Crucial players in glycolysis: Cancer progress
•Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the studies in this subject.•With the knowledge of crucial players in glycolysis takes place in cancer cells, therapies will be more accurate. Cancer i...
Saved in:
Published in | Gene Vol. 726; p. 144158 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the studies in this subject.•With the knowledge of crucial players in glycolysis takes place in cancer cells, therapies will be more accurate.
Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells. |
---|---|
AbstractList | Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells. •Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the studies in this subject.•With the knowledge of crucial players in glycolysis takes place in cancer cells, therapies will be more accurate. Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells. Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells' metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells.Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells' metabolism is far different from the normal, healthy cells; they are more metabolically active, have higher proliferation rate and could able to resist to cell death pathways like apoptosis. It is known that in addition to increasing the expression of enzymes that are crucial in glycolysis for much more energy production, cancer cells produce energy from lactic acid fermentation after glycolysis. In 1920s, Warburg has claimed that cancer cells are more active in glycolysis than normal cells and use much more glucose in order to obtain more ATP for metabolic activities, then this is named as Warburg effect. After that; new methodologies and therapeutics that target metabolism, began to be attractive subject in cancer studies. Therefore, the main genes, enzymes and factors are begun to investigate and further studied for understanding their roles in metabolism of cancer cells. |
ArticleNumber | 144158 |
Author | Çeşmeli, Selin Biray Avcı, Çığır Abbaszadeh, Zaka |
Author_xml | – sequence: 1 givenname: Zaka surname: Abbaszadeh fullname: Abbaszadeh, Zaka – sequence: 2 givenname: Selin surname: Çeşmeli fullname: Çeşmeli, Selin email: selcesmeli.sc@gmail.com – sequence: 3 givenname: Çığır surname: Biray Avcı fullname: Biray Avcı, Çığır |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31629815$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAQQC0Eoh_wBxhQRpaEs10nNmJBEV9SJRaYLce5VK7SpNgpUv49qVIYGIqXW967k9-MnDZtg4RcUUgo0PR2naywwYQBVQldLKiQJ2RKZaZiAC5PyRR4JmNKqZqQWQhrGJ4Q7JxMOE2ZklRMSZL7nXWmjra16dGHyDXRqu5tW_fBhbsoN41FH219u_IYwgU5q0wd8PIw5-Tj6fE9f4mXb8-v-cMytlyqLmYZKsUKW3ApGDApQXCUBllmSppxJaqFQsxYBalNoWKgQBUFN7IsCkhFyufkZtw7HP7cYej0xgWLdW0abHdBMzF8K1NKqv9RDsPFDGC_9fqA7ooNlnrr3cb4Xv_kGAA2Ata3IXisfhEKet9cr_W-ud4312PzQZJ_JOs607m26bxx9XH1flRxaPnl0OtgHQ7FS-fRdrps3TH9Gz0RmYA |
CitedBy_id | crossref_primary_10_1002_jcla_23969 crossref_primary_10_3390_biomedicines13010134 crossref_primary_10_1016_j_prp_2024_155752 crossref_primary_10_3389_fcell_2022_845293 crossref_primary_10_1002_jbt_70009 crossref_primary_10_1016_j_tranon_2022_101579 crossref_primary_10_62347_QMGJ2157 crossref_primary_10_1007_s12672_023_00696_1 crossref_primary_10_1186_s12885_022_10461_2 crossref_primary_10_1016_j_sjbs_2022_02_058 crossref_primary_10_3389_fphar_2022_1070922 crossref_primary_10_3390_cells11213383 crossref_primary_10_3390_ijms26052220 crossref_primary_10_1016_j_heliyon_2024_e36905 crossref_primary_10_1007_s00210_023_02386_9 crossref_primary_10_1111_cas_16302 crossref_primary_10_3390_v15020324 crossref_primary_10_18632_aging_203242 crossref_primary_10_1016_j_semcancer_2023_03_001 crossref_primary_10_1186_s12935_023_02849_2 crossref_primary_10_3390_cancers12071822 crossref_primary_10_1007_s13273_022_00292_4 crossref_primary_10_1016_j_cytogfr_2023_07_004 crossref_primary_10_1080_01443615_2022_2062225 crossref_primary_10_3390_cancers15153836 crossref_primary_10_62347_HXZM6394 crossref_primary_10_1080_01635581_2022_2069274 crossref_primary_10_18632_aging_204226 crossref_primary_10_1016_j_ncrna_2024_05_001 crossref_primary_10_1186_s12935_021_02045_0 crossref_primary_10_1002_tox_24074 crossref_primary_10_3389_fimmu_2022_980508 crossref_primary_10_1155_2021_6699808 crossref_primary_10_1080_01635581_2023_2168023 crossref_primary_10_1016_j_clinsp_2023_100307 crossref_primary_10_1016_j_gendis_2023_06_032 crossref_primary_10_1016_j_aquaculture_2022_737971 crossref_primary_10_1080_26895293_2024_2343710 crossref_primary_10_1007_s13273_023_00362_1 crossref_primary_10_1080_15384101_2021_1974788 crossref_primary_10_1155_2022_8063382 crossref_primary_10_1155_2022_8317466 crossref_primary_10_1515_tnsci_2022_0271 crossref_primary_10_3892_ol_2024_14576 crossref_primary_10_1097_MD_0000000000032485 crossref_primary_10_1186_s12890_023_02688_x crossref_primary_10_1016_j_pestbp_2021_104961 crossref_primary_10_3389_fcell_2021_690307 crossref_primary_10_1186_s40001_023_01568_8 crossref_primary_10_1177_1934578X221142796 crossref_primary_10_1016_j_jbo_2021_100404 crossref_primary_10_1016_j_jds_2021_11_002 crossref_primary_10_3389_fphar_2022_796763 crossref_primary_10_1111_1759_7714_15150 crossref_primary_10_3390_ijms221910619 crossref_primary_10_3389_fimmu_2024_1420336 crossref_primary_10_1038_s41392_024_01823_2 crossref_primary_10_1038_s41389_020_00295_7 crossref_primary_10_1080_15376516_2022_2103480 crossref_primary_10_1021_acsnano_3c07763 crossref_primary_10_1080_21655979_2022_2029109 crossref_primary_10_1016_j_lfs_2020_118766 crossref_primary_10_1080_21655979_2022_2074106 crossref_primary_10_3389_fimmu_2023_1129298 crossref_primary_10_3389_fgene_2021_675865 crossref_primary_10_3390_ijms252312713 crossref_primary_10_1016_j_jprot_2024_105247 crossref_primary_10_4103_EJPI_EJPI_D_23_00013 crossref_primary_10_1038_s41419_024_07113_7 crossref_primary_10_1080_21655979_2022_2031398 crossref_primary_10_31083_j_fbl2902083 crossref_primary_10_1186_s12935_024_03555_3 crossref_primary_10_1186_s40170_022_00293_w crossref_primary_10_2147_OTT_S338826 crossref_primary_10_1080_01616412_2024_2395069 crossref_primary_10_1186_s12951_022_01752_8 crossref_primary_10_1186_s12967_023_04617_2 crossref_primary_10_3390_cancers13051011 crossref_primary_10_1007_s12672_024_00990_6 crossref_primary_10_1080_15384047_2024_2365449 crossref_primary_10_3390_cancers15143541 crossref_primary_10_1111_1759_7714_14943 crossref_primary_10_1016_j_biocel_2023_106481 crossref_primary_10_1007_s10735_023_10170_5 crossref_primary_10_1038_s41420_022_01192_1 crossref_primary_10_1080_21655979_2021_2024321 crossref_primary_10_1186_s12957_024_03482_7 crossref_primary_10_1038_s41598_024_56391_w crossref_primary_10_3390_cancers14194913 crossref_primary_10_3892_mmr_2022_12918 crossref_primary_10_3390_cancers12082101 crossref_primary_10_3390_ijms24065141 crossref_primary_10_1007_s13273_023_00395_6 crossref_primary_10_1155_2021_6680066 crossref_primary_10_1155_2023_3876342 crossref_primary_10_3389_fimmu_2022_955476 crossref_primary_10_1016_j_scitotenv_2023_166689 crossref_primary_10_1016_j_isci_2024_110606 crossref_primary_10_1016_j_heliyon_2024_e36158 crossref_primary_10_1016_j_semcancer_2024_06_003 crossref_primary_10_1111_1440_1681_13860 crossref_primary_10_1016_j_cellsig_2024_111356 crossref_primary_10_1089_cbr_2020_3779 crossref_primary_10_1111_jcmm_18092 crossref_primary_10_1186_s12885_021_08360_z crossref_primary_10_1038_s41419_021_03918_y crossref_primary_10_1016_j_yexcr_2024_114319 crossref_primary_10_1038_s41419_022_04863_0 crossref_primary_10_7717_peerj_10249 crossref_primary_10_1016_j_apsb_2022_11_001 crossref_primary_10_1134_S0026893324020171 crossref_primary_10_1186_s12935_022_02545_7 crossref_primary_10_1016_j_talanta_2024_126803 crossref_primary_10_3389_fsurg_2022_893977 crossref_primary_10_1016_j_semcancer_2022_09_001 crossref_primary_10_1002_cnr2_1976 crossref_primary_10_1089_cbr_2020_3865 crossref_primary_10_1155_2022_5026308 crossref_primary_10_1002_mc_23677 crossref_primary_10_2174_1568009622666220511112538 crossref_primary_10_1016_j_heliyon_2023_e18017 crossref_primary_10_1089_cbr_2019_3382 crossref_primary_10_1038_s41389_022_00379_6 crossref_primary_10_1093_biolre_ioae047 crossref_primary_10_3390_cancers15204979 crossref_primary_10_1038_s41419_021_03618_7 crossref_primary_10_18632_aging_103971 crossref_primary_10_3389_fgene_2022_843711 crossref_primary_10_3389_fonc_2020_557730 crossref_primary_10_3390_ijms24065564 crossref_primary_10_1007_s12032_023_02236_x crossref_primary_10_1016_j_biopha_2023_115009 crossref_primary_10_1016_j_ajpath_2021_11_007 crossref_primary_10_3389_fphar_2024_1455805 crossref_primary_10_1186_s12951_022_01740_y crossref_primary_10_1002_cam4_4395 crossref_primary_10_3390_cancers16203513 crossref_primary_10_3390_cells10051056 crossref_primary_10_1016_j_bbcan_2023_188986 crossref_primary_10_31083_j_fbl2912402 crossref_primary_10_4103_bbrj_bbrj_136_24 crossref_primary_10_1002_kjm2_12440 crossref_primary_10_1002_mc_23688 |
Cites_doi | 10.1186/s13046-017-0514-4 10.4062/biomolther.2017.210 10.1007/s40675-017-0062-7 10.1073/pnas.1014769108 10.1111/febs.14577 10.18632/oncotarget.7554 10.1016/j.cell.2006.05.036 10.1038/nrm3311 10.2174/1568026618666180523111351 10.1074/jbc.M109950200 10.1084/jem.20101470 10.1016/j.cell.2013.09.025 10.1073/pnas.88.13.5680 10.7150/jca.21125 10.1186/s13040-016-0122-4 10.1007/s11033-015-3858-x 10.3390/cancers3010994 10.1158/0008-5472.613.65.2 10.3390/ijms18091978 10.1097/CCO.0b013e32834deb9e 10.18632/oncotarget.3800 10.1038/onc.2014.320 10.1016/j.redox.2018.03.017 10.1158/1078-0432.CCR-12-0977 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.gene.2019.144158 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Biology |
EISSN | 1879-0038 |
ExternalDocumentID | 31629815 10_1016_j_gene_2019_144158 S0378111919308170 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K WH7 ZA5 ~G- .55 .GJ 29H 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM R2- RIG SBG SEW SSH VH1 WUQ X7M XOL XPP Y6R ZGI ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-27e992bcb38520288053e8ae27ad17395f49ee72f06c60f20909bb3a8dbb06563 |
IEDL.DBID | .~1 |
ISSN | 0378-1119 1879-0038 |
IngestDate | Fri Jul 11 03:16:55 EDT 2025 Thu Jul 10 22:41:22 EDT 2025 Wed Feb 19 02:31:54 EST 2025 Thu Apr 24 23:00:12 EDT 2025 Tue Jul 01 01:23:20 EDT 2025 Fri Feb 23 02:49:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HK PFKFBs G3P Oxidative phosphorylation (OXPHOS) LncRNA Glcolysis OXPHOS HIF-1α SLC ADP PI3K SDH mTOR PFK2 H2B Abhd5 G6PD GLUTs 3′UTR TSC2 HGFR TSC1 DHAP EMT F-1,6-P PGI TCA CRC PGK PGM ROS AMPK PIP3 GAPDH mTORC1 FH miRNAs DERL3 CO2 ENO RTK TPI EGFR HSPs LUAD HIF-1 LDH PPP PTTG NADH PDH PDK c-Met Glycolytic enzymes G6P GLUT1 TIGAR GLUT3 HIF NSCLC SGLT2 CAV1 IDH1 SGLT1 VEGF GRP78 HMGA1 TRAP-1 Acetyl-CoA NAD DNA VDAC HRE PEP SGLT PK GLUT4 ATP GTPase PFKM PET Cancer |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-27e992bcb38520288053e8ae27ad17395f49ee72f06c60f20909bb3a8dbb06563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 31629815 |
PQID | 2307397006 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2511179989 proquest_miscellaneous_2307397006 pubmed_primary_31629815 crossref_primary_10_1016_j_gene_2019_144158 crossref_citationtrail_10_1016_j_gene_2019_144158 elsevier_sciencedirect_doi_10_1016_j_gene_2019_144158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-05 |
PublicationDateYYYYMMDD | 2020-02-05 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Gene |
PublicationTitleAlternate | Gene |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ratcliffe (bib137) 2001 Lincet, Icard (b0120) 2015 Israelsen (b0075) 2013 Pastorino, Shulga, Hoek (b0025) 2002 Hu, Xiao, Bode, Dong, Cao (b0065) 2014 Zhang (b0040) 2017 Yu, Chen, Sun, Wang, Chen (b0105) 2017 Du (b0050) 2016 Hardie, Ross, Hawley (b0085) 2012 Miller, Thomas, Islam, Muench, Sedoris (b0095) 2012 Neugent (b0130) 2018 Kaelin (bib136) 2001 Chatterjee, Burns (b0135) 2017 Xu (b0060) 2017 Semenza (bib140) 1995 Jun, Rathore, Younas, Gilkes, Polotsky (b0100) 2017 Bensaad (b0115) 2006 Ratcliffe (bib138) 1999 Ozaki, Nakagawara (b0110) 2011 Yu, Chen, Wang, Chen (b0015) 2016 Bayley, Devilee (b0035) 2012 Gonzalez-Menendez (b0010) 2018 Wolf (b0030) 2011 Semenza (bib139) 1991 Dai (b0045) 2015 Chen (b0125) 2017 Akins, Nielson, Le (b0020) 2018 Ancey, Contat, Meylan (b0005) 2018 Chang (b0090) 2016 Xu (b0055) 2005 Courtnay (b0070) 2015 Sun (b0080) 2011 Hu (10.1016/j.gene.2019.144158_b0065) 2014 Akins (10.1016/j.gene.2019.144158_b0020) 2018 Chen (10.1016/j.gene.2019.144158_b0125) 2017 Dai (10.1016/j.gene.2019.144158_b0045) 2015 Ozaki (10.1016/j.gene.2019.144158_b0110) 2011 Xu (10.1016/j.gene.2019.144158_b0055) 2005 Chatterjee (10.1016/j.gene.2019.144158_b0135) 2017 Pastorino (10.1016/j.gene.2019.144158_b0025) 2002 Neugent (10.1016/j.gene.2019.144158_b0130) 2018 Gonzalez-Menendez (10.1016/j.gene.2019.144158_b0010) 2018 Wolf (10.1016/j.gene.2019.144158_b0030) 2011 Sun (10.1016/j.gene.2019.144158_b0080) 2011 Israelsen (10.1016/j.gene.2019.144158_b0075) 2013 Hardie (10.1016/j.gene.2019.144158_b0085) 2012 Ratcliffe (10.1016/j.gene.2019.144158_bib137) 2001 Bensaad (10.1016/j.gene.2019.144158_b0115) 2006 Semenza (10.1016/j.gene.2019.144158_bib140) 1995 Yu (10.1016/j.gene.2019.144158_b0015) 2016 Du (10.1016/j.gene.2019.144158_b0050) 2016 Yu (10.1016/j.gene.2019.144158_b0105) 2017 Ancey (10.1016/j.gene.2019.144158_b0005) 2018 Jun (10.1016/j.gene.2019.144158_b0100) 2017 Ratcliffe (10.1016/j.gene.2019.144158_bib138) 1999 Miller (10.1016/j.gene.2019.144158_b0095) 2012 Bayley (10.1016/j.gene.2019.144158_b0035) 2012 Chang (10.1016/j.gene.2019.144158_b0090) 2016 Kaelin (10.1016/j.gene.2019.144158_bib136) 2001 Courtnay (10.1016/j.gene.2019.144158_b0070) 2015 Semenza (10.1016/j.gene.2019.144158_bib139) 1991 Xu (10.1016/j.gene.2019.144158_b0060) 2017 Zhang (10.1016/j.gene.2019.144158_b0040) 2017 Lincet (10.1016/j.gene.2019.144158_b0120) 2015 |
References_xml | – year: 2013 ident: b0075 article-title: XPKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells publication-title: Cell – year: 2012 ident: b0035 article-title: The Warburg effect in 2012 publication-title: Curr. Opin. Oncol. – year: 2012 ident: b0085 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – year: 2017 ident: b0125 article-title: Clinical significance and prognostic value of Triosephosphate isomerase expression in gastric cancer publication-title: Medince (United States) – year: 2018 ident: b0010 article-title: GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress publication-title: Redox Biol. – year: 2017 ident: b0040 article-title: Elevated transcriptional levels of aldolase A (ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors publication-title: BioData Min. – year: 2001 ident: bib137 article-title: Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O publication-title: Science – year: 2017 ident: b0105 article-title: The glycolytic switch in tumors: How many players are involved? publication-title: J. Cancer – year: 2018 ident: b0020 article-title: Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer publication-title: Curr. Top. Med. Chem. – year: 1991 ident: bib139 article-title: Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2001 ident: bib136 article-title: HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O publication-title: Science – year: 2015 ident: b0120 article-title: How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? publication-title: Oncogene – year: 2017 ident: b0060 article-title: Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2 publication-title: J. Exp. Clin. Cancer Res. – year: 2017 ident: b0100 article-title: Hypoxia-inducible factors and cancer publication-title: Curr. Sleep Med. Rep. – year: 2006 ident: b0115 article-title: TIGAR, a p53-inducible regulator of glycolysis and apoptosis publication-title: Cell – year: 1995 ident: bib140 article-title: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2011 ident: b0110 article-title: Role of p53 in cell death and human cancers publication-title: Cancers – year: 2017 ident: b0135 article-title: Targeting heat shock proteins in cancer: a promising therapeutic approach publication-title: Int. J. Mol. Sci. – year: 2016 ident: b0090 article-title: Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression publication-title: Oncotarget – year: 2005 ident: b0055 article-title: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia publication-title: Cancer Res. – year: 2012 ident: b0095 article-title: c-Myc and cancer metabolism publication-title: Clin. Cancer Res. – year: 2018 ident: b0005 article-title: Glucose transporters in cancer – from tumor cells to the tumor microenvironment publication-title: FEBS J. – year: 2011 ident: b0080 article-title: Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2015 ident: b0070 article-title: Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K publication-title: Mol. Biol. Rep. – year: 2002 ident: b0025 article-title: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis publication-title: J. Biol. Chem. – year: 2014 ident: b0065 article-title: Glycolytic genes in cancer cells are more than glucose metabolic regulators publication-title: J. Mol. Med. – year: 2011 ident: b0030 article-title: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme publication-title: J. Exp. Med. – year: 2015 ident: b0045 article-title: By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice publication-title: Oncotarget – year: 1999 ident: bib138 article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. publication-title: Nature – year: 2016 ident: b0015 article-title: The sweet trap in tumors: aerobic glycolysis and potential targets for therapy publication-title: Oncotarget – year: 2016 ident: b0050 article-title: Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis publication-title: Oncotarget – year: 2018 ident: b0130 article-title: A new perspective on the heterogeneity of cancer glycolysis publication-title: Biomol. Ther. – year: 2017 ident: 10.1016/j.gene.2019.144158_b0060 article-title: Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2 publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-017-0514-4 – year: 2018 ident: 10.1016/j.gene.2019.144158_b0130 article-title: A new perspective on the heterogeneity of cancer glycolysis publication-title: Biomol. Ther. doi: 10.4062/biomolther.2017.210 – year: 2017 ident: 10.1016/j.gene.2019.144158_b0100 article-title: Hypoxia-inducible factors and cancer publication-title: Curr. Sleep Med. Rep. doi: 10.1007/s40675-017-0062-7 – year: 1995 ident: 10.1016/j.gene.2019.144158_bib140 article-title: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 1999 ident: 10.1016/j.gene.2019.144158_bib138 article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. publication-title: Nature – year: 2011 ident: 10.1016/j.gene.2019.144158_b0080 article-title: Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1014769108 – year: 2018 ident: 10.1016/j.gene.2019.144158_b0005 article-title: Glucose transporters in cancer – from tumor cells to the tumor microenvironment publication-title: FEBS J. doi: 10.1111/febs.14577 – year: 2016 ident: 10.1016/j.gene.2019.144158_b0050 article-title: Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis publication-title: Oncotarget doi: 10.18632/oncotarget.7554 – year: 2014 ident: 10.1016/j.gene.2019.144158_b0065 article-title: Glycolytic genes in cancer cells are more than glucose metabolic regulators publication-title: J. Mol. Med. – year: 2006 ident: 10.1016/j.gene.2019.144158_b0115 article-title: TIGAR, a p53-inducible regulator of glycolysis and apoptosis publication-title: Cell doi: 10.1016/j.cell.2006.05.036 – year: 2017 ident: 10.1016/j.gene.2019.144158_b0125 article-title: Clinical significance and prognostic value of Triosephosphate isomerase expression in gastric cancer publication-title: Medince (United States) – year: 2012 ident: 10.1016/j.gene.2019.144158_b0085 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3311 – year: 2018 ident: 10.1016/j.gene.2019.144158_b0020 article-title: Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026618666180523111351 – year: 2002 ident: 10.1016/j.gene.2019.144158_b0025 article-title: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109950200 – year: 2011 ident: 10.1016/j.gene.2019.144158_b0030 article-title: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme publication-title: J. Exp. Med. doi: 10.1084/jem.20101470 – year: 2013 ident: 10.1016/j.gene.2019.144158_b0075 article-title: XPKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells publication-title: Cell doi: 10.1016/j.cell.2013.09.025 – year: 2001 ident: 10.1016/j.gene.2019.144158_bib137 article-title: Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation publication-title: Science – year: 1991 ident: 10.1016/j.gene.2019.144158_bib139 article-title: Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.88.13.5680 – year: 2017 ident: 10.1016/j.gene.2019.144158_b0105 article-title: The glycolytic switch in tumors: How many players are involved? publication-title: J. Cancer doi: 10.7150/jca.21125 – year: 2001 ident: 10.1016/j.gene.2019.144158_bib136 article-title: HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. publication-title: Science – year: 2017 ident: 10.1016/j.gene.2019.144158_b0040 article-title: Elevated transcriptional levels of aldolase A (ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors publication-title: BioData Min. doi: 10.1186/s13040-016-0122-4 – year: 2015 ident: 10.1016/j.gene.2019.144158_b0070 article-title: Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-015-3858-x – year: 2011 ident: 10.1016/j.gene.2019.144158_b0110 article-title: Role of p53 in cell death and human cancers publication-title: Cancers doi: 10.3390/cancers3010994 – year: 2005 ident: 10.1016/j.gene.2019.144158_b0055 article-title: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia publication-title: Cancer Res. doi: 10.1158/0008-5472.613.65.2 – year: 2017 ident: 10.1016/j.gene.2019.144158_b0135 article-title: Targeting heat shock proteins in cancer: a promising therapeutic approach publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18091978 – year: 2012 ident: 10.1016/j.gene.2019.144158_b0035 article-title: The Warburg effect in 2012 publication-title: Curr. Opin. Oncol. doi: 10.1097/CCO.0b013e32834deb9e – year: 2015 ident: 10.1016/j.gene.2019.144158_b0045 article-title: By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice publication-title: Oncotarget doi: 10.18632/oncotarget.3800 – year: 2016 ident: 10.1016/j.gene.2019.144158_b0090 article-title: Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression publication-title: Oncotarget – year: 2015 ident: 10.1016/j.gene.2019.144158_b0120 article-title: How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? publication-title: Oncogene doi: 10.1038/onc.2014.320 – year: 2018 ident: 10.1016/j.gene.2019.144158_b0010 article-title: GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress publication-title: Redox Biol. doi: 10.1016/j.redox.2018.03.017 – year: 2012 ident: 10.1016/j.gene.2019.144158_b0095 article-title: c-Myc and cancer metabolism publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-0977 – year: 2016 ident: 10.1016/j.gene.2019.144158_b0015 article-title: The sweet trap in tumors: aerobic glycolysis and potential targets for therapy publication-title: Oncotarget |
SSID | ssj0000552 |
Score | 2.6403604 |
SecondaryResourceType | review_article |
Snippet | •Since there is no exact cure discovered for cancer, studies have focused on different hallmarks of cancer.•Warburg’s hypothesis has been a step for the... Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells' metabolism is far different... Cancer is the second most important cause of death and new therapy modalities continue to be developed and evolved. Cancer cells’ metabolism is far different... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 144158 |
SubjectTerms | Adenosine Triphosphate - metabolism Animals apoptosis Apoptosis - physiology biochemical pathways Cancer death Disease Progression energy enzymes genes Glcolysis glucose Glucose - metabolism glycolysis Glycolysis - physiology Glycolytic enzymes Humans Lactic Acid - metabolism lactic fermentation methodology Mitochondria - metabolism Mitochondria - pathology neoplasm cells Neoplasms - metabolism Neoplasms - pathology Oxidative phosphorylation (OXPHOS) therapeutics |
Title | Crucial players in glycolysis: Cancer progress |
URI | https://dx.doi.org/10.1016/j.gene.2019.144158 https://www.ncbi.nlm.nih.gov/pubmed/31629815 https://www.proquest.com/docview/2307397006 https://www.proquest.com/docview/2511179989 |
Volume | 726 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KIuhB1PqoL1YQL5I22WSTXW-1WKqCFxW8LbvpRio1Fq0HL_52Z_KoerAHbyFMYJmZnf0m880swLGQ3FoVRJ7lDhMUw4eezWLrCUejTqiUMyzYFjfx4D66ehAPDejVvTBEq6xifxnTi2hdvelU2uxMRqPOrR9SlyTmGyr0acwcdbBHCXl5-_Ob5uELUVYSKFtC6apxpuR4oY1oVGag2kVeIf86nP4Cn8Uh1F-D1Qo9sm65wHVouHwDmt0cM-fnD3bCCj5n8aN8A5bO66eVH0MHm9DuoTnR69hkbAhvs1HOHscf6BA0nOSM9cgPXllB3MIwuAn3_Yu73sCrbk3wUgQfU48nTiluUxtKwRE9SNxmThrHEzMMqCyXRcq5hGd-nMZ-xn3lK2tDI4fWIh6Jwy1YyF9ytwPMcRQRTkZZYqPEGIsb1tg4NRZP1sxPWhDU6tJpNVKcbrYY65o79qRJxZpUrEsVt-B09s2kHKgxV1rUVtC_3EJjxJ_73VFtMo37hYogJncv72-aiO-IwTDYzJFBFEqT8qRqwXZp79lawyDmSgZi958r24NlTik7Eb_FPixMX9_dAeKaqT0sHPcQFruX14ObLzJS8-s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3Bogp6qChfXUpbV6p6QWETJ05sbksEynZhL92VuFl21kGLtmFFlwP_npl8QDmwh96iyJasmfH4Teb5BeCHkNxaFUSe5Q4LFMOnni1i6wlHUifUyplWbItRnE2iX9fieg3S9i4M0Sqb3F_n9CpbN296jTV7i9ms99sP6ZYk1hsq9Elmbh02SJ1KdGCjPxhmo5eELETdTKCCCSc0d2dqmhe6idQyA3VSlRbyrfPpLfxZnUMX2_ChAZCsX6_xI6y5cgd2-yUWz38e2U9WUTqrb-U78O6sfXr_j-7gLpyk6FEMPLaYG4LcbFaym_kjxgTpk5yylELhnlXcLcyEezC5OB-nmdf8OMHLEX8sPZ44pbjNbSgFRwAhcac5aRxPzDSgzlwRKecSXvhxHvsF95WvrA2NnFqLkCQO96FT3pXuEzDHcYhwMioSGyXGWNyzxsa5sXi4Fn7ShaA1l84bVXH6ucVct_SxW00m1mRiXZu4C8fPcxa1psbK0aL1gn4VGRqT_sp531uXadwy1Acxpbt7-KuJ-44wDPPNijEIREksT6ouHNT-fl5rGMRcyUAc_ufKvsFmNr661JeD0fAzbHGq4IkHLo6gs7x_cF8Q5izt1yaMnwCWRPac |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crucial+players+in+glycolysis%3A+Cancer+progress&rft.jtitle=Gene&rft.au=Abbaszadeh%2C+Zaka&rft.au=%C3%87e%C5%9Fmeli%2C+Selin&rft.au=Biray+Avc%C4%B1%2C+%C3%87%C4%B1%C4%9F%C4%B1r&rft.date=2020-02-05&rft.issn=0378-1119&rft.volume=726+p.144158-&rft_id=info:doi/10.1016%2Fj.gene.2019.144158&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon |