Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data
In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to accurately discern the emotional states of drivers in order to preemptively address and mitigate any negative em...
Saved in:
Published in | Electronics (Basel) Vol. 12; no. 11; p. 2359 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
23.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics12112359 |
Cover
Loading…
Abstract | In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to accurately discern the emotional states of drivers in order to preemptively address and mitigate any negative emotions that may otherwise manifest and compromise driving behavior. In contrast to many current studies that rely on complex and deep neural network models to achieve high accuracy, this research aims to explore the potential of achieving high recognition accuracy using shallow neural networks through restructuring the structure and dimensions of the data. In this study, we propose an end-to-end convolutional neural network (CNN) model called simply ameliorated CNN (SACNN) to address the issue of low accuracy in cross-subject emotion recognition. We extracted features and converted dimensions of EEG signals from the SEED dataset from the BCMI Laboratory to construct 62-dimensional data, and obtained the optimal model configuration through ablation experiments. To further improve recognition accuracy, we selected the top 10 channels with the highest accuracy by separately training the EEG data of each of the 62 channels. The results showed that the SACNN model achieved an accuracy of 88.16% based on raw cross-subject data, and an accuracy of 91.85% based on EEG channel data from the top 10 channels. In addition, we explored the impact of the position of the BN and dropout layers on the model through experiments, and found that a targeted shallow CNN model performed better than deeper and larger perceptual field CNN models. Furthermore, we discuss herein the future issues and challenges of driver emotion recognition in promising smart city applications. |
---|---|
AbstractList | In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to accurately discern the emotional states of drivers in order to preemptively address and mitigate any negative emotions that may otherwise manifest and compromise driving behavior. In contrast to many current studies that rely on complex and deep neural network models to achieve high accuracy, this research aims to explore the potential of achieving high recognition accuracy using shallow neural networks through restructuring the structure and dimensions of the data. In this study, we propose an end-to-end convolutional neural network (CNN) model called simply ameliorated CNN (SACNN) to address the issue of low accuracy in cross-subject emotion recognition. We extracted features and converted dimensions of EEG signals from the SEED dataset from the BCMI Laboratory to construct 62-dimensional data, and obtained the optimal model configuration through ablation experiments. To further improve recognition accuracy, we selected the top 10 channels with the highest accuracy by separately training the EEG data of each of the 62 channels. The results showed that the SACNN model achieved an accuracy of 88.16% based on raw cross-subject data, and an accuracy of 91.85% based on EEG channel data from the top 10 channels. In addition, we explored the impact of the position of the BN and dropout layers on the model through experiments, and found that a targeted shallow CNN model performed better than deeper and larger perceptual field CNN models. Furthermore, we discuss herein the future issues and challenges of driver emotion recognition in promising smart city applications. |
Audience | Academic |
Author | Wang, Zhirong Chen, Ming Feng, Guofu |
Author_xml | – sequence: 1 givenname: Zhirong surname: Wang fullname: Wang, Zhirong – sequence: 2 givenname: Ming orcidid: 0000-0002-4393-6250 surname: Chen fullname: Chen, Ming – sequence: 3 givenname: Guofu surname: Feng fullname: Feng, Guofu |
BookMark | eNp9kctOwzAQRS0EEs8vYBOJdYofSRMvoQ0FqQipBbaR447BVWoX2wHx9zgUiYcqPAuPPPfMWHcO0a6xBhA6JXjAGMfn0IIMzhotPaGEUJbzHXRAccFTTjnd_ZHvoxPvlzgeTljJ8AF6nIdu8Z5Yk4ydfgWXjJz1Pp13zTJ2TaqVDToWZyDtk9Gf-aXwsOiJmXhLbrs26HT0LIyB1idVNUnGIohjtKdE6-Hk6z5CD1fV_eg6nd5NbkYX01SykoeUZQucN1ISAQ0DDKAIhYKQpsnVEGNGcEMkU_H_siFYNWqYCyHyYcaJLAuasSN0tum7dvalAx_qpe2ciSNrWtIM45LkxbfqSbRQa6NscEKutJf1RZHTrGA851E12KKKsYCVltFzpeP7L4BtANl75kDVa6dXwr3XBNf9auotq4kU_0NJHUTvbByn23_ZDxrSl_4 |
CitedBy_id | crossref_primary_10_3390_diagnostics13162624 crossref_primary_10_3389_fnhum_2023_1280241 crossref_primary_10_3390_app13148274 crossref_primary_10_3390_brainsci14060595 crossref_primary_10_1007_s11227_025_06947_y |
Cites_doi | 10.1109/JSEN.2021.3135953 10.1016/j.bspc.2022.103873 10.3141/2434-15 10.1109/BIBM.2016.7822545 10.1109/JBHI.2022.3210158 10.1007/978-3-030-04221-9_25 10.1117/1.3657506 10.1145/3571560.3571577 10.1109/EMBC.2019.8857499 10.1007/s11042-023-14489-9 10.1109/TAFFC.2018.2817622 10.1109/TCDS.2017.2685338 10.1080/17445760.2022.2070748 10.3389/fnhum.2017.00334 10.1109/TITS.2015.2462084 10.1109/TAFFC.2017.2712143 10.1109/CCWC.2018.8301755 10.1109/JSEN.2020.3020915 10.1109/JAS.2022.105515 10.1109/CSPA.2019.8696054 10.1080/00423110600563338 10.1007/978-3-642-38256-7_18 10.3390/s19214736 10.1016/j.bspc.2019.101756 10.1111/j.1467-9280.1993.tb00576.x 10.1109/NER.2013.6695876 10.2118/199440-MS |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics12112359 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A752473959 10_3390_electronics12112359 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c389t-34d05bcc1aeb3e0eef12e711bb5f600310b1c3f207cb10fbf65aaa56491c87243 |
IEDL.DBID | 8FG |
ISSN | 2079-9292 |
IngestDate | Fri Jul 25 08:02:03 EDT 2025 Tue Jun 17 21:33:40 EDT 2025 Tue Jun 10 21:25:15 EDT 2025 Tue Jul 01 01:47:47 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-34d05bcc1aeb3e0eef12e711bb5f600310b1c3f207cb10fbf65aaa56491c87243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4393-6250 |
OpenAccessLink | https://www.proquest.com/docview/2824008157?pq-origsite=%requestingapplication% |
PQID | 2824008157 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2824008157 gale_infotracmisc_A752473959 gale_infotracacademiconefile_A752473959 crossref_primary_10_3390_electronics12112359 crossref_citationtrail_10_3390_electronics12112359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-23 |
PublicationDateYYYYMMDD | 2023-05-23 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Gietelink (ref_6) 2006; 44 ref_12 Li (ref_31) 2022; 26 ref_11 ref_33 ref_10 Zhang (ref_5) 2014; 24 Meng (ref_29) 2022; 78 Wang (ref_30) 2022; 9 ref_17 ref_15 Song (ref_24) 2020; 11 Kamble (ref_18) 2021; 22 Herrera (ref_32) 2022; 37 ref_25 ref_23 Kaplan (ref_4) 2015; 16 ref_22 ref_20 Jo (ref_7) 2011; 50 Khare (ref_19) 2020; 21 Yang (ref_21) 2017; 10 ref_3 Wei (ref_14) 2020; 58 ref_2 Peng (ref_8) 2014; 2434 ref_28 ref_27 ref_9 Lin (ref_26) 2017; 11 Matthias (ref_1) 2017; 2018 Zheng (ref_16) 2017; 10 Ekman (ref_13) 1993; 4 |
References_xml | – volume: 22 start-page: 2496 year: 2021 ident: ref_18 article-title: Ensemble machine learning-based affective computing for emotion recognition using dual-decomposed EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3135953 – volume: 78 start-page: 103873 year: 2022 ident: ref_29 article-title: A deep subdomain associate adaptation network for cross-session and cross-subject EEG emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103873 – ident: ref_9 – ident: ref_3 – volume: 2434 start-page: 123 year: 2014 ident: ref_8 article-title: Novel vehicle motion model considering driver behavior for trajectory prediction and driving risk detection publication-title: Transp. Res. Rec. doi: 10.3141/2434-15 – ident: ref_23 doi: 10.1109/BIBM.2016.7822545 – volume: 26 start-page: 5964 year: 2022 ident: ref_31 article-title: Dynamic Domain Adaptation for Class-Aware Cross-Subject and Cross-Session EEG Emotion Recognition publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3210158 – ident: ref_28 doi: 10.1007/978-3-030-04221-9_25 – volume: 50 start-page: 7202 year: 2011 ident: ref_7 article-title: Vision-based method for detecting driver drowsiness and distraction in driver monitoring system publication-title: Opt. Eng. doi: 10.1117/1.3657506 – ident: ref_25 doi: 10.1145/3571560.3571577 – ident: ref_22 doi: 10.1109/EMBC.2019.8857499 – ident: ref_15 doi: 10.1007/s11042-023-14489-9 – volume: 24 start-page: 79 year: 2014 ident: ref_5 article-title: Analysis of the influence of driver factors on road traffic accident indicators publication-title: China J. Saf. Sci. – volume: 11 start-page: 532 year: 2020 ident: ref_24 article-title: EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2817622 – volume: 10 start-page: 408 year: 2017 ident: ref_21 article-title: EEG-based emotion recognition using hierarchical network with subnetwork nodes publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2017.2685338 – volume: 37 start-page: 589 year: 2022 ident: ref_32 article-title: When Is Deep Learning Better and When Is Shallow Learning Better: Qualitative Analysis publication-title: Int. J. Parallel Emerg. Distrib. Syst. doi: 10.1080/17445760.2022.2070748 – volume: 11 start-page: 334 year: 2017 ident: ref_26 article-title: Improving EEG-based emotion classification using conditional transfer learning publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00334 – volume: 16 start-page: 3017 year: 2015 ident: ref_4 article-title: Driver Behavior Analysis for Safe Driving: A Survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2462084 – ident: ref_27 – ident: ref_10 – volume: 10 start-page: 417 year: 2017 ident: ref_16 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2712143 – ident: ref_33 doi: 10.1109/CCWC.2018.8301755 – volume: 2018 start-page: 48 year: 2017 ident: ref_1 article-title: Road traffic and transport safety development report publication-title: China Emerg. Manag. – volume: 21 start-page: 2035 year: 2020 ident: ref_19 article-title: An evolutionary optimized variational mode decomposition for emotion recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3020915 – volume: 9 start-page: 1612 year: 2022 ident: ref_30 article-title: Multi-modal domain adaptation variational autoencoder for eeg-based emotion recognition publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2022.105515 – ident: ref_20 doi: 10.1109/CSPA.2019.8696054 – volume: 44 start-page: 569 year: 2006 ident: ref_6 article-title: Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations publication-title: Veh. Syst. Dyn. doi: 10.1080/00423110600563338 – ident: ref_11 doi: 10.1007/978-3-642-38256-7_18 – ident: ref_12 doi: 10.3390/s19214736 – volume: 58 start-page: 101756 year: 2020 ident: ref_14 article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101756 – volume: 4 start-page: 342 year: 1993 ident: ref_13 article-title: Voluntary smiling changes regional brain activity publication-title: Psychol. Sci. doi: 10.1111/j.1467-9280.1993.tb00576.x – ident: ref_17 doi: 10.1109/NER.2013.6695876 – ident: ref_2 doi: 10.2118/199440-MS |
SSID | ssj0000913830 |
Score | 2.289784 |
Snippet | In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents.... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2359 |
SubjectTerms | Ablation Accuracy Artificial neural networks Automobile drivers Behavior Brain research Channels Datasets Deep learning Electroencephalography Emotion recognition Emotional factors Emotions Experiments Human behavior Information technology Laboratories Model accuracy Neural networks Object recognition (Computers) Pattern recognition Physiology Psychological aspects Smart cities Traffic accidents Traffic accidents & safety |
Title | Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data |
URI | https://www.proquest.com/docview/2824008157 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULnowfkYUSQ8mXmzY2o6Nk-FjQIwSg2K4LV3XnsxAwBj_e98b4yshnLZkbbP0te-rr78fIffcCu5bKxkH74HJRBkWKxCIkgHXJkFEqwzts1_rDeXzyBvlCbdZXla51ImZok7GGnPkVQgNJNovz3-afDNkjcLT1ZxC45AUXbA0uMKDTneVY0HMy0A4C7AhAdF9dc0tM0NsMy4Qo3TDIO1Wy5mt6ZySk9xJpI2FVM_IgUnPyfEGdOAF-cQCwD86Tml7iqUVtIWjM9ADmFih4YKdhw6W9UHw3gSDlWCPgfql2cVbhncLUrCONAy7tK3m6pIMO-FHq8dyjgSmwdWYMyETx4u1dhVExcYxxrrc-K4bx56tZbifsauF5Y6vY9exsa15SimvJuuuDnwuxRUppOPUXBPK64jHJBIrEymV79QDpXzwF-tGSG4lLxG-nKhI5wDiyGPxFUEggbMb7ZjdEnlcdZos8DP2N39ACUS4u2BsrfJLAvCHiFMVNXyPSzxbhJblrZawK_T256UMo3xXzqL1GrrZ__mWHCGtPFYJcFEmhfn0x9yB8zGPK9kKq5Bio_368g7PZth_G_wDLsvcfw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCrK6gOICxaJ7TTJASGgLWU9IEDcguPYJ5QCLar4Kb6RmSwsEuLGLZIXRTPjWeyZNwBbwkkROqe4QO-Bq0xbnmpkiFaRMDYjRKsC7fOq1btVZ_fB_Ri817UwlFZZ68RCUWd9Q3fkexgaKLJfQXjw9MypaxS9rtYtNEqxOLdvIwzZBvunbeTvthDdzs1xj1ddBbhB4zzkUmVekBrja4wjrWet84UNfT9NA9cqkDJT30gnvNCkvudS1wq01kFLxb6JQqEk7jsOE0rKmFIIo-7J550OYWxG0ivBjXDc2_vqZTMgLDUhCRP1mwH83QwUtq07CzOVU8oOSymagzGbz8P0N6jCBbijhMM31s9Z-4VSOdgx7c5R79BFDuuU3YDYdZ2PhN9HaCAzWnGtR6wo9OVUy5CjNWadzglr66FehNt_od4SNPJ-bpeBiZjwn2TmVKaUDr040jpE_zS2UgmnRBNETajEVIDl1DfjMcHAhaib_ELdJux-Lnoq8Tr-nr5DHEjoNOPeRldFCfiHhIuVHIaBUPSWiTPXfszEU2h-Dtc8TCotMEi-ZHbl7-FNmOzdXF4kF6dX56swRS3tKUNByDVoDF9e7To6PsN0o5A2Bg__Ld4f7BEWzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8UwEB6eCqIHccXdHBQvBtskfW0PIvoWV0RExVtN0-Qkfep7Iv41f50zXVzg4e3dClkoM5NZkplvALaFkyJ0TnGB3gNXmbY81cgQrSJhbEaIVgXa51Xz9E6dPwQPDfisa2EorbLWiYWiznqG7sj3MTRQZL8wgHdVWsR1u3v4_MKpgxS9tNbtNEoRubAf7xi-9Q_O2sjrHSG6ndvWKa86DHCDhnrApcq8IDXG1xhTWs9a5wsb-n6aBq5ZoGamvpFOeKFJfc-lrhlorYOmin0ThUJJ3HcMJkIZedQ9IeqefN_vEN5mJL0S6EjK2Nv_6WvTJ1w1IQkf9ZcxHG4SCjvXnYWZykFlR6VEzUHD5vMw_Qu2cAHuKfnwg_Vy1n6ltA7Wot056iC61GGdsjMQu6lzk_D7GI1lRitu9Dsrin451TXkaJlZp3PC2nqgF-FuJNRbgvG8l9tlYCImLCiZOZUppUMvjrQO0VeNrVTCKbECoiZUYirwcuqh8ZRgEEPUTYZQdwX2vhc9l9gd_0_fJQ4kdLJxb6OrAgX8Q8LISo7CQCh618SZ639m4ok0f4drHiaVRugnP_K7-v_wFkyiYCeXZ1cXazBF3e0pWUHIdRgfvL7ZDfSBBulmIWwMHkct3V-Kdxr7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Driver+Cross-Subject+Emotion+Recognition+Based+on+Raw+Multi-Channels+EEG+Data&rft.jtitle=Electronics+%28Basel%29&rft.au=Wang%2C+Zhirong&rft.au=Chen%2C+Ming&rft.au=Feng%2C+Guofu&rft.date=2023-05-23&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=11&rft.spage=2359&rft_id=info:doi/10.3390%2Felectronics12112359&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |