Crucial players in glycolysis: Cancer progress

•Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the studies in this subject.•With the knowledge of crucial players in glycolysis takes place in cancer cells, therapies will be more accurate. Cancer i...

Full description

Saved in:
Bibliographic Details
Published inGene Vol. 726; p. 144158
Main Authors Abbaszadeh, Zaka, Çeşmeli, Selin, Biray Avcı, Çığır
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the studies in this subject.•With the knowledge of crucial players in glycolysis takes place in cancer cells, therapies will be more accurate. Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells.
AbstractList Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells.
•Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the studies in this subject.•With the knowledge of crucial players in glycolysis takes place in cancer cells, therapies will be more accurate. Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells.
Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells' metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells.Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells' metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells.
ArticleNumber 144158
Author Çeşmeli, Selin
Biray Avcı, Çığır
Abbaszadeh, Zaka
Author_xml – sequence: 1
  givenname: Zaka
  surname: Abbaszadeh
  fullname: Abbaszadeh, Zaka
– sequence: 2
  givenname: Selin
  surname: Çeşmeli
  fullname: Çeşmeli, Selin
  email: selcesmeli.sc@gmail.com
– sequence: 3
  givenname: Çığır
  surname: Biray Avcı
  fullname: Biray Avcı, Çığır
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31629815$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQQC0Eoh_wBxhQRpaEs10nNmJBEV9SJRaYLce5VK7SpNgpUv49qVIYGIqXW967k9-MnDZtg4RcUUgo0PR2naywwYQBVQldLKiQJ2RKZaZiAC5PyRR4JmNKqZqQWQhrGJ4Q7JxMOE2ZklRMSZL7nXWmjra16dGHyDXRqu5tW_fBhbsoN41FH219u_IYwgU5q0wd8PIw5-Tj6fE9f4mXb8-v-cMytlyqLmYZKsUKW3ApGDApQXCUBllmSppxJaqFQsxYBalNoWKgQBUFN7IsCkhFyufkZtw7HP7cYej0xgWLdW0abHdBMzF8K1NKqv9RDsPFDGC_9fqA7ooNlnrr3cb4Xv_kGAA2Ata3IXisfhEKet9cr_W-ud4312PzQZJ_JOs607m26bxx9XH1flRxaPnl0OtgHQ7FS-fRdrps3TH9Gz0RmYA
CitedBy_id crossref_primary_10_1002_jcla_23969
crossref_primary_10_3390_biomedicines13010134
crossref_primary_10_1016_j_prp_2024_155752
crossref_primary_10_3389_fcell_2022_845293
crossref_primary_10_1002_jbt_70009
crossref_primary_10_1016_j_tranon_2022_101579
crossref_primary_10_62347_QMGJ2157
crossref_primary_10_1007_s12672_023_00696_1
crossref_primary_10_1186_s12885_022_10461_2
crossref_primary_10_1016_j_sjbs_2022_02_058
crossref_primary_10_3389_fphar_2022_1070922
crossref_primary_10_3390_cells11213383
crossref_primary_10_3390_ijms26052220
crossref_primary_10_1016_j_heliyon_2024_e36905
crossref_primary_10_1007_s00210_023_02386_9
crossref_primary_10_1111_cas_16302
crossref_primary_10_3390_v15020324
crossref_primary_10_18632_aging_203242
crossref_primary_10_1016_j_semcancer_2023_03_001
crossref_primary_10_1186_s12935_023_02849_2
crossref_primary_10_3390_cancers12071822
crossref_primary_10_1007_s13273_022_00292_4
crossref_primary_10_1016_j_cytogfr_2023_07_004
crossref_primary_10_1080_01443615_2022_2062225
crossref_primary_10_3390_cancers15153836
crossref_primary_10_62347_HXZM6394
crossref_primary_10_1080_01635581_2022_2069274
crossref_primary_10_18632_aging_204226
crossref_primary_10_1016_j_ncrna_2024_05_001
crossref_primary_10_1186_s12935_021_02045_0
crossref_primary_10_1002_tox_24074
crossref_primary_10_3389_fimmu_2022_980508
crossref_primary_10_1155_2021_6699808
crossref_primary_10_1080_01635581_2023_2168023
crossref_primary_10_1016_j_clinsp_2023_100307
crossref_primary_10_1016_j_gendis_2023_06_032
crossref_primary_10_1016_j_aquaculture_2022_737971
crossref_primary_10_1080_26895293_2024_2343710
crossref_primary_10_1007_s13273_023_00362_1
crossref_primary_10_1080_15384101_2021_1974788
crossref_primary_10_1155_2022_8063382
crossref_primary_10_1155_2022_8317466
crossref_primary_10_1515_tnsci_2022_0271
crossref_primary_10_3892_ol_2024_14576
crossref_primary_10_1097_MD_0000000000032485
crossref_primary_10_1186_s12890_023_02688_x
crossref_primary_10_1016_j_pestbp_2021_104961
crossref_primary_10_3389_fcell_2021_690307
crossref_primary_10_1186_s40001_023_01568_8
crossref_primary_10_1177_1934578X221142796
crossref_primary_10_1016_j_jbo_2021_100404
crossref_primary_10_1016_j_jds_2021_11_002
crossref_primary_10_3389_fphar_2022_796763
crossref_primary_10_1111_1759_7714_15150
crossref_primary_10_3390_ijms221910619
crossref_primary_10_3389_fimmu_2024_1420336
crossref_primary_10_1038_s41392_024_01823_2
crossref_primary_10_1038_s41389_020_00295_7
crossref_primary_10_1080_15376516_2022_2103480
crossref_primary_10_1021_acsnano_3c07763
crossref_primary_10_1080_21655979_2022_2029109
crossref_primary_10_1016_j_lfs_2020_118766
crossref_primary_10_1080_21655979_2022_2074106
crossref_primary_10_3389_fimmu_2023_1129298
crossref_primary_10_3389_fgene_2021_675865
crossref_primary_10_3390_ijms252312713
crossref_primary_10_1016_j_jprot_2024_105247
crossref_primary_10_4103_EJPI_EJPI_D_23_00013
crossref_primary_10_1038_s41419_024_07113_7
crossref_primary_10_1080_21655979_2022_2031398
crossref_primary_10_31083_j_fbl2902083
crossref_primary_10_1186_s12935_024_03555_3
crossref_primary_10_1186_s40170_022_00293_w
crossref_primary_10_2147_OTT_S338826
crossref_primary_10_1080_01616412_2024_2395069
crossref_primary_10_1186_s12951_022_01752_8
crossref_primary_10_1186_s12967_023_04617_2
crossref_primary_10_3390_cancers13051011
crossref_primary_10_1007_s12672_024_00990_6
crossref_primary_10_1080_15384047_2024_2365449
crossref_primary_10_3390_cancers15143541
crossref_primary_10_1111_1759_7714_14943
crossref_primary_10_1016_j_biocel_2023_106481
crossref_primary_10_1007_s10735_023_10170_5
crossref_primary_10_1038_s41420_022_01192_1
crossref_primary_10_1080_21655979_2021_2024321
crossref_primary_10_1186_s12957_024_03482_7
crossref_primary_10_1038_s41598_024_56391_w
crossref_primary_10_3390_cancers14194913
crossref_primary_10_3892_mmr_2022_12918
crossref_primary_10_3390_cancers12082101
crossref_primary_10_3390_ijms24065141
crossref_primary_10_1007_s13273_023_00395_6
crossref_primary_10_1155_2021_6680066
crossref_primary_10_1155_2023_3876342
crossref_primary_10_3389_fimmu_2022_955476
crossref_primary_10_1016_j_scitotenv_2023_166689
crossref_primary_10_1016_j_isci_2024_110606
crossref_primary_10_1016_j_heliyon_2024_e36158
crossref_primary_10_1016_j_semcancer_2024_06_003
crossref_primary_10_1111_1440_1681_13860
crossref_primary_10_1016_j_cellsig_2024_111356
crossref_primary_10_1089_cbr_2020_3779
crossref_primary_10_1111_jcmm_18092
crossref_primary_10_1186_s12885_021_08360_z
crossref_primary_10_1038_s41419_021_03918_y
crossref_primary_10_1016_j_yexcr_2024_114319
crossref_primary_10_1038_s41419_022_04863_0
crossref_primary_10_7717_peerj_10249
crossref_primary_10_1016_j_apsb_2022_11_001
crossref_primary_10_1134_S0026893324020171
crossref_primary_10_1186_s12935_022_02545_7
crossref_primary_10_1016_j_talanta_2024_126803
crossref_primary_10_3389_fsurg_2022_893977
crossref_primary_10_1016_j_semcancer_2022_09_001
crossref_primary_10_1002_cnr2_1976
crossref_primary_10_1089_cbr_2020_3865
crossref_primary_10_1155_2022_5026308
crossref_primary_10_1002_mc_23677
crossref_primary_10_2174_1568009622666220511112538
crossref_primary_10_1016_j_heliyon_2023_e18017
crossref_primary_10_1089_cbr_2019_3382
crossref_primary_10_1038_s41389_022_00379_6
crossref_primary_10_1093_biolre_ioae047
crossref_primary_10_3390_cancers15204979
crossref_primary_10_1038_s41419_021_03618_7
crossref_primary_10_18632_aging_103971
crossref_primary_10_3389_fgene_2022_843711
crossref_primary_10_3389_fonc_2020_557730
crossref_primary_10_3390_ijms24065564
crossref_primary_10_1007_s12032_023_02236_x
crossref_primary_10_1016_j_biopha_2023_115009
crossref_primary_10_1016_j_ajpath_2021_11_007
crossref_primary_10_3389_fphar_2024_1455805
crossref_primary_10_1186_s12951_022_01740_y
crossref_primary_10_1002_cam4_4395
crossref_primary_10_3390_cancers16203513
crossref_primary_10_3390_cells10051056
crossref_primary_10_1016_j_bbcan_2023_188986
crossref_primary_10_31083_j_fbl2912402
crossref_primary_10_4103_bbrj_bbrj_136_24
crossref_primary_10_1002_kjm2_12440
crossref_primary_10_1002_mc_23688
Cites_doi 10.1186/s13046-017-0514-4
10.4062/biomolther.2017.210
10.1007/s40675-017-0062-7
10.1073/pnas.1014769108
10.1111/febs.14577
10.18632/oncotarget.7554
10.1016/j.cell.2006.05.036
10.1038/nrm3311
10.2174/1568026618666180523111351
10.1074/jbc.M109950200
10.1084/jem.20101470
10.1016/j.cell.2013.09.025
10.1073/pnas.88.13.5680
10.7150/jca.21125
10.1186/s13040-016-0122-4
10.1007/s11033-015-3858-x
10.3390/cancers3010994
10.1158/0008-5472.613.65.2
10.3390/ijms18091978
10.1097/CCO.0b013e32834deb9e
10.18632/oncotarget.3800
10.1038/onc.2014.320
10.1016/j.redox.2018.03.017
10.1158/1078-0432.CCR-12-0977
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.gene.2019.144158
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Biology
EISSN 1879-0038
ExternalDocumentID 31629815
10_1016_j_gene_2019_144158
S0378111919308170
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
WH7
ZA5
~G-
.55
.GJ
29H
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
R2-
RIG
SBG
SEW
SSH
VH1
WUQ
X7M
XOL
XPP
Y6R
ZGI
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-27e992bcb38520288053e8ae27ad17395f49ee72f06c60f20909bb3a8dbb06563
IEDL.DBID .~1
ISSN 0378-1119
1879-0038
IngestDate Fri Jul 11 03:16:55 EDT 2025
Thu Jul 10 22:41:22 EDT 2025
Wed Feb 19 02:31:54 EST 2025
Thu Apr 24 23:00:12 EDT 2025
Tue Jul 01 01:23:20 EDT 2025
Fri Feb 23 02:49:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords HK
PFKFBs
G3P
Oxidative phosphorylation (OXPHOS)
LncRNA
Glcolysis
OXPHOS
HIF-1α
SLC
ADP
PI3K
SDH
mTOR
PFK2
H2B
Abhd5
G6PD
GLUTs
3′UTR
TSC2
HGFR
TSC1
DHAP
EMT
F-1,6-P
PGI
TCA
CRC
PGK
PGM
ROS
AMPK
PIP3
GAPDH
mTORC1
FH
miRNAs
DERL3
CO2
ENO
RTK
TPI
EGFR
HSPs
LUAD
HIF-1
LDH
PPP
PTTG
NADH
PDH
PDK
c-Met
Glycolytic enzymes
G6P
GLUT1
TIGAR
GLUT3
HIF
NSCLC
SGLT2
CAV1
IDH1
SGLT1
VEGF
GRP78
HMGA1
TRAP-1
Acetyl-CoA
NAD
DNA
VDAC
HRE
PEP
SGLT
PK
GLUT4
ATP
GTPase
PFKM
PET
Cancer
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-27e992bcb38520288053e8ae27ad17395f49ee72f06c60f20909bb3a8dbb06563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 31629815
PQID 2307397006
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2511179989
proquest_miscellaneous_2307397006
pubmed_primary_31629815
crossref_primary_10_1016_j_gene_2019_144158
crossref_citationtrail_10_1016_j_gene_2019_144158
elsevier_sciencedirect_doi_10_1016_j_gene_2019_144158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-05
PublicationDateYYYYMMDD 2020-02-05
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-05
  day: 05
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Gene
PublicationTitleAlternate Gene
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ratcliffe (bib137) 2001
Lincet, Icard (b0120) 2015
Israelsen (b0075) 2013
Pastorino, Shulga, Hoek (b0025) 2002
Hu, Xiao, Bode, Dong, Cao (b0065) 2014
Zhang (b0040) 2017
Yu, Chen, Sun, Wang, Chen (b0105) 2017
Du (b0050) 2016
Hardie, Ross, Hawley (b0085) 2012
Miller, Thomas, Islam, Muench, Sedoris (b0095) 2012
Neugent (b0130) 2018
Kaelin (bib136) 2001
Chatterjee, Burns (b0135) 2017
Xu (b0060) 2017
Semenza (bib140) 1995
Jun, Rathore, Younas, Gilkes, Polotsky (b0100) 2017
Bensaad (b0115) 2006
Ratcliffe (bib138) 1999
Ozaki, Nakagawara (b0110) 2011
Yu, Chen, Wang, Chen (b0015) 2016
Bayley, Devilee (b0035) 2012
Gonzalez-Menendez (b0010) 2018
Wolf (b0030) 2011
Semenza (bib139) 1991
Dai (b0045) 2015
Chen (b0125) 2017
Akins, Nielson, Le (b0020) 2018
Ancey, Contat, Meylan (b0005) 2018
Chang (b0090) 2016
Xu (b0055) 2005
Courtnay (b0070) 2015
Sun (b0080) 2011
Hu (10.1016/j.gene.2019.144158_b0065) 2014
Akins (10.1016/j.gene.2019.144158_b0020) 2018
Chen (10.1016/j.gene.2019.144158_b0125) 2017
Dai (10.1016/j.gene.2019.144158_b0045) 2015
Ozaki (10.1016/j.gene.2019.144158_b0110) 2011
Xu (10.1016/j.gene.2019.144158_b0055) 2005
Chatterjee (10.1016/j.gene.2019.144158_b0135) 2017
Pastorino (10.1016/j.gene.2019.144158_b0025) 2002
Neugent (10.1016/j.gene.2019.144158_b0130) 2018
Gonzalez-Menendez (10.1016/j.gene.2019.144158_b0010) 2018
Wolf (10.1016/j.gene.2019.144158_b0030) 2011
Sun (10.1016/j.gene.2019.144158_b0080) 2011
Israelsen (10.1016/j.gene.2019.144158_b0075) 2013
Hardie (10.1016/j.gene.2019.144158_b0085) 2012
Ratcliffe (10.1016/j.gene.2019.144158_bib137) 2001
Bensaad (10.1016/j.gene.2019.144158_b0115) 2006
Semenza (10.1016/j.gene.2019.144158_bib140) 1995
Yu (10.1016/j.gene.2019.144158_b0015) 2016
Du (10.1016/j.gene.2019.144158_b0050) 2016
Yu (10.1016/j.gene.2019.144158_b0105) 2017
Ancey (10.1016/j.gene.2019.144158_b0005) 2018
Jun (10.1016/j.gene.2019.144158_b0100) 2017
Ratcliffe (10.1016/j.gene.2019.144158_bib138) 1999
Miller (10.1016/j.gene.2019.144158_b0095) 2012
Bayley (10.1016/j.gene.2019.144158_b0035) 2012
Chang (10.1016/j.gene.2019.144158_b0090) 2016
Kaelin (10.1016/j.gene.2019.144158_bib136) 2001
Courtnay (10.1016/j.gene.2019.144158_b0070) 2015
Semenza (10.1016/j.gene.2019.144158_bib139) 1991
Xu (10.1016/j.gene.2019.144158_b0060) 2017
Zhang (10.1016/j.gene.2019.144158_b0040) 2017
Lincet (10.1016/j.gene.2019.144158_b0120) 2015
References_xml – year: 2013
  ident: b0075
  article-title: XPKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells
  publication-title: Cell
– year: 2012
  ident: b0035
  article-title: The Warburg effect in 2012
  publication-title: Curr. Opin. Oncol.
– year: 2012
  ident: b0085
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
– year: 2017
  ident: b0125
  article-title: Clinical significance and prognostic value of Triosephosphate isomerase expression in gastric cancer
  publication-title: Medince (United States)
– year: 2018
  ident: b0010
  article-title: GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress
  publication-title: Redox Biol.
– year: 2017
  ident: b0040
  article-title: Elevated transcriptional levels of aldolase A (ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors
  publication-title: BioData Min.
– year: 2001
  ident: bib137
  article-title: Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O
  publication-title: Science
– year: 2017
  ident: b0105
  article-title: The glycolytic switch in tumors: How many players are involved?
  publication-title: J. Cancer
– year: 2018
  ident: b0020
  article-title: Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer
  publication-title: Curr. Top. Med. Chem.
– year: 1991
  ident: bib139
  article-title: Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2001
  ident: bib136
  article-title: HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O
  publication-title: Science
– year: 2015
  ident: b0120
  article-title: How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions?
  publication-title: Oncogene
– year: 2017
  ident: b0060
  article-title: Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2
  publication-title: J. Exp. Clin. Cancer Res.
– year: 2017
  ident: b0100
  article-title: Hypoxia-inducible factors and cancer
  publication-title: Curr. Sleep Med. Rep.
– year: 2006
  ident: b0115
  article-title: TIGAR, a p53-inducible regulator of glycolysis and apoptosis
  publication-title: Cell
– year: 1995
  ident: bib140
  article-title: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2011
  ident: b0110
  article-title: Role of p53 in cell death and human cancers
  publication-title: Cancers
– year: 2017
  ident: b0135
  article-title: Targeting heat shock proteins in cancer: a promising therapeutic approach
  publication-title: Int. J. Mol. Sci.
– year: 2016
  ident: b0090
  article-title: Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression
  publication-title: Oncotarget
– year: 2005
  ident: b0055
  article-title: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia
  publication-title: Cancer Res.
– year: 2012
  ident: b0095
  article-title: c-Myc and cancer metabolism
  publication-title: Clin. Cancer Res.
– year: 2018
  ident: b0005
  article-title: Glucose transporters in cancer – from tumor cells to the tumor microenvironment
  publication-title: FEBS J.
– year: 2011
  ident: b0080
  article-title: Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– year: 2015
  ident: b0070
  article-title: Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K
  publication-title: Mol. Biol. Rep.
– year: 2002
  ident: b0025
  article-title: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis
  publication-title: J. Biol. Chem.
– year: 2014
  ident: b0065
  article-title: Glycolytic genes in cancer cells are more than glucose metabolic regulators
  publication-title: J. Mol. Med.
– year: 2011
  ident: b0030
  article-title: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
  publication-title: J. Exp. Med.
– year: 2015
  ident: b0045
  article-title: By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice
  publication-title: Oncotarget
– year: 1999
  ident: bib138
  article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.
  publication-title: Nature
– year: 2016
  ident: b0015
  article-title: The sweet trap in tumors: aerobic glycolysis and potential targets for therapy
  publication-title: Oncotarget
– year: 2016
  ident: b0050
  article-title: Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis
  publication-title: Oncotarget
– year: 2018
  ident: b0130
  article-title: A new perspective on the heterogeneity of cancer glycolysis
  publication-title: Biomol. Ther.
– year: 2017
  ident: 10.1016/j.gene.2019.144158_b0060
  article-title: Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-017-0514-4
– year: 2018
  ident: 10.1016/j.gene.2019.144158_b0130
  article-title: A new perspective on the heterogeneity of cancer glycolysis
  publication-title: Biomol. Ther.
  doi: 10.4062/biomolther.2017.210
– year: 2017
  ident: 10.1016/j.gene.2019.144158_b0100
  article-title: Hypoxia-inducible factors and cancer
  publication-title: Curr. Sleep Med. Rep.
  doi: 10.1007/s40675-017-0062-7
– year: 1995
  ident: 10.1016/j.gene.2019.144158_bib140
  article-title: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 1999
  ident: 10.1016/j.gene.2019.144158_bib138
  article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.
  publication-title: Nature
– year: 2011
  ident: 10.1016/j.gene.2019.144158_b0080
  article-title: Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1014769108
– year: 2018
  ident: 10.1016/j.gene.2019.144158_b0005
  article-title: Glucose transporters in cancer – from tumor cells to the tumor microenvironment
  publication-title: FEBS J.
  doi: 10.1111/febs.14577
– year: 2016
  ident: 10.1016/j.gene.2019.144158_b0050
  article-title: Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7554
– year: 2014
  ident: 10.1016/j.gene.2019.144158_b0065
  article-title: Glycolytic genes in cancer cells are more than glucose metabolic regulators
  publication-title: J. Mol. Med.
– year: 2006
  ident: 10.1016/j.gene.2019.144158_b0115
  article-title: TIGAR, a p53-inducible regulator of glycolysis and apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.036
– year: 2017
  ident: 10.1016/j.gene.2019.144158_b0125
  article-title: Clinical significance and prognostic value of Triosephosphate isomerase expression in gastric cancer
  publication-title: Medince (United States)
– year: 2012
  ident: 10.1016/j.gene.2019.144158_b0085
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3311
– year: 2018
  ident: 10.1016/j.gene.2019.144158_b0020
  article-title: Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026618666180523111351
– year: 2002
  ident: 10.1016/j.gene.2019.144158_b0025
  article-title: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109950200
– year: 2011
  ident: 10.1016/j.gene.2019.144158_b0030
  article-title: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101470
– year: 2013
  ident: 10.1016/j.gene.2019.144158_b0075
  article-title: XPKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.025
– year: 2001
  ident: 10.1016/j.gene.2019.144158_bib137
  article-title: Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
  publication-title: Science
– year: 1991
  ident: 10.1016/j.gene.2019.144158_bib139
  article-title: Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.88.13.5680
– year: 2017
  ident: 10.1016/j.gene.2019.144158_b0105
  article-title: The glycolytic switch in tumors: How many players are involved?
  publication-title: J. Cancer
  doi: 10.7150/jca.21125
– year: 2001
  ident: 10.1016/j.gene.2019.144158_bib136
  article-title: HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing.
  publication-title: Science
– year: 2017
  ident: 10.1016/j.gene.2019.144158_b0040
  article-title: Elevated transcriptional levels of aldolase A (ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors
  publication-title: BioData Min.
  doi: 10.1186/s13040-016-0122-4
– year: 2015
  ident: 10.1016/j.gene.2019.144158_b0070
  article-title: Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-015-3858-x
– year: 2011
  ident: 10.1016/j.gene.2019.144158_b0110
  article-title: Role of p53 in cell death and human cancers
  publication-title: Cancers
  doi: 10.3390/cancers3010994
– year: 2005
  ident: 10.1016/j.gene.2019.144158_b0055
  article-title: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.613.65.2
– year: 2017
  ident: 10.1016/j.gene.2019.144158_b0135
  article-title: Targeting heat shock proteins in cancer: a promising therapeutic approach
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18091978
– year: 2012
  ident: 10.1016/j.gene.2019.144158_b0035
  article-title: The Warburg effect in 2012
  publication-title: Curr. Opin. Oncol.
  doi: 10.1097/CCO.0b013e32834deb9e
– year: 2015
  ident: 10.1016/j.gene.2019.144158_b0045
  article-title: By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3800
– year: 2016
  ident: 10.1016/j.gene.2019.144158_b0090
  article-title: Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression
  publication-title: Oncotarget
– year: 2015
  ident: 10.1016/j.gene.2019.144158_b0120
  article-title: How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions?
  publication-title: Oncogene
  doi: 10.1038/onc.2014.320
– year: 2018
  ident: 10.1016/j.gene.2019.144158_b0010
  article-title: GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.03.017
– year: 2012
  ident: 10.1016/j.gene.2019.144158_b0095
  article-title: c-Myc and cancer metabolism
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-0977
– year: 2016
  ident: 10.1016/j.gene.2019.144158_b0015
  article-title: The sweet trap in tumors: aerobic glycolysis and potential targets for therapy
  publication-title: Oncotarget
SSID ssj0000552
Score 2.6403604
SecondaryResourceType review_article
Snippet •Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the...
Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells' metabolism is far different...
Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 144158
SubjectTerms Adenosine Triphosphate - metabolism
Animals
apoptosis
Apoptosis - physiology
biochemical pathways
Cancer
death
Disease Progression
energy
enzymes
genes
Glcolysis
glucose
Glucose - metabolism
glycolysis
Glycolysis - physiology
Glycolytic enzymes
Humans
Lactic Acid - metabolism
lactic fermentation
methodology
Mitochondria - metabolism
Mitochondria - pathology
neoplasm cells
Neoplasms - metabolism
Neoplasms - pathology
Oxidative phosphorylation (OXPHOS)
therapeutics
Title Crucial players in glycolysis: Cancer progress
URI https://dx.doi.org/10.1016/j.gene.2019.144158
https://www.ncbi.nlm.nih.gov/pubmed/31629815
https://www.proquest.com/docview/2307397006
https://www.proquest.com/docview/2511179989
Volume 726
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KIuhB1PqoL1YQL5I22WSTXW-1WKqCFxW8LbvpRio1Fq0HL_52Z_KoerAHbyFMYJmZnf0m880swLGQ3FoVRJ7lDhMUw4eezWLrCUejTqiUMyzYFjfx4D66ehAPDejVvTBEq6xifxnTi2hdvelU2uxMRqPOrR9SlyTmGyr0acwcdbBHCXl5-_Ob5uELUVYSKFtC6apxpuR4oY1oVGag2kVeIf86nP4Cn8Uh1F-D1Qo9sm65wHVouHwDmt0cM-fnD3bCCj5n8aN8A5bO66eVH0MHm9DuoTnR69hkbAhvs1HOHscf6BA0nOSM9cgPXllB3MIwuAn3_Yu73sCrbk3wUgQfU48nTiluUxtKwRE9SNxmThrHEzMMqCyXRcq5hGd-nMZ-xn3lK2tDI4fWIh6Jwy1YyF9ytwPMcRQRTkZZYqPEGIsb1tg4NRZP1sxPWhDU6tJpNVKcbrYY65o79qRJxZpUrEsVt-B09s2kHKgxV1rUVtC_3EJjxJ_73VFtMo37hYogJncv72-aiO-IwTDYzJFBFEqT8qRqwXZp79lawyDmSgZi958r24NlTik7Eb_FPixMX9_dAeKaqT0sHPcQFruX14ObLzJS8-s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3Bogp6qChfXUpbV6p6QWETJ05sbksEynZhL92VuFl21kGLtmFFlwP_npl8QDmwh96iyJasmfH4Teb5BeCHkNxaFUSe5Q4LFMOnni1i6wlHUifUyplWbItRnE2iX9fieg3S9i4M0Sqb3F_n9CpbN296jTV7i9ms99sP6ZYk1hsq9Elmbh02SJ1KdGCjPxhmo5eELETdTKCCCSc0d2dqmhe6idQyA3VSlRbyrfPpLfxZnUMX2_ChAZCsX6_xI6y5cgd2-yUWz38e2U9WUTqrb-U78O6sfXr_j-7gLpyk6FEMPLaYG4LcbFaym_kjxgTpk5yylELhnlXcLcyEezC5OB-nmdf8OMHLEX8sPZ44pbjNbSgFRwAhcac5aRxPzDSgzlwRKecSXvhxHvsF95WvrA2NnFqLkCQO96FT3pXuEzDHcYhwMioSGyXGWNyzxsa5sXi4Fn7ShaA1l84bVXH6ucVct_SxW00m1mRiXZu4C8fPcxa1psbK0aL1gn4VGRqT_sp531uXadwy1Acxpbt7-KuJ-44wDPPNijEIREksT6ouHNT-fl5rGMRcyUAc_ufKvsFmNr661JeD0fAzbHGq4IkHLo6gs7x_cF8Q5izt1yaMnwCWRPac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crucial+players+in+glycolysis%3A+Cancer+progress&rft.jtitle=Gene&rft.au=Abbaszadeh%2C+Zaka&rft.au=%C3%87e%C5%9Fmeli%2C+Selin&rft.au=Biray+Avc%C4%B1%2C+%C3%87%C4%B1%C4%9F%C4%B1r&rft.date=2020-02-05&rft.issn=0378-1119&rft.volume=726+p.144158-&rft_id=info:doi/10.1016%2Fj.gene.2019.144158&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon