYZzjJvU9jtGv4IVOc-6tEC73KVF8U7XFJBvepzdTMd2BQbsXhsoqQ-xvYvo6WocrF0GbF_VsRnt88W2T1DWLgEqef4BdYqcSHdi9vB4NJ5tkAmXemkqPmNOAsHemKfN6NDNi7e4la_ZO6v3x__XpLfy5Xoeu9uFzAJDsspnjF9hx5QHsDdq-bQfw6R-Kwa-gb6eOmDCqp-f6eUG1hMxUiC8tmzt0BhTkvtJzhtiVuTWdBK5CjEgkFl7T73Tm_uo6-AnTpWX1Q7WsLHFMNO2YDuH-6s_dYMhDWwVuEJ0subBZjq9iZo0ktj_pfN_GifYJIhvppIlSXxjUmkWwItI00pm1Bj8z8axRly45gk5Zle4EmE8ibXvORKKnqW2JLkyBzxPSu742hehC3CpTmcA5Tq0vnlRbXPaoyACKDKCiGI-8C783Y-qGcWOrtGhtpF75jcIlYeu4X61BFdqHsiS6dNUKhWQmpOznYosMqgpDV4LotgvHjTds5poghstF1j9958x-wt7w7nasxteT0Tf4SHcoexWL79BZLlbuDEHQsvgRnPwFsB8FNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene%2Fpolypyrrole+coated+melamine-foam+for+efficient+interfacial+evaporation+and+photodegradation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Mu%2C+Xiaotong&rft.au=Chen%2C+Lihua&rft.au=Qu%2C+Nannan&rft.au=Yu%2C+Jiale&rft.date=2023-04-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=636&rft.spage=291&rft.epage=304&rft_id=info:doi/10.1016%2Fj.jcis.2023.01.018&rft.externalDocID=S0021979723000188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |