Dynamic Destruction as Analogs of Critical Phenomena in Metal Samples with Various Geometries within a Wide Ranges of Amplitude–Time Characteristics of External Action
The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension d f and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes,...
Saved in:
Published in | Physics of atomic nuclei Vol. 83; no. 11; pp. 1585 - 1596 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension
d
f
and the Hurst exponent
H
(standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale–temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state. |
---|---|
AbstractList | The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension
d
f
and the Hurst exponent
H
(standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale–temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state. The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension d.sub.f and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale-temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state. The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension df and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale–temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state. |
Audience | Academic |
Author | Sel’chenkova, N. I. Sokolov, S. S. Kosheleva, E. V. Uchaev, A. Ya Trunin, I. R. |
Author_xml | – sequence: 1 givenname: E. V. surname: Kosheleva fullname: Kosheleva, E. V. email: otd@expd.vniief.ru organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) – sequence: 2 givenname: N. I. surname: Sel’chenkova fullname: Sel’chenkova, N. I. organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) – sequence: 3 givenname: S. S. surname: Sokolov fullname: Sokolov, S. S. organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) – sequence: 4 givenname: I. R. surname: Trunin fullname: Trunin, I. R. organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) – sequence: 5 givenname: A. Ya surname: Uchaev fullname: Uchaev, A. Ya organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) |
BookMark | eNp1kc1O3DAUhaOKSgXaB-jOUlddBGwncZxlNFCKBGrF0J9d5HGuZ4wSe2o7Kuz6DjxFX6tPwp0ZJIRQ5YXt4-9cH917kO057yDL3jN6xFhRHs8ZFUVdS8kpbSgr5atsn1WC56LhP_fwjM_55v1NdhDjDaWMyYruZ39P7pwarSYnEFOYdLLeERVJ69Tgl5F4Q2bBJqvVQL6uwPkRnCLWkUtIKM3VuB4gkt82rch3FayfIjkDpFKwjzrCivywPZAr5Zawrdmizaaph39_7q_tCGS2UkHpBMFG_GzLnN7iFWOQdpvqbfbaqCHCu8f9MPv26fR69jm_-HJ2Pmsvcl3IJuUlF4ZVVNS1KWBhegFULHrBqClKJqDmNdVlzVhVaLnotaQL0XODAq97BdjLw-zDru46-F8TdqW78dMmR-x42VRlRRspkTraUUs1QGed8Qnz4-oBu4mzMRb1VlSFEJwLgYaPzwzIJLhNSzXF2J3Pr56zbMfq4GMMYLp1sKMKdx2j3Wbc3Ytxo4fvPBFZbHN4iv1_0wOchq-t |
CitedBy_id | crossref_primary_10_1134_S1063778822100507 |
Cites_doi | 10.1134/S1063778818100083 10.1134/S0010508217020162 10.1016/0370-1573(74)90023-4 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2020. ISSN 1063-7788, Physics of Atomic Nuclei, 2020, Vol. 83, No. 11, pp. 1585–1596. © Pleiades Publishing, Ltd., 2020. COPYRIGHT 2020 Springer |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020. ISSN 1063-7788, Physics of Atomic Nuclei, 2020, Vol. 83, No. 11, pp. 1585–1596. © Pleiades Publishing, Ltd., 2020. – notice: COPYRIGHT 2020 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1134/S1063778820090148 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1562-692X |
EndPage | 1596 |
ExternalDocumentID | A653662266 10_1134_S1063778820090148 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 123 1N0 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABEFU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDH EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ H~9 I-F IAO IEP IJ- IKXTQ ISR ITC IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF0 PT4 QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TUC TUS UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7Y ZMTXR ~8M ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c389t-426f150677f3ebfd6e06bd610f3416e7270c471153c8bdc80b6d2f71127dae113 |
IEDL.DBID | AGYKE |
ISSN | 1063-7788 |
IngestDate | Thu Oct 10 18:28:14 EDT 2024 Tue Nov 12 23:31:10 EST 2024 Thu Aug 01 19:53:19 EDT 2024 Thu Sep 12 19:39:09 EDT 2024 Sat Dec 16 12:10:14 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | energy cumulation dynamic fracture dispersion process dissipative structures fractal dimension high-intensity loading similarity of processes Hurst exponent feedbacks multiwave processes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-426f150677f3ebfd6e06bd610f3416e7270c471153c8bdc80b6d2f71127dae113 |
PQID | 2495450988 |
PQPubID | 2043684 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2495450988 gale_infotracacademiconefile_A653662266 gale_incontextgauss_ISR_A653662266 crossref_primary_10_1134_S1063778820090148 springer_journals_10_1134_S1063778820090148 |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Physics of atomic nuclei |
PublicationTitleAbbrev | Phys. Atom. Nuclei |
PublicationYear | 2020 |
Publisher | Pleiades Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer – name: Springer Nature B.V |
References | MokhovaV. V.PoduretsA. M.PuninV. T.Sel’chenkovaN. I.Til’kunovA. V.TkachenkoM. I.TruninI. R.UchaevA. Ya.Combust. Explos., Shock Waves20175324210.1134/S0010508217020162 KittelCh.Introduction to Solid State Physics1996New YorkWiley0052.45506 E. V. Kosheleva, V. T. Punin, N. I. Sel’chenkova, and A. Ya. Uchaev, General Regularities of Hierarchy Relaxation Processes in Metals under the Action of Penetrating Radiation Pulses (RFYaTs-VNIIEF, Sarov, 2015) [in Russian]. PrigogineI.NicolisG.Exploring Complexity: An Introduction1989New YorkSt. Martin’s Press BazarovI. P.Thermodynamics, The School-Book1976MoscowVyssh. Shkola KoshelevaE. V.Sel’chenkovaN. I.SokolovS. S.TruninI. R.UchaevaA. Ya.Phys. At. Nucl.201881147710.1134/S1063778818100083 S. S. Sokolov, A. I. Panov, I. G. Novikov, et al., Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsess., No. 3, 37 (2005). WilsonK. G.KogutJ.The Renormalisation Group and E-Expansion (Mir, Moscow, 1975)Phys. Rep.197412751974PhR....12...75W10.1016/0370-1573(74)90023-4 PrigogineI.StengersI.Order out of Chaos: Man’s New Dialogue with Nature1984LondonHeinemann 2205_CR9 I. Prigogine (2205_CR3) 1984 I. P. Bazarov (2205_CR7) 1976 2205_CR1 Ch. Kittel (2205_CR6) 1996 I. Prigogine (2205_CR2) 1989 E. V. Kosheleva (2205_CR5) 2018; 81 V. V. Mokhova (2205_CR8) 2017; 53 K. G. Wilson (2205_CR4) 1974; 12 |
References_xml | – volume-title: Thermodynamics, The School-Book year: 1976 ident: 2205_CR7 contributor: fullname: I. P. Bazarov – volume-title: Exploring Complexity: An Introduction year: 1989 ident: 2205_CR2 contributor: fullname: I. Prigogine – volume-title: Introduction to Solid State Physics year: 1996 ident: 2205_CR6 contributor: fullname: Ch. Kittel – volume: 81 start-page: 1477 year: 2018 ident: 2205_CR5 publication-title: Phys. At. Nucl. doi: 10.1134/S1063778818100083 contributor: fullname: E. V. Kosheleva – volume: 53 start-page: 242 year: 2017 ident: 2205_CR8 publication-title: Combust. Explos., Shock Waves doi: 10.1134/S0010508217020162 contributor: fullname: V. V. Mokhova – volume: 12 start-page: 75 year: 1974 ident: 2205_CR4 publication-title: Phys. Rep. doi: 10.1016/0370-1573(74)90023-4 contributor: fullname: K. G. Wilson – volume-title: Order out of Chaos: Man’s New Dialogue with Nature year: 1984 ident: 2205_CR3 contributor: fullname: I. Prigogine – ident: 2205_CR1 – ident: 2205_CR9 |
SSID | ssj0011850 |
Score | 2.273745 |
Snippet | The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1585 |
SubjectTerms | Clusters Critical phenomena Fractal geometry Fractals Fracture surfaces Invariance Particle and Nuclear Physics Percolation Physics Physics and Astronomy Scale invariance Self-similarity Shock waves Solids under Extreme Conditions |
Title | Dynamic Destruction as Analogs of Critical Phenomena in Metal Samples with Various Geometries within a Wide Ranges of Amplitude–Time Characteristics of External Action |
URI | https://link.springer.com/article/10.1134/S1063778820090148 https://www.proquest.com/docview/2495450988 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyQu_CMW2mqEkJBAWbaxa-8e07LbAmqFuhTKKXL8U6pKCZJ3L5z6Dn0KXosn6YzjFC0Lh16TSWInE88345lvGHup3BY3XsvMe6MyYSuZacVtljt0n4W0ahSz3Q8O5f6x-HCyfbLC8uvQRX3e73Yk40Ldth0Rb6fou3CFDhuF8ykMdoutpbrTtWLv28fx9d4BWqCWg0DyjC5Ie5n_vMmCNfp7TV7aHI02Z3KvrQMMkaqQUk3O-_NZ1Tc_l4kcbzCd--xugqBQtDrzgK24-iG7HVNBTXjEfr1rm9QDuaSJXBZ0AKIvaU4DNB66_gjw6buricJBw1kNBw6BPEw18Q0HoAAvfEFPvJkH2HMoRa272uMorOHrmXVwRLUN8Z4FpbYT0ebvi0uqS4HdRSppkhknymoo4qges-PJ-PPufpYaOmQGcdEsQzTgidFQKc9d5a10A1lZBHAebal0CKUGBo0lLsJmWFkzHFTS5h4P5Mpqh-_tCVutm9o9ZYB-mNDSK2cEF86ORm7kt7wwHFXO5WLYY6-7D1v-aHk7yujvcFEuvfsee0GfviQ-jJoSbk71PITy_fSoLOQ2lxIxquyxV0nINzOcv071CzgeotBakFzvVKhMK0Ioqce3QHQ2xKe96VTiz-n_ju3ZjaSfszs5BQRivs06W0U1cRuImmbVJv4mk52dw830u1wBXpoPWg |
link.rule.ids | 315,783,787,27936,27937,41093,42162,52123 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7BVoheyr_YtoCFkJBAKbux6-weo7LtlnYr1N1COVmOf9oKKUHy7qUn3oGn4LV4EmYSB7QtHHp1Jo5_Jp5v7PE3AK8y1-fGa5l4b7JE2EImOuM2SR26z0LabFhHu0-O5PhEfDjdPo33uEMb7d4eSdYrdZN3RLybovPCM_TYaD-f9sFuw4pI-zLtwEq-9-Vg9OfwAE1QQ0IgeUIvxMPMf1ayZI6uLsrXTkdro7N7D2Ztc5tYk69bi3mxZS6vMDnesD_3YS2CUJY3WvMAbrnyIdypg0FNeAQ_3zdp6hk5pZFelunAiMCkOgus8qzNkMA-nruSSBw0uyjZxCGUZ1NNjMOB0RYv-4S-eLUIbM-hFCXvaspRWLPPF9axY7rdUNeZU3A7UW3--v6DbqawnWUyaZIZRdJqltetegwnu6PZzjiJKR0Sg8honiAe8MRpmGWeu8Jb6XqysAjhPFpT6RBM9QyaS1yGzaCwZtArpE09FqSZ1Q7H7Ql0yqp0T4GhJya09Jkzggtnh0M39H0vDEelc6kYdOFNO7PqW8PcoWqPhwt1bey78JLmXhEjRkkhN2d6EYLanx6rXG5zKRGlyi68jkK-mmP_dbzBgO0hEq0lyc1Wh1RcE4KiLN8C8dkAv_a2VYm_j__btvUbSb-Au-PZ5FAd7h8dbMBqStsDdfTNJnRQZdwzxFDz4nn8Z34DzD8Rsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELboVlRc-C1iocAIISGB0m5j1949Ru1uW0qrqkuhPQXHP6VCSio5e-HEO_AUvBZPwkzigLaFA-o1mTi2M_F8Mx5_w9hL5da58Vom3huVCFvIRCtuk9Sh-yykVaMm233_QO4ci7cnGyexzmnost27Lcn2TAOxNJX12oX1sQaJWJuiI8MVem8U26eY2AJbFESM1GOL2fbp3vj3RgKao5aQQPKEHogbm39tZM40XV6gr-yUNgZocod96rre5p18WZ3Vxar5eonV8Rpju8tuR3AKWatN99gNV95nN5skURMesB9bbfl6IGc10s6CDkDEJtVZgMpDVzkBDj-7ksgdNJyXsO8Q4sNUExNxAAr9wgf00atZgG2HUlTUq72Owho-nlsHR3TqoWkzo6R3ouD8-e07nViBzXmSaZIZRzJryJpeLbPjyfj95k4SSz0kBhFTnSBO8MR1qJTnrvBWuoEsLEI7j1ZWOgRZA4NmFJdnMyysGQ4KaVOPF1JltcN5e8h6ZVW6RwzQQxNaeuWM4MLZ0ciN_LoXhqMyulQM--x195Xzi5bRI288IS7yK3PfZy9ID3JiyigpFedMz0LId6dHeSY3uJSIXmWfvYpCvqpx_DqebMD-ELnWnORKp095XCtCTtW_BeK2Ib7tTacef27_s2-P_0v6OVs63Jrk73YP9p6wWylFDZqknBXWQ41xTxFa1cWz-Pv8AhxoGpY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Destruction+as+Analogs+of+Critical+Phenomena+in+Metal+Samples+with+Various+Geometries+within+a+Wide+Ranges+of+Amplitude-Time+Characteristics+of+External+Action&rft.jtitle=Physics+of+atomic+nuclei&rft.au=Kosheleva%2C+E.+V&rft.au=Sel%27chenkova%2C+N.+I&rft.au=Sokolov%2C+S.+S&rft.au=Trunin%2C+I.+R&rft.date=2020-12-01&rft.pub=Springer&rft.issn=1063-7788&rft.eissn=1562-692X&rft.volume=83&rft.issue=11&rft.spage=1585&rft_id=info:doi/10.1134%2FS1063778820090148&rft.externalDBID=ISR&rft.externalDocID=A653662266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-7788&client=summon |