Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data

In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to accurately discern the emotional states of drivers in order to preemptively address and mitigate any negative em...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 11; p. 2359
Main Authors Wang, Zhirong, Chen, Ming, Feng, Guofu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.05.2023
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics12112359

Cover

Loading…
Abstract In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to accurately discern the emotional states of drivers in order to preemptively address and mitigate any negative emotions that may otherwise manifest and compromise driving behavior. In contrast to many current studies that rely on complex and deep neural network models to achieve high accuracy, this research aims to explore the potential of achieving high recognition accuracy using shallow neural networks through restructuring the structure and dimensions of the data. In this study, we propose an end-to-end convolutional neural network (CNN) model called simply ameliorated CNN (SACNN) to address the issue of low accuracy in cross-subject emotion recognition. We extracted features and converted dimensions of EEG signals from the SEED dataset from the BCMI Laboratory to construct 62-dimensional data, and obtained the optimal model configuration through ablation experiments. To further improve recognition accuracy, we selected the top 10 channels with the highest accuracy by separately training the EEG data of each of the 62 channels. The results showed that the SACNN model achieved an accuracy of 88.16% based on raw cross-subject data, and an accuracy of 91.85% based on EEG channel data from the top 10 channels. In addition, we explored the impact of the position of the BN and dropout layers on the model through experiments, and found that a targeted shallow CNN model performed better than deeper and larger perceptual field CNN models. Furthermore, we discuss herein the future issues and challenges of driver emotion recognition in promising smart city applications.
AbstractList In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to accurately discern the emotional states of drivers in order to preemptively address and mitigate any negative emotions that may otherwise manifest and compromise driving behavior. In contrast to many current studies that rely on complex and deep neural network models to achieve high accuracy, this research aims to explore the potential of achieving high recognition accuracy using shallow neural networks through restructuring the structure and dimensions of the data. In this study, we propose an end-to-end convolutional neural network (CNN) model called simply ameliorated CNN (SACNN) to address the issue of low accuracy in cross-subject emotion recognition. We extracted features and converted dimensions of EEG signals from the SEED dataset from the BCMI Laboratory to construct 62-dimensional data, and obtained the optimal model configuration through ablation experiments. To further improve recognition accuracy, we selected the top 10 channels with the highest accuracy by separately training the EEG data of each of the 62 channels. The results showed that the SACNN model achieved an accuracy of 88.16% based on raw cross-subject data, and an accuracy of 91.85% based on EEG channel data from the top 10 channels. In addition, we explored the impact of the position of the BN and dropout layers on the model through experiments, and found that a targeted shallow CNN model performed better than deeper and larger perceptual field CNN models. Furthermore, we discuss herein the future issues and challenges of driver emotion recognition in promising smart city applications.
Audience Academic
Author Wang, Zhirong
Chen, Ming
Feng, Guofu
Author_xml – sequence: 1
  givenname: Zhirong
  surname: Wang
  fullname: Wang, Zhirong
– sequence: 2
  givenname: Ming
  orcidid: 0000-0002-4393-6250
  surname: Chen
  fullname: Chen, Ming
– sequence: 3
  givenname: Guofu
  surname: Feng
  fullname: Feng, Guofu
BookMark eNp9kctOwzAQRS0EEs8vYBOJdYofSRMvoQ0FqQipBbaR447BVWoX2wHx9zgUiYcqPAuPPPfMWHcO0a6xBhA6JXjAGMfn0IIMzhotPaGEUJbzHXRAccFTTjnd_ZHvoxPvlzgeTljJ8AF6nIdu8Z5Yk4ydfgWXjJz1Pp13zTJ2TaqVDToWZyDtk9Gf-aXwsOiJmXhLbrs26HT0LIyB1idVNUnGIohjtKdE6-Hk6z5CD1fV_eg6nd5NbkYX01SykoeUZQucN1ISAQ0DDKAIhYKQpsnVEGNGcEMkU_H_siFYNWqYCyHyYcaJLAuasSN0tum7dvalAx_qpe2ciSNrWtIM45LkxbfqSbRQa6NscEKutJf1RZHTrGA851E12KKKsYCVltFzpeP7L4BtANl75kDVa6dXwr3XBNf9auotq4kU_0NJHUTvbByn23_ZDxrSl_4
CitedBy_id crossref_primary_10_3390_diagnostics13162624
crossref_primary_10_3389_fnhum_2023_1280241
crossref_primary_10_3390_app13148274
crossref_primary_10_3390_brainsci14060595
crossref_primary_10_1007_s11227_025_06947_y
Cites_doi 10.1109/JSEN.2021.3135953
10.1016/j.bspc.2022.103873
10.3141/2434-15
10.1109/BIBM.2016.7822545
10.1109/JBHI.2022.3210158
10.1007/978-3-030-04221-9_25
10.1117/1.3657506
10.1145/3571560.3571577
10.1109/EMBC.2019.8857499
10.1007/s11042-023-14489-9
10.1109/TAFFC.2018.2817622
10.1109/TCDS.2017.2685338
10.1080/17445760.2022.2070748
10.3389/fnhum.2017.00334
10.1109/TITS.2015.2462084
10.1109/TAFFC.2017.2712143
10.1109/CCWC.2018.8301755
10.1109/JSEN.2020.3020915
10.1109/JAS.2022.105515
10.1109/CSPA.2019.8696054
10.1080/00423110600563338
10.1007/978-3-642-38256-7_18
10.3390/s19214736
10.1016/j.bspc.2019.101756
10.1111/j.1467-9280.1993.tb00576.x
10.1109/NER.2013.6695876
10.2118/199440-MS
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics12112359
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A752473959
10_3390_electronics12112359
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c389t-34d05bcc1aeb3e0eef12e711bb5f600310b1c3f207cb10fbf65aaa56491c87243
IEDL.DBID 8FG
ISSN 2079-9292
IngestDate Fri Jul 25 08:02:03 EDT 2025
Tue Jun 17 21:33:40 EDT 2025
Tue Jun 10 21:25:15 EDT 2025
Tue Jul 01 01:47:47 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-34d05bcc1aeb3e0eef12e711bb5f600310b1c3f207cb10fbf65aaa56491c87243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4393-6250
OpenAccessLink https://www.proquest.com/docview/2824008157?pq-origsite=%requestingapplication%
PQID 2824008157
PQPubID 2032404
ParticipantIDs proquest_journals_2824008157
gale_infotracmisc_A752473959
gale_infotracacademiconefile_A752473959
crossref_primary_10_3390_electronics12112359
crossref_citationtrail_10_3390_electronics12112359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-23
PublicationDateYYYYMMDD 2023-05-23
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-23
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gietelink (ref_6) 2006; 44
ref_12
Li (ref_31) 2022; 26
ref_11
ref_33
ref_10
Zhang (ref_5) 2014; 24
Meng (ref_29) 2022; 78
Wang (ref_30) 2022; 9
ref_17
ref_15
Song (ref_24) 2020; 11
Kamble (ref_18) 2021; 22
Herrera (ref_32) 2022; 37
ref_25
ref_23
Kaplan (ref_4) 2015; 16
ref_22
ref_20
Jo (ref_7) 2011; 50
Khare (ref_19) 2020; 21
Yang (ref_21) 2017; 10
ref_3
Wei (ref_14) 2020; 58
ref_2
Peng (ref_8) 2014; 2434
ref_28
ref_27
ref_9
Lin (ref_26) 2017; 11
Matthias (ref_1) 2017; 2018
Zheng (ref_16) 2017; 10
Ekman (ref_13) 1993; 4
References_xml – volume: 22
  start-page: 2496
  year: 2021
  ident: ref_18
  article-title: Ensemble machine learning-based affective computing for emotion recognition using dual-decomposed EEG signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3135953
– volume: 78
  start-page: 103873
  year: 2022
  ident: ref_29
  article-title: A deep subdomain associate adaptation network for cross-session and cross-subject EEG emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103873
– ident: ref_9
– ident: ref_3
– volume: 2434
  start-page: 123
  year: 2014
  ident: ref_8
  article-title: Novel vehicle motion model considering driver behavior for trajectory prediction and driving risk detection
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2434-15
– ident: ref_23
  doi: 10.1109/BIBM.2016.7822545
– volume: 26
  start-page: 5964
  year: 2022
  ident: ref_31
  article-title: Dynamic Domain Adaptation for Class-Aware Cross-Subject and Cross-Session EEG Emotion Recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3210158
– ident: ref_28
  doi: 10.1007/978-3-030-04221-9_25
– volume: 50
  start-page: 7202
  year: 2011
  ident: ref_7
  article-title: Vision-based method for detecting driver drowsiness and distraction in driver monitoring system
  publication-title: Opt. Eng.
  doi: 10.1117/1.3657506
– ident: ref_25
  doi: 10.1145/3571560.3571577
– ident: ref_22
  doi: 10.1109/EMBC.2019.8857499
– ident: ref_15
  doi: 10.1007/s11042-023-14489-9
– volume: 24
  start-page: 79
  year: 2014
  ident: ref_5
  article-title: Analysis of the influence of driver factors on road traffic accident indicators
  publication-title: China J. Saf. Sci.
– volume: 11
  start-page: 532
  year: 2020
  ident: ref_24
  article-title: EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
– volume: 10
  start-page: 408
  year: 2017
  ident: ref_21
  article-title: EEG-based emotion recognition using hierarchical network with subnetwork nodes
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2017.2685338
– volume: 37
  start-page: 589
  year: 2022
  ident: ref_32
  article-title: When Is Deep Learning Better and When Is Shallow Learning Better: Qualitative Analysis
  publication-title: Int. J. Parallel Emerg. Distrib. Syst.
  doi: 10.1080/17445760.2022.2070748
– volume: 11
  start-page: 334
  year: 2017
  ident: ref_26
  article-title: Improving EEG-based emotion classification using conditional transfer learning
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00334
– volume: 16
  start-page: 3017
  year: 2015
  ident: ref_4
  article-title: Driver Behavior Analysis for Safe Driving: A Survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2462084
– ident: ref_27
– ident: ref_10
– volume: 10
  start-page: 417
  year: 2017
  ident: ref_16
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref_33
  doi: 10.1109/CCWC.2018.8301755
– volume: 2018
  start-page: 48
  year: 2017
  ident: ref_1
  article-title: Road traffic and transport safety development report
  publication-title: China Emerg. Manag.
– volume: 21
  start-page: 2035
  year: 2020
  ident: ref_19
  article-title: An evolutionary optimized variational mode decomposition for emotion recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3020915
– volume: 9
  start-page: 1612
  year: 2022
  ident: ref_30
  article-title: Multi-modal domain adaptation variational autoencoder for eeg-based emotion recognition
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.105515
– ident: ref_20
  doi: 10.1109/CSPA.2019.8696054
– volume: 44
  start-page: 569
  year: 2006
  ident: ref_6
  article-title: Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423110600563338
– ident: ref_11
  doi: 10.1007/978-3-642-38256-7_18
– ident: ref_12
  doi: 10.3390/s19214736
– volume: 58
  start-page: 101756
  year: 2020
  ident: ref_14
  article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101756
– volume: 4
  start-page: 342
  year: 1993
  ident: ref_13
  article-title: Voluntary smiling changes regional brain activity
  publication-title: Psychol. Sci.
  doi: 10.1111/j.1467-9280.1993.tb00576.x
– ident: ref_17
  doi: 10.1109/NER.2013.6695876
– ident: ref_2
  doi: 10.2118/199440-MS
SSID ssj0000913830
Score 2.289784
Snippet In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents....
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2359
SubjectTerms Ablation
Accuracy
Artificial neural networks
Automobile drivers
Behavior
Brain research
Channels
Datasets
Deep learning
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Experiments
Human behavior
Information technology
Laboratories
Model accuracy
Neural networks
Object recognition (Computers)
Pattern recognition
Physiology
Psychological aspects
Smart cities
Traffic accidents
Traffic accidents & safety
Title Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data
URI https://www.proquest.com/docview/2824008157
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULnowfkYUSQ8mXmzY2o6Nk-FjQIwSg2K4LV3XnsxAwBj_e98b4yshnLZkbbP0te-rr78fIffcCu5bKxkH74HJRBkWKxCIkgHXJkFEqwzts1_rDeXzyBvlCbdZXla51ImZok7GGnPkVQgNJNovz3-afDNkjcLT1ZxC45AUXbA0uMKDTneVY0HMy0A4C7AhAdF9dc0tM0NsMy4Qo3TDIO1Wy5mt6ZySk9xJpI2FVM_IgUnPyfEGdOAF-cQCwD86Tml7iqUVtIWjM9ADmFih4YKdhw6W9UHw3gSDlWCPgfql2cVbhncLUrCONAy7tK3m6pIMO-FHq8dyjgSmwdWYMyETx4u1dhVExcYxxrrc-K4bx56tZbifsauF5Y6vY9exsa15SimvJuuuDnwuxRUppOPUXBPK64jHJBIrEymV79QDpXzwF-tGSG4lLxG-nKhI5wDiyGPxFUEggbMb7ZjdEnlcdZos8DP2N39ACUS4u2BsrfJLAvCHiFMVNXyPSzxbhJblrZawK_T256UMo3xXzqL1GrrZ__mWHCGtPFYJcFEmhfn0x9yB8zGPK9kKq5Bio_368g7PZth_G_wDLsvcfw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCrK6gOICxaJ7TTJASGgLWU9IEDcguPYJ5QCLar4Kb6RmSwsEuLGLZIXRTPjWeyZNwBbwkkROqe4QO-Bq0xbnmpkiFaRMDYjRKsC7fOq1btVZ_fB_Ri817UwlFZZ68RCUWd9Q3fkexgaKLJfQXjw9MypaxS9rtYtNEqxOLdvIwzZBvunbeTvthDdzs1xj1ddBbhB4zzkUmVekBrja4wjrWet84UNfT9NA9cqkDJT30gnvNCkvudS1wq01kFLxb6JQqEk7jsOE0rKmFIIo-7J550OYWxG0ivBjXDc2_vqZTMgLDUhCRP1mwH83QwUtq07CzOVU8oOSymagzGbz8P0N6jCBbijhMM31s9Z-4VSOdgx7c5R79BFDuuU3YDYdZ2PhN9HaCAzWnGtR6wo9OVUy5CjNWadzglr66FehNt_od4SNPJ-bpeBiZjwn2TmVKaUDr040jpE_zS2UgmnRBNETajEVIDl1DfjMcHAhaib_ELdJux-Lnoq8Tr-nr5DHEjoNOPeRldFCfiHhIuVHIaBUPSWiTPXfszEU2h-Dtc8TCotMEi-ZHbl7-FNmOzdXF4kF6dX56swRS3tKUNByDVoDF9e7To6PsN0o5A2Bg__Ld4f7BEWzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8UwEB6eCqIHccXdHBQvBtskfW0PIvoWV0RExVtN0-Qkfep7Iv41f50zXVzg4e3dClkoM5NZkplvALaFkyJ0TnGB3gNXmbY81cgQrSJhbEaIVgXa51Xz9E6dPwQPDfisa2EorbLWiYWiznqG7sj3MTRQZL8wgHdVWsR1u3v4_MKpgxS9tNbtNEoRubAf7xi-9Q_O2sjrHSG6ndvWKa86DHCDhnrApcq8IDXG1xhTWs9a5wsb-n6aBq5ZoGamvpFOeKFJfc-lrhlorYOmin0ThUJJ3HcMJkIZedQ9IeqefN_vEN5mJL0S6EjK2Nv_6WvTJ1w1IQkf9ZcxHG4SCjvXnYWZykFlR6VEzUHD5vMw_Qu2cAHuKfnwg_Vy1n6ltA7Wot056iC61GGdsjMQu6lzk_D7GI1lRitu9Dsrin451TXkaJlZp3PC2nqgF-FuJNRbgvG8l9tlYCImLCiZOZUppUMvjrQO0VeNrVTCKbECoiZUYirwcuqh8ZRgEEPUTYZQdwX2vhc9l9gd_0_fJQ4kdLJxb6OrAgX8Q8LISo7CQCh618SZ639m4ok0f4drHiaVRugnP_K7-v_wFkyiYCeXZ1cXazBF3e0pWUHIdRgfvL7ZDfSBBulmIWwMHkct3V-Kdxr7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Driver+Cross-Subject+Emotion+Recognition+Based+on+Raw+Multi-Channels+EEG+Data&rft.jtitle=Electronics+%28Basel%29&rft.au=Wang%2C+Zhirong&rft.au=Chen%2C+Ming&rft.au=Feng%2C+Guofu&rft.date=2023-05-23&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=11&rft.spage=2359&rft_id=info:doi/10.3390%2Felectronics12112359&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon