Dynamic Destruction as Analogs of Critical Phenomena in Metal Samples with Various Geometries within a Wide Ranges of Amplitude–Time Characteristics of External Action

The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension d f and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes,...

Full description

Saved in:
Bibliographic Details
Published inPhysics of atomic nuclei Vol. 83; no. 11; pp. 1585 - 1596
Main Authors Kosheleva, E. V., Sel’chenkova, N. I., Sokolov, S. S., Trunin, I. R., Uchaev, A. Ya
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension d f and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale–temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state.
AbstractList The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension d f and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale–temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state.
The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension d.sub.f and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale-temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state.
The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are determined. The fractal dimension df and the Hurst exponent H (standardized range of dissipative structures) of the cascade of hydrodynamic modes, the roughness of the fracture surface, and the dispersion products are determined. Destructive processes occurring in loaded samples are numerically simulated using the Lagrangian technique TIM 3D [1, 2]. It is shown that a cascade of dissipative structures at different scale–temporal levels (nanolevel, mesolevel I, mesolevel II, and macrolevel) is a fractal cluster, and it is a percolation cluster on the threshold of a macrofracture, when there is connectivity in the system of dissipative structures [1, 2]. The self-similarity of dissipative structures is due to the self-organization in nonequilibrium systems; and the dynamic fracture and dispersion processes are examples of scale invariance. The scale invariance of the dissipative structures indicates the nonequilibrium system has reached a critical state.
Audience Academic
Author Sel’chenkova, N. I.
Sokolov, S. S.
Kosheleva, E. V.
Uchaev, A. Ya
Trunin, I. R.
Author_xml – sequence: 1
  givenname: E. V.
  surname: Kosheleva
  fullname: Kosheleva, E. V.
  email: otd@expd.vniief.ru
  organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)
– sequence: 2
  givenname: N. I.
  surname: Sel’chenkova
  fullname: Sel’chenkova, N. I.
  organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)
– sequence: 3
  givenname: S. S.
  surname: Sokolov
  fullname: Sokolov, S. S.
  organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)
– sequence: 4
  givenname: I. R.
  surname: Trunin
  fullname: Trunin, I. R.
  organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)
– sequence: 5
  givenname: A. Ya
  surname: Uchaev
  fullname: Uchaev, A. Ya
  organization: Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)
BookMark eNp1kc1O3DAUhaOKSgXaB-jOUlddBGwncZxlNFCKBGrF0J9d5HGuZ4wSe2o7Kuz6DjxFX6tPwp0ZJIRQ5YXt4-9cH917kO057yDL3jN6xFhRHs8ZFUVdS8kpbSgr5atsn1WC56LhP_fwjM_55v1NdhDjDaWMyYruZ39P7pwarSYnEFOYdLLeERVJ69Tgl5F4Q2bBJqvVQL6uwPkRnCLWkUtIKM3VuB4gkt82rch3FayfIjkDpFKwjzrCivywPZAr5Zawrdmizaaph39_7q_tCGS2UkHpBMFG_GzLnN7iFWOQdpvqbfbaqCHCu8f9MPv26fR69jm_-HJ2Pmsvcl3IJuUlF4ZVVNS1KWBhegFULHrBqClKJqDmNdVlzVhVaLnotaQL0XODAq97BdjLw-zDru46-F8TdqW78dMmR-x42VRlRRspkTraUUs1QGed8Qnz4-oBu4mzMRb1VlSFEJwLgYaPzwzIJLhNSzXF2J3Pr56zbMfq4GMMYLp1sKMKdx2j3Wbc3Ytxo4fvPBFZbHN4iv1_0wOchq-t
CitedBy_id crossref_primary_10_1134_S1063778822100507
Cites_doi 10.1134/S1063778818100083
10.1134/S0010508217020162
10.1016/0370-1573(74)90023-4
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2020. ISSN 1063-7788, Physics of Atomic Nuclei, 2020, Vol. 83, No. 11, pp. 1585–1596. © Pleiades Publishing, Ltd., 2020.
COPYRIGHT 2020 Springer
Copyright_xml – notice: Pleiades Publishing, Ltd. 2020. ISSN 1063-7788, Physics of Atomic Nuclei, 2020, Vol. 83, No. 11, pp. 1585–1596. © Pleiades Publishing, Ltd., 2020.
– notice: COPYRIGHT 2020 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1134/S1063778820090148
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1562-692X
EndPage 1596
ExternalDocumentID A653662266
10_1134_S1063778820090148
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
123
1N0
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABEFU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IAO
IEP
IJ-
IKXTQ
ISR
ITC
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L8X
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
PT4
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
TUS
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7Y
ZMTXR
~8M
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c389t-426f150677f3ebfd6e06bd610f3416e7270c471153c8bdc80b6d2f71127dae113
IEDL.DBID AGYKE
ISSN 1063-7788
IngestDate Thu Oct 10 18:28:14 EDT 2024
Tue Nov 12 23:31:10 EST 2024
Thu Aug 01 19:53:19 EDT 2024
Thu Sep 12 19:39:09 EDT 2024
Sat Dec 16 12:10:14 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords energy cumulation
dynamic fracture
dispersion process
dissipative structures
fractal dimension
high-intensity loading
similarity of processes
Hurst exponent
feedbacks
multiwave processes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-426f150677f3ebfd6e06bd610f3416e7270c471153c8bdc80b6d2f71127dae113
PQID 2495450988
PQPubID 2043684
PageCount 12
ParticipantIDs proquest_journals_2495450988
gale_infotracacademiconefile_A653662266
gale_incontextgauss_ISR_A653662266
crossref_primary_10_1134_S1063778820090148
springer_journals_10_1134_S1063778820090148
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Physics of atomic nuclei
PublicationTitleAbbrev Phys. Atom. Nuclei
PublicationYear 2020
Publisher Pleiades Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer
– name: Springer Nature B.V
References MokhovaV. V.PoduretsA. M.PuninV. T.Sel’chenkovaN. I.Til’kunovA. V.TkachenkoM. I.TruninI. R.UchaevA. Ya.Combust. Explos., Shock Waves20175324210.1134/S0010508217020162
KittelCh.Introduction to Solid State Physics1996New YorkWiley0052.45506
E. V. Kosheleva, V. T. Punin, N. I. Sel’chenkova, and A. Ya. Uchaev, General Regularities of Hierarchy Relaxation Processes in Metals under the Action of Penetrating Radiation Pulses (RFYaTs-VNIIEF, Sarov, 2015) [in Russian].
PrigogineI.NicolisG.Exploring Complexity: An Introduction1989New YorkSt. Martin’s Press
BazarovI. P.Thermodynamics, The School-Book1976MoscowVyssh. Shkola
KoshelevaE. V.Sel’chenkovaN. I.SokolovS. S.TruninI. R.UchaevaA. Ya.Phys. At. Nucl.201881147710.1134/S1063778818100083
S. S. Sokolov, A. I. Panov, I. G. Novikov, et al., Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsess., No. 3, 37 (2005).
WilsonK. G.KogutJ.The Renormalisation Group and E-Expansion (Mir, Moscow, 1975)Phys. Rep.197412751974PhR....12...75W10.1016/0370-1573(74)90023-4
PrigogineI.StengersI.Order out of Chaos: Man’s New Dialogue with Nature1984LondonHeinemann
2205_CR9
I. Prigogine (2205_CR3) 1984
I. P. Bazarov (2205_CR7) 1976
2205_CR1
Ch. Kittel (2205_CR6) 1996
I. Prigogine (2205_CR2) 1989
E. V. Kosheleva (2205_CR5) 2018; 81
V. V. Mokhova (2205_CR8) 2017; 53
K. G. Wilson (2205_CR4) 1974; 12
References_xml – volume-title: Thermodynamics, The School-Book
  year: 1976
  ident: 2205_CR7
  contributor:
    fullname: I. P. Bazarov
– volume-title: Exploring Complexity: An Introduction
  year: 1989
  ident: 2205_CR2
  contributor:
    fullname: I. Prigogine
– volume-title: Introduction to Solid State Physics
  year: 1996
  ident: 2205_CR6
  contributor:
    fullname: Ch. Kittel
– volume: 81
  start-page: 1477
  year: 2018
  ident: 2205_CR5
  publication-title: Phys. At. Nucl.
  doi: 10.1134/S1063778818100083
  contributor:
    fullname: E. V. Kosheleva
– volume: 53
  start-page: 242
  year: 2017
  ident: 2205_CR8
  publication-title: Combust. Explos., Shock Waves
  doi: 10.1134/S0010508217020162
  contributor:
    fullname: V. V. Mokhova
– volume: 12
  start-page: 75
  year: 1974
  ident: 2205_CR4
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(74)90023-4
  contributor:
    fullname: K. G. Wilson
– volume-title: Order out of Chaos: Man’s New Dialogue with Nature
  year: 1984
  ident: 2205_CR3
  contributor:
    fullname: I. Prigogine
– ident: 2205_CR1
– ident: 2205_CR9
SSID ssj0011850
Score 2.273745
Snippet The quantitative characteristics of the products of dispersion and the cascade of dissipative structures arising in metals under shock-wave loading are...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1585
SubjectTerms Clusters
Critical phenomena
Fractal geometry
Fractals
Fracture surfaces
Invariance
Particle and Nuclear Physics
Percolation
Physics
Physics and Astronomy
Scale invariance
Self-similarity
Shock waves
Solids under Extreme Conditions
Title Dynamic Destruction as Analogs of Critical Phenomena in Metal Samples with Various Geometries within a Wide Ranges of Amplitude–Time Characteristics of External Action
URI https://link.springer.com/article/10.1134/S1063778820090148
https://www.proquest.com/docview/2495450988
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyQu_CMW2mqEkJBAWbaxa-8e07LbAmqFuhTKKXL8U6pKCZJ3L5z6Dn0KXosn6YzjFC0Lh16TSWInE88345lvGHup3BY3XsvMe6MyYSuZacVtljt0n4W0ahSz3Q8O5f6x-HCyfbLC8uvQRX3e73Yk40Ldth0Rb6fou3CFDhuF8ykMdoutpbrTtWLv28fx9d4BWqCWg0DyjC5Ie5n_vMmCNfp7TV7aHI02Z3KvrQMMkaqQUk3O-_NZ1Tc_l4kcbzCd--xugqBQtDrzgK24-iG7HVNBTXjEfr1rm9QDuaSJXBZ0AKIvaU4DNB66_gjw6buricJBw1kNBw6BPEw18Q0HoAAvfEFPvJkH2HMoRa272uMorOHrmXVwRLUN8Z4FpbYT0ebvi0uqS4HdRSppkhknymoo4qges-PJ-PPufpYaOmQGcdEsQzTgidFQKc9d5a10A1lZBHAebal0CKUGBo0lLsJmWFkzHFTS5h4P5Mpqh-_tCVutm9o9ZYB-mNDSK2cEF86ORm7kt7wwHFXO5WLYY6-7D1v-aHk7yujvcFEuvfsee0GfviQ-jJoSbk71PITy_fSoLOQ2lxIxquyxV0nINzOcv071CzgeotBakFzvVKhMK0Ioqce3QHQ2xKe96VTiz-n_ju3ZjaSfszs5BQRivs06W0U1cRuImmbVJv4mk52dw830u1wBXpoPWg
link.rule.ids 315,783,787,27936,27937,41093,42162,52123
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7BVoheyr_YtoCFkJBAKbux6-weo7LtlnYr1N1COVmOf9oKKUHy7qUn3oGn4LV4EmYSB7QtHHp1Jo5_Jp5v7PE3AK8y1-fGa5l4b7JE2EImOuM2SR26z0LabFhHu0-O5PhEfDjdPo33uEMb7d4eSdYrdZN3RLybovPCM_TYaD-f9sFuw4pI-zLtwEq-9-Vg9OfwAE1QQ0IgeUIvxMPMf1ayZI6uLsrXTkdro7N7D2Ztc5tYk69bi3mxZS6vMDnesD_3YS2CUJY3WvMAbrnyIdypg0FNeAQ_3zdp6hk5pZFelunAiMCkOgus8qzNkMA-nruSSBw0uyjZxCGUZ1NNjMOB0RYv-4S-eLUIbM-hFCXvaspRWLPPF9axY7rdUNeZU3A7UW3--v6DbqawnWUyaZIZRdJqltetegwnu6PZzjiJKR0Sg8honiAe8MRpmGWeu8Jb6XqysAjhPFpT6RBM9QyaS1yGzaCwZtArpE09FqSZ1Q7H7Ql0yqp0T4GhJya09Jkzggtnh0M39H0vDEelc6kYdOFNO7PqW8PcoWqPhwt1bey78JLmXhEjRkkhN2d6EYLanx6rXG5zKRGlyi68jkK-mmP_dbzBgO0hEq0lyc1Wh1RcE4KiLN8C8dkAv_a2VYm_j__btvUbSb-Au-PZ5FAd7h8dbMBqStsDdfTNJnRQZdwzxFDz4nn8Z34DzD8Rsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELboVlRc-C1iocAIISGB0m5j1949Ru1uW0qrqkuhPQXHP6VCSio5e-HEO_AUvBZPwkzigLaFA-o1mTi2M_F8Mx5_w9hL5da58Vom3huVCFvIRCtuk9Sh-yykVaMm233_QO4ci7cnGyexzmnost27Lcn2TAOxNJX12oX1sQaJWJuiI8MVem8U26eY2AJbFESM1GOL2fbp3vj3RgKao5aQQPKEHogbm39tZM40XV6gr-yUNgZocod96rre5p18WZ3Vxar5eonV8Rpju8tuR3AKWatN99gNV95nN5skURMesB9bbfl6IGc10s6CDkDEJtVZgMpDVzkBDj-7ksgdNJyXsO8Q4sNUExNxAAr9wgf00atZgG2HUlTUq72Owho-nlsHR3TqoWkzo6R3ouD8-e07nViBzXmSaZIZRzJryJpeLbPjyfj95k4SSz0kBhFTnSBO8MR1qJTnrvBWuoEsLEI7j1ZWOgRZA4NmFJdnMyysGQ4KaVOPF1JltcN5e8h6ZVW6RwzQQxNaeuWM4MLZ0ciN_LoXhqMyulQM--x195Xzi5bRI288IS7yK3PfZy9ID3JiyigpFedMz0LId6dHeSY3uJSIXmWfvYpCvqpx_DqebMD-ELnWnORKp095XCtCTtW_BeK2Ib7tTacef27_s2-P_0v6OVs63Jrk73YP9p6wWylFDZqknBXWQ41xTxFa1cWz-Pv8AhxoGpY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Destruction+as+Analogs+of+Critical+Phenomena+in+Metal+Samples+with+Various+Geometries+within+a+Wide+Ranges+of+Amplitude-Time+Characteristics+of+External+Action&rft.jtitle=Physics+of+atomic+nuclei&rft.au=Kosheleva%2C+E.+V&rft.au=Sel%27chenkova%2C+N.+I&rft.au=Sokolov%2C+S.+S&rft.au=Trunin%2C+I.+R&rft.date=2020-12-01&rft.pub=Springer&rft.issn=1063-7788&rft.eissn=1562-692X&rft.volume=83&rft.issue=11&rft.spage=1585&rft_id=info:doi/10.1134%2FS1063778820090148&rft.externalDBID=ISR&rft.externalDocID=A653662266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-7788&client=summon