Testing modified gravity at cosmological distances with LISA standard sirens
Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives ris...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2019; no. 7; p. 24 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
15.07.2019
Institute of Physics (IOP) |
Subjects | |
Online Access | Get full text |
ISSN | 1475-7516 1475-7508 1475-7516 |
DOI | 10.1088/1475-7516/2019/07/024 |
Cover
Abstract | Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. We discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters (Ξ0,n), that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA . We construct mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter Ξ0 that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. LISA standard sirens can also improve constraints on GW oscillations induced by extra field content by about three orders of magnitude relative to the current capability of ground detectors. We also update the forecasts on the accuracy on H0 and on the dark-energy equation of state using more recent estimates for the LISA sensitivity. |
---|---|
AbstractList | Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. Specifically, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. Here, we discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters (Ξ0,n), that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA. We build mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter Ξ0 that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. LISA standard sirens can also improve constraints on GW oscillations induced by extra field content by about three orders of magnitude relative to the current capability of ground detectors. We also update the forecasts on the accuracy on H0 and on the dark-energy equation of state using more recent estimates for the LISA sensitivity. Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. We discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters (Ξ0,n), that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA . We construct mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter Ξ0 that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. LISA standard sirens can also improve constraints on GW oscillations induced by extra field content by about three orders of magnitude relative to the current capability of ground detectors. We also update the forecasts on the accuracy on H0 and on the dark-energy equation of state using more recent estimates for the LISA sensitivity. |
Author | Lombriser, Lucas Fasiello, Matteo García-Bellido, Juan Matarrese, Sabino Dalang, Charles Zumalacárregui, Miguel Tamanini, Nicola Klein, Antoine Calcagni, Gianluca Tasinato, Gianmassimo Dirian, Yves Bartolo, Nicola Ezquiaga, Jose María Barausse, Enrico Bertacca, Daniele Maggiore, Michele Crisostomi, Marco Ganz, Alexander Belgacem, Enis Foffa, Stefano Sakellariadou, Mairi |
Author_xml | – sequence: 1 givenname: Enis surname: Belgacem fullname: Belgacem, Enis – sequence: 2 givenname: Gianluca surname: Calcagni fullname: Calcagni, Gianluca – sequence: 3 givenname: Marco surname: Crisostomi fullname: Crisostomi, Marco – sequence: 4 givenname: Charles surname: Dalang fullname: Dalang, Charles – sequence: 5 givenname: Yves surname: Dirian fullname: Dirian, Yves – sequence: 6 givenname: Jose María surname: Ezquiaga fullname: Ezquiaga, Jose María – sequence: 7 givenname: Matteo surname: Fasiello fullname: Fasiello, Matteo – sequence: 8 givenname: Stefano surname: Foffa fullname: Foffa, Stefano – sequence: 9 givenname: Alexander surname: Ganz fullname: Ganz, Alexander – sequence: 10 givenname: Juan surname: García-Bellido fullname: García-Bellido, Juan – sequence: 11 givenname: Lucas surname: Lombriser fullname: Lombriser, Lucas – sequence: 12 givenname: Michele surname: Maggiore fullname: Maggiore, Michele – sequence: 13 givenname: Nicola surname: Tamanini fullname: Tamanini, Nicola – sequence: 14 givenname: Gianmassimo surname: Tasinato fullname: Tasinato, Gianmassimo – sequence: 15 givenname: Miguel surname: Zumalacárregui fullname: Zumalacárregui, Miguel – sequence: 16 givenname: Enrico surname: Barausse fullname: Barausse, Enrico – sequence: 17 givenname: Nicola surname: Bartolo fullname: Bartolo, Nicola – sequence: 18 givenname: Daniele surname: Bertacca fullname: Bertacca, Daniele – sequence: 19 givenname: Antoine surname: Klein fullname: Klein, Antoine – sequence: 20 givenname: Sabino surname: Matarrese fullname: Matarrese, Sabino – sequence: 21 givenname: Mairi surname: Sakellariadou fullname: Sakellariadou, Mairi |
BackLink | https://hal.science/hal-02166562$$DView record in HAL https://www.osti.gov/servlets/purl/1567164$$D View this record in Osti.gov |
BookMark | eNqFkUtLAzEUhYNU0Ko_QQi6clGbxySZwVUpvmDAhboOmSTTRqZJTaLivzdDRcSNqxsO37335NwpmPjgLQCnGF1iVNdzXAk2EwzzOUG4mSMxR6TaA4c_-uTX-wBMU3pBiHBK60PQPtmUnV_BTTCud9bAVVTvLn9ClaEOaROGsHJaDdC4lJXXNsEPl9ewvX9cwFExKhqYXLQ-HYP9Xg3JnnzXI_B8c_20vJu1D7f3y0U707Ru8oxwzg3VnFtqUM8E7yuGm6Y3xpqmE41FqquLIKwpEtcNoR3Fqu60obzqDD0CZ7u5oXiXSbts9VoH763OEjMuMK8KdLGD1mqQ2-g2Kn7KoJy8W7Ry1BDBnDNO3nFhz3fsNobXt5KIfAlv0Zc_SEKZYDXmRBSK7SgdQ0rR9j9jMZLjJeSYshxTluMlJBJlyejk6k9fcayyCz5H5YZ_ur8ASDWPKw |
CitedBy_id | crossref_primary_10_1103_PhysRevD_106_103017 crossref_primary_10_1103_PhysRevD_108_123543 crossref_primary_10_1088_1475_7516_2021_07_015 crossref_primary_10_1088_1475_7516_2023_06_050 crossref_primary_10_3847_1538_4357_ad20eb crossref_primary_10_1016_j_ppnp_2022_103948 crossref_primary_10_1016_j_dark_2020_100517 crossref_primary_10_1103_PhysRevD_108_043543 crossref_primary_10_1103_PhysRevD_103_123021 crossref_primary_10_1088_1475_7516_2021_06_050 crossref_primary_10_1088_1475_7516_2024_12_045 crossref_primary_10_1103_RevModPhys_93_015003 crossref_primary_10_1016_j_dark_2022_100994 crossref_primary_10_1051_0004_6361_201936724 crossref_primary_10_1093_mnras_stad659 crossref_primary_10_1088_1475_7516_2024_03_004 crossref_primary_10_1103_PhysRevD_110_124018 crossref_primary_10_1088_1475_7516_2022_08_064 crossref_primary_10_1093_mnras_stad1633 crossref_primary_10_3390_universe8020132 crossref_primary_10_1103_PhysRevD_104_123547 crossref_primary_10_1088_1475_7516_2024_02_035 crossref_primary_10_1007_s41114_023_00045_2 crossref_primary_10_3390_universe7120506 crossref_primary_10_1103_PhysRevD_104_084082 crossref_primary_10_1088_1475_7516_2022_09_012 crossref_primary_10_1088_1475_7516_2024_10_027 crossref_primary_10_3390_universe9020063 crossref_primary_10_1093_mnras_stae2139 crossref_primary_10_1051_0004_6361_202347007 crossref_primary_10_1142_S0218271822501097 crossref_primary_10_1103_PhysRevD_100_064012 crossref_primary_10_1088_1674_1137_adab62 crossref_primary_10_1007_s11433_021_1781_x crossref_primary_10_1103_PhysRevD_102_103524 crossref_primary_10_1140_epjc_s10052_024_13564_1 crossref_primary_10_1103_PhysRevD_105_123531 crossref_primary_10_1103_PhysRevD_102_024071 crossref_primary_10_1103_PhysRevD_103_064075 crossref_primary_10_1093_mnras_stad2180 crossref_primary_10_1093_mnras_stae1730 crossref_primary_10_1088_1475_7516_2022_06_030 crossref_primary_10_1103_PhysRevD_108_024006 crossref_primary_10_1088_1361_6382_ad1123 crossref_primary_10_1103_PhysRevD_103_043528 crossref_primary_10_1103_PhysRevD_100_124059 crossref_primary_10_1088_1475_7516_2023_08_049 crossref_primary_10_1103_PhysRevD_110_064044 crossref_primary_10_1007_s11433_021_1736_6 crossref_primary_10_1088_1475_7516_2020_03_050 crossref_primary_10_3390_universe9070317 crossref_primary_10_1088_1475_7516_2023_02_010 crossref_primary_10_1103_PhysRevD_108_084070 crossref_primary_10_1103_PhysRevD_109_024041 crossref_primary_10_1093_mnras_stae2660 crossref_primary_10_1103_PhysRevD_106_104048 crossref_primary_10_1093_mnras_stab001 crossref_primary_10_1051_0004_6361_202244464 crossref_primary_10_1016_j_dark_2021_100889 crossref_primary_10_1093_mnras_stab2080 crossref_primary_10_1103_PhysRevD_103_083506 crossref_primary_10_1103_PhysRevD_102_023523 crossref_primary_10_1103_PhysRevD_107_043539 crossref_primary_10_1088_1475_7516_2022_03_020 crossref_primary_10_1088_1475_7516_2023_03_044 crossref_primary_10_1007_s41115_021_00013_z crossref_primary_10_1088_1475_7516_2023_08_055 crossref_primary_10_1088_1475_7516_2022_08_031 crossref_primary_10_1088_1475_7516_2021_12_017 crossref_primary_10_1103_PhysRevD_107_123519 crossref_primary_10_1103_PhysRevD_103_064057 crossref_primary_10_1103_PhysRevLett_124_061101 crossref_primary_10_1007_s41114_022_00036_9 crossref_primary_10_1103_PhysRevD_103_104059 crossref_primary_10_1103_PhysRevD_104_044035 crossref_primary_10_1103_PhysRevD_102_044036 crossref_primary_10_1088_1475_7516_2021_05_044 crossref_primary_10_1103_PhysRevD_101_063505 crossref_primary_10_1093_mnras_staa1859 crossref_primary_10_1103_PhysRevD_105_084059 crossref_primary_10_3847_1538_4357_ac09e3 crossref_primary_10_3389_fspas_2020_00052 crossref_primary_10_1088_1475_7516_2021_08_026 crossref_primary_10_1103_PhysRevD_104_084057 crossref_primary_10_1088_1475_7516_2024_09_058 crossref_primary_10_1088_1475_7516_2024_10_100 crossref_primary_10_1088_1475_7516_2021_11_048 crossref_primary_10_1093_mnras_stab2741 crossref_primary_10_1103_PhysRevD_111_064055 crossref_primary_10_1007_s10773_024_05558_2 crossref_primary_10_1103_PhysRevD_103_083526 crossref_primary_10_1103_PhysRevLett_126_091102 crossref_primary_10_1007_s10714_020_02760_5 crossref_primary_10_1093_mnras_stab1130 crossref_primary_10_1103_PhysRevD_109_063505 crossref_primary_10_1103_PhysRevD_110_083527 crossref_primary_10_3390_universe7050117 crossref_primary_10_1103_PhysRevD_101_084060 crossref_primary_10_1103_PhysRevD_102_124048 crossref_primary_10_3847_1538_4357_ac9cd4 crossref_primary_10_1103_PhysRevD_105_064030 crossref_primary_10_1103_PhysRevD_109_084064 crossref_primary_10_1103_PhysRevD_102_024003 crossref_primary_10_1093_mnras_stad115 crossref_primary_10_3390_universe10060268 crossref_primary_10_1103_PhysRevD_108_103519 crossref_primary_10_1007_s10686_021_09709_9 crossref_primary_10_1093_mnras_stac1445 crossref_primary_10_1103_PhysRevD_101_024002 crossref_primary_10_1103_PhysRevD_106_124053 crossref_primary_10_1103_PhysRevD_103_023514 crossref_primary_10_1007_s13194_024_00617_1 crossref_primary_10_1098_rsta_2021_0181 crossref_primary_10_1007_s10686_021_09712_0 crossref_primary_10_1016_j_dark_2020_100490 crossref_primary_10_1007_s11433_023_2276_1 crossref_primary_10_1016_j_scib_2020_04_032 crossref_primary_10_1103_PhysRevD_105_064061 crossref_primary_10_1093_mnras_stae951 crossref_primary_10_1103_PhysRevD_103_044021 crossref_primary_10_1007_s10686_021_09713_z crossref_primary_10_1088_1475_7516_2024_06_044 crossref_primary_10_1093_mnras_stab165 crossref_primary_10_1103_PhysRevD_109_063521 crossref_primary_10_1103_PhysRevD_110_023502 crossref_primary_10_1088_1475_7516_2023_07_068 crossref_primary_10_1103_PhysRevD_102_024018 crossref_primary_10_1103_PhysRevD_102_044009 crossref_primary_10_3847_1538_4357_ab6d03 crossref_primary_10_1103_PhysRevD_108_024052 crossref_primary_10_1103_PhysRevD_101_063524 crossref_primary_10_1088_1475_7516_2022_03_060 crossref_primary_10_1088_1475_7516_2023_06_025 crossref_primary_10_1088_1361_6382_ad424f crossref_primary_10_1103_PhysRevD_100_044041 crossref_primary_10_1103_PhysRevD_105_104058 crossref_primary_10_1142_S0218271824500275 |
Cites_doi | 10.1109/TAC.1974.1100705 10.1007/JHEP01(2012)035 10.1086/152650 10.1016/j.dark.2018.03.001 10.1051/0004-6361/201423413 10.1007/978-3-319-51700-1_16 10.1093/acprof:oso/9780198570745.001.0001 10.1103/PhysRevD.97.124010 10.1142/S0218271801000822 10.3847/2041-8213/aa91c9 10.1103/PhysRevLett.117.101102 10.1007/JHEP02(2012)126 10.1103/PhysRevD.83.023005 10.1088/1475-7516/2018/03/008 10.1093/mnras/stw1590 10.1093/mnras/sty874 10.1088/2041-8205/752/1/L15 10.1088/1475-7516/2014/09/031 10.1088/1475-7516/2019/06/034 10.1007/JHEP12(2016)100 10.1088/0264-9381/30/18/184001 10.3847/2041-8213/aa8f41 10.1103/PhysRevD.99.083526 10.3847/2041-8213/aa8f94 10.1088/1475-7516/2015/04/044 10.1007/s41114-017-0010-3 10.1142/S0217751X14501164 10.1088/1475-7516/2015/05/030 10.1046/j.1365-8711.2003.06395.x 10.1093/mnras/sty896 10.1088/1475-7516/2016/11/006 10.1088/1361-6382/aa8535 10.12942/lrr-2014-7 10.1051/0004-6361/201015327 10.1016/j.physletb.2019.01.009 10.1111/j.1365-2966.2007.12517.x 10.1088/1475-7516/2018/07/048 10.1093/mnras/150.1.1 10.1088/1475-7516/2015/9/043 10.1093/mnras/sts493 10.1088/1742-6596/840/1/012029 10.1088/1475-7516/2015/05/052 10.1103/PhysRevD.82.064016 10.1103/PhysRevLett.122.061301 10.1007/JHEP03(2012)067 10.1016/j.physletb.2015.06.062 10.1103/PhysRevD.89.064046 10.1086/319848 10.1103/PhysRevD.80.024037 10.1103/PhysRevD.99.064044 10.1103/PhysRevD.90.124029 10.1093/mnras/sty057 10.1038/323310a0 10.1103/PhysRevLett.114.211101 10.1051/0004-6361/201525814 10.1103/PhysRevD.93.024003 10.1142/S0218271819420069 10.1088/1475-7516/2019/02/035 10.1088/1475-7516/2017/10/020 10.1103/PhysRevD.77.043512 10.1103/PhysRevLett.119.251302 10.1103/PhysRevLett.119.251303 10.1103/PhysRevD.98.023510 10.1111/j.1365-2966.2012.21057.x 10.1016/0550-3213(90)90615-K 10.1103/PhysRevD.95.044024 10.1103/PhysRevLett.113.191101 10.1103/PhysRevD.97.104037 10.1214/aos/1176344136 10.1103/RevModPhys.84.671 10.1103/PhysRevD.85.044047 10.2307/2291091 10.1006/aphy.1995.1015 10.1103/PhysRevD.88.044033 10.1086/431341 10.1103/PhysRevD.61.104008 10.1103/PhysRevD.99.083504 10.1007/JHEP03(2013)099 10.1088/1361-6382/aaf5e8 10.1103/PhysRevLett.110.151103 10.1088/1361-6382/aa8f7a 10.1103/PhysRevLett.104.251301 10.1088/0004-637X/725/1/496 10.1103/PhysRevD.97.064009 10.1088/1475-7516/2017/08/019 10.1103/PhysRevD.90.024070 https://doi.org/10.1142/9789812776310_0034 10.1086/522931 10.1093/oso/9780198570899.001.0001 10.1093/mnras/stz903 10.1007/s41114-018-0011-x 10.1103/PhysRevD.57.2061 10.1016/j.physletb.2016.12.048 10.1007/BF01807638 10.1088/1475-7516/2015/08/054 10.1103/PhysRevD.99.084041 10.1103/PhysRevD.90.023005 10.1007/s11214-014-0067-1 10.1088/1475-7516/2016/02/034 10.1111/j.1365-2966.2007.12530.x 10.1088/1475-7516/2016/03/031 10.1103/PhysRevLett.90.091301 10.1007/JHEP06(2012)085 10.1093/mnras/stx2524 10.1016/S0370-2693(00)00669-9 10.1088/1475-7516/2019/01/030 10.1103/PhysRevLett.119.251304 10.1103/PhysRevD.75.044004 10.1088/1361-6382/aa8da5 10.1088/1475-7516/2013/11/036 10.1088/1475-7516/2012/07/050 10.1103/PhysRevD.76.064004 10.1088/1475-7516/2014/08/059 10.1088/1475-7516/2013/12/002 10.1088/1475-7516/2016/06/041 10.1103/PhysRevD.96.023518 10.1088/1475-7516/2016/10/006 10.1103/PhysRevD.95.084029 10.1088/1475-7516/2018/12/025 10.3847/2041-8213/aa920c 10.1103/PhysRevLett.119.251301 10.1088/1475-7516/2009/08/023 10.1088/1475-7516/2012/03/042 10.1103/PhysRevD.46.5236 10.1103/PhysRevD.94.125025 10.1088/1475-7516/2017/06/028 10.1103/PhysRevD.96.083513 10.1103/PhysRevD.89.104038 10.1103/PhysRevD.93.124005 10.1088/1475-7516/2014/07/050 10.1103/PhysRevD.83.063503 10.1103/PhysRevLett.119.161101 10.1103/PhysRevLett.119.111101 10.1103/PhysRevD.67.024015 10.1088/1475-7516/2017/05/031 10.1088/1475-7516/2016/05/068 10.1088/1475-7516/2014/06/037 10.1088/2041-8205/806/1/L8 10.1088/1475-7516/2018/03/002 10.1111/j.1365-2966.2007.12589.x 10.1142/S021827181443010X 10.1103/PhysRevD.80.104009 10.1103/PhysRevD.74.063006 10.1103/PhysRev.124.925 10.1088/0004-637X/812/1/72 10.1103/PhysRevD.99.104032 10.1103/PhysRevD.86.043011 10.1088/0264-9381/27/21/215006 10.1088/1475-7516/2014/06/033 10.1103/PhysRevLett.99.111301 10.1103/PhysRevD.84.064039 10.1103/PhysRevD.94.063005 10.1038/nature07648 10.1088/1475-7516/2016/04/002 10.1103/PhysRevD.86.023502 10.1088/1475-7516/2014/03/021 10.1016/j.nuclphysb.2008.01.002 10.1103/PhysRevLett.121.221101 10.1103/PhysRevD.91.062007 10.1103/PhysRevD.97.104066 10.1088/1475-7516/2011/07/034 10.1103/PhysRevD.97.084004 10.1103/PhysRevLett.105.111301 10.1126/science.1191766 10.1088/1475-7516/2016/04/044 10.1093/mnras/stw857 10.1093/mnras/stx1454 10.1103/PhysRevD.88.022001 10.1103/PhysRevD.89.043008 10.1007/978-3-540-71013-4_14 10.3389/fspas.2018.00044 10.1051/0004-6361/201525830 10.1023/A:1018837319976 10.1103/PhysRevD.99.104038 10.1143/PTP.126.511 10.1103/PhysRevD.81.123508 10.1103/PhysRevD.95.103012 10.1088/1475-7516/2014/12/026 10.1016/j.physrep.2014.12.002 10.1103/PhysRevLett.106.231101 10.1103/PhysRevD.45.2013 10.1088/1475-7516/2008/04/013 10.1007/s10701-014-9780-6 10.1088/1475-7516/2017/05/033 10.1103/PhysRevD.67.044020 10.1088/0004-637X/794/2/104 10.1093/mnras/stx799 10.1063/1.529381 10.1103/PhysRevD.57.7089 |
ContentType | Journal Article |
Copyright | Copyright IOP Publishing Jul 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright IOP Publishing Jul 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION 1XC OIOZB OTOTI |
DOI | 10.1088/1475-7516/2019/07/024 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1475-7516 |
EndPage | 24 |
ExternalDocumentID | 1567164 oai_HAL_hal_02166562v1 10_1088_1475_7516_2019_07_024 |
GroupedDBID | 1JI 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI AAYXX ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADEQX ADWVK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN ER. IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 VSI W28 XPP ZMT 02O 1WK 1XC 4.4 AALHV ACARI AEINN AERVB AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ NT- NT. Q02 RNS S3P HAK KNG OIOZB OTOTI RW3 UCJ |
ID | FETCH-LOGICAL-c389t-2666d3c66e3d0f576f45199fdded9b79e0ab81997eddde6c923b31a8bcd364bd3 |
ISSN | 1475-7516 1475-7508 |
IngestDate | Mon Jul 03 03:54:43 EDT 2023 Sat Sep 06 12:45:56 EDT 2025 Mon Jun 30 03:29:14 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Tue Jul 01 03:49:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | gravitational radiation: emission cosmic background radiation LISA gravitation: higher-order Monte Carlo: Markov chain electromagnetic field: production gravitational radiation: direct detection effect: nonlocal general relativity gravitational radiation detector baryon: oscillation: acoustic scalar tensor black hole: binary bimetric gravitation: model supernova gravitational radiation gravitational radiation: propagation dark energy: equation of state statistical analysis |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-2666d3c66e3d0f576f45199fdded9b79e0ab81997eddde6c923b31a8bcd364bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-05CH11231 USDOE Office of Science (SC) |
ORCID | 0000-0001-8760-5421 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1567164 |
PQID | 2357581627 |
PQPubID | 2048024 |
PageCount | 1 |
ParticipantIDs | osti_scitechconnect_1567164 hal_primary_oai_HAL_hal_02166562v1 proquest_journals_2357581627 crossref_primary_10_1088_1475_7516_2019_07_024 crossref_citationtrail_10_1088_1475_7516_2019_07_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-15 |
PublicationDateYYYYMMDD | 2019-07-15 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2019 |
Publisher | IOP Publishing Institute of Physics (IOP) |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IOP) |
References | Y. Dirian (131) 2014; 2014 G. Cusin (151) 2015; 2015 G. Cusin (152) 2015; 2015 111 113 114 J. Gleyzes (41) 2015; 2015 115 116 118 119 10 13 F. Antonini (172) 2015; 812 14 15 16 17 G. Dvali (108) 2017; 2017 18 19 120 121 1 R. McManus (63) 2016; 2016 122 125 7 128 8 9 21 23 M.S. Volkov (139) 2012; 2012 24 26 J. Ben Achour (88) 2016; 2016 28 29 E. Belgacem (51) 2018; 2018 A. Upadhye (74) 130 132 135 136 137 L. Lombriser (75) 2014; 2014 M. Fasiello (144) 2013; 2013 30 31 32 33 34 37 A. Barreira (78) 2014; 2014 P. Brax (153) 2018; 2018 S. Nissanke (25) 2010; 725 A. Barreira (127) 2014; 2014 148 149 J. Renk (79) 2017; 2017 42 43 44 M. Ostrogradsky (80); 6 45 46 L. Amendola (50) 2008; 2008 47 48 49 A. Schmidt-May (138) 2016; 49 D. Langlois (90) 2017; 2017 S. Carlip (162) 2017; 34 P. Creminelli (94) 2018; 2018 S. Deser (110) 2013; 2013 154 155 Y. Dirian (123) 2015; 2015 156 157 158 R. Kimura (62) 2012; 2012 D. Comelli (142) 2012; 2012 S. Tsujikawa (40) 52 53 55 56 M. Lüben (150) 59 C. Deffayet (112) 2009; 2009 E. Bellini (67) 2014; 2014 163 165 166 167 168 A.M. Polyakov (105) 60 61 64 66 M. Maggiore (20) 2007 68 69 E. Belgacem (208) LIGO Scientific (5) 2017; 848 M. von Strauss (140) 2012; 2012 M. Maggiore (38) 2018 170 173 P. Madau (182) 2001; 551 174 175 176 177 178 179 B.S. Sathyaprakash (27) 2010; 27 R.R. Caldwell (133) R.-G. Cai (204) 2017; 2017 70 71 72 73 76 D. Blas (207) 2011; 2011 181 183 184 185 186 187 188 L. Amendola (147) 2015; 2015 K. Pardo (159) 2018; 2018 81 82 Y. Akrami (143) 2013; 2013 83 C. Caprini (36) 2016; 2016 85 87 E. Belgacem (126) 2019; 2019 190 191 S.F. Hassan (134) 2012; 2012 192 194 195 196 198 199 T. Kobayashi (58) A. Goldstein . (2) 2017; 848 91 A. Sesana (171) 2014; 794 93 95 96 97 G. 't Hooft (161) 1993; 930308 99 M. Crisostomi (92) 2019; 2019 LISA collaboration (11) H. Jeffreys (98) 1961 C. Deffayet (12) 2007; 668 V. Savchenko . (3) 2017; 848 M. Zumalacárregui (77) 2017; 2017 E. Babichev (57) 2013; 30 F. Hofmann (39) 2018; 35 S. Deser (129) 2019; 2019 L. Lombriser (6) 2016; 2016 D.E. Holz (22) 2005; 629 F. Dar (54) 2019; 36 LIGO Scientific (160) N. Tamanini (169) 2017; 840 LIGO Scientific (4) 2017; 848 D. Comelli (141) 2012; 2012 A. Petiteau (193) 2016 N. Arkani-Hamed (117) N. Tamanini (35) 2016; 2016 D. Langlois (84) 2016; 2016 200 201 202 203 205 206 M. Bonetti (189) 2017; 34 209 M. Scomparin (65) A. De Felice (145) 2014; 2014 M. Crisostomi (86) 2016; 2016 C. de Rham (89) 2016; 2016 B. Giacomazzo (197) 2012; 752 100 M. Lagos (146) 2014; 2014 101 102 103 Y. Dirian (124) 2016; 2016 G. Calcagni (164) 104 106 107 109 F. Antonini (180) 2015; 806 |
References_xml | – ident: 97 doi: 10.1109/TAC.1974.1100705 – volume: 2012 start-page: 035 issn: 1126-6708 year: 2012 ident: 139 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2012)035 – ident: 177 doi: 10.1086/152650 – ident: 34 doi: 10.1016/j.dark.2018.03.001 – ident: 205 doi: 10.1051/0004-6361/201423413 – ident: 119 doi: 10.1007/978-3-319-51700-1_16 – year: 2007 ident: 20 publication-title: Gravitational Waves. Vol. 1. Theory and Experiments doi: 10.1093/acprof:oso/9780198570745.001.0001 – ident: 155 doi: 10.1103/PhysRevD.97.124010 – ident: 47 doi: 10.1142/S0218271801000822 – volume: 848 start-page: L12 issn: 2041-8205 year: 2017 ident: 5 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aa91c9 – ident: 176 doi: 10.1103/PhysRevLett.117.101102 – year: 2016 ident: 193 publication-title: LISA noise budget – volume: 2012 start-page: 126 issn: 1126-6708 year: 2012 ident: 134 publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2012)126 – ident: 28 doi: 10.1103/PhysRevD.83.023005 – volume: 2018 start-page: 008 issn: 1475-7516 year: 2018 ident: 153 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/03/008 – ident: 188 doi: 10.1093/mnras/stw1590 – ident: 175 doi: 10.1093/mnras/sty874 – ident: 40 – volume: 752 start-page: L15 issn: 2041-8205 year: 2012 ident: 197 publication-title: Astrophys. J. doi: 10.1088/2041-8205/752/1/L15 – volume: 2014 start-page: 031 issn: 1475-7516 year: 2014 ident: 127 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/09/031 – volume: 2019 start-page: 034 issn: 1475-7516 year: 2019 ident: 129 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/06/034 – volume: 2016 start-page: 100 issn: 1126-6708 year: 2016 ident: 88 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2016)100 – volume: 30 start-page: 184001 issn: 0264-9381 year: 2013 ident: 57 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/30/18/184001 – volume: 848 start-page: L14 issn: 2041-8205 year: 2017 ident: 2 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aa8f41 – ident: 37 doi: 10.1103/PhysRevD.99.083526 – volume: 848 start-page: L15 issn: 2041-8205 year: 2017 ident: 3 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aa8f94 – volume: 2015 start-page: 044 issn: 1475-7516 year: 2015 ident: 123 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/04/044 – ident: 201 doi: 10.1007/s41114-017-0010-3 – ident: 198 – ident: 122 doi: 10.1142/S0217751X14501164 – volume: 2015 start-page: 030 issn: 1475-7516 year: 2015 ident: 151 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/05/030 – ident: 185 doi: 10.1046/j.1365-8711.2003.06395.x – ident: 190 doi: 10.1093/mnras/sty896 – volume: 2016 start-page: 006 issn: 1475-7516 year: 2016 ident: 63 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/11/006 – volume: 34 start-page: 193001 issn: 0264-9381 year: 2017 ident: 162 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aa8535 – ident: 137 doi: 10.12942/lrr-2014-7 – ident: 203 doi: 10.1051/0004-6361/201015327 – ident: 95 doi: 10.1016/j.physletb.2019.01.009 – ident: 178 doi: 10.1111/j.1365-2966.2007.12517.x – volume: 2018 start-page: 048 issn: 1475-7516 year: 2018 ident: 159 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/07/048 – ident: 73 doi: 10.1093/mnras/150.1.1 – volume: 2015 start-page: 043 issn: 1475-7516 year: 2015 ident: 152 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/9/043 – year: 1961 ident: 98 publication-title: Theory of Probability (3rd edition) – ident: 72 doi: 10.1093/mnras/sts493 – volume: 840 start-page: 012029 issn: 1742-6596 year: 2017 ident: 169 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/840/1/012029 – volume: 2015 start-page: 052 issn: 1475-7516 year: 2015 ident: 147 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/05/052 – ident: 195 doi: 10.1103/PhysRevD.82.064016 – ident: 64 doi: 10.1103/PhysRevLett.122.061301 – volume: 2012 start-page: 067 issn: 1126-6708 year: 2012 ident: 141 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2012)067 – ident: 148 doi: 10.1016/j.physletb.2015.06.062 – ident: 82 doi: 10.1103/PhysRevD.89.064046 – volume: 551 start-page: L27 issn: 1538-4357 year: 2001 ident: 182 publication-title: Astrophys. J. doi: 10.1086/319848 – ident: 105 – ident: 71 doi: 10.1103/PhysRevD.80.024037 – ident: 128 doi: 10.1103/PhysRevD.99.064044 – ident: 191 doi: 10.1103/PhysRevD.90.124029 – ident: 166 doi: 10.1093/mnras/sty057 – ident: 21 doi: 10.1038/323310a0 – ident: 83 doi: 10.1103/PhysRevLett.114.211101 – ident: 46 doi: 10.1051/0004-6361/201525814 – ident: 168 doi: 10.1103/PhysRevD.93.024003 – ident: 85 doi: 10.1142/S0218271819420069 – volume: 2019 start-page: 035 issn: 1475-7516 year: 2019 ident: 126 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/02/035 – volume: 2017 start-page: 020 issn: 1475-7516 year: 2017 ident: 79 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/10/020 – ident: 24 doi: 10.1103/PhysRevD.77.043512 – ident: 7 doi: 10.1103/PhysRevLett.119.251302 – ident: 8 doi: 10.1103/PhysRevLett.119.251303 – ident: 16 doi: 10.1103/PhysRevD.98.023510 – ident: 170 doi: 10.1111/j.1365-2966.2012.21057.x – ident: 100 doi: 10.1016/0550-3213(90)90615-K – ident: 33 doi: 10.1103/PhysRevD.95.044024 – ident: 13 doi: 10.1103/PhysRevLett.113.191101 – ident: 14 doi: 10.1103/PhysRevD.97.104037 – volume: 49 start-page: 183001 issn: 0305-4470 year: 2016 ident: 138 publication-title: J. Phys. – ident: 96 doi: 10.1214/aos/1176344136 – ident: 136 doi: 10.1103/RevModPhys.84.671 – ident: 30 doi: 10.1103/PhysRevD.85.044047 – ident: 99 doi: 10.2307/2291091 – ident: 101 doi: 10.1006/aphy.1995.1015 – ident: 118 doi: 10.1103/PhysRevD.88.044033 – volume: 629 start-page: 15 issn: 0004-637X year: 2005 ident: 22 publication-title: Astrophys. J. doi: 10.1086/431341 – ident: 160 – ident: 42 doi: 10.1103/PhysRevD.61.104008 – ident: 53 doi: 10.1103/PhysRevD.99.083504 – volume: 2013 start-page: 099 issn: 1126-6708 year: 2013 ident: 143 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2013)099 – volume: 36 start-page: 025008 issn: 0264-9381 year: 2019 ident: 54 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aaf5e8 – ident: 199 – ident: 32 doi: 10.1103/PhysRevLett.110.151103 – volume: 35 start-page: 035015 issn: 0264-9381 year: 2018 ident: 39 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aa8f7a – ident: 163 doi: 10.1103/PhysRevLett.104.251301 – volume: 725 start-page: 496 issn: 0004-637X year: 2010 ident: 25 publication-title: Astrophys. J. doi: 10.1088/0004-637X/725/1/496 – volume: 930308 start-page: 284 year: 1993 ident: 161 publication-title: Conf Proc. – ident: 158 doi: 10.1103/PhysRevD.97.064009 – volume: 2017 start-page: 019 issn: 1475-7516 year: 2017 ident: 77 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/08/019 – ident: 58 – ident: 130 doi: 10.1103/PhysRevD.90.024070 – ident: 115 doi: https://doi.org/10.1142/9789812776310_0034 – volume: 668 start-page: L143 issn: 1538-4357 year: 2007 ident: 12 publication-title: Astrophys. J. doi: 10.1086/522931 – year: 2018 ident: 38 publication-title: Gravitational Waves. Vol. 2. Astrophysics and Cosmology doi: 10.1093/oso/9780198570899.001.0001 – ident: 173 doi: 10.1093/mnras/stz903 – ident: 56 doi: 10.1007/s41114-018-0011-x – ident: 117 – ident: 209 doi: 10.1103/PhysRevD.57.2061 – ident: 66 doi: 10.1016/j.physletb.2016.12.048 – ident: 59 doi: 10.1007/BF01807638 – ident: 208 – volume: 2015 start-page: 054 issn: 1475-7516 year: 2015 ident: 41 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/08/054 – ident: 165 doi: 10.1103/PhysRevD.99.084041 – ident: 121 doi: 10.1103/PhysRevD.90.023005 – ident: 186 doi: 10.1007/s11214-014-0067-1 – volume: 2016 start-page: 034 issn: 1475-7516 year: 2016 ident: 84 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/02/034 – ident: 184 doi: 10.1111/j.1365-2966.2007.12530.x – volume: 2016 start-page: 031 issn: 1475-7516 year: 2016 ident: 6 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/03/031 – ident: 48 doi: 10.1103/PhysRevLett.90.091301 – volume: 2012 start-page: 085 issn: 1126-6708 year: 2012 ident: 142 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2012)085 – ident: 187 doi: 10.1093/mnras/stx2524 – ident: 114 doi: 10.1016/S0370-2693(00)00669-9 – volume: 2019 start-page: 030 issn: 1475-7516 year: 2019 ident: 92 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/01/030 – ident: 9 doi: 10.1103/PhysRevLett.119.251304 – ident: 69 doi: 10.1103/PhysRevD.75.044004 – volume: 34 start-page: 215004 issn: 0264-9381 year: 2017 ident: 189 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aa8da5 – volume: 2013 start-page: 036 issn: 1475-7516 year: 2013 ident: 110 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2013/11/036 – volume: 2012 start-page: 050 issn: 1475-7516 year: 2012 ident: 62 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2012/07/050 – ident: 68 doi: 10.1103/PhysRevD.76.064004 – volume: 2014 start-page: 059 issn: 1475-7516 year: 2014 ident: 78 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/08/059 – ident: 150 – volume: 2013 start-page: 002 issn: 1475-7516 year: 2013 ident: 144 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2013/12/002 – volume: 2016 start-page: 041 issn: 1475-7516 year: 2016 ident: 89 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/06/041 – ident: 154 doi: 10.1103/PhysRevD.96.023518 – volume: 2016 start-page: 006 issn: 1475-7516 year: 2016 ident: 36 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/10/006 – ident: 45 doi: 10.1103/PhysRevD.95.084029 – volume: 2018 start-page: 025 issn: 1475-7516 year: 2018 ident: 94 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/12/025 – volume: 848 start-page: L13 issn: 2041-8205 year: 2017 ident: 4 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aa920c – ident: 10 doi: 10.1103/PhysRevLett.119.251301 – volume: 2009 start-page: 023 issn: 1475-7516 year: 2009 ident: 112 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2009/08/023 – volume: 2012 start-page: 042 issn: 1475-7516 year: 2012 ident: 140 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2012/03/042 – ident: 192 doi: 10.1103/PhysRevD.46.5236 – ident: 107 doi: 10.1103/PhysRevD.94.125025 – ident: 164 – volume: 2017 start-page: 028 issn: 1475-7516 year: 2017 ident: 108 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/06/028 – ident: 125 doi: 10.1103/PhysRevD.96.083513 – ident: 106 doi: 10.1103/PhysRevD.89.104038 – ident: 87 doi: 10.1103/PhysRevD.93.124005 – volume: 2014 start-page: 050 issn: 1475-7516 year: 2014 ident: 67 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/07/050 – ident: 76 doi: 10.1103/PhysRevD.83.063503 – ident: 1 doi: 10.1103/PhysRevLett.119.161101 – ident: 157 doi: 10.1103/PhysRevLett.119.111101 – ident: 43 doi: 10.1103/PhysRevD.67.024015 – volume: 2017 start-page: 031 issn: 1475-7516 year: 2017 ident: 204 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/05/031 – volume: 2016 start-page: 068 issn: 1475-7516 year: 2016 ident: 124 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/05/068 – volume: 2014 start-page: 037 issn: 1475-7516 year: 2014 ident: 145 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/06/037 – volume: 806 start-page: L8 issn: 2041-8205 year: 2015 ident: 180 publication-title: Astrophys. J. doi: 10.1088/2041-8205/806/1/L8 – volume: 2018 start-page: 002 issn: 1475-7516 year: 2018 ident: 51 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/03/002 – ident: 183 doi: 10.1111/j.1365-2966.2007.12589.x – ident: 17 doi: 10.1142/S021827181443010X – ident: 26 doi: 10.1103/PhysRevD.80.104009 – ident: 23 doi: 10.1103/PhysRevD.74.063006 – ident: 70 doi: 10.1103/PhysRev.124.925 – volume: 812 start-page: 72 issn: 0004-637X year: 2015 ident: 172 publication-title: Astrophys. J. doi: 10.1088/0004-637X/812/1/72 – ident: 149 doi: 10.1103/PhysRevD.99.104032 – ident: 29 doi: 10.1103/PhysRevD.86.043011 – volume: 27 start-page: 215006 issn: 0264-9381 year: 2010 ident: 27 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/21/215006 – volume: 2014 start-page: 033 issn: 1475-7516 year: 2014 ident: 131 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/06/033 – ident: 109 doi: 10.1103/PhysRevLett.99.111301 – ident: 60 doi: 10.1103/PhysRevD.84.064039 – ident: 133 – ident: 132 doi: 10.1103/PhysRevD.94.063005 – ident: 179 doi: 10.1038/nature07648 – volume: 2016 start-page: 002 issn: 1475-7516 year: 2016 ident: 35 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/002 – ident: 31 doi: 10.1103/PhysRevD.86.023502 – volume: 2014 start-page: 021 issn: 1475-7516 year: 2014 ident: 75 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/03/021 – ident: 104 doi: 10.1016/j.nuclphysb.2008.01.002 – ident: 19 doi: 10.1103/PhysRevLett.121.221101 – ident: 65 – ident: 156 doi: 10.1103/PhysRevD.91.062007 – ident: 15 doi: 10.1103/PhysRevD.97.104066 – volume: 2011 start-page: 034 issn: 1475-7516 year: 2011 ident: 207 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2011/07/034 – ident: 91 doi: 10.1103/PhysRevD.97.084004 – ident: 93 doi: 10.1103/PhysRevLett.105.111301 – ident: 196 doi: 10.1126/science.1191766 – volume: 2016 start-page: 044 issn: 1475-7516 year: 2016 ident: 86 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/044 – ident: 202 doi: 10.1093/mnras/stw857 – volume: 6 ident: 80 publication-title: Mem Acad. St. Petersbourg – ident: 174 doi: 10.1093/mnras/stx1454 – ident: 74 – ident: 44 doi: 10.1103/PhysRevD.88.022001 – ident: 120 doi: 10.1103/PhysRevD.89.043008 – ident: 81 doi: 10.1007/978-3-540-71013-4_14 – ident: 200 – ident: 18 doi: 10.3389/fspas.2018.00044 – ident: 206 doi: 10.1051/0004-6361/201525830 – ident: 111 doi: 10.1023/A:1018837319976 – ident: 11 – ident: 52 doi: 10.1103/PhysRevD.99.104038 – ident: 61 doi: 10.1143/PTP.126.511 – ident: 49 doi: 10.1103/PhysRevD.81.123508 – ident: 167 doi: 10.1103/PhysRevD.95.103012 – volume: 2014 start-page: 026 issn: 1475-7516 year: 2014 ident: 146 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/12/026 – ident: 55 doi: 10.1016/j.physrep.2014.12.002 – ident: 135 doi: 10.1103/PhysRevLett.106.231101 – ident: 103 doi: 10.1103/PhysRevD.45.2013 – volume: 2008 start-page: 013 issn: 1475-7516 year: 2008 ident: 50 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/04/013 – ident: 113 doi: 10.1007/s10701-014-9780-6 – volume: 2017 start-page: 033 issn: 1475-7516 year: 2017 ident: 90 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/05/033 – ident: 116 doi: 10.1103/PhysRevD.67.044020 – volume: 794 start-page: 104 issn: 0004-637X year: 2014 ident: 171 publication-title: Astrophys. J. doi: 10.1088/0004-637X/794/2/104 – ident: 181 doi: 10.1093/mnras/stx799 – ident: 102 doi: 10.1063/1.529381 – ident: 194 doi: 10.1103/PhysRevD.57.7089 |
SSID | ssj0026338 ssib002806714 ssib053834950 |
Score | 2.6364105 |
Snippet | Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the... |
SourceID | osti hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 24 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Astrophysics Computer simulation Dark energy Detectors Energy equation Equations of state General Relativity and Quantum Cosmology Gravitation Gravitational waves High Energy Physics - Theory Luminosity Markov chains Parameter modification Parameterization Physics Propagation Relativity Sirens Supermassive black holes Tensors |
Title | Testing modified gravity at cosmological distances with LISA standard sirens |
URI | https://www.proquest.com/docview/2357581627 https://hal.science/hal-02166562 https://www.osti.gov/servlets/purl/1567164 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2y4UL4qkuLchCiAtKN5s4dnJcocKCFqhEK_VmxY-0K-0DdVMO_Qv908zYzgN1xesSRd44ieb71p6ZzIOQ1yorFGNCRLoSVcQmuY4Kq1RUMJuwqsJdHxOcP3_hszP26Tw7Hwxue1FL17U60jc780r-B1UYA1wxS_YfkG1vCgNwDvjCERCG499hjCUywNRfbcyiQl0SmwmhWg1Wv95sV-3CZlBLxIBp73edf_w27ZwIW1j1gs_urpba3MaXaSq39RVY2f5Nglek87Pb5UWprSPYsS9YEj5vLHV54VpHvf0AbMQ-a-1v2AIR9M_VIiQO6U3nO18GX3YICeg7KFxOVORTNL3R2g96OPEv5rTnryeNs8MvvUxkkcgmoTD2jrGwXuMzeswUOzcCWDxdKYEwH_NeYBp-qhKulgbr9r82KhFMWbQe98i9RAj3zR_esbXeeeraore3bNLB8nzcjo3xIeNYjOOE_aLo7F1imO0QBLq4s-k7Teb0IXkQwKVTj-IjMrDrx2R_itBiggt9Q915QPcJmQea0YZmNNCMljXt04y2NKNIM4o0ow3NqKfZU3L2_vj03SwKTTgiDbpsHYECx02qObepiSuwTissSFRUsC2aQonCxqXKMVrJGhjiGgwGlU7KXGmTcqZM-owM15u13ScUrFcTG7CfucqYAnHmmeaprkq4TlU8GxHWSEzqUKEeG6UspYuUyHOJgpYoaImClrGQIOgROWqnffclWv404RXA0V6LBdZn07nEMdB4OVg4yY_JiBwgWhIUUaymrDHsTNcycGREDhsQZVgQthIrR2X5hCfi-W8nH5D73f_kkAzrq2v7AlTbWr10lPsJYZ6hMw |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+modified+gravity+at+cosmological+distances+with+LISA+standard+sirens&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Belgacem%2C+Enis&rft.au=Calcagni%2C+Gianluca&rft.au=Crisostomi%2C+Marco&rft.au=Dalang%2C+Charles&rft.date=2019-07-15&rft.pub=Institute+of+Physics+%28IOP%29&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2019&rft.issue=7&rft_id=info:doi/10.1088%2F1475-7516%2F2019%2F07%2F024&rft.externalDocID=1567164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |