The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility

Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 288; no. 1959; p. 20211553
Main Authors Hook, Kristin A, Yang, Qixin, Campanello, Leonard, Losert, Wolfgang, Fisher, Heidi S
Format Journal Article
LanguageEnglish
Published England The Royal Society 29.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance.
AbstractList Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across Peromyscus mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from in vitro observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance.
Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance.
Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across Peromyscus mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from in vitro observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance.
Author Losert, Wolfgang
Yang, Qixin
Campanello, Leonard
Hook, Kristin A
Fisher, Heidi S
Author_xml – sequence: 1
  givenname: Kristin A
  orcidid: 0000-0001-5864-0316
  surname: Hook
  fullname: Hook, Kristin A
  organization: Department of Biology, University of Maryland, 1200 Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
– sequence: 2
  givenname: Qixin
  orcidid: 0000-0001-5349-6992
  surname: Yang
  fullname: Yang, Qixin
  organization: Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA
– sequence: 3
  givenname: Leonard
  surname: Campanello
  fullname: Campanello, Leonard
  organization: Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA
– sequence: 4
  givenname: Wolfgang
  orcidid: 0000-0002-1792-7860
  surname: Losert
  fullname: Losert, Wolfgang
  organization: Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA
– sequence: 5
  givenname: Heidi S
  orcidid: 0000-0001-5622-4335
  surname: Fisher
  fullname: Fisher, Heidi S
  organization: Department of Biology, University of Maryland, 1200 Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34547913$$D View this record in MEDLINE/PubMed
BookMark eNpVkc9PHCEYhkljU1fba4-GYy-zwjDMDB6aNMZfiYkXeyYM87FLw8AIjKlH__Oyrpp6IuF9efjyPUfowAcPCH2nZE2J6E9jmod1TWq6ppyzT2hFm45WteDNAVoR0dZV3_D6EB2l9IcQInjPv6BD1vCmE5St0PP9FnAK2iqH01bNgIPBaYY4neElWb_BymPrM2yiyvYR8KT01nqoHKjoX_J5jqFc4hww_FVTCfcAvLgcVcpx0XmJUEAj1sE50HtQyNbZ_PQVfTbKJfj2eh6j35cX9-fX1e3d1c35r9tKs17kqhl7M_KGklYrGAgT2lAjWj1wIJxqNnRGqbo3MNKOGV4Db0vC9ChaTkc9smP0c8-dl2GCUYMv0zk5Rzup-CSDsvJj4u1WbsKjLAtsadMWwI9XQAwPC6QsJ5s0OKc8hCXJmnecdYRxUqrrfVXHkFIE8_4NJXLnTe68yZ03ufNWHpz8P9x7_U0U-wdFvptx
Cites_doi 10.1111/j.1469-185X.2010.00147.x
10.1086/343873
10.1644/06-MAMM-A-342R.1
10.1530/REP-17-0536
10.1111/j.1469-185X.1992.tb01193.x
10.1071/RD15022
10.1002/jmor.10357
10.1016/j.csda.2009.04.009
10.1098/rspb.2014.0296
10.1017/CBO9780511801389
10.1002/mrd.23346
10.1002/ece3.577
10.1046/j.1365-2656.2001.00524.x
10.1038/nature08736
10.1095/biolreprod52.4.947
10.1111/j.1420-9101.2009.01867.x
10.1109/TPAMI.1986.4767851
10.1016/B978-0-12-372568-4.00003-3
10.1017/S0022112008005685
10.1098/rstb.2019.0384
10.1095/biolreprod.115.138008
10.18637/jss.v069.i01
10.1186/1471-2148-8-319
10.1095/biolreprod.113.115956
10.1098/rsif.2014.0684
10.1101/2020.12.05.413120
10.1111/jeb.12857
10.1098/rspb.1999.0843
10.1242/dmm.034330
10.1371/journal.pone.0000170
10.1111/rda.13552
10.1071/RD17431
10.1093/bioinformatics/btm344
10.1080/00031305.1998.10480559
10.1111/j.1558-5646.2011.01532.x
10.1098/rsif.2018.0702
10.1162/neco.1992.4.3.415
10.1093/molbev/msq013
10.1371/journal.pone.0108148
10.1038/nature00832
10.1016/j.theriogenology.2020.02.017
10.1109/34.56205
10.1093/bioinformatics/btg412
ContentType Journal Article
Copyright 2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s) 2021
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1098/rspb.2021.1553
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
DocumentTitleAlternate The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility
EISSN 1471-2954
EndPage 20211553
ExternalDocumentID 10_1098_rspb_2021_1553
34547913
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R00 HD071972
– fundername: NICHD NIH HHS
  grantid: K99 HD071972
– fundername: ;
  grantid: K99/R00; R00HD071972
– fundername: ;
  grantid: FA9550-16-1-0052
– fundername: ;
  grantid: 1711817
GroupedDBID ---
-~X
0R~
29P
2WC
36Y
4.4
5RE
85S
AACGO
AANCE
ABPLY
ABTLG
ACIWK
ACNCT
ACPRK
ACQIA
ADBBV
ADIYS
AEUPB
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HYE
HZ~
JLS
JSG
JST
KQ8
MRS
NPM
O9-
OK1
OP1
RHF
RPM
RRY
TR2
V1E
W8F
~02
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c389t-4d8fd54106caeb039cf1f96cb5e051c3b7faa28fed173f52e565e03cd9651dcd3
IEDL.DBID RPM
ISSN 0962-8452
IngestDate Tue Sep 17 21:30:44 EDT 2024
Fri Dec 06 00:20:23 EST 2024
Fri Dec 06 08:18:35 EST 2024
Sat Nov 02 12:29:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1959
Keywords automated morphometrics
collective motion
cell morphology
peromyscus
sperm aggregation
sperm conjugation
Language English
License Published by the Royal Society. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-4d8fd54106caeb039cf1f96cb5e051c3b7faa28fed173f52e565e03cd9651dcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5604590.
ORCID 0000-0002-1792-7860
0000-0001-5349-6992
0000-0001-5622-4335
0000-0001-5864-0316
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2021.1553
PMID 34547913
PQID 2575370350
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456146
proquest_miscellaneous_2575370350
crossref_primary_10_1098_rspb_2021_1553
pubmed_primary_34547913
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. B, Biological sciences
PublicationTitleAlternate Proc Biol Sci
PublicationYear 2021
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_7_20_2
e_1_3_7_43_2
e_1_3_7_22_2
e_1_3_7_41_2
e_1_3_7_24_2
e_1_3_7_47_2
Burden F (e_1_3_7_44_2) 2009
e_1_3_7_26_2
e_1_3_7_28_2
e_1_3_7_49_2
Linzey AV (e_1_3_7_25_2) 1974; 20
Ilina O (e_1_3_7_50_2) 2018; 11
e_1_3_7_51_2
Picard RR (e_1_3_7_45_2) 1984; 79
e_1_3_7_30_2
e_1_3_7_11_2
e_1_3_7_32_2
e_1_3_7_13_2
e_1_3_7_15_2
e_1_3_7_17_2
e_1_3_7_38_2
e_1_3_7_19_2
e_1_3_7_2_2
R Core Team (e_1_3_7_36_2) 2016
e_1_3_7_4_2
e_1_3_7_6_2
e_1_3_7_8_2
e_1_3_7_40_2
Hintze JL (e_1_3_7_35_2) 1998; 52
e_1_3_7_21_2
e_1_3_7_42_2
e_1_3_7_23_2
e_1_3_7_48_2
e_1_3_7_46_2
e_1_3_7_27_2
e_1_3_7_29_2
Platt JC (e_1_3_7_34_2) 1999; 10
Orme D (e_1_3_7_39_2) 2013; 5
e_1_3_7_9_2
e_1_3_7_31_2
e_1_3_7_10_2
e_1_3_7_33_2
e_1_3_7_12_2
e_1_3_7_14_2
e_1_3_7_37_2
e_1_3_7_16_2
e_1_3_7_18_2
e_1_3_7_3_2
e_1_3_7_5_2
e_1_3_7_7_2
References_xml – ident: e_1_3_7_16_2
  doi: 10.1111/j.1469-185X.2010.00147.x
– ident: e_1_3_7_38_2
  doi: 10.1086/343873
– ident: e_1_3_7_28_2
  doi: 10.1644/06-MAMM-A-342R.1
– volume: 5
  start-page: 1
  year: 2013
  ident: e_1_3_7_39_2
  article-title: The caper package: comparative analysis of phylogenetics and evolution in R
  publication-title: R package version
  contributor:
    fullname: Orme D
– ident: e_1_3_7_13_2
  doi: 10.1530/REP-17-0536
– ident: e_1_3_7_3_2
  doi: 10.1111/j.1469-185X.1992.tb01193.x
– volume-title: R: a language and environment for statistical computing
  year: 2016
  ident: e_1_3_7_36_2
  contributor:
    fullname: R Core Team
– ident: e_1_3_7_48_2
  doi: 10.1071/RD15022
– ident: e_1_3_7_4_2
  doi: 10.1002/jmor.10357
– volume: 10
  start-page: 61
  year: 1999
  ident: e_1_3_7_34_2
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv. Large Margin Classifiers
  contributor:
    fullname: Platt JC
– ident: e_1_3_7_32_2
  doi: 10.1016/j.csda.2009.04.009
– ident: e_1_3_7_26_2
  doi: 10.1098/rspb.2014.0296
– ident: e_1_3_7_27_2
– ident: e_1_3_7_31_2
  doi: 10.1017/CBO9780511801389
– ident: e_1_3_7_10_2
  doi: 10.1002/mrd.23346
– ident: e_1_3_7_23_2
  doi: 10.1002/ece3.577
– ident: e_1_3_7_42_2
  doi: 10.1046/j.1365-2656.2001.00524.x
– ident: e_1_3_7_20_2
  doi: 10.1038/nature08736
– ident: e_1_3_7_18_2
  doi: 10.1095/biolreprod52.4.947
– start-page: 23
  volume-title: Artificial neural networks: methods and applications
  year: 2009
  ident: e_1_3_7_44_2
  contributor:
    fullname: Burden F
– volume: 79
  start-page: 575
  year: 1984
  ident: e_1_3_7_45_2
  article-title: Cross-validation of regression models
  publication-title: Null
  contributor:
    fullname: Picard RR
– ident: e_1_3_7_22_2
  doi: 10.1111/j.1420-9101.2009.01867.x
– ident: e_1_3_7_30_2
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_3_7_2_2
  doi: 10.1016/B978-0-12-372568-4.00003-3
– ident: e_1_3_7_12_2
  doi: 10.1017/S0022112008005685
– ident: e_1_3_7_17_2
  doi: 10.1098/rstb.2019.0384
– ident: e_1_3_7_14_2
  doi: 10.1095/biolreprod.115.138008
– ident: e_1_3_7_37_2
  doi: 10.18637/jss.v069.i01
– ident: e_1_3_7_11_2
  doi: 10.1186/1471-2148-8-319
– ident: e_1_3_7_46_2
  doi: 10.1095/biolreprod.113.115956
– ident: e_1_3_7_49_2
  doi: 10.1098/rsif.2014.0684
– ident: e_1_3_7_51_2
  doi: 10.1101/2020.12.05.413120
– ident: e_1_3_7_21_2
  doi: 10.1111/jeb.12857
– ident: e_1_3_7_47_2
  doi: 10.1098/rspb.1999.0843
– volume: 11
  year: 2018
  ident: e_1_3_7_50_2
  article-title: Intravital microscopy of collective invasion plasticity in breast cancer
  publication-title: Dis. Models Mech.
  doi: 10.1242/dmm.034330
  contributor:
    fullname: Ilina O
– volume: 20
  year: 1974
  ident: e_1_3_7_25_2
  article-title: Comparative morphology of spermatozoa of the rodent genus Peromyscus (Muridae)
  publication-title: Am. Mus. Novitates
  contributor:
    fullname: Linzey AV
– ident: e_1_3_7_8_2
  doi: 10.1371/journal.pone.0000170
– ident: e_1_3_7_5_2
  doi: 10.1111/rda.13552
– ident: e_1_3_7_9_2
  doi: 10.1071/RD17431
– ident: e_1_3_7_33_2
  doi: 10.1093/bioinformatics/btm344
– volume: 52
  start-page: 181
  year: 1998
  ident: e_1_3_7_35_2
  article-title: Violin plots: a box plot-density trace synergism
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1998.10480559
  contributor:
    fullname: Hintze JL
– ident: e_1_3_7_19_2
  doi: 10.1111/j.1558-5646.2011.01532.x
– ident: e_1_3_7_24_2
  doi: 10.1098/rsif.2018.0702
– ident: e_1_3_7_43_2
  doi: 10.1162/neco.1992.4.3.415
– ident: e_1_3_7_41_2
  doi: 10.1093/molbev/msq013
– ident: e_1_3_7_6_2
  doi: 10.1371/journal.pone.0108148
– ident: e_1_3_7_15_2
  doi: 10.1038/nature00832
– ident: e_1_3_7_7_2
  doi: 10.1016/j.theriogenology.2020.02.017
– ident: e_1_3_7_29_2
  doi: 10.1109/34.56205
– ident: e_1_3_7_40_2
  doi: 10.1093/bioinformatics/btg412
SSID ssj0009585
Score 2.439733
Snippet Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 20211553
SubjectTerms Animals
Evolution
Female
Machine Learning
Male
Mice
Sperm Head
Sperm Motility
Sperm-Ovum Interactions
Spermatozoa
Title The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility
URI https://www.ncbi.nlm.nih.gov/pubmed/34547913
https://search.proquest.com/docview/2575370350
https://pubmed.ncbi.nlm.nih.gov/PMC8456146
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB01lUC9IFq-wke1SEjAwYnt9dprbqiiVEhFHKiUm7Ufs7RS7UQkkeDIP2fGa0cEbpzXWa38ZnfeZJ_fALxKUao62JD4WoWkQI-JRu0To6qqDMoVdW-7ePm5vLgqPi3U4gDU-C1ML9p39mbW3baz7ua611auWjcfdWLzL5dnmrN-Uc4nMKH0O5boO6fdvg8nUXPa6oXKd06Nek6VoqWSMM9m3C3nCO5KtrOqM7mflP5hmn8LJv_IQOf34d5AHcX7uMRjOMDuBO7EZpI_T-B42KZr8Wbwkn77AH5RGIj4v7hYX5sVimUQbA7evhMsef8mTCdGywg6-ETbiysxGbpJ0PhgOi42S4E_TEuDcQKxvaVVRv_Z7XekibzgqIonqGCRH1P8h3B1_uHr2UUydF1IHJGXTVJ4HbwqqFR0Bm0qaxeyUJfOKqQN7KStgjG5DuizSgaVI1FCTKXzdaky77x8BIfdssMnIDKry9RyJxzriKikJg-S-Fau0VfGlekUXo-vvVlFc40mXorrhrFqGKuGsZrCyxGVhuKfLzVMh8vtuqEjR8mK70en8DiitJtrhHcK1R5-uwfYW3t_hEKu99geQuzpf__yGRzx6llaktfP4ZDQwBfEXzb2FCYfF9lpH7W_AQgZ9Ow
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIqAXRMtHl08jIQGH7CZxnNjcUEW1QLfi0Eq9Rf4Y00pNdtXdleDIP2ccJysWbpydWE7ejP0cv7wBeJMiF8obnzglfFKgw0SidIkWVVV6YQvV2S7OTsvpefHlQlzsgBj-helE-9ZcjdvrZtxeXXbaykVjJ4NObPJtdiTDql-Uk1twW_BKZcMmfeO121XiJHJOyV6IfOPVKCe0VzS0KcyzcaiXswd3eTC0UhnfXpb-4Zp_Syb_WIOOH8D9njyyj3GQ-7CD7QHcieUkfx7Afp-oS_aud5N-_xB-USCw-GWcLS_1Atncs2AP3nxgQfT-nemWDaYRNPWxppNXYtLXk6D23nacreYMf-iGGmMHbH1No4wOtOsbpI4cC3EV51AWZH6B5D-C8-NPZ0fTpK-7kFiiL6ukcNI7UdBm0Wo0KVfWZ16V1gikFLbcVF7rXHp0WcW9yJFIIabcOlWKzFnHH8NuO2_xEFhmZJmaUAvHWKIqqc49J8aVS3SVtmU6grfDa68X0V6jjsfisg5Y1QGrOmA1gtcDKjVlQDjW0C3O18uaJh2KgnBCOoInEaVNXwO8I6i28NtcENy1t1so6DqX7T7Inv73na_g3vRsdlKffD79-gz2wpMEoUmunsMuIYMviM2szMsudn8DRY_3UA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIqpeEC0tLG3BSEiUQzYfjhOHW1VYlY9WPVCpt8gfY1qpya7YXQmO_HPGcbLqwo2zEyvJm7HfxE9vAN4kyEXltItsJVyUo8VIorSREmVZOGHyqrNdPL8ozq7yz9fi-l6rr060b_TtuL1rxu3tTaetnDUmHnRi8eX5qfS7fl7EM-viDXgoOAXZUKiv_Ha7bpxE0Cnhc5Gt_BplTPWipsIwS8e-Z842bHFvalWlfH1r-odv_i2bvLcPTZ7A455AspPwoDvwANtdeBRaSv7ahZ0-WefsuHeUfvcUflMwsPB3nM1v1AzZ1DFvEd68Z174_p2plg3GEbT8saaTWGLU95Sg8d56nC2mDH-qhgbDBGx5R08ZXGiXP5AmsszHVlhHmZf6eaK_B1eTj99Oz6K-90JkiMIsotxKZ0VOBaNRqBNeGZe6qjBaIKWx4bp0SmXSoU1L7kSGRAwx4cZWhUitsXwfNttpi8-BpVoWifb9cLQhupKozHFiXZlEWypTJCN4O3z2ehYsNupwNC5rj1Xtsao9ViN4PaBSUxb4ow3V4nQ5r2nhoSjwp6QjeBZQWs01wDuCcg2_1QXeYXt9hAKvc9ruA-3Ff9_5CrYuP0zqr58uvhzAtn8RrzXJqkPYJGDwiAjNQr_sQvcPyKn4Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+social+shape+of+sperm%3A+using+an+integrative+machine-learning+approach+to+examine+sperm+ultrastructure+and+collective+motility&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Hook%2C+Kristin+A&rft.au=Yang%2C+Qixin&rft.au=Campanello%2C+Leonard&rft.au=Losert%2C+Wolfgang&rft.date=2021-09-29&rft.eissn=1471-2954&rft.volume=288&rft.issue=1959&rft.spage=20211553&rft.epage=20211553&rft_id=info:doi/10.1098%2Frspb.2021.1553&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon