Response of soil microbial communities to mixed beech-conifer forests varies with site conditions
Tree - soil interactions depend on environmental conditions. Planting trees may affect soil microbial communities and compromise their functioning, particularly in unfavorable environments. To understand the effects of tree species composition on soil microbial communities, we quantified structural...
Saved in:
Published in | Soil biology & biochemistry Vol. 155; p. 108155 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tree - soil interactions depend on environmental conditions. Planting trees may affect soil microbial communities and compromise their functioning, particularly in unfavorable environments. To understand the effects of tree species composition on soil microbial communities, we quantified structural and functional responses of soil microorganisms to tree species planted in various environments using substrate-induced respiration and phospholipid fatty acid analyses. Five forest types were studied including pure stands of native European beech (Fagus sylvatica), range expanding Norway spruce (Picea abies), and non-native Douglas-fir (Pseudotsuga menziesii), as well as the two conifer - beech mixtures. We found that microbial functioning depends strongly on soil nutrient concentrations in the studied forest sites. At nutrient-poor sites, soil microorganisms were more stressed in pure and mixed coniferous forests, especially in Douglas-fir, compared to beech forests. By contrast, microbial structure and functional indicators in beech forests varied little with site conditions, likely because beech provided ample amounts of root-derived resources for microbial growth. Since soil microbial communities are sensitive to Douglas-fir, planting Douglas-fir may compromise ecosystem functioning, especially at nutrient-poor sites. Overall, root-derived resources are important for determining the structure and functioning of soil microbial communities, so soil microbial responses to tree species will depend upon the provisioning of these resources as well as site-specific environmental conditions.
•Soil microorganisms do not respond to forest types at nutrient-rich sites.•European beech mitigates microbial stress in nutrient-poor forest soils.•Microbial stress in nutrient-poor forest soils is intensified by planting Douglas-fir.•Admixing conifers to beech compromises microbial functioning at nutrient-poor sites. |
---|---|
AbstractList | Tree - soil interactions depend on environmental conditions. Planting trees may affect soil microbial communities and compromise their functioning, particularly in unfavorable environments. To understand the effects of tree species composition on soil microbial communities, we quantified structural and functional responses of soil microorganisms to tree species planted in various environments using substrate-induced respiration and phospholipid fatty acid analyses. Five forest types were studied including pure stands of native European beech (Fagus sylvatica), range expanding Norway spruce (Picea abies), and non-native Douglas-fir (Pseudotsuga menziesii), as well as the two conifer - beech mixtures. We found that microbial functioning depends strongly on soil nutrient concentrations in the studied forest sites. At nutrient-poor sites, soil microorganisms were more stressed in pure and mixed coniferous forests, especially in Douglas-fir, compared to beech forests. By contrast, microbial structure and functional indicators in beech forests varied little with site conditions, likely because beech provided ample amounts of root-derived resources for microbial growth. Since soil microbial communities are sensitive to Douglas-fir, planting Douglas-fir may compromise ecosystem functioning, especially at nutrient-poor sites. Overall, root-derived resources are important for determining the structure and functioning of soil microbial communities, so soil microbial responses to tree species will depend upon the provisioning of these resources as well as site-specific environmental conditions. Tree - soil interactions depend on environmental conditions. Planting trees may affect soil microbial communities and compromise their functioning, particularly in unfavorable environments. To understand the effects of tree species composition on soil microbial communities, we quantified structural and functional responses of soil microorganisms to tree species planted in various environments using substrate-induced respiration and phospholipid fatty acid analyses. Five forest types were studied including pure stands of native European beech (Fagus sylvatica), range expanding Norway spruce (Picea abies), and non-native Douglas-fir (Pseudotsuga menziesii), as well as the two conifer - beech mixtures. We found that microbial functioning depends strongly on soil nutrient concentrations in the studied forest sites. At nutrient-poor sites, soil microorganisms were more stressed in pure and mixed coniferous forests, especially in Douglas-fir, compared to beech forests. By contrast, microbial structure and functional indicators in beech forests varied little with site conditions, likely because beech provided ample amounts of root-derived resources for microbial growth. Since soil microbial communities are sensitive to Douglas-fir, planting Douglas-fir may compromise ecosystem functioning, especially at nutrient-poor sites. Overall, root-derived resources are important for determining the structure and functioning of soil microbial communities, so soil microbial responses to tree species will depend upon the provisioning of these resources as well as site-specific environmental conditions. •Soil microorganisms do not respond to forest types at nutrient-rich sites.•European beech mitigates microbial stress in nutrient-poor forest soils.•Microbial stress in nutrient-poor forest soils is intensified by planting Douglas-fir.•Admixing conifers to beech compromises microbial functioning at nutrient-poor sites. |
ArticleNumber | 108155 |
Author | Lu, Jing-Zhong Scheu, Stefan |
Author_xml | – sequence: 1 givenname: Jing-Zhong surname: Lu fullname: Lu, Jing-Zhong email: jlu@gwdg.de organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany – sequence: 2 givenname: Stefan surname: Scheu fullname: Scheu, Stefan organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany |
BookMark | eNqFkEtrGzEUhUVJoE7Sn1DQsptx9Kg0GrooJTQPCARCuhYa6Q6-ZmbkSrLb_vtqsFfZGC4Irs53uOdckYs5zkDIZ87WnHF9u13niGOPcS2Y4HVnuFIfyIqbtmvkV2EuyIoxaRrW8vYjucp5yxgTissVca-Qd3HOQONAFxs6oU-xRzdSH6dpP2NByLTE-vEXAu0B_KbxccYBEh1iglwyPbi0qP5g2dCMBSo7h0pW5xtyObgxw6fTe01-3f98u3tsnl8enu5-PDdemq40ig8G6nAmmAqt6oRhUijRa9nJQQ6m98GJEBSv6bhuteiY1l4zI1Rw0Mtr8uXou0vx975eZSfMHsbRzRD32QqleMeM1rxK1VFak-acYLC7hJNL_yxndqnUbu2pUrtUao-VVu7bO85jcUvKkhyOZ-nvRxpqCweEZLNHmD0ETOCLDRHPOPwHE6uYpg |
CitedBy_id | crossref_primary_10_1186_s13213_024_01780_9 crossref_primary_10_1002_ecs2_4609 crossref_primary_10_1094_PBIOMES_02_23_0010_R crossref_primary_10_1007_s11104_025_07358_x crossref_primary_10_1016_j_geoderma_2024_117008 crossref_primary_10_1128_spectrum_00795_22 crossref_primary_10_1016_j_fecs_2025_100294 crossref_primary_10_1002_ece3_11431 crossref_primary_10_1007_s42991_023_00384_1 crossref_primary_10_1016_j_geoderma_2024_117086 crossref_primary_10_3390_f13101656 crossref_primary_10_1038_s41598_023_42981_7 crossref_primary_10_3390_f14122402 crossref_primary_10_1016_j_catena_2024_108527 crossref_primary_10_3390_f15122107 crossref_primary_10_1016_j_fecs_2025_100319 crossref_primary_10_1016_j_geoderma_2023_116638 crossref_primary_10_1111_1365_2435_14696 crossref_primary_10_32604_phyton_2024_056868 crossref_primary_10_1071_SR22218 crossref_primary_10_1186_s12862_023_02105_1 crossref_primary_10_1016_j_foreco_2024_122004 crossref_primary_10_1007_s11104_023_05873_3 crossref_primary_10_1126_sciadv_adp6566 crossref_primary_10_1002_ece3_9572 crossref_primary_10_1016_j_apsoil_2024_105834 crossref_primary_10_1002_ecy_70004 crossref_primary_10_3390_biology10090850 crossref_primary_10_1002_ece3_70311 crossref_primary_10_1111_ejss_70060 crossref_primary_10_3390_ma15093287 crossref_primary_10_1016_j_foreco_2024_122090 crossref_primary_10_1016_j_scitotenv_2023_162266 crossref_primary_10_1111_gcb_16971 crossref_primary_10_1016_j_foreco_2023_120851 crossref_primary_10_1016_j_foreco_2021_119709 crossref_primary_10_1016_j_foreco_2022_120751 crossref_primary_10_1016_j_geoderma_2024_116947 crossref_primary_10_1016_j_scitotenv_2024_176919 crossref_primary_10_3390_f15060921 |
Cites_doi | 10.1007/BF00384433 10.1007/BF00336152 10.1016/j.soilbio.2010.06.026 10.1016/j.foreco.2011.12.034 10.1016/j.soilbio.2007.09.016 10.1002/ecy.3193 10.1038/nature23886 10.1371/journal.pone.0214233 10.1098/rsbl.2011.0236 10.1126/science.1094875 10.1111/nph.13970 10.1016/j.soilbio.2010.11.022 10.1007/s11104-012-1165-z 10.1146/annurev.ecolsys.36.112904.151932 10.1128/aem.60.9.3292-3299.1994 10.1023/B:PLSO.0000016508.20173.80 10.1016/j.foreco.2016.02.020 10.1126/science.1231923 10.1016/j.soilbio.2015.08.035 10.1111/j.1469-8137.2010.03321.x 10.1016/j.soilbio.2009.02.004 10.1016/S0038-0717(97)00030-8 10.1111/ele.12823 10.1111/j.1365-3040.2005.01452.x 10.1007/s10342-013-0745-7 10.1038/nature12901 10.1007/s00248-007-9295-1 10.1111/brv.12511 10.1111/1365-2745.12353 10.1073/pnas.0709069104 10.1016/j.pedobi.2006.03.003 10.1016/0038-0717(92)90061-2 10.1007/s003740050533 10.1016/j.soilbio.2018.10.010 10.1016/j.foreco.2017.11.027 10.1111/nph.16001 10.1111/j.1469-8137.2006.01936.x 10.1016/j.foreco.2011.11.017 10.1111/j.1365-3040.2009.01983.x 10.1128/aem.59.11.3605-3617.1993 10.2307/2120 10.1111/ele.13408 10.1016/j.soilbio.2009.09.025 10.1111/nph.16389 10.3389/fmicb.2016.02067 10.1007/s10342-007-0186-2 10.1111/gcb.15274 10.1016/S0038-0717(99)00080-2 10.1111/brv.12119 10.1016/S0038-0717(02)00251-1 10.1016/j.tree.2006.06.004 10.1016/j.soilbio.2013.01.025 10.1111/ele.12849 10.1111/ele.13377 10.1016/j.tree.2020.08.007 10.1093/treephys/28.2.297 10.1002/ecy.3081 10.1007/s11258-005-2221-z 10.1016/0038-0717(78)90099-8 10.1002/ecs2.1547 10.1038/233133a0 10.1111/nph.15263 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2021.108155 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2021_108155 S0038071721000274 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-51f8ef8e10205d7592803252b6393f3f8bcda2dd51815167629066c60825daeb3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 08:06:51 EDT 2025 Tue Jul 01 03:20:04 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 23 02:46:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PLFA Norway spruce Ecosystem functioning Douglas-fir Soil respiration Microbial stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-51f8ef8e10205d7592803252b6393f3f8bcda2dd51815167629066c60825daeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/82710 |
PQID | 2551908661 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551908661 crossref_primary_10_1016_j_soilbio_2021_108155 crossref_citationtrail_10_1016_j_soilbio_2021_108155 elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108155 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Knoke, Ammer, Stimm, Mosandl (bib32) 2008; 127 Meier, Leuschner (bib44) 2008; 28 Yan, Ji, Fan, Wang, He, Shi, Liu (bib66) 2016; 211 Potthast, Hamer, Makeschin (bib53) 2010; 42 de Vries, Williams, Stringer, Willcocks, McEwing, Langridge, Straathof (bib18) 2019; 224 Bluhm, Eitzinger, Ferlian, Bluhm, Schröter, Pena, Maraun, Scheu (bib12) 2019; 14 Koranda, Kaiser, Fuchslueger, Kitzler, Sessitsch, Zechmeister-Boltenstern, Richter (bib33) 2013; 60 Hättenschwiler, Tiunov, Scheu (bib28) 2005; 36 Prietzel, Bachmann (bib55) 2012; 269 Gadgil, Gadgil (bib27) 1971; 233 Ammer, Annighöfer, Balkenhol, Hertel, Leuschner, Polle, Lamersdorf, Scheu, Glatthorn (bib3) 2020 Castro-Díez, Vaz, Silva, van Loo, Alonso, Aponte, Bayón, Bellingham, Chiuffo, DiManno, Julian, Kandert, La Porta, Marchante, Maule, Mayfield, Metcalfe, Monteverdi, Núñez, Ostertag, Parker, Peltzer, Potgieter, Raymundo, Rayome, Reisman-Berman, Richardson, Roos, Saldaña, Shackleton, Torres, Trudgen, Urban, Vicente, Vilà, Ylioja, Zenni, Godoy (bib14) 2019; 94 Leuschner, Hertel, Schmid, Koch, Muhs, Hölscher (bib38) 2004; 258 Schall, Lödige, Beck, Ammer (bib60) 2012; 266 Fierer, Schimel, Holden (bib23) 2003; 35 Macfadyen (bib41) 1961; 30 Averill, Turner, Finzi (bib7) 2014; 505 Beck, Joergensen, Kandeler, Makeschin, Nuss, Oberholzer, Scheu (bib9) 1997; 29 Fanin, Kardol, Farrell, Nilsson, Gundale, Wardle (bib22) 2019; 128 Abramoff, Finzi (bib1) 2016; 7 Bauhus, van der Meer, Kanninen (bib8) 2010 Cremer, Kern, Prietzel (bib16) 2016; 367 Clemmensen, Bahr, Ovaskainen, Dahlberg, Ekblad, Wallander, Stenlid, Finlay, Wardle, Lindahl (bib15) 2013; 340 Lundquist, Scow, Jackson, Uesugi, Johnson (bib40) 1999; 31 Kramer, Gleixner (bib35) 2008; 40 Foltran, Ammer, Lamersdorf (bib24) 2020 Malchair, Carnol (bib42) 2009; 41 Wardle, Bardgett, Klironomos, Setälä, Van Der Putten, Wall (bib64) 2004; 304 Pettit, Voelker, DeRose, Burton (bib49) 2020; 26 Prescott, Grayston, Helmisaari, Kaštovská, Körner, Lambers, Meier, Millard, Ostonen (bib54) 2020; 35 Leuschner, Ellenberg, Leuschner, Ellenberg (bib37) 2017 Maraun, Scheu (bib43) 1995; 19 Moore-Kucera, Dick (bib47) 2008; 55 Emmett Duffy, Godwin, Cardinale (bib21) 2017; 549 Kaiser, Koranda, Kitzler, Fuchslueger, Schnecker, Schweiger, Rasche, Zechmeister-Boltenstern, Sessitsch, Richter (bib30) 2010; 187 Augusto, De Schrijver, Vesterdal, Smolander, Prescott, Ranger (bib6) 2015; 90 Frostegård, Bååth (bib25) 1996; 22 Richter, Schöning, Kahl, Bauhus, Ruess (bib59) 2018; 409 Schmid, Pautasso, Holdenrieder (bib62) 2014; 133 Scheu (bib61) 1992; 24 Bennett, Koch, Forsythe, Johnson, Tilman, Klironomos (bib10) 2020; 23 Pollierer, Ferlian, Scheu (bib52) 2015; 91 Meier, Leuschner, Hertel (bib45) 2005; 177 Nacke, Goldmann, Schöning, Pfeiffer, Kaiser, Villamizar, Schrumpf, Buscot, Daniel, Wubet (bib48) 2016; 7 Kieft, Ringelberg, White (bib31) 1994; 60 Frostegård, Tunlid, Baath (bib26) 1993; 59 Piovia-Scott, Yang, Wright, Spiller, Schoener (bib51) 2019; 22 Laliberté, Kardol, Didham, Teste, Turner, Wardle (bib36) 2017; 20 Lindahl, Ihrmark, Boberg, Trumbore, Högberg, Stenlid, Finlay (bib39) 2007; 173 Toïgo, Vallet, Perot, Bontemps, Piedallu, Courbaud (bib63) 2015; 103 Koranda, Schnecker, Kaiser, Fuchslueger, Kitzler, Stange, Sessitsch, Zechmeister-Boltenstern, Richter (bib34) 2011; 43 Zuur, Ieno, Walker, Saveliev, Smith (bib68) 2009 Meier, Tückmantel, Heitkötter, Müller, Preusser, Wrobel, Kandeler, Marschner, Leuschner (bib46) 2020; 226 Wright, Mommer, Barry, Ruijven (bib65) 2021; 102 (bib56) 2020 Druebert, Lang, Valtanen, Polle (bib20) 2009; 32 Ratcliffe, Wirth, Jucker, van der Plas, Scherer-Lorenzen, Verheyen, Allan, Benavides, Bruelheide, Ohse, Paquette, Ampoorter, Bastias, Bauhus, Bonal, Bouriaud, Bussotti, Carnol, Castagneyrol, Chećko, Dawud, Wandeler, Domisch, Finér, Fischer, Fotelli, Gessler, Granier, Grossiord, Guyot, Haase, Hättenschwiler, Jactel, Jaroszewicz, Joly, Kambach, Kolb, Koricheva, Liebersgesell, Milligan, Müller, Muys, Nguyen, Nock, Pollastrini, Purschke, Radoglou, Raulund-Rasmussen, Roger, Ruiz-Benito, Seidl, Selvi, Seiferling, Stenlid, Valladares, Vesterdal, Baeten (bib58) 2017; 20 Ammer (bib2) 2019; 221 Högberg, Read (bib29) 2006; 21 Anderson, Domsch (bib5) 2010; 42 Cardinale, Wright, Cadotte, Carroll, Hector, Srivastava, Loreau, Weis (bib13) 2007; 104 Defossez, Courbaud, Marcais, Thuiller, Granda, Kunstler (bib19) 2011; 7 Zelles (bib67) 1999; 29 David, Thapa-Magar, Menges, Searcy, Afkhami, Thapa‐Magar, Menges, Searcy, Afkhami, Thapa-Magar, Menges, Searcy, Afkhami, Thapa‐Magar, Menges, Searcy, Afkhami (bib17) 2020; 101 Peuke, Gessler, Rennenberg (bib50) 2006; 29 Berger, Berger (bib11) 2012; 358 Ramsey, Rillig, Feris, Holben, Gannon (bib57) 2006; 50 Anderson, Domsch (bib4) 1978; 10 Fanin (10.1016/j.soilbio.2021.108155_bib22) 2019; 128 Richter (10.1016/j.soilbio.2021.108155_bib59) 2018; 409 Scheu (10.1016/j.soilbio.2021.108155_bib61) 1992; 24 Meier (10.1016/j.soilbio.2021.108155_bib44) 2008; 28 Malchair (10.1016/j.soilbio.2021.108155_bib42) 2009; 41 Ramsey (10.1016/j.soilbio.2021.108155_bib57) 2006; 50 Foltran (10.1016/j.soilbio.2021.108155_bib24) 2020 Anderson (10.1016/j.soilbio.2021.108155_bib4) 1978; 10 Maraun (10.1016/j.soilbio.2021.108155_bib43) 1995; 19 Leuschner (10.1016/j.soilbio.2021.108155_bib38) 2004; 258 Emmett Duffy (10.1016/j.soilbio.2021.108155_bib21) 2017; 549 (10.1016/j.soilbio.2021.108155_bib56) 2020 Castro-Díez (10.1016/j.soilbio.2021.108155_bib14) 2019; 94 Anderson (10.1016/j.soilbio.2021.108155_bib5) 2010; 42 Wright (10.1016/j.soilbio.2021.108155_bib65) 2021; 102 Druebert (10.1016/j.soilbio.2021.108155_bib20) 2009; 32 Cremer (10.1016/j.soilbio.2021.108155_bib16) 2016; 367 Koranda (10.1016/j.soilbio.2021.108155_bib34) 2011; 43 Zuur (10.1016/j.soilbio.2021.108155_bib68) 2009 Meier (10.1016/j.soilbio.2021.108155_bib45) 2005; 177 Frostegård (10.1016/j.soilbio.2021.108155_bib26) 1993; 59 Clemmensen (10.1016/j.soilbio.2021.108155_bib15) 2013; 340 Bauhus (10.1016/j.soilbio.2021.108155_bib8) 2010 Meier (10.1016/j.soilbio.2021.108155_bib46) 2020; 226 Zelles (10.1016/j.soilbio.2021.108155_bib67) 1999; 29 Fierer (10.1016/j.soilbio.2021.108155_bib23) 2003; 35 Prescott (10.1016/j.soilbio.2021.108155_bib54) 2020; 35 Kaiser (10.1016/j.soilbio.2021.108155_bib30) 2010; 187 Lindahl (10.1016/j.soilbio.2021.108155_bib39) 2007; 173 Wardle (10.1016/j.soilbio.2021.108155_bib64) 2004; 304 de Vries (10.1016/j.soilbio.2021.108155_bib18) 2019; 224 Defossez (10.1016/j.soilbio.2021.108155_bib19) 2011; 7 David (10.1016/j.soilbio.2021.108155_bib17) 2020; 101 Piovia-Scott (10.1016/j.soilbio.2021.108155_bib51) 2019; 22 Frostegård (10.1016/j.soilbio.2021.108155_bib25) 1996; 22 Cardinale (10.1016/j.soilbio.2021.108155_bib13) 2007; 104 Ratcliffe (10.1016/j.soilbio.2021.108155_bib58) 2017; 20 Potthast (10.1016/j.soilbio.2021.108155_bib53) 2010; 42 Pettit (10.1016/j.soilbio.2021.108155_bib49) 2020; 26 Ammer (10.1016/j.soilbio.2021.108155_bib3) 2020 Moore-Kucera (10.1016/j.soilbio.2021.108155_bib47) 2008; 55 Peuke (10.1016/j.soilbio.2021.108155_bib50) 2006; 29 Nacke (10.1016/j.soilbio.2021.108155_bib48) 2016; 7 Gadgil (10.1016/j.soilbio.2021.108155_bib27) 1971; 233 Berger (10.1016/j.soilbio.2021.108155_bib11) 2012; 358 Koranda (10.1016/j.soilbio.2021.108155_bib33) 2013; 60 Macfadyen (10.1016/j.soilbio.2021.108155_bib41) 1961; 30 Toïgo (10.1016/j.soilbio.2021.108155_bib63) 2015; 103 Laliberté (10.1016/j.soilbio.2021.108155_bib36) 2017; 20 Abramoff (10.1016/j.soilbio.2021.108155_bib1) 2016; 7 Ammer (10.1016/j.soilbio.2021.108155_bib2) 2019; 221 Prietzel (10.1016/j.soilbio.2021.108155_bib55) 2012; 269 Beck (10.1016/j.soilbio.2021.108155_bib9) 1997; 29 Bennett (10.1016/j.soilbio.2021.108155_bib10) 2020; 23 Bluhm (10.1016/j.soilbio.2021.108155_bib12) 2019; 14 Knoke (10.1016/j.soilbio.2021.108155_bib32) 2008; 127 Hättenschwiler (10.1016/j.soilbio.2021.108155_bib28) 2005; 36 Högberg (10.1016/j.soilbio.2021.108155_bib29) 2006; 21 Schall (10.1016/j.soilbio.2021.108155_bib60) 2012; 266 Kramer (10.1016/j.soilbio.2021.108155_bib35) 2008; 40 Lundquist (10.1016/j.soilbio.2021.108155_bib40) 1999; 31 Pollierer (10.1016/j.soilbio.2021.108155_bib52) 2015; 91 Kieft (10.1016/j.soilbio.2021.108155_bib31) 1994; 60 Averill (10.1016/j.soilbio.2021.108155_bib7) 2014; 505 Yan (10.1016/j.soilbio.2021.108155_bib66) 2016; 211 Leuschner (10.1016/j.soilbio.2021.108155_bib37) 2017 Schmid (10.1016/j.soilbio.2021.108155_bib62) 2014; 133 Augusto (10.1016/j.soilbio.2021.108155_bib6) 2015; 90 |
References_xml | – volume: 35 start-page: 1110 year: 2020 end-page: 1118 ident: bib54 article-title: Surplus carbon drives allocation and plant–soil interactions publication-title: Trends in Ecology & Evolution – volume: 32 start-page: 992 year: 2009 end-page: 1003 ident: bib20 article-title: Beech carbon productivity as driver of ectomycorrhizal abundance and diversity publication-title: Plant, Cell and Environment – year: 2020 ident: bib56 article-title: R: A language and environment for statistical computing – volume: 7 year: 2016 ident: bib48 article-title: Fine spatial scale variation of soil microbial communities under European beech and Norway spruce publication-title: Frontiers in Microbiology – volume: 269 start-page: 134 year: 2012 end-page: 148 ident: bib55 article-title: Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany publication-title: Forest Ecology and Management – volume: 59 start-page: 3605 year: 1993 end-page: 3617 ident: bib26 article-title: Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals publication-title: Applied and Environmental Microbiology – start-page: 351 year: 2017 end-page: 441 ident: bib37 article-title: Beech and mixed beech forests publication-title: Ecology of Central European Forests. Springer – volume: 101 year: 2020 ident: bib17 article-title: Do plant–microbe interactions support the Stress Gradient Hypothesis? publication-title: Ecology – volume: 28 start-page: 297 year: 2008 end-page: 309 ident: bib44 article-title: Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech publication-title: Tree Physiology – volume: 50 start-page: 275 year: 2006 end-page: 280 ident: bib57 article-title: Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches publication-title: Pedobiologia – volume: 91 start-page: 248 year: 2015 end-page: 257 ident: bib52 article-title: Temporal dynamics and variation with forest type of phospholipid fatty acids in litter and soil of temperate forests across regions publication-title: Soil Biology and Biochemistry – volume: 173 start-page: 611 year: 2007 end-page: 620 ident: bib39 article-title: Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest publication-title: New Phytologist – volume: 19 start-page: 155 year: 1995 end-page: 158 ident: bib43 article-title: Influence of beech litter fragmentation and glucose concentration on the microbial biomass in three different litter layers of a beechwood publication-title: Biology and Fertility of Soils – volume: 36 start-page: 191 year: 2005 end-page: 218 ident: bib28 article-title: Biodiversity and litter decomposition in terrestrial ecosystems publication-title: Annual Review of Ecology, Evolution and Systematics – volume: 211 start-page: 1232 year: 2016 end-page: 1240 ident: bib66 article-title: Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland publication-title: New Phytologist – volume: 42 start-page: 56 year: 2010 end-page: 64 ident: bib53 article-title: Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador publication-title: Soil Biology and Biochemistry – volume: 90 start-page: 444 year: 2015 end-page: 466 ident: bib6 article-title: Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests publication-title: Biological Reviews – volume: 7 start-page: 699 year: 2011 end-page: 701 ident: bib19 article-title: Do interactions between plant and soil biota change with elevation? A study on publication-title: Biology Letters – volume: 177 start-page: 99 year: 2005 end-page: 112 ident: bib45 article-title: Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient publication-title: Plant Ecology – volume: 20 start-page: 1414 year: 2017 end-page: 1426 ident: bib58 article-title: Biodiversity and ecosystem functioning relations in European forests depend on environmental context publication-title: Ecology Letters – year: 2020 ident: bib3 article-title: RTG 2300 - study design, location, topography and climatic conditions of research plots in 2020 publication-title: PANGAEA – start-page: 1 year: 2010 end-page: 16 ident: bib8 article-title: Plantation forests: global perspectives publication-title: Ecosystem Goods and Services from Plantation Forests. Earthscan – volume: 266 start-page: 246 year: 2012 end-page: 253 ident: bib60 article-title: Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings publication-title: Forest Ecology and Management – volume: 224 start-page: 132 year: 2019 end-page: 145 ident: bib18 article-title: Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling publication-title: New Phytologist – volume: 14 year: 2019 ident: bib12 article-title: Deprivation of root-derived resources affects microbial biomass but not community structure in litter and soil publication-title: PloS One – volume: 104 start-page: 18123 year: 2007 end-page: 18128 ident: bib13 article-title: Impacts of plant diversity on biomass production increase through time because of species complementarity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 233 start-page: 5315 year: 1971 ident: bib27 article-title: Mycorrhiza and litter decomposition publication-title: Nature – volume: 24 start-page: 1113 year: 1992 end-page: 1118 ident: bib61 article-title: Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces publication-title: Soil Biology and Biochemistry – volume: 55 start-page: 500 year: 2008 end-page: 511 ident: bib47 article-title: PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence publication-title: Microbial Ecology – volume: 22 start-page: 1850 year: 2019 end-page: 1859 ident: bib51 article-title: Pulsed seaweed subsidies drive sequential shifts in the effects of lizard predators on island food webs publication-title: Ecology Letters – volume: 23 start-page: 119 year: 2020 end-page: 128 ident: bib10 article-title: Resistance of soil biota and plant growth to disturbance increases with plant diversity publication-title: Ecology Letters – volume: 358 start-page: 349 year: 2012 end-page: 369 ident: bib11 article-title: Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles publication-title: Plant and Soil – volume: 21 start-page: 548 year: 2006 end-page: 554 ident: bib29 article-title: Towards a more plant physiological perspective on soil ecology publication-title: Trends in Ecology & Evolution – volume: 31 start-page: 1661 year: 1999 end-page: 1675 ident: bib40 article-title: Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle publication-title: Soil Biology and Biochemistry – volume: 26 start-page: 5829 year: 2020 end-page: 5843 ident: bib49 article-title: Spruce beetle outbreak was not driven by drought stress: evidence from a tree‐ring iso‐demographic approach indicates temperatures were more important publication-title: Global Change Biology – volume: 549 start-page: 261 year: 2017 end-page: 264 ident: bib21 article-title: Biodiversity effects in the wild are common and as strong as key drivers of productivity publication-title: Nature – volume: 29 start-page: 111 year: 1999 end-page: 129 ident: bib67 article-title: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review publication-title: Biology and Fertility of Soils – volume: 127 start-page: 89 year: 2008 end-page: 101 ident: bib32 article-title: Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics publication-title: European Journal of Forest Research – volume: 133 start-page: 13 year: 2014 end-page: 29 ident: bib62 article-title: Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe publication-title: European Journal of Forest Research – volume: 22 start-page: 59 year: 1996 end-page: 65 ident: bib25 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biology and Fertility of Soils – volume: 20 start-page: 1273 year: 2017 end-page: 1284 ident: bib36 article-title: Soil fertility shapes belowground food webs across a regional climate gradient publication-title: Ecology Letters – volume: 7 year: 2016 ident: bib1 article-title: Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest publication-title: Ecosphere – volume: 30 start-page: 171 year: 1961 ident: bib41 article-title: Improved funnel-type extractors for soil arthropods publication-title: Journal of Animal Ecology – volume: 29 start-page: 1023 year: 1997 end-page: 1032 ident: bib9 article-title: An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry – volume: 94 start-page: 1477 year: 2019 end-page: 1501 ident: bib14 article-title: Global effects of non-native tree species on multiple ecosystem services publication-title: Biological Reviews – volume: 10 start-page: 215 year: 1978 end-page: 221 ident: bib4 article-title: A physiological method for the quantitative measurement of microbial biomass in soils publication-title: Soil Biology and Biochemistry – volume: 29 start-page: 823 year: 2006 end-page: 835 ident: bib50 article-title: The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes publication-title: Plant, Cell and Environment – volume: 128 start-page: 111 year: 2019 end-page: 114 ident: bib22 article-title: The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils publication-title: Soil Biology and Biochemistry – volume: 304 start-page: 1629 year: 2004 end-page: 1633 ident: bib64 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science – volume: 35 start-page: 167 year: 2003 end-page: 176 ident: bib23 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry – volume: 41 start-page: 831 year: 2009 end-page: 839 ident: bib42 article-title: Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites publication-title: Soil Biology and Biochemistry – volume: 258 start-page: 43 year: 2004 end-page: 56 ident: bib38 article-title: Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility publication-title: Plant and Soil – volume: 43 start-page: 551 year: 2011 end-page: 558 ident: bib34 article-title: Microbial processes and community composition in the rhizosphere of European beech - the influence of plant C exudates publication-title: Soil Biology and Biochemistry – volume: 103 start-page: 502 year: 2015 end-page: 512 ident: bib63 article-title: Overyielding in mixed forests decreases with site productivity publication-title: Journal of Ecology – volume: 409 start-page: 250 year: 2018 end-page: 259 ident: bib59 article-title: Regional environmental conditions shape microbial community structure stronger than local forest management intensity publication-title: Forest Ecology and Management – start-page: 313213 year: 2020 ident: bib24 article-title: Douglas fir and Norway spruce admixtures to beech forests along a site gradient in Northern Germany – are soil nutrient conditions affected? publication-title: BioRxiv – volume: 60 start-page: 3292 year: 1994 end-page: 3299 ident: bib31 article-title: Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium publication-title: Applied and Environmental Microbiology – volume: 226 start-page: 583 year: 2020 end-page: 594 ident: bib46 article-title: Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity publication-title: New Phytologist – volume: 187 start-page: 843 year: 2010 end-page: 858 ident: bib30 article-title: Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil publication-title: New Phytologist – volume: 221 start-page: 50 year: 2019 end-page: 66 ident: bib2 article-title: Diversity and forest productivity in a changing climate publication-title: New Phytologist – volume: 40 start-page: 425 year: 2008 end-page: 433 ident: bib35 article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation publication-title: Soil Biology and Biochemistry – volume: 505 start-page: 543 year: 2014 end-page: 545 ident: bib7 article-title: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage publication-title: Nature – volume: 42 start-page: 2039 year: 2010 end-page: 2043 ident: bib5 article-title: Soil microbial biomass: the eco-physiological approach publication-title: Soil Biology and Biochemistry – volume: 60 start-page: 95 year: 2013 end-page: 104 ident: bib33 article-title: Seasonal variation in functional properties of microbial communities in beech forest soil publication-title: Soil Biology and Biochemistry – volume: 340 start-page: 1615 year: 2013 end-page: 1618 ident: bib15 article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest publication-title: Science – volume: 367 start-page: 30 year: 2016 end-page: 40 ident: bib16 article-title: Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce publication-title: Forest Ecology and Management – start-page: 71 year: 2009 end-page: 100 ident: bib68 article-title: Dealing with heterogeneity publication-title: Mixed Effects Models and Extensions in Ecology with R. Springer Science & Business Media – volume: 102 year: 2021 ident: bib65 article-title: Stress gradients and biodiversity: monoculture vulnerability drives stronger biodiversity effects during drought years publication-title: Ecology – volume: 22 start-page: 59 year: 1996 ident: 10.1016/j.soilbio.2021.108155_bib25 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biology and Fertility of Soils doi: 10.1007/BF00384433 – volume: 19 start-page: 155 year: 1995 ident: 10.1016/j.soilbio.2021.108155_bib43 article-title: Influence of beech litter fragmentation and glucose concentration on the microbial biomass in three different litter layers of a beechwood publication-title: Biology and Fertility of Soils doi: 10.1007/BF00336152 – volume: 42 start-page: 2039 year: 2010 ident: 10.1016/j.soilbio.2021.108155_bib5 article-title: Soil microbial biomass: the eco-physiological approach publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.06.026 – volume: 269 start-page: 134 year: 2012 ident: 10.1016/j.soilbio.2021.108155_bib55 article-title: Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2011.12.034 – volume: 40 start-page: 425 year: 2008 ident: 10.1016/j.soilbio.2021.108155_bib35 article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2007.09.016 – volume: 102 year: 2021 ident: 10.1016/j.soilbio.2021.108155_bib65 article-title: Stress gradients and biodiversity: monoculture vulnerability drives stronger biodiversity effects during drought years publication-title: Ecology doi: 10.1002/ecy.3193 – volume: 549 start-page: 261 year: 2017 ident: 10.1016/j.soilbio.2021.108155_bib21 article-title: Biodiversity effects in the wild are common and as strong as key drivers of productivity publication-title: Nature doi: 10.1038/nature23886 – volume: 14 year: 2019 ident: 10.1016/j.soilbio.2021.108155_bib12 article-title: Deprivation of root-derived resources affects microbial biomass but not community structure in litter and soil publication-title: PloS One doi: 10.1371/journal.pone.0214233 – volume: 7 start-page: 699 year: 2011 ident: 10.1016/j.soilbio.2021.108155_bib19 article-title: Do interactions between plant and soil biota change with elevation? A study on Fagus sylvatica publication-title: Biology Letters doi: 10.1098/rsbl.2011.0236 – volume: 304 start-page: 1629 year: 2004 ident: 10.1016/j.soilbio.2021.108155_bib64 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science doi: 10.1126/science.1094875 – volume: 211 start-page: 1232 year: 2016 ident: 10.1016/j.soilbio.2021.108155_bib66 article-title: Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland publication-title: New Phytologist doi: 10.1111/nph.13970 – volume: 43 start-page: 551 year: 2011 ident: 10.1016/j.soilbio.2021.108155_bib34 article-title: Microbial processes and community composition in the rhizosphere of European beech - the influence of plant C exudates publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.11.022 – start-page: 71 year: 2009 ident: 10.1016/j.soilbio.2021.108155_bib68 article-title: Dealing with heterogeneity – volume: 358 start-page: 349 year: 2012 ident: 10.1016/j.soilbio.2021.108155_bib11 article-title: Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles publication-title: Plant and Soil doi: 10.1007/s11104-012-1165-z – volume: 36 start-page: 191 year: 2005 ident: 10.1016/j.soilbio.2021.108155_bib28 article-title: Biodiversity and litter decomposition in terrestrial ecosystems publication-title: Annual Review of Ecology, Evolution and Systematics doi: 10.1146/annurev.ecolsys.36.112904.151932 – volume: 60 start-page: 3292 year: 1994 ident: 10.1016/j.soilbio.2021.108155_bib31 article-title: Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.60.9.3292-3299.1994 – volume: 258 start-page: 43 year: 2004 ident: 10.1016/j.soilbio.2021.108155_bib38 article-title: Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility publication-title: Plant and Soil doi: 10.1023/B:PLSO.0000016508.20173.80 – volume: 367 start-page: 30 year: 2016 ident: 10.1016/j.soilbio.2021.108155_bib16 article-title: Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2016.02.020 – volume: 340 start-page: 1615 year: 2013 ident: 10.1016/j.soilbio.2021.108155_bib15 article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest publication-title: Science doi: 10.1126/science.1231923 – volume: 91 start-page: 248 year: 2015 ident: 10.1016/j.soilbio.2021.108155_bib52 article-title: Temporal dynamics and variation with forest type of phospholipid fatty acids in litter and soil of temperate forests across regions publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.08.035 – volume: 187 start-page: 843 year: 2010 ident: 10.1016/j.soilbio.2021.108155_bib30 article-title: Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03321.x – volume: 41 start-page: 831 year: 2009 ident: 10.1016/j.soilbio.2021.108155_bib42 article-title: Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2009.02.004 – volume: 29 start-page: 1023 year: 1997 ident: 10.1016/j.soilbio.2021.108155_bib9 article-title: An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(97)00030-8 – volume: 20 start-page: 1273 year: 2017 ident: 10.1016/j.soilbio.2021.108155_bib36 article-title: Soil fertility shapes belowground food webs across a regional climate gradient publication-title: Ecology Letters doi: 10.1111/ele.12823 – volume: 29 start-page: 823 year: 2006 ident: 10.1016/j.soilbio.2021.108155_bib50 article-title: The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.2005.01452.x – volume: 133 start-page: 13 year: 2014 ident: 10.1016/j.soilbio.2021.108155_bib62 article-title: Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe publication-title: European Journal of Forest Research doi: 10.1007/s10342-013-0745-7 – volume: 505 start-page: 543 year: 2014 ident: 10.1016/j.soilbio.2021.108155_bib7 article-title: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage publication-title: Nature doi: 10.1038/nature12901 – volume: 55 start-page: 500 year: 2008 ident: 10.1016/j.soilbio.2021.108155_bib47 article-title: PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence publication-title: Microbial Ecology doi: 10.1007/s00248-007-9295-1 – year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib56 – volume: 94 start-page: 1477 year: 2019 ident: 10.1016/j.soilbio.2021.108155_bib14 article-title: Global effects of non-native tree species on multiple ecosystem services publication-title: Biological Reviews doi: 10.1111/brv.12511 – volume: 103 start-page: 502 year: 2015 ident: 10.1016/j.soilbio.2021.108155_bib63 article-title: Overyielding in mixed forests decreases with site productivity publication-title: Journal of Ecology doi: 10.1111/1365-2745.12353 – volume: 104 start-page: 18123 year: 2007 ident: 10.1016/j.soilbio.2021.108155_bib13 article-title: Impacts of plant diversity on biomass production increase through time because of species complementarity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0709069104 – volume: 50 start-page: 275 year: 2006 ident: 10.1016/j.soilbio.2021.108155_bib57 article-title: Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches publication-title: Pedobiologia doi: 10.1016/j.pedobi.2006.03.003 – volume: 24 start-page: 1113 year: 1992 ident: 10.1016/j.soilbio.2021.108155_bib61 article-title: Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(92)90061-2 – volume: 29 start-page: 111 year: 1999 ident: 10.1016/j.soilbio.2021.108155_bib67 article-title: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review publication-title: Biology and Fertility of Soils doi: 10.1007/s003740050533 – volume: 128 start-page: 111 year: 2019 ident: 10.1016/j.soilbio.2021.108155_bib22 article-title: The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.10.010 – volume: 409 start-page: 250 year: 2018 ident: 10.1016/j.soilbio.2021.108155_bib59 article-title: Regional environmental conditions shape microbial community structure stronger than local forest management intensity publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2017.11.027 – start-page: 1 year: 2010 ident: 10.1016/j.soilbio.2021.108155_bib8 article-title: Plantation forests: global perspectives – volume: 224 start-page: 132 year: 2019 ident: 10.1016/j.soilbio.2021.108155_bib18 article-title: Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling publication-title: New Phytologist doi: 10.1111/nph.16001 – volume: 173 start-page: 611 year: 2007 ident: 10.1016/j.soilbio.2021.108155_bib39 article-title: Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest publication-title: New Phytologist doi: 10.1111/j.1469-8137.2006.01936.x – volume: 266 start-page: 246 year: 2012 ident: 10.1016/j.soilbio.2021.108155_bib60 article-title: Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2011.11.017 – volume: 32 start-page: 992 year: 2009 ident: 10.1016/j.soilbio.2021.108155_bib20 article-title: Beech carbon productivity as driver of ectomycorrhizal abundance and diversity publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.2009.01983.x – volume: 59 start-page: 3605 year: 1993 ident: 10.1016/j.soilbio.2021.108155_bib26 article-title: Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.59.11.3605-3617.1993 – volume: 30 start-page: 171 year: 1961 ident: 10.1016/j.soilbio.2021.108155_bib41 article-title: Improved funnel-type extractors for soil arthropods publication-title: Journal of Animal Ecology doi: 10.2307/2120 – volume: 23 start-page: 119 year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib10 article-title: Resistance of soil biota and plant growth to disturbance increases with plant diversity publication-title: Ecology Letters doi: 10.1111/ele.13408 – volume: 42 start-page: 56 year: 2010 ident: 10.1016/j.soilbio.2021.108155_bib53 article-title: Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2009.09.025 – volume: 226 start-page: 583 year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib46 article-title: Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity publication-title: New Phytologist doi: 10.1111/nph.16389 – volume: 7 year: 2016 ident: 10.1016/j.soilbio.2021.108155_bib48 article-title: Fine spatial scale variation of soil microbial communities under European beech and Norway spruce publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2016.02067 – volume: 127 start-page: 89 year: 2008 ident: 10.1016/j.soilbio.2021.108155_bib32 article-title: Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics publication-title: European Journal of Forest Research doi: 10.1007/s10342-007-0186-2 – volume: 26 start-page: 5829 year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib49 article-title: Spruce beetle outbreak was not driven by drought stress: evidence from a tree‐ring iso‐demographic approach indicates temperatures were more important publication-title: Global Change Biology doi: 10.1111/gcb.15274 – volume: 31 start-page: 1661 year: 1999 ident: 10.1016/j.soilbio.2021.108155_bib40 article-title: Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(99)00080-2 – volume: 90 start-page: 444 year: 2015 ident: 10.1016/j.soilbio.2021.108155_bib6 article-title: Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests publication-title: Biological Reviews doi: 10.1111/brv.12119 – volume: 35 start-page: 167 year: 2003 ident: 10.1016/j.soilbio.2021.108155_bib23 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00251-1 – volume: 21 start-page: 548 year: 2006 ident: 10.1016/j.soilbio.2021.108155_bib29 article-title: Towards a more plant physiological perspective on soil ecology publication-title: Trends in Ecology & Evolution doi: 10.1016/j.tree.2006.06.004 – volume: 60 start-page: 95 year: 2013 ident: 10.1016/j.soilbio.2021.108155_bib33 article-title: Seasonal variation in functional properties of microbial communities in beech forest soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2013.01.025 – volume: 20 start-page: 1414 year: 2017 ident: 10.1016/j.soilbio.2021.108155_bib58 article-title: Biodiversity and ecosystem functioning relations in European forests depend on environmental context publication-title: Ecology Letters doi: 10.1111/ele.12849 – volume: 22 start-page: 1850 year: 2019 ident: 10.1016/j.soilbio.2021.108155_bib51 article-title: Pulsed seaweed subsidies drive sequential shifts in the effects of lizard predators on island food webs publication-title: Ecology Letters doi: 10.1111/ele.13377 – volume: 35 start-page: 1110 year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib54 article-title: Surplus carbon drives allocation and plant–soil interactions publication-title: Trends in Ecology & Evolution doi: 10.1016/j.tree.2020.08.007 – volume: 28 start-page: 297 year: 2008 ident: 10.1016/j.soilbio.2021.108155_bib44 article-title: Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech publication-title: Tree Physiology doi: 10.1093/treephys/28.2.297 – volume: 101 year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib17 article-title: Do plant–microbe interactions support the Stress Gradient Hypothesis? publication-title: Ecology doi: 10.1002/ecy.3081 – volume: 177 start-page: 99 year: 2005 ident: 10.1016/j.soilbio.2021.108155_bib45 article-title: Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient publication-title: Plant Ecology doi: 10.1007/s11258-005-2221-z – year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib3 article-title: RTG 2300 - study design, location, topography and climatic conditions of research plots in 2020 publication-title: PANGAEA – volume: 10 start-page: 215 year: 1978 ident: 10.1016/j.soilbio.2021.108155_bib4 article-title: A physiological method for the quantitative measurement of microbial biomass in soils publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(78)90099-8 – start-page: 313213 year: 2020 ident: 10.1016/j.soilbio.2021.108155_bib24 article-title: Douglas fir and Norway spruce admixtures to beech forests along a site gradient in Northern Germany – are soil nutrient conditions affected? publication-title: BioRxiv – start-page: 351 year: 2017 ident: 10.1016/j.soilbio.2021.108155_bib37 article-title: Beech and mixed beech forests – volume: 7 year: 2016 ident: 10.1016/j.soilbio.2021.108155_bib1 article-title: Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest publication-title: Ecosphere doi: 10.1002/ecs2.1547 – volume: 233 start-page: 5315 year: 1971 ident: 10.1016/j.soilbio.2021.108155_bib27 article-title: Mycorrhiza and litter decomposition publication-title: Nature doi: 10.1038/233133a0 – volume: 221 start-page: 50 year: 2019 ident: 10.1016/j.soilbio.2021.108155_bib2 article-title: Diversity and forest productivity in a changing climate publication-title: New Phytologist doi: 10.1111/nph.15263 |
SSID | ssj0002513 |
Score | 2.5285907 |
Snippet | Tree - soil interactions depend on environmental conditions. Planting trees may affect soil microbial communities and compromise their functioning,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108155 |
SubjectTerms | conifers Douglas-fir Ecosystem functioning ecosystems Fagus sylvatica subsp. sylvatica microbial growth Microbial stress Norway spruce phospholipid fatty acids Picea abies planting PLFA Pseudotsuga menziesii soil soil biology soil nutrients Soil respiration species diversity trees |
Title | Response of soil microbial communities to mixed beech-conifer forests varies with site conditions |
URI | https://dx.doi.org/10.1016/j.soilbio.2021.108155 https://www.proquest.com/docview/2551908661 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPqgPolNxfowIvnazadKPxzGUqbgHcbC30KapdsxtbJ345N_uXZM6FGEg9KUtScPdJfe75u4XQq7AibgwxxKYaVw5POPCSTKIWhVnWnmBFxguvceB3x_y-5EY1UivqoXBtEq79ps1vVyt7ZOOlWZnnudY44tk6RjCGBYWrGDnAVp5-3Od5gH-2xLvhlisE6yreDpj5MudJDnWADIXs-1crPj72z_9WqlL93O7T_YsbqRdM7QDUtPTBtntviwsd4ZukO1edXjbIYmfTO6rprOM4vfpW15SLkEfytSEIJMqLWbw4kOnNNFavToQHGOqCwUkC2NY0vcykqb4s5biNjO0xS1uNNUjMry9ee71HXuagqMAlBSOcLNQwwWI4lqkgYjwXComWAIYxcu8LExUGrM0FeDzheuDAiOAI8rHGDKNIeY-JvXpbKpPCOVekKKCfR0IrhhPWMRUlEbcZyDmWDcJr2QolaUaxxMvJrLKKRtLK3qJopdG9E3S_m42N1wbmxqElYLkD6OR4A82Nb2sFCpBNbhLEk_1bLWUEGMBSAoBt5z-v_szsoN3JsXnnNSLxUpfAHopklZpni2y1b176A--AHAs7l4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MS3EfRY16ZJHwcP4oP1eRAFb7FNU91Fd5fd9XXxT_kHnWlSRREEQeipYdJ28vhmmplvANYRRHxcYxmuNKE9UQjpZQV6rVpwo4MoiCyX3ulZWL8UR1fyagDeqlwYCqt0e7_d08vd2t2pOW3WOo0G5fgSWTq5MJaFxUVWHpuXJ_TbetuHezjIG5wf7F_s1j1XWsDTiNB9T_pFbPBCeN2SeSQTKtLEJc8QsIMiKOJM5ynPc4kAKP0QvyZBbNYhOVR5ig4o9jsIwwK3CyqbsPn6GVeCBoNj-o0pOyj6TBuqNYmg9y5rUNIh9ym8z6cUw58B8Rs0lHh3MAHjzlBlO1YXkzBgWlMwtnPTdWQdZgpGdqtqcdOQnttgW8PaBaPns_tGyfGEfWibhELUrazfxoZnk7PMGH3roTdOsTUMTWd8hx57LF13Rn-HGZ1royydqdPamIHLf9HxLAy12i0zB0wEUU4zKjSRFJqLjCdcJ3kiQo5qTs08iEqHSjtucyqxcaeqILamcqpXpHplVT8Pmx9iHUvu8ZtAXA2Q-jJLFQLQb6Jr1YAqHBo6lklbpv3QU-jUoVUWo6G08PfuV2GkfnF6ok4Oz44XYZRabHzREgz1uw9mGU2nfrZSTlUG1_-9Nt4B52soCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+soil+microbial+communities+to+mixed+beech-conifer+forests+varies+with+site+conditions&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Lu%2C+Jing-Zhong&rft.au=Scheu%2C+Stefan&rft.date=2021-04-01&rft.issn=0038-0717&rft.volume=155&rft.spage=108155&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2021_108155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |