The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility
Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural...
Saved in:
Published in | Proceedings of the Royal Society. B, Biological sciences Vol. 288; no. 1959; p. 20211553 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
29.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across
mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from
observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance. |
---|---|
AbstractList | Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across Peromyscus mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from in vitro observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance. Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance. Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across Peromyscus mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from in vitro observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance. |
Author | Losert, Wolfgang Yang, Qixin Campanello, Leonard Hook, Kristin A Fisher, Heidi S |
Author_xml | – sequence: 1 givenname: Kristin A orcidid: 0000-0001-5864-0316 surname: Hook fullname: Hook, Kristin A organization: Department of Biology, University of Maryland, 1200 Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA – sequence: 2 givenname: Qixin orcidid: 0000-0001-5349-6992 surname: Yang fullname: Yang, Qixin organization: Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA – sequence: 3 givenname: Leonard surname: Campanello fullname: Campanello, Leonard organization: Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA – sequence: 4 givenname: Wolfgang orcidid: 0000-0002-1792-7860 surname: Losert fullname: Losert, Wolfgang organization: Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA – sequence: 5 givenname: Heidi S orcidid: 0000-0001-5622-4335 surname: Fisher fullname: Fisher, Heidi S organization: Department of Biology, University of Maryland, 1200 Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34547913$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc9PHCEYhkljU1fba4-GYy-zwjDMDB6aNMZfiYkXeyYM87FLw8AIjKlH__Oyrpp6IuF9efjyPUfowAcPCH2nZE2J6E9jmod1TWq6ppyzT2hFm45WteDNAVoR0dZV3_D6EB2l9IcQInjPv6BD1vCmE5St0PP9FnAK2iqH01bNgIPBaYY4neElWb_BymPrM2yiyvYR8KT01nqoHKjoX_J5jqFc4hww_FVTCfcAvLgcVcpx0XmJUEAj1sE50HtQyNbZ_PQVfTbKJfj2eh6j35cX9-fX1e3d1c35r9tKs17kqhl7M_KGklYrGAgT2lAjWj1wIJxqNnRGqbo3MNKOGV4Db0vC9ChaTkc9smP0c8-dl2GCUYMv0zk5Rzup-CSDsvJj4u1WbsKjLAtsadMWwI9XQAwPC6QsJ5s0OKc8hCXJmnecdYRxUqrrfVXHkFIE8_4NJXLnTe68yZ03ufNWHpz8P9x7_U0U-wdFvptx |
Cites_doi | 10.1111/j.1469-185X.2010.00147.x 10.1086/343873 10.1644/06-MAMM-A-342R.1 10.1530/REP-17-0536 10.1111/j.1469-185X.1992.tb01193.x 10.1071/RD15022 10.1002/jmor.10357 10.1016/j.csda.2009.04.009 10.1098/rspb.2014.0296 10.1017/CBO9780511801389 10.1002/mrd.23346 10.1002/ece3.577 10.1046/j.1365-2656.2001.00524.x 10.1038/nature08736 10.1095/biolreprod52.4.947 10.1111/j.1420-9101.2009.01867.x 10.1109/TPAMI.1986.4767851 10.1016/B978-0-12-372568-4.00003-3 10.1017/S0022112008005685 10.1098/rstb.2019.0384 10.1095/biolreprod.115.138008 10.18637/jss.v069.i01 10.1186/1471-2148-8-319 10.1095/biolreprod.113.115956 10.1098/rsif.2014.0684 10.1101/2020.12.05.413120 10.1111/jeb.12857 10.1098/rspb.1999.0843 10.1242/dmm.034330 10.1371/journal.pone.0000170 10.1111/rda.13552 10.1071/RD17431 10.1093/bioinformatics/btm344 10.1080/00031305.1998.10480559 10.1111/j.1558-5646.2011.01532.x 10.1098/rsif.2018.0702 10.1162/neco.1992.4.3.415 10.1093/molbev/msq013 10.1371/journal.pone.0108148 10.1038/nature00832 10.1016/j.theriogenology.2020.02.017 10.1109/34.56205 10.1093/bioinformatics/btg412 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) 2021 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1098/rspb.2021.1553 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
DocumentTitleAlternate | The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility |
EISSN | 1471-2954 |
EndPage | 20211553 |
ExternalDocumentID | 10_1098_rspb_2021_1553 34547913 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R00 HD071972 – fundername: NICHD NIH HHS grantid: K99 HD071972 – fundername: ; grantid: K99/R00; R00HD071972 – fundername: ; grantid: FA9550-16-1-0052 – fundername: ; grantid: 1711817 |
GroupedDBID | --- -~X 0R~ 29P 2WC 36Y 4.4 5RE 85S AACGO AANCE ABPLY ABTLG ACIWK ACNCT ACPRK ACQIA ADBBV ADIYS AEUPB AFRAH ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK E3Z EBS ECM EIF F5P FRP GX1 H13 HYE HZ~ JLS JSG JST KQ8 MRS NPM O9- OK1 OP1 RHF RPM RRY TR2 V1E W8F ~02 AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c389t-4d8fd54106caeb039cf1f96cb5e051c3b7faa28fed173f52e565e03cd9651dcd3 |
IEDL.DBID | RPM |
ISSN | 0962-8452 |
IngestDate | Tue Sep 17 21:30:44 EDT 2024 Fri Dec 06 00:20:23 EST 2024 Fri Dec 06 08:18:35 EST 2024 Sat Nov 02 12:29:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1959 |
Keywords | automated morphometrics collective motion cell morphology peromyscus sperm aggregation sperm conjugation |
Language | English |
License | Published by the Royal Society. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-4d8fd54106caeb039cf1f96cb5e051c3b7faa28fed173f52e565e03cd9651dcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5604590. |
ORCID | 0000-0002-1792-7860 0000-0001-5349-6992 0000-0001-5622-4335 0000-0001-5864-0316 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2021.1553 |
PMID | 34547913 |
PQID | 2575370350 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456146 proquest_miscellaneous_2575370350 crossref_primary_10_1098_rspb_2021_1553 pubmed_primary_34547913 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-29 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Proceedings of the Royal Society. B, Biological sciences |
PublicationTitleAlternate | Proc Biol Sci |
PublicationYear | 2021 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_7_20_2 e_1_3_7_43_2 e_1_3_7_22_2 e_1_3_7_41_2 e_1_3_7_24_2 e_1_3_7_47_2 Burden F (e_1_3_7_44_2) 2009 e_1_3_7_26_2 e_1_3_7_28_2 e_1_3_7_49_2 Linzey AV (e_1_3_7_25_2) 1974; 20 Ilina O (e_1_3_7_50_2) 2018; 11 e_1_3_7_51_2 Picard RR (e_1_3_7_45_2) 1984; 79 e_1_3_7_30_2 e_1_3_7_11_2 e_1_3_7_32_2 e_1_3_7_13_2 e_1_3_7_15_2 e_1_3_7_17_2 e_1_3_7_38_2 e_1_3_7_19_2 e_1_3_7_2_2 R Core Team (e_1_3_7_36_2) 2016 e_1_3_7_4_2 e_1_3_7_6_2 e_1_3_7_8_2 e_1_3_7_40_2 Hintze JL (e_1_3_7_35_2) 1998; 52 e_1_3_7_21_2 e_1_3_7_42_2 e_1_3_7_23_2 e_1_3_7_48_2 e_1_3_7_46_2 e_1_3_7_27_2 e_1_3_7_29_2 Platt JC (e_1_3_7_34_2) 1999; 10 Orme D (e_1_3_7_39_2) 2013; 5 e_1_3_7_9_2 e_1_3_7_31_2 e_1_3_7_10_2 e_1_3_7_33_2 e_1_3_7_12_2 e_1_3_7_14_2 e_1_3_7_37_2 e_1_3_7_16_2 e_1_3_7_18_2 e_1_3_7_3_2 e_1_3_7_5_2 e_1_3_7_7_2 |
References_xml | – ident: e_1_3_7_16_2 doi: 10.1111/j.1469-185X.2010.00147.x – ident: e_1_3_7_38_2 doi: 10.1086/343873 – ident: e_1_3_7_28_2 doi: 10.1644/06-MAMM-A-342R.1 – volume: 5 start-page: 1 year: 2013 ident: e_1_3_7_39_2 article-title: The caper package: comparative analysis of phylogenetics and evolution in R publication-title: R package version contributor: fullname: Orme D – ident: e_1_3_7_13_2 doi: 10.1530/REP-17-0536 – ident: e_1_3_7_3_2 doi: 10.1111/j.1469-185X.1992.tb01193.x – volume-title: R: a language and environment for statistical computing year: 2016 ident: e_1_3_7_36_2 contributor: fullname: R Core Team – ident: e_1_3_7_48_2 doi: 10.1071/RD15022 – ident: e_1_3_7_4_2 doi: 10.1002/jmor.10357 – volume: 10 start-page: 61 year: 1999 ident: e_1_3_7_34_2 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Adv. Large Margin Classifiers contributor: fullname: Platt JC – ident: e_1_3_7_32_2 doi: 10.1016/j.csda.2009.04.009 – ident: e_1_3_7_26_2 doi: 10.1098/rspb.2014.0296 – ident: e_1_3_7_27_2 – ident: e_1_3_7_31_2 doi: 10.1017/CBO9780511801389 – ident: e_1_3_7_10_2 doi: 10.1002/mrd.23346 – ident: e_1_3_7_23_2 doi: 10.1002/ece3.577 – ident: e_1_3_7_42_2 doi: 10.1046/j.1365-2656.2001.00524.x – ident: e_1_3_7_20_2 doi: 10.1038/nature08736 – ident: e_1_3_7_18_2 doi: 10.1095/biolreprod52.4.947 – start-page: 23 volume-title: Artificial neural networks: methods and applications year: 2009 ident: e_1_3_7_44_2 contributor: fullname: Burden F – volume: 79 start-page: 575 year: 1984 ident: e_1_3_7_45_2 article-title: Cross-validation of regression models publication-title: Null contributor: fullname: Picard RR – ident: e_1_3_7_22_2 doi: 10.1111/j.1420-9101.2009.01867.x – ident: e_1_3_7_30_2 doi: 10.1109/TPAMI.1986.4767851 – ident: e_1_3_7_2_2 doi: 10.1016/B978-0-12-372568-4.00003-3 – ident: e_1_3_7_12_2 doi: 10.1017/S0022112008005685 – ident: e_1_3_7_17_2 doi: 10.1098/rstb.2019.0384 – ident: e_1_3_7_14_2 doi: 10.1095/biolreprod.115.138008 – ident: e_1_3_7_37_2 doi: 10.18637/jss.v069.i01 – ident: e_1_3_7_11_2 doi: 10.1186/1471-2148-8-319 – ident: e_1_3_7_46_2 doi: 10.1095/biolreprod.113.115956 – ident: e_1_3_7_49_2 doi: 10.1098/rsif.2014.0684 – ident: e_1_3_7_51_2 doi: 10.1101/2020.12.05.413120 – ident: e_1_3_7_21_2 doi: 10.1111/jeb.12857 – ident: e_1_3_7_47_2 doi: 10.1098/rspb.1999.0843 – volume: 11 year: 2018 ident: e_1_3_7_50_2 article-title: Intravital microscopy of collective invasion plasticity in breast cancer publication-title: Dis. Models Mech. doi: 10.1242/dmm.034330 contributor: fullname: Ilina O – volume: 20 year: 1974 ident: e_1_3_7_25_2 article-title: Comparative morphology of spermatozoa of the rodent genus Peromyscus (Muridae) publication-title: Am. Mus. Novitates contributor: fullname: Linzey AV – ident: e_1_3_7_8_2 doi: 10.1371/journal.pone.0000170 – ident: e_1_3_7_5_2 doi: 10.1111/rda.13552 – ident: e_1_3_7_9_2 doi: 10.1071/RD17431 – ident: e_1_3_7_33_2 doi: 10.1093/bioinformatics/btm344 – volume: 52 start-page: 181 year: 1998 ident: e_1_3_7_35_2 article-title: Violin plots: a box plot-density trace synergism publication-title: Am. Stat. doi: 10.1080/00031305.1998.10480559 contributor: fullname: Hintze JL – ident: e_1_3_7_19_2 doi: 10.1111/j.1558-5646.2011.01532.x – ident: e_1_3_7_24_2 doi: 10.1098/rsif.2018.0702 – ident: e_1_3_7_43_2 doi: 10.1162/neco.1992.4.3.415 – ident: e_1_3_7_41_2 doi: 10.1093/molbev/msq013 – ident: e_1_3_7_6_2 doi: 10.1371/journal.pone.0108148 – ident: e_1_3_7_15_2 doi: 10.1038/nature00832 – ident: e_1_3_7_7_2 doi: 10.1016/j.theriogenology.2020.02.017 – ident: e_1_3_7_29_2 doi: 10.1109/34.56205 – ident: e_1_3_7_40_2 doi: 10.1093/bioinformatics/btg412 |
SSID | ssj0009585 |
Score | 2.439733 |
Snippet | Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 20211553 |
SubjectTerms | Animals Evolution Female Machine Learning Male Mice Sperm Head Sperm Motility Sperm-Ovum Interactions Spermatozoa |
Title | The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34547913 https://search.proquest.com/docview/2575370350 https://pubmed.ncbi.nlm.nih.gov/PMC8456146 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB01lUC9IFq-wke1SEjAwYnt9dprbqiiVEhFHKiUm7Ufs7RS7UQkkeDIP2fGa0cEbpzXWa38ZnfeZJ_fALxKUao62JD4WoWkQI-JRu0To6qqDMoVdW-7ePm5vLgqPi3U4gDU-C1ML9p39mbW3baz7ua611auWjcfdWLzL5dnmrN-Uc4nMKH0O5boO6fdvg8nUXPa6oXKd06Nek6VoqWSMM9m3C3nCO5KtrOqM7mflP5hmn8LJv_IQOf34d5AHcX7uMRjOMDuBO7EZpI_T-B42KZr8Wbwkn77AH5RGIj4v7hYX5sVimUQbA7evhMsef8mTCdGywg6-ETbiysxGbpJ0PhgOi42S4E_TEuDcQKxvaVVRv_Z7XekibzgqIonqGCRH1P8h3B1_uHr2UUydF1IHJGXTVJ4HbwqqFR0Bm0qaxeyUJfOKqQN7KStgjG5DuizSgaVI1FCTKXzdaky77x8BIfdssMnIDKry9RyJxzriKikJg-S-Fau0VfGlekUXo-vvVlFc40mXorrhrFqGKuGsZrCyxGVhuKfLzVMh8vtuqEjR8mK70en8DiitJtrhHcK1R5-uwfYW3t_hEKu99geQuzpf__yGRzx6llaktfP4ZDQwBfEXzb2FCYfF9lpH7W_AQgZ9Ow |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIqAXRMtHl08jIQGH7CZxnNjcUEW1QLfi0Eq9Rf4Y00pNdtXdleDIP2ccJysWbpydWE7ejP0cv7wBeJMiF8obnzglfFKgw0SidIkWVVV6YQvV2S7OTsvpefHlQlzsgBj-helE-9ZcjdvrZtxeXXbaykVjJ4NObPJtdiTDql-Uk1twW_BKZcMmfeO121XiJHJOyV6IfOPVKCe0VzS0KcyzcaiXswd3eTC0UhnfXpb-4Zp_Syb_WIOOH8D9njyyj3GQ-7CD7QHcieUkfx7Afp-oS_aud5N-_xB-USCw-GWcLS_1Atncs2AP3nxgQfT-nemWDaYRNPWxppNXYtLXk6D23nacreYMf-iGGmMHbH1No4wOtOsbpI4cC3EV51AWZH6B5D-C8-NPZ0fTpK-7kFiiL6ukcNI7UdBm0Wo0KVfWZ16V1gikFLbcVF7rXHp0WcW9yJFIIabcOlWKzFnHH8NuO2_xEFhmZJmaUAvHWKIqqc49J8aVS3SVtmU6grfDa68X0V6jjsfisg5Y1QGrOmA1gtcDKjVlQDjW0C3O18uaJh2KgnBCOoInEaVNXwO8I6i28NtcENy1t1so6DqX7T7Inv73na_g3vRsdlKffD79-gz2wpMEoUmunsMuIYMviM2szMsudn8DRY_3UA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIqpeEC0tLG3BSEiUQzYfjhOHW1VYlY9WPVCpt8gfY1qpya7YXQmO_HPGcbLqwo2zEyvJm7HfxE9vAN4kyEXltItsJVyUo8VIorSREmVZOGHyqrNdPL8ozq7yz9fi-l6rr060b_TtuL1rxu3tTaetnDUmHnRi8eX5qfS7fl7EM-viDXgoOAXZUKiv_Ha7bpxE0Cnhc5Gt_BplTPWipsIwS8e-Z842bHFvalWlfH1r-odv_i2bvLcPTZ7A455AspPwoDvwANtdeBRaSv7ahZ0-WefsuHeUfvcUflMwsPB3nM1v1AzZ1DFvEd68Z174_p2plg3GEbT8saaTWGLU95Sg8d56nC2mDH-qhgbDBGx5R08ZXGiXP5AmsszHVlhHmZf6eaK_B1eTj99Oz6K-90JkiMIsotxKZ0VOBaNRqBNeGZe6qjBaIKWx4bp0SmXSoU1L7kSGRAwx4cZWhUitsXwfNttpi8-BpVoWifb9cLQhupKozHFiXZlEWypTJCN4O3z2ehYsNupwNC5rj1Xtsao9ViN4PaBSUxb4ow3V4nQ5r2nhoSjwp6QjeBZQWs01wDuCcg2_1QXeYXt9hAKvc9ruA-3Ff9_5CrYuP0zqr58uvhzAtn8RrzXJqkPYJGDwiAjNQr_sQvcPyKn4Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+social+shape+of+sperm%3A+using+an+integrative+machine-learning+approach+to+examine+sperm+ultrastructure+and+collective+motility&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Hook%2C+Kristin+A&rft.au=Yang%2C+Qixin&rft.au=Campanello%2C+Leonard&rft.au=Losert%2C+Wolfgang&rft.date=2021-09-29&rft.eissn=1471-2954&rft.volume=288&rft.issue=1959&rft.spage=20211553&rft.epage=20211553&rft_id=info:doi/10.1098%2Frspb.2021.1553&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon |