Testing modified gravity at cosmological distances with LISA standard sirens

Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives ris...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2019; no. 7; p. 24
Main Authors Belgacem, Enis, Calcagni, Gianluca, Crisostomi, Marco, Dalang, Charles, Dirian, Yves, Ezquiaga, Jose María, Fasiello, Matteo, Foffa, Stefano, Ganz, Alexander, García-Bellido, Juan, Lombriser, Lucas, Maggiore, Michele, Tamanini, Nicola, Tasinato, Gianmassimo, Zumalacárregui, Miguel, Barausse, Enrico, Bartolo, Nicola, Bertacca, Daniele, Klein, Antoine, Matarrese, Sabino, Sakellariadou, Mairi
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 15.07.2019
Institute of Physics (IOP)
Subjects
Online AccessGet full text
ISSN1475-7516
1475-7508
1475-7516
DOI10.1088/1475-7516/2019/07/024

Cover

Abstract Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. We discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters (Ξ0,n), that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA . We construct mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter Ξ0 that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. LISA standard sirens can also improve constraints on GW oscillations induced by extra field content by about three orders of magnitude relative to the current capability of ground detectors. We also update the forecasts on the accuracy on H0 and on the dark-energy equation of state using more recent estimates for the LISA sensitivity.
AbstractList Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. Specifically, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. Here, we discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters (Ξ0,n), that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA. We build mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter Ξ0 that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. LISA standard sirens can also improve constraints on GW oscillations induced by extra field content by about three orders of magnitude relative to the current capability of ground detectors. We also update the forecasts on the accuracy on H0 and on the dark-energy equation of state using more recent estimates for the LISA sensitivity.
Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. We discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters (Ξ0,n), that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA . We construct mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter Ξ0 that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. LISA standard sirens can also improve constraints on GW oscillations induced by extra field content by about three orders of magnitude relative to the current capability of ground detectors. We also update the forecasts on the accuracy on H0 and on the dark-energy equation of state using more recent estimates for the LISA sensitivity.
Author Lombriser, Lucas
Fasiello, Matteo
García-Bellido, Juan
Matarrese, Sabino
Dalang, Charles
Zumalacárregui, Miguel
Tamanini, Nicola
Klein, Antoine
Calcagni, Gianluca
Tasinato, Gianmassimo
Dirian, Yves
Bartolo, Nicola
Ezquiaga, Jose María
Barausse, Enrico
Bertacca, Daniele
Maggiore, Michele
Crisostomi, Marco
Ganz, Alexander
Belgacem, Enis
Foffa, Stefano
Sakellariadou, Mairi
Author_xml – sequence: 1
  givenname: Enis
  surname: Belgacem
  fullname: Belgacem, Enis
– sequence: 2
  givenname: Gianluca
  surname: Calcagni
  fullname: Calcagni, Gianluca
– sequence: 3
  givenname: Marco
  surname: Crisostomi
  fullname: Crisostomi, Marco
– sequence: 4
  givenname: Charles
  surname: Dalang
  fullname: Dalang, Charles
– sequence: 5
  givenname: Yves
  surname: Dirian
  fullname: Dirian, Yves
– sequence: 6
  givenname: Jose María
  surname: Ezquiaga
  fullname: Ezquiaga, Jose María
– sequence: 7
  givenname: Matteo
  surname: Fasiello
  fullname: Fasiello, Matteo
– sequence: 8
  givenname: Stefano
  surname: Foffa
  fullname: Foffa, Stefano
– sequence: 9
  givenname: Alexander
  surname: Ganz
  fullname: Ganz, Alexander
– sequence: 10
  givenname: Juan
  surname: García-Bellido
  fullname: García-Bellido, Juan
– sequence: 11
  givenname: Lucas
  surname: Lombriser
  fullname: Lombriser, Lucas
– sequence: 12
  givenname: Michele
  surname: Maggiore
  fullname: Maggiore, Michele
– sequence: 13
  givenname: Nicola
  surname: Tamanini
  fullname: Tamanini, Nicola
– sequence: 14
  givenname: Gianmassimo
  surname: Tasinato
  fullname: Tasinato, Gianmassimo
– sequence: 15
  givenname: Miguel
  surname: Zumalacárregui
  fullname: Zumalacárregui, Miguel
– sequence: 16
  givenname: Enrico
  surname: Barausse
  fullname: Barausse, Enrico
– sequence: 17
  givenname: Nicola
  surname: Bartolo
  fullname: Bartolo, Nicola
– sequence: 18
  givenname: Daniele
  surname: Bertacca
  fullname: Bertacca, Daniele
– sequence: 19
  givenname: Antoine
  surname: Klein
  fullname: Klein, Antoine
– sequence: 20
  givenname: Sabino
  surname: Matarrese
  fullname: Matarrese, Sabino
– sequence: 21
  givenname: Mairi
  surname: Sakellariadou
  fullname: Sakellariadou, Mairi
BackLink https://hal.science/hal-02166562$$DView record in HAL
https://www.osti.gov/servlets/purl/1567164$$D View this record in Osti.gov
BookMark eNqFkUtLAzEUhYNU0Ko_QQi6clGbxySZwVUpvmDAhboOmSTTRqZJTaLivzdDRcSNqxsO37335NwpmPjgLQCnGF1iVNdzXAk2EwzzOUG4mSMxR6TaA4c_-uTX-wBMU3pBiHBK60PQPtmUnV_BTTCud9bAVVTvLn9ClaEOaROGsHJaDdC4lJXXNsEPl9ewvX9cwFExKhqYXLQ-HYP9Xg3JnnzXI_B8c_20vJu1D7f3y0U707Ru8oxwzg3VnFtqUM8E7yuGm6Y3xpqmE41FqquLIKwpEtcNoR3Fqu60obzqDD0CZ7u5oXiXSbts9VoH763OEjMuMK8KdLGD1mqQ2-g2Kn7KoJy8W7Ry1BDBnDNO3nFhz3fsNobXt5KIfAlv0Zc_SEKZYDXmRBSK7SgdQ0rR9j9jMZLjJeSYshxTluMlJBJlyejk6k9fcayyCz5H5YZ_ur8ASDWPKw
CitedBy_id crossref_primary_10_1103_PhysRevD_106_103017
crossref_primary_10_1103_PhysRevD_108_123543
crossref_primary_10_1088_1475_7516_2021_07_015
crossref_primary_10_1088_1475_7516_2023_06_050
crossref_primary_10_3847_1538_4357_ad20eb
crossref_primary_10_1016_j_ppnp_2022_103948
crossref_primary_10_1016_j_dark_2020_100517
crossref_primary_10_1103_PhysRevD_108_043543
crossref_primary_10_1103_PhysRevD_103_123021
crossref_primary_10_1088_1475_7516_2021_06_050
crossref_primary_10_1088_1475_7516_2024_12_045
crossref_primary_10_1103_RevModPhys_93_015003
crossref_primary_10_1016_j_dark_2022_100994
crossref_primary_10_1051_0004_6361_201936724
crossref_primary_10_1093_mnras_stad659
crossref_primary_10_1088_1475_7516_2024_03_004
crossref_primary_10_1103_PhysRevD_110_124018
crossref_primary_10_1088_1475_7516_2022_08_064
crossref_primary_10_1093_mnras_stad1633
crossref_primary_10_3390_universe8020132
crossref_primary_10_1103_PhysRevD_104_123547
crossref_primary_10_1088_1475_7516_2024_02_035
crossref_primary_10_1007_s41114_023_00045_2
crossref_primary_10_3390_universe7120506
crossref_primary_10_1103_PhysRevD_104_084082
crossref_primary_10_1088_1475_7516_2022_09_012
crossref_primary_10_1088_1475_7516_2024_10_027
crossref_primary_10_3390_universe9020063
crossref_primary_10_1093_mnras_stae2139
crossref_primary_10_1051_0004_6361_202347007
crossref_primary_10_1142_S0218271822501097
crossref_primary_10_1103_PhysRevD_100_064012
crossref_primary_10_1088_1674_1137_adab62
crossref_primary_10_1007_s11433_021_1781_x
crossref_primary_10_1103_PhysRevD_102_103524
crossref_primary_10_1140_epjc_s10052_024_13564_1
crossref_primary_10_1103_PhysRevD_105_123531
crossref_primary_10_1103_PhysRevD_102_024071
crossref_primary_10_1103_PhysRevD_103_064075
crossref_primary_10_1093_mnras_stad2180
crossref_primary_10_1093_mnras_stae1730
crossref_primary_10_1088_1475_7516_2022_06_030
crossref_primary_10_1103_PhysRevD_108_024006
crossref_primary_10_1088_1361_6382_ad1123
crossref_primary_10_1103_PhysRevD_103_043528
crossref_primary_10_1103_PhysRevD_100_124059
crossref_primary_10_1088_1475_7516_2023_08_049
crossref_primary_10_1103_PhysRevD_110_064044
crossref_primary_10_1007_s11433_021_1736_6
crossref_primary_10_1088_1475_7516_2020_03_050
crossref_primary_10_3390_universe9070317
crossref_primary_10_1088_1475_7516_2023_02_010
crossref_primary_10_1103_PhysRevD_108_084070
crossref_primary_10_1103_PhysRevD_109_024041
crossref_primary_10_1093_mnras_stae2660
crossref_primary_10_1103_PhysRevD_106_104048
crossref_primary_10_1093_mnras_stab001
crossref_primary_10_1051_0004_6361_202244464
crossref_primary_10_1016_j_dark_2021_100889
crossref_primary_10_1093_mnras_stab2080
crossref_primary_10_1103_PhysRevD_103_083506
crossref_primary_10_1103_PhysRevD_102_023523
crossref_primary_10_1103_PhysRevD_107_043539
crossref_primary_10_1088_1475_7516_2022_03_020
crossref_primary_10_1088_1475_7516_2023_03_044
crossref_primary_10_1007_s41115_021_00013_z
crossref_primary_10_1088_1475_7516_2023_08_055
crossref_primary_10_1088_1475_7516_2022_08_031
crossref_primary_10_1088_1475_7516_2021_12_017
crossref_primary_10_1103_PhysRevD_107_123519
crossref_primary_10_1103_PhysRevD_103_064057
crossref_primary_10_1103_PhysRevLett_124_061101
crossref_primary_10_1007_s41114_022_00036_9
crossref_primary_10_1103_PhysRevD_103_104059
crossref_primary_10_1103_PhysRevD_104_044035
crossref_primary_10_1103_PhysRevD_102_044036
crossref_primary_10_1088_1475_7516_2021_05_044
crossref_primary_10_1103_PhysRevD_101_063505
crossref_primary_10_1093_mnras_staa1859
crossref_primary_10_1103_PhysRevD_105_084059
crossref_primary_10_3847_1538_4357_ac09e3
crossref_primary_10_3389_fspas_2020_00052
crossref_primary_10_1088_1475_7516_2021_08_026
crossref_primary_10_1103_PhysRevD_104_084057
crossref_primary_10_1088_1475_7516_2024_09_058
crossref_primary_10_1088_1475_7516_2024_10_100
crossref_primary_10_1088_1475_7516_2021_11_048
crossref_primary_10_1093_mnras_stab2741
crossref_primary_10_1103_PhysRevD_111_064055
crossref_primary_10_1007_s10773_024_05558_2
crossref_primary_10_1103_PhysRevD_103_083526
crossref_primary_10_1103_PhysRevLett_126_091102
crossref_primary_10_1007_s10714_020_02760_5
crossref_primary_10_1093_mnras_stab1130
crossref_primary_10_1103_PhysRevD_109_063505
crossref_primary_10_1103_PhysRevD_110_083527
crossref_primary_10_3390_universe7050117
crossref_primary_10_1103_PhysRevD_101_084060
crossref_primary_10_1103_PhysRevD_102_124048
crossref_primary_10_3847_1538_4357_ac9cd4
crossref_primary_10_1103_PhysRevD_105_064030
crossref_primary_10_1103_PhysRevD_109_084064
crossref_primary_10_1103_PhysRevD_102_024003
crossref_primary_10_1093_mnras_stad115
crossref_primary_10_3390_universe10060268
crossref_primary_10_1103_PhysRevD_108_103519
crossref_primary_10_1007_s10686_021_09709_9
crossref_primary_10_1093_mnras_stac1445
crossref_primary_10_1103_PhysRevD_101_024002
crossref_primary_10_1103_PhysRevD_106_124053
crossref_primary_10_1103_PhysRevD_103_023514
crossref_primary_10_1007_s13194_024_00617_1
crossref_primary_10_1098_rsta_2021_0181
crossref_primary_10_1007_s10686_021_09712_0
crossref_primary_10_1016_j_dark_2020_100490
crossref_primary_10_1007_s11433_023_2276_1
crossref_primary_10_1016_j_scib_2020_04_032
crossref_primary_10_1103_PhysRevD_105_064061
crossref_primary_10_1093_mnras_stae951
crossref_primary_10_1103_PhysRevD_103_044021
crossref_primary_10_1007_s10686_021_09713_z
crossref_primary_10_1088_1475_7516_2024_06_044
crossref_primary_10_1093_mnras_stab165
crossref_primary_10_1103_PhysRevD_109_063521
crossref_primary_10_1103_PhysRevD_110_023502
crossref_primary_10_1088_1475_7516_2023_07_068
crossref_primary_10_1103_PhysRevD_102_024018
crossref_primary_10_1103_PhysRevD_102_044009
crossref_primary_10_3847_1538_4357_ab6d03
crossref_primary_10_1103_PhysRevD_108_024052
crossref_primary_10_1103_PhysRevD_101_063524
crossref_primary_10_1088_1475_7516_2022_03_060
crossref_primary_10_1088_1475_7516_2023_06_025
crossref_primary_10_1088_1361_6382_ad424f
crossref_primary_10_1103_PhysRevD_100_044041
crossref_primary_10_1103_PhysRevD_105_104058
crossref_primary_10_1142_S0218271824500275
Cites_doi 10.1109/TAC.1974.1100705
10.1007/JHEP01(2012)035
10.1086/152650
10.1016/j.dark.2018.03.001
10.1051/0004-6361/201423413
10.1007/978-3-319-51700-1_16
10.1093/acprof:oso/9780198570745.001.0001
10.1103/PhysRevD.97.124010
10.1142/S0218271801000822
10.3847/2041-8213/aa91c9
10.1103/PhysRevLett.117.101102
10.1007/JHEP02(2012)126
10.1103/PhysRevD.83.023005
10.1088/1475-7516/2018/03/008
10.1093/mnras/stw1590
10.1093/mnras/sty874
10.1088/2041-8205/752/1/L15
10.1088/1475-7516/2014/09/031
10.1088/1475-7516/2019/06/034
10.1007/JHEP12(2016)100
10.1088/0264-9381/30/18/184001
10.3847/2041-8213/aa8f41
10.1103/PhysRevD.99.083526
10.3847/2041-8213/aa8f94
10.1088/1475-7516/2015/04/044
10.1007/s41114-017-0010-3
10.1142/S0217751X14501164
10.1088/1475-7516/2015/05/030
10.1046/j.1365-8711.2003.06395.x
10.1093/mnras/sty896
10.1088/1475-7516/2016/11/006
10.1088/1361-6382/aa8535
10.12942/lrr-2014-7
10.1051/0004-6361/201015327
10.1016/j.physletb.2019.01.009
10.1111/j.1365-2966.2007.12517.x
10.1088/1475-7516/2018/07/048
10.1093/mnras/150.1.1
10.1088/1475-7516/2015/9/043
10.1093/mnras/sts493
10.1088/1742-6596/840/1/012029
10.1088/1475-7516/2015/05/052
10.1103/PhysRevD.82.064016
10.1103/PhysRevLett.122.061301
10.1007/JHEP03(2012)067
10.1016/j.physletb.2015.06.062
10.1103/PhysRevD.89.064046
10.1086/319848
10.1103/PhysRevD.80.024037
10.1103/PhysRevD.99.064044
10.1103/PhysRevD.90.124029
10.1093/mnras/sty057
10.1038/323310a0
10.1103/PhysRevLett.114.211101
10.1051/0004-6361/201525814
10.1103/PhysRevD.93.024003
10.1142/S0218271819420069
10.1088/1475-7516/2019/02/035
10.1088/1475-7516/2017/10/020
10.1103/PhysRevD.77.043512
10.1103/PhysRevLett.119.251302
10.1103/PhysRevLett.119.251303
10.1103/PhysRevD.98.023510
10.1111/j.1365-2966.2012.21057.x
10.1016/0550-3213(90)90615-K
10.1103/PhysRevD.95.044024
10.1103/PhysRevLett.113.191101
10.1103/PhysRevD.97.104037
10.1214/aos/1176344136
10.1103/RevModPhys.84.671
10.1103/PhysRevD.85.044047
10.2307/2291091
10.1006/aphy.1995.1015
10.1103/PhysRevD.88.044033
10.1086/431341
10.1103/PhysRevD.61.104008
10.1103/PhysRevD.99.083504
10.1007/JHEP03(2013)099
10.1088/1361-6382/aaf5e8
10.1103/PhysRevLett.110.151103
10.1088/1361-6382/aa8f7a
10.1103/PhysRevLett.104.251301
10.1088/0004-637X/725/1/496
10.1103/PhysRevD.97.064009
10.1088/1475-7516/2017/08/019
10.1103/PhysRevD.90.024070
https://doi.org/10.1142/9789812776310_0034
10.1086/522931
10.1093/oso/9780198570899.001.0001
10.1093/mnras/stz903
10.1007/s41114-018-0011-x
10.1103/PhysRevD.57.2061
10.1016/j.physletb.2016.12.048
10.1007/BF01807638
10.1088/1475-7516/2015/08/054
10.1103/PhysRevD.99.084041
10.1103/PhysRevD.90.023005
10.1007/s11214-014-0067-1
10.1088/1475-7516/2016/02/034
10.1111/j.1365-2966.2007.12530.x
10.1088/1475-7516/2016/03/031
10.1103/PhysRevLett.90.091301
10.1007/JHEP06(2012)085
10.1093/mnras/stx2524
10.1016/S0370-2693(00)00669-9
10.1088/1475-7516/2019/01/030
10.1103/PhysRevLett.119.251304
10.1103/PhysRevD.75.044004
10.1088/1361-6382/aa8da5
10.1088/1475-7516/2013/11/036
10.1088/1475-7516/2012/07/050
10.1103/PhysRevD.76.064004
10.1088/1475-7516/2014/08/059
10.1088/1475-7516/2013/12/002
10.1088/1475-7516/2016/06/041
10.1103/PhysRevD.96.023518
10.1088/1475-7516/2016/10/006
10.1103/PhysRevD.95.084029
10.1088/1475-7516/2018/12/025
10.3847/2041-8213/aa920c
10.1103/PhysRevLett.119.251301
10.1088/1475-7516/2009/08/023
10.1088/1475-7516/2012/03/042
10.1103/PhysRevD.46.5236
10.1103/PhysRevD.94.125025
10.1088/1475-7516/2017/06/028
10.1103/PhysRevD.96.083513
10.1103/PhysRevD.89.104038
10.1103/PhysRevD.93.124005
10.1088/1475-7516/2014/07/050
10.1103/PhysRevD.83.063503
10.1103/PhysRevLett.119.161101
10.1103/PhysRevLett.119.111101
10.1103/PhysRevD.67.024015
10.1088/1475-7516/2017/05/031
10.1088/1475-7516/2016/05/068
10.1088/1475-7516/2014/06/037
10.1088/2041-8205/806/1/L8
10.1088/1475-7516/2018/03/002
10.1111/j.1365-2966.2007.12589.x
10.1142/S021827181443010X
10.1103/PhysRevD.80.104009
10.1103/PhysRevD.74.063006
10.1103/PhysRev.124.925
10.1088/0004-637X/812/1/72
10.1103/PhysRevD.99.104032
10.1103/PhysRevD.86.043011
10.1088/0264-9381/27/21/215006
10.1088/1475-7516/2014/06/033
10.1103/PhysRevLett.99.111301
10.1103/PhysRevD.84.064039
10.1103/PhysRevD.94.063005
10.1038/nature07648
10.1088/1475-7516/2016/04/002
10.1103/PhysRevD.86.023502
10.1088/1475-7516/2014/03/021
10.1016/j.nuclphysb.2008.01.002
10.1103/PhysRevLett.121.221101
10.1103/PhysRevD.91.062007
10.1103/PhysRevD.97.104066
10.1088/1475-7516/2011/07/034
10.1103/PhysRevD.97.084004
10.1103/PhysRevLett.105.111301
10.1126/science.1191766
10.1088/1475-7516/2016/04/044
10.1093/mnras/stw857
10.1093/mnras/stx1454
10.1103/PhysRevD.88.022001
10.1103/PhysRevD.89.043008
10.1007/978-3-540-71013-4_14
10.3389/fspas.2018.00044
10.1051/0004-6361/201525830
10.1023/A:1018837319976
10.1103/PhysRevD.99.104038
10.1143/PTP.126.511
10.1103/PhysRevD.81.123508
10.1103/PhysRevD.95.103012
10.1088/1475-7516/2014/12/026
10.1016/j.physrep.2014.12.002
10.1103/PhysRevLett.106.231101
10.1103/PhysRevD.45.2013
10.1088/1475-7516/2008/04/013
10.1007/s10701-014-9780-6
10.1088/1475-7516/2017/05/033
10.1103/PhysRevD.67.044020
10.1088/0004-637X/794/2/104
10.1093/mnras/stx799
10.1063/1.529381
10.1103/PhysRevD.57.7089
ContentType Journal Article
Copyright Copyright IOP Publishing Jul 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright IOP Publishing Jul 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
1XC
OIOZB
OTOTI
DOI 10.1088/1475-7516/2019/07/024
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1475-7516
EndPage 24
ExternalDocumentID 1567164
oai_HAL_hal_02166562v1
10_1088_1475_7516_2019_07_024
GroupedDBID 1JI
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADEQX
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
ER.
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
VSI
W28
XPP
ZMT
02O
1WK
1XC
4.4
AALHV
ACARI
AEINN
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
RNS
S3P
HAK
KNG
OIOZB
OTOTI
RW3
UCJ
ID FETCH-LOGICAL-c389t-2666d3c66e3d0f576f45199fdded9b79e0ab81997eddde6c923b31a8bcd364bd3
ISSN 1475-7516
1475-7508
IngestDate Mon Jul 03 03:54:43 EDT 2023
Sat Sep 06 12:45:56 EDT 2025
Mon Jun 30 03:29:14 EDT 2025
Thu Apr 24 23:05:04 EDT 2025
Tue Jul 01 03:49:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords gravitational radiation: emission
cosmic background radiation
LISA
gravitation: higher-order
Monte Carlo: Markov chain
electromagnetic field: production
gravitational radiation: direct detection
effect: nonlocal
general relativity
gravitational radiation detector
baryon: oscillation: acoustic
scalar tensor
black hole: binary
bimetric
gravitation: model
supernova
gravitational radiation
gravitational radiation: propagation
dark energy: equation of state
statistical analysis
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-2666d3c66e3d0f576f45199fdded9b79e0ab81997eddde6c923b31a8bcd364bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-05CH11231
USDOE Office of Science (SC)
ORCID 0000-0001-8760-5421
OpenAccessLink https://www.osti.gov/servlets/purl/1567164
PQID 2357581627
PQPubID 2048024
PageCount 1
ParticipantIDs osti_scitechconnect_1567164
hal_primary_oai_HAL_hal_02166562v1
proquest_journals_2357581627
crossref_primary_10_1088_1475_7516_2019_07_024
crossref_citationtrail_10_1088_1475_7516_2019_07_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-15
PublicationDateYYYYMMDD 2019-07-15
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2019
Publisher IOP Publishing
Institute of Physics (IOP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IOP)
References Y. Dirian (131) 2014; 2014
G. Cusin (151) 2015; 2015
G. Cusin (152) 2015; 2015
111
113
114
J. Gleyzes (41) 2015; 2015
115
116
118
119
10
13
F. Antonini (172) 2015; 812
14
15
16
17
G. Dvali (108) 2017; 2017
18
19
120
121
1
R. McManus (63) 2016; 2016
122
125
7
128
8
9
21
23
M.S. Volkov (139) 2012; 2012
24
26
J. Ben Achour (88) 2016; 2016
28
29
E. Belgacem (51) 2018; 2018
A. Upadhye (74)
130
132
135
136
137
L. Lombriser (75) 2014; 2014
M. Fasiello (144) 2013; 2013
30
31
32
33
34
37
A. Barreira (78) 2014; 2014
P. Brax (153) 2018; 2018
S. Nissanke (25) 2010; 725
A. Barreira (127) 2014; 2014
148
149
J. Renk (79) 2017; 2017
42
43
44
M. Ostrogradsky (80); 6
45
46
L. Amendola (50) 2008; 2008
47
48
49
A. Schmidt-May (138) 2016; 49
D. Langlois (90) 2017; 2017
S. Carlip (162) 2017; 34
P. Creminelli (94) 2018; 2018
S. Deser (110) 2013; 2013
154
155
Y. Dirian (123) 2015; 2015
156
157
158
R. Kimura (62) 2012; 2012
D. Comelli (142) 2012; 2012
S. Tsujikawa (40)
52
53
55
56
M. Lüben (150)
59
C. Deffayet (112) 2009; 2009
E. Bellini (67) 2014; 2014
163
165
166
167
168
A.M. Polyakov (105)
60
61
64
66
M. Maggiore (20) 2007
68
69
E. Belgacem (208)
LIGO Scientific (5) 2017; 848
M. von Strauss (140) 2012; 2012
M. Maggiore (38) 2018
170
173
P. Madau (182) 2001; 551
174
175
176
177
178
179
B.S. Sathyaprakash (27) 2010; 27
R.R. Caldwell (133)
R.-G. Cai (204) 2017; 2017
70
71
72
73
76
D. Blas (207) 2011; 2011
181
183
184
185
186
187
188
L. Amendola (147) 2015; 2015
K. Pardo (159) 2018; 2018
81
82
Y. Akrami (143) 2013; 2013
83
C. Caprini (36) 2016; 2016
85
87
E. Belgacem (126) 2019; 2019
190
191
S.F. Hassan (134) 2012; 2012
192
194
195
196
198
199
T. Kobayashi (58)
A. Goldstein . (2) 2017; 848
91
A. Sesana (171) 2014; 794
93
95
96
97
G. 't Hooft (161) 1993; 930308
99
M. Crisostomi (92) 2019; 2019
LISA collaboration (11)
H. Jeffreys (98) 1961
C. Deffayet (12) 2007; 668
V. Savchenko . (3) 2017; 848
M. Zumalacárregui (77) 2017; 2017
E. Babichev (57) 2013; 30
F. Hofmann (39) 2018; 35
S. Deser (129) 2019; 2019
L. Lombriser (6) 2016; 2016
D.E. Holz (22) 2005; 629
F. Dar (54) 2019; 36
LIGO Scientific (160)
N. Tamanini (169) 2017; 840
LIGO Scientific (4) 2017; 848
D. Comelli (141) 2012; 2012
A. Petiteau (193) 2016
N. Arkani-Hamed (117)
N. Tamanini (35) 2016; 2016
D. Langlois (84) 2016; 2016
200
201
202
203
205
206
M. Bonetti (189) 2017; 34
209
M. Scomparin (65)
A. De Felice (145) 2014; 2014
M. Crisostomi (86) 2016; 2016
C. de Rham (89) 2016; 2016
B. Giacomazzo (197) 2012; 752
100
M. Lagos (146) 2014; 2014
101
102
103
Y. Dirian (124) 2016; 2016
G. Calcagni (164)
104
106
107
109
F. Antonini (180) 2015; 806
References_xml – ident: 97
  doi: 10.1109/TAC.1974.1100705
– volume: 2012
  start-page: 035
  issn: 1126-6708
  year: 2012
  ident: 139
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2012)035
– ident: 177
  doi: 10.1086/152650
– ident: 34
  doi: 10.1016/j.dark.2018.03.001
– ident: 205
  doi: 10.1051/0004-6361/201423413
– ident: 119
  doi: 10.1007/978-3-319-51700-1_16
– year: 2007
  ident: 20
  publication-title: Gravitational Waves. Vol. 1. Theory and Experiments
  doi: 10.1093/acprof:oso/9780198570745.001.0001
– ident: 155
  doi: 10.1103/PhysRevD.97.124010
– ident: 47
  doi: 10.1142/S0218271801000822
– volume: 848
  start-page: L12
  issn: 2041-8205
  year: 2017
  ident: 5
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/aa91c9
– ident: 176
  doi: 10.1103/PhysRevLett.117.101102
– year: 2016
  ident: 193
  publication-title: LISA noise budget
– volume: 2012
  start-page: 126
  issn: 1126-6708
  year: 2012
  ident: 134
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2012)126
– ident: 28
  doi: 10.1103/PhysRevD.83.023005
– volume: 2018
  start-page: 008
  issn: 1475-7516
  year: 2018
  ident: 153
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/03/008
– ident: 188
  doi: 10.1093/mnras/stw1590
– ident: 175
  doi: 10.1093/mnras/sty874
– ident: 40
– volume: 752
  start-page: L15
  issn: 2041-8205
  year: 2012
  ident: 197
  publication-title: Astrophys. J.
  doi: 10.1088/2041-8205/752/1/L15
– volume: 2014
  start-page: 031
  issn: 1475-7516
  year: 2014
  ident: 127
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/09/031
– volume: 2019
  start-page: 034
  issn: 1475-7516
  year: 2019
  ident: 129
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/06/034
– volume: 2016
  start-page: 100
  issn: 1126-6708
  year: 2016
  ident: 88
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2016)100
– volume: 30
  start-page: 184001
  issn: 0264-9381
  year: 2013
  ident: 57
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/30/18/184001
– volume: 848
  start-page: L14
  issn: 2041-8205
  year: 2017
  ident: 2
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/aa8f41
– ident: 37
  doi: 10.1103/PhysRevD.99.083526
– volume: 848
  start-page: L15
  issn: 2041-8205
  year: 2017
  ident: 3
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/aa8f94
– volume: 2015
  start-page: 044
  issn: 1475-7516
  year: 2015
  ident: 123
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/04/044
– ident: 201
  doi: 10.1007/s41114-017-0010-3
– ident: 198
– ident: 122
  doi: 10.1142/S0217751X14501164
– volume: 2015
  start-page: 030
  issn: 1475-7516
  year: 2015
  ident: 151
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/05/030
– ident: 185
  doi: 10.1046/j.1365-8711.2003.06395.x
– ident: 190
  doi: 10.1093/mnras/sty896
– volume: 2016
  start-page: 006
  issn: 1475-7516
  year: 2016
  ident: 63
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/11/006
– volume: 34
  start-page: 193001
  issn: 0264-9381
  year: 2017
  ident: 162
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aa8535
– ident: 137
  doi: 10.12942/lrr-2014-7
– ident: 203
  doi: 10.1051/0004-6361/201015327
– ident: 95
  doi: 10.1016/j.physletb.2019.01.009
– ident: 178
  doi: 10.1111/j.1365-2966.2007.12517.x
– volume: 2018
  start-page: 048
  issn: 1475-7516
  year: 2018
  ident: 159
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/07/048
– ident: 73
  doi: 10.1093/mnras/150.1.1
– volume: 2015
  start-page: 043
  issn: 1475-7516
  year: 2015
  ident: 152
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/9/043
– year: 1961
  ident: 98
  publication-title: Theory of Probability (3rd edition)
– ident: 72
  doi: 10.1093/mnras/sts493
– volume: 840
  start-page: 012029
  issn: 1742-6596
  year: 2017
  ident: 169
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/840/1/012029
– volume: 2015
  start-page: 052
  issn: 1475-7516
  year: 2015
  ident: 147
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/05/052
– ident: 195
  doi: 10.1103/PhysRevD.82.064016
– ident: 64
  doi: 10.1103/PhysRevLett.122.061301
– volume: 2012
  start-page: 067
  issn: 1126-6708
  year: 2012
  ident: 141
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2012)067
– ident: 148
  doi: 10.1016/j.physletb.2015.06.062
– ident: 82
  doi: 10.1103/PhysRevD.89.064046
– volume: 551
  start-page: L27
  issn: 1538-4357
  year: 2001
  ident: 182
  publication-title: Astrophys. J.
  doi: 10.1086/319848
– ident: 105
– ident: 71
  doi: 10.1103/PhysRevD.80.024037
– ident: 128
  doi: 10.1103/PhysRevD.99.064044
– ident: 191
  doi: 10.1103/PhysRevD.90.124029
– ident: 166
  doi: 10.1093/mnras/sty057
– ident: 21
  doi: 10.1038/323310a0
– ident: 83
  doi: 10.1103/PhysRevLett.114.211101
– ident: 46
  doi: 10.1051/0004-6361/201525814
– ident: 168
  doi: 10.1103/PhysRevD.93.024003
– ident: 85
  doi: 10.1142/S0218271819420069
– volume: 2019
  start-page: 035
  issn: 1475-7516
  year: 2019
  ident: 126
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/02/035
– volume: 2017
  start-page: 020
  issn: 1475-7516
  year: 2017
  ident: 79
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/10/020
– ident: 24
  doi: 10.1103/PhysRevD.77.043512
– ident: 7
  doi: 10.1103/PhysRevLett.119.251302
– ident: 8
  doi: 10.1103/PhysRevLett.119.251303
– ident: 16
  doi: 10.1103/PhysRevD.98.023510
– ident: 170
  doi: 10.1111/j.1365-2966.2012.21057.x
– ident: 100
  doi: 10.1016/0550-3213(90)90615-K
– ident: 33
  doi: 10.1103/PhysRevD.95.044024
– ident: 13
  doi: 10.1103/PhysRevLett.113.191101
– ident: 14
  doi: 10.1103/PhysRevD.97.104037
– volume: 49
  start-page: 183001
  issn: 0305-4470
  year: 2016
  ident: 138
  publication-title: J. Phys.
– ident: 96
  doi: 10.1214/aos/1176344136
– ident: 136
  doi: 10.1103/RevModPhys.84.671
– ident: 30
  doi: 10.1103/PhysRevD.85.044047
– ident: 99
  doi: 10.2307/2291091
– ident: 101
  doi: 10.1006/aphy.1995.1015
– ident: 118
  doi: 10.1103/PhysRevD.88.044033
– volume: 629
  start-page: 15
  issn: 0004-637X
  year: 2005
  ident: 22
  publication-title: Astrophys. J.
  doi: 10.1086/431341
– ident: 160
– ident: 42
  doi: 10.1103/PhysRevD.61.104008
– ident: 53
  doi: 10.1103/PhysRevD.99.083504
– volume: 2013
  start-page: 099
  issn: 1126-6708
  year: 2013
  ident: 143
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2013)099
– volume: 36
  start-page: 025008
  issn: 0264-9381
  year: 2019
  ident: 54
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aaf5e8
– ident: 199
– ident: 32
  doi: 10.1103/PhysRevLett.110.151103
– volume: 35
  start-page: 035015
  issn: 0264-9381
  year: 2018
  ident: 39
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aa8f7a
– ident: 163
  doi: 10.1103/PhysRevLett.104.251301
– volume: 725
  start-page: 496
  issn: 0004-637X
  year: 2010
  ident: 25
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/725/1/496
– volume: 930308
  start-page: 284
  year: 1993
  ident: 161
  publication-title: Conf Proc.
– ident: 158
  doi: 10.1103/PhysRevD.97.064009
– volume: 2017
  start-page: 019
  issn: 1475-7516
  year: 2017
  ident: 77
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/08/019
– ident: 58
– ident: 130
  doi: 10.1103/PhysRevD.90.024070
– ident: 115
  doi: https://doi.org/10.1142/9789812776310_0034
– volume: 668
  start-page: L143
  issn: 1538-4357
  year: 2007
  ident: 12
  publication-title: Astrophys. J.
  doi: 10.1086/522931
– year: 2018
  ident: 38
  publication-title: Gravitational Waves. Vol. 2. Astrophysics and Cosmology
  doi: 10.1093/oso/9780198570899.001.0001
– ident: 173
  doi: 10.1093/mnras/stz903
– ident: 56
  doi: 10.1007/s41114-018-0011-x
– ident: 117
– ident: 209
  doi: 10.1103/PhysRevD.57.2061
– ident: 66
  doi: 10.1016/j.physletb.2016.12.048
– ident: 59
  doi: 10.1007/BF01807638
– ident: 208
– volume: 2015
  start-page: 054
  issn: 1475-7516
  year: 2015
  ident: 41
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/08/054
– ident: 165
  doi: 10.1103/PhysRevD.99.084041
– ident: 121
  doi: 10.1103/PhysRevD.90.023005
– ident: 186
  doi: 10.1007/s11214-014-0067-1
– volume: 2016
  start-page: 034
  issn: 1475-7516
  year: 2016
  ident: 84
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/02/034
– ident: 184
  doi: 10.1111/j.1365-2966.2007.12530.x
– volume: 2016
  start-page: 031
  issn: 1475-7516
  year: 2016
  ident: 6
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/03/031
– ident: 48
  doi: 10.1103/PhysRevLett.90.091301
– volume: 2012
  start-page: 085
  issn: 1126-6708
  year: 2012
  ident: 142
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2012)085
– ident: 187
  doi: 10.1093/mnras/stx2524
– ident: 114
  doi: 10.1016/S0370-2693(00)00669-9
– volume: 2019
  start-page: 030
  issn: 1475-7516
  year: 2019
  ident: 92
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/01/030
– ident: 9
  doi: 10.1103/PhysRevLett.119.251304
– ident: 69
  doi: 10.1103/PhysRevD.75.044004
– volume: 34
  start-page: 215004
  issn: 0264-9381
  year: 2017
  ident: 189
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aa8da5
– volume: 2013
  start-page: 036
  issn: 1475-7516
  year: 2013
  ident: 110
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/11/036
– volume: 2012
  start-page: 050
  issn: 1475-7516
  year: 2012
  ident: 62
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2012/07/050
– ident: 68
  doi: 10.1103/PhysRevD.76.064004
– volume: 2014
  start-page: 059
  issn: 1475-7516
  year: 2014
  ident: 78
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/08/059
– ident: 150
– volume: 2013
  start-page: 002
  issn: 1475-7516
  year: 2013
  ident: 144
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/12/002
– volume: 2016
  start-page: 041
  issn: 1475-7516
  year: 2016
  ident: 89
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/06/041
– ident: 154
  doi: 10.1103/PhysRevD.96.023518
– volume: 2016
  start-page: 006
  issn: 1475-7516
  year: 2016
  ident: 36
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/10/006
– ident: 45
  doi: 10.1103/PhysRevD.95.084029
– volume: 2018
  start-page: 025
  issn: 1475-7516
  year: 2018
  ident: 94
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/12/025
– volume: 848
  start-page: L13
  issn: 2041-8205
  year: 2017
  ident: 4
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/aa920c
– ident: 10
  doi: 10.1103/PhysRevLett.119.251301
– volume: 2009
  start-page: 023
  issn: 1475-7516
  year: 2009
  ident: 112
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2009/08/023
– volume: 2012
  start-page: 042
  issn: 1475-7516
  year: 2012
  ident: 140
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2012/03/042
– ident: 192
  doi: 10.1103/PhysRevD.46.5236
– ident: 107
  doi: 10.1103/PhysRevD.94.125025
– ident: 164
– volume: 2017
  start-page: 028
  issn: 1475-7516
  year: 2017
  ident: 108
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/06/028
– ident: 125
  doi: 10.1103/PhysRevD.96.083513
– ident: 106
  doi: 10.1103/PhysRevD.89.104038
– ident: 87
  doi: 10.1103/PhysRevD.93.124005
– volume: 2014
  start-page: 050
  issn: 1475-7516
  year: 2014
  ident: 67
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/07/050
– ident: 76
  doi: 10.1103/PhysRevD.83.063503
– ident: 1
  doi: 10.1103/PhysRevLett.119.161101
– ident: 157
  doi: 10.1103/PhysRevLett.119.111101
– ident: 43
  doi: 10.1103/PhysRevD.67.024015
– volume: 2017
  start-page: 031
  issn: 1475-7516
  year: 2017
  ident: 204
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/05/031
– volume: 2016
  start-page: 068
  issn: 1475-7516
  year: 2016
  ident: 124
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/05/068
– volume: 2014
  start-page: 037
  issn: 1475-7516
  year: 2014
  ident: 145
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/06/037
– volume: 806
  start-page: L8
  issn: 2041-8205
  year: 2015
  ident: 180
  publication-title: Astrophys. J.
  doi: 10.1088/2041-8205/806/1/L8
– volume: 2018
  start-page: 002
  issn: 1475-7516
  year: 2018
  ident: 51
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/03/002
– ident: 183
  doi: 10.1111/j.1365-2966.2007.12589.x
– ident: 17
  doi: 10.1142/S021827181443010X
– ident: 26
  doi: 10.1103/PhysRevD.80.104009
– ident: 23
  doi: 10.1103/PhysRevD.74.063006
– ident: 70
  doi: 10.1103/PhysRev.124.925
– volume: 812
  start-page: 72
  issn: 0004-637X
  year: 2015
  ident: 172
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/812/1/72
– ident: 149
  doi: 10.1103/PhysRevD.99.104032
– ident: 29
  doi: 10.1103/PhysRevD.86.043011
– volume: 27
  start-page: 215006
  issn: 0264-9381
  year: 2010
  ident: 27
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/21/215006
– volume: 2014
  start-page: 033
  issn: 1475-7516
  year: 2014
  ident: 131
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/06/033
– ident: 109
  doi: 10.1103/PhysRevLett.99.111301
– ident: 60
  doi: 10.1103/PhysRevD.84.064039
– ident: 133
– ident: 132
  doi: 10.1103/PhysRevD.94.063005
– ident: 179
  doi: 10.1038/nature07648
– volume: 2016
  start-page: 002
  issn: 1475-7516
  year: 2016
  ident: 35
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/04/002
– ident: 31
  doi: 10.1103/PhysRevD.86.023502
– volume: 2014
  start-page: 021
  issn: 1475-7516
  year: 2014
  ident: 75
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/03/021
– ident: 104
  doi: 10.1016/j.nuclphysb.2008.01.002
– ident: 19
  doi: 10.1103/PhysRevLett.121.221101
– ident: 65
– ident: 156
  doi: 10.1103/PhysRevD.91.062007
– ident: 15
  doi: 10.1103/PhysRevD.97.104066
– volume: 2011
  start-page: 034
  issn: 1475-7516
  year: 2011
  ident: 207
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2011/07/034
– ident: 91
  doi: 10.1103/PhysRevD.97.084004
– ident: 93
  doi: 10.1103/PhysRevLett.105.111301
– ident: 196
  doi: 10.1126/science.1191766
– volume: 2016
  start-page: 044
  issn: 1475-7516
  year: 2016
  ident: 86
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/04/044
– ident: 202
  doi: 10.1093/mnras/stw857
– volume: 6
  ident: 80
  publication-title: Mem Acad. St. Petersbourg
– ident: 174
  doi: 10.1093/mnras/stx1454
– ident: 74
– ident: 44
  doi: 10.1103/PhysRevD.88.022001
– ident: 120
  doi: 10.1103/PhysRevD.89.043008
– ident: 81
  doi: 10.1007/978-3-540-71013-4_14
– ident: 200
– ident: 18
  doi: 10.3389/fspas.2018.00044
– ident: 206
  doi: 10.1051/0004-6361/201525830
– ident: 111
  doi: 10.1023/A:1018837319976
– ident: 11
– ident: 52
  doi: 10.1103/PhysRevD.99.104038
– ident: 61
  doi: 10.1143/PTP.126.511
– ident: 49
  doi: 10.1103/PhysRevD.81.123508
– ident: 167
  doi: 10.1103/PhysRevD.95.103012
– volume: 2014
  start-page: 026
  issn: 1475-7516
  year: 2014
  ident: 146
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/12/026
– ident: 55
  doi: 10.1016/j.physrep.2014.12.002
– ident: 135
  doi: 10.1103/PhysRevLett.106.231101
– ident: 103
  doi: 10.1103/PhysRevD.45.2013
– volume: 2008
  start-page: 013
  issn: 1475-7516
  year: 2008
  ident: 50
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2008/04/013
– ident: 113
  doi: 10.1007/s10701-014-9780-6
– volume: 2017
  start-page: 033
  issn: 1475-7516
  year: 2017
  ident: 90
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/05/033
– ident: 116
  doi: 10.1103/PhysRevD.67.044020
– volume: 794
  start-page: 104
  issn: 0004-637X
  year: 2014
  ident: 171
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/794/2/104
– ident: 181
  doi: 10.1093/mnras/stx799
– ident: 102
  doi: 10.1063/1.529381
– ident: 194
  doi: 10.1103/PhysRevD.57.7089
SSID ssj0026338
ssib002806714
ssib053834950
Score 2.6364105
Snippet Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the...
SourceID osti
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 24
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Astrophysics
Computer simulation
Dark energy
Detectors
Energy equation
Equations of state
General Relativity and Quantum Cosmology
Gravitation
Gravitational waves
High Energy Physics - Theory
Luminosity
Markov chains
Parameter modification
Parameterization
Physics
Propagation
Relativity
Sirens
Supermassive black holes
Tensors
Title Testing modified gravity at cosmological distances with LISA standard sirens
URI https://www.proquest.com/docview/2357581627
https://hal.science/hal-02166562
https://www.osti.gov/servlets/purl/1567164
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2y4UL4qkuLchCiAtKN5s4dnJcocKCFqhEK_VmxY-0K-0DdVMO_Qv908zYzgN1xesSRd44ieb71p6ZzIOQ1yorFGNCRLoSVcQmuY4Kq1RUMJuwqsJdHxOcP3_hszP26Tw7Hwxue1FL17U60jc780r-B1UYA1wxS_YfkG1vCgNwDvjCERCG499hjCUywNRfbcyiQl0SmwmhWg1Wv95sV-3CZlBLxIBp73edf_w27ZwIW1j1gs_urpba3MaXaSq39RVY2f5Nglek87Pb5UWprSPYsS9YEj5vLHV54VpHvf0AbMQ-a-1v2AIR9M_VIiQO6U3nO18GX3YICeg7KFxOVORTNL3R2g96OPEv5rTnryeNs8MvvUxkkcgmoTD2jrGwXuMzeswUOzcCWDxdKYEwH_NeYBp-qhKulgbr9r82KhFMWbQe98i9RAj3zR_esbXeeeraore3bNLB8nzcjo3xIeNYjOOE_aLo7F1imO0QBLq4s-k7Teb0IXkQwKVTj-IjMrDrx2R_itBiggt9Q915QPcJmQea0YZmNNCMljXt04y2NKNIM4o0ow3NqKfZU3L2_vj03SwKTTgiDbpsHYECx02qObepiSuwTissSFRUsC2aQonCxqXKMVrJGhjiGgwGlU7KXGmTcqZM-owM15u13ScUrFcTG7CfucqYAnHmmeaprkq4TlU8GxHWSEzqUKEeG6UspYuUyHOJgpYoaImClrGQIOgROWqnffclWv404RXA0V6LBdZn07nEMdB4OVg4yY_JiBwgWhIUUaymrDHsTNcycGREDhsQZVgQthIrR2X5hCfi-W8nH5D73f_kkAzrq2v7AlTbWr10lPsJYZ6hMw
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+modified+gravity+at+cosmological+distances+with+LISA+standard+sirens&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Belgacem%2C+Enis&rft.au=Calcagni%2C+Gianluca&rft.au=Crisostomi%2C+Marco&rft.au=Dalang%2C+Charles&rft.date=2019-07-15&rft.pub=Institute+of+Physics+%28IOP%29&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2019&rft.issue=7&rft_id=info:doi/10.1088%2F1475-7516%2F2019%2F07%2F024&rft.externalDocID=1567164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon