Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems

We study the application of an infrared laser to control heat dissipation in a metallic nanoparticle when it is in the vicinity of a semiconductor quantum dot. The infrared laser is considered to be near-resonant with two of the conduction states of the quantum dot, coherently mixing them together....

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 20; no. 36; p. 365401
Main Authors Sadeghi, S M, Deng, L, Li, X, Huang, W-P
Format Journal Article
LanguageEnglish
Published England IOP Publishing 09.09.2009
Online AccessGet full text

Cover

Loading…
Abstract We study the application of an infrared laser to control heat dissipation in a metallic nanoparticle when it is in the vicinity of a semiconductor quantum dot. The infrared laser is considered to be near-resonant with two of the conduction states of the quantum dot, coherently mixing them together. Via exciton-plasmon coupling, this process normalizes the internal field of the metallic nanoparticle, forming a plasmonic (thermal) electromagnetically induced transparency. When this process happens the metallic nanoparticle becomes nearly completely non-dissipative around its plasmon frequency, while it remains strongly dissipative at other frequencies. We show that, by adjusting the intensity of the infrared laser, one can control the transparency window width and optical Stark shift associated with such a process.
AbstractList We study the application of an infrared laser to control heat dissipation in a metallic nanoparticle when it is in the vicinity of a semiconductor quantum dot. The infrared laser is considered to be near-resonant with two of the conduction states of the quantum dot, coherently mixing them together. Via exciton-plasmon coupling, this process normalizes the internal field of the metallic nanoparticle, forming a plasmonic (thermal) electromagnetically induced transparency. When this process happens the metallic nanoparticle becomes nearly completely non-dissipative around its plasmon frequency, while it remains strongly dissipative at other frequencies. We show that, by adjusting the intensity of the infrared laser, one can control the transparency window width and optical Stark shift associated with such a process.
Author Deng, L
Li, X
Sadeghi, S M
Huang, W-P
Author_xml – sequence: 1
  fullname: Sadeghi, S M
– sequence: 2
  fullname: Deng, L
– sequence: 3
  fullname: Li, X
– sequence: 4
  fullname: Huang, W-P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19687539$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtq3DAUhkVJaSaXVwhehXThjmRZsrQMoTcItIt2LWTpOHHQxZHkxez6Dn3DPkk1zNAu0kXhwIFf338E3xk6CTEAQlcEvyNYiC2WbGj7XvTbDm8pr8N6TF6hDaGctJx14gRt_kCn6CznJ4wJER15g06J5GJgVG5Q-up09jHMprkpj5C8dm8bcGBKil4_BCiz0c7tmjnY1YBtStIhLzpBMPuw8VDqe60HHWLNK-_g14-fz6sOZfWNjaV53I1ptk3e5QI-X6DXk3YZLo_7HH3_8P7b3af2_svHz3e3962hQpa2I3riGgvdWUu7kZKRDT3IcaJMAzCAHgyxoO3Ija35IGXPsLFm6szEraTn6Ppwd0nxeYVclJ-zAed0gLhmxQcmuBx4BfkBNCnmnGBSS5q9TjtFsNrbVnuRai9SdVhRrg62a_Hq-MM6erB_a0e9FSAHYI7L_x9tX3b-zarFTvQ3vG6elg
CitedBy_id crossref_primary_10_1103_PhysRevB_89_245433
crossref_primary_10_7498_aps_65_217801
crossref_primary_10_1063_1_4977756
crossref_primary_10_1103_PhysRevB_86_125452
crossref_primary_10_1016_j_physe_2022_115625
crossref_primary_10_1364_JOSAB_32_002216
crossref_primary_10_1007_s11051_012_1184_y
crossref_primary_10_1515_nanoph_2018_0168
crossref_primary_10_1007_s11468_015_0006_3
crossref_primary_10_1021_jp3090183
crossref_primary_10_1063_1_4963272
crossref_primary_10_1063_1_4866424
crossref_primary_10_1016_j_physe_2021_114907
crossref_primary_10_1364_JOSAB_29_002297
crossref_primary_10_1117_1_JNP_18_026003
crossref_primary_10_1063_1_4767653
crossref_primary_10_1063_1_3658395
crossref_primary_10_1364_OE_20_001219
crossref_primary_10_1016_j_physb_2016_03_010
crossref_primary_10_1117_1_JNP_11_036011
crossref_primary_10_1364_OE_23_024537
crossref_primary_10_1007_s00340_015_6119_8
crossref_primary_10_1364_JOSAB_31_000120
crossref_primary_10_3390_photonics9040220
crossref_primary_10_1103_PhysRevB_83_235406
crossref_primary_10_1364_JOSAB_31_000565
crossref_primary_10_1016_j_ijleo_2021_166605
crossref_primary_10_1142_S0217984916502158
crossref_primary_10_12693_APhysPolA_122_289
crossref_primary_10_3390_app13021160
crossref_primary_10_1103_PhysRevA_88_013831
crossref_primary_10_1007_s11468_016_0354_7
crossref_primary_10_1103_PhysRevA_87_053845
crossref_primary_10_1103_PhysRevB_82_195419
crossref_primary_10_1007_s11468_015_0134_9
crossref_primary_10_1016_j_physb_2022_414186
crossref_primary_10_1088_1674_1056_23_6_067302
crossref_primary_10_1007_s11468_022_01649_0
crossref_primary_10_1063_1_3514245
crossref_primary_10_1007_s11468_016_0275_5
crossref_primary_10_1038_s41598_022_25765_3
crossref_primary_10_1140_epjd_s10053_022_00541_0
crossref_primary_10_1007_s40094_018_0298_8
crossref_primary_10_1002_qua_27071
crossref_primary_10_1016_j_rinp_2012_09_009
crossref_primary_10_1140_epjqt_s40507_024_00233_1
crossref_primary_10_1364_JOSAB_425131
crossref_primary_10_1140_epjp_s13360_023_04020_2
crossref_primary_10_1364_OE_379245
crossref_primary_10_1007_s11051_016_3351_z
Cites_doi 10.1007/b137466
10.1007/s11671-006-9015-7
10.1080/10615800600658925
10.1103/PhysRevLett.101.227401
10.1103/PhysRevLett.90.077403
10.1038/86762
10.1088/0957-4484/20/1/015305
10.1088/0953-8984/16/35/014
10.1103/PhysRevA.59.2996
10.1103/PhysRevB.59.15388
10.1364/OL.32.002125
10.1021/jp060611z
10.1109/JSTQE.2008.925766
10.1088/0957-4484/20/22/225401
10.1021/nl0480969
10.1126/science.1142979
10.1103/PhysRevLett.97.146804
10.1002/1521-4095(200108)13:15<1197::AID-ADMA1197>3.0.CO;2-4
10.1021/nl0602140
10.1016/j.physe.2004.07.013
10.1021/nl800921z
10.1103/PhysRevB.54.4843
10.1021/nl071729+
10.1126/science.1159832
10.1017/CBO9780511813993
10.1021/ja037088b
10.1038/382609a0
10.1126/science.271.5251.933
10.1103/RevModPhys.77.633
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1088/0957-4484/20/36/365401
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6528
EndPage 365401
ExternalDocumentID 10_1088_0957_4484_20_36_365401
19687539
Genre Journal Article
GroupedDBID -
02O
123
1JI
1PV
1WK
4.4
53G
5B3
5PX
5VS
5ZH
5ZI
7.M
7.Q
8WZ
9BW
A6W
AAGCD
AAJIO
AALHV
AAPBV
ABHWH
ABPTK
ABQJV
ACGFS
AEFHF
AENEX
AFFNX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TN5
UNR
W28
X
XPP
ZMT
---
-~X
AAJKP
AATNI
ABJNI
ABVAM
ACAFW
ACHIP
AERVB
AKPSB
AOAED
CRLBU
IJHAN
JCGBZ
NPM
PJBAE
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c389t-21af6a08a2dd32b31b574e9bf35aee5ee4ec1deadb6cde9b799450cdcf2cf6d93
IEDL.DBID IOP
ISSN 0957-4484
IngestDate Sat Oct 26 00:43:02 EDT 2024
Thu Sep 26 17:45:23 EDT 2024
Sat Sep 28 07:56:36 EDT 2024
Tue Nov 10 14:18:46 EST 2020
Mon May 13 14:50:02 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-21af6a08a2dd32b31b574e9bf35aee5ee4ec1deadb6cde9b799450cdcf2cf6d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19687539
PQID 67586976
PQPubID 23479
PageCount 1
ParticipantIDs iop_primary_10_1088_0957_4484_20_36_365401
crossref_primary_10_1088_0957_4484_20_36_365401
pubmed_primary_19687539
proquest_miscellaneous_67586976
PublicationCentury 2000
PublicationDate 20090909
2009-Sep-09
2009-09-09
PublicationDateYYYYMMDD 2009-09-09
PublicationDate_xml – month: 09
  year: 2009
  text: 20090909
  day: 09
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAlternate Nanotechnology
PublicationYear 2009
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
25
26
27
Kim J (18) 2004; 16
29
Sadeghi S M (14) 2009; 20
10
11
Scully M O (17) 1997
12
13
15
16
19
Mazur Y I (30) 2003; 83
1
2
3
4
5
6
7
8
9
Zin M T (28) 2009; 20
20
21
References_xml – ident: 19
  doi: 10.1007/b137466
– ident: 23
  doi: 10.1007/s11671-006-9015-7
– ident: 27
  doi: 10.1080/10615800600658925
– volume: 83
  start-page: 987
  year: 2003
  ident: 30
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Mazur Y I
– ident: 22
  doi: 10.1103/PhysRevLett.101.227401
– ident: 29
  doi: 10.1103/PhysRevLett.90.077403
– ident: 1
  doi: 10.1038/86762
– volume: 20
  start-page: 015305
  issn: 0957-4484
  year: 2009
  ident: 28
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/1/015305
  contributor:
    fullname: Zin M T
– volume: 16
  start-page: S3727
  issn: 0953-8984
  year: 2004
  ident: 18
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/16/35/014
  contributor:
    fullname: Kim J
– ident: 7
  doi: 10.1103/PhysRevA.59.2996
– ident: 16
  doi: 10.1103/PhysRevB.59.15388
– ident: 9
  doi: 10.1364/OL.32.002125
– ident: 26
  doi: 10.1021/jp060611z
– ident: 12
  doi: 10.1109/JSTQE.2008.925766
– volume: 20
  start-page: 225401
  issn: 0957-4484
  year: 2009
  ident: 14
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/22/225401
  contributor:
    fullname: Sadeghi S M
– ident: 6
  doi: 10.1021/nl0480969
– ident: 21
  doi: 10.1126/science.1142979
– ident: 15
  doi: 10.1103/PhysRevLett.97.146804
– ident: 4
  doi: 10.1002/1521-4095(200108)13:15<1197::AID-ADMA1197>3.0.CO;2-4
– ident: 5
  doi: 10.1021/nl0602140
– ident: 13
  doi: 10.1016/j.physe.2004.07.013
– ident: 8
  doi: 10.1021/nl800921z
– ident: 11
  doi: 10.1103/PhysRevB.54.4843
– ident: 25
  doi: 10.1021/nl071729+
– ident: 20
  doi: 10.1126/science.1159832
– year: 1997
  ident: 17
  publication-title: Quantum Optics
  doi: 10.1017/CBO9780511813993
  contributor:
    fullname: Scully M O
– ident: 2
  doi: 10.1021/ja037088b
– ident: 3
  doi: 10.1038/382609a0
– ident: 10
  doi: 10.1126/science.271.5251.933
– ident: 24
  doi: 10.1103/RevModPhys.77.633
SSID ssj0011821
Score 2.278141
Snippet We study the application of an infrared laser to control heat dissipation in a metallic nanoparticle when it is in the vicinity of a semiconductor quantum dot....
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 365401
Title Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems
URI http://iopscience.iop.org/0957-4484/20/36/365401
https://www.ncbi.nlm.nih.gov/pubmed/19687539
https://search.proquest.com/docview/67586976
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VSkhwKLS8ltLiA0KAlG1iJ876iFCrCgkoEpV6sxw_ALHJbrvJoZz4D_xDfkln4k1p1SJA8iGy_FDGk_j7NJ7PAM9EqhzuI0UiSawyV44nqqhMkjkpRF66PK0owfnde7l_mL89Ko5WYLgE8etsvvzzj_Gxj-QjBigTJBE58vQdIbEgyCC-QznAlLH34eA8bIBgOYvierHLkBKMLO_6YS7tRjdwyj8DzX7D2bsDH4e0nXjO5Nu4a6ux_X5VxfGf3-UurC3RJ3sd3WUdVnyzAbcvaBJuwM3-TKhd3IOTA0TWNUnnshcEE2szfcmW1-bU5nMT0x-npwxpPTqIY20vlE7ZZZYqWe0R2U-xe2Ma5OZx0l8_fh53uJxdzZAQsy-nlDLGoqD04j4c7u1-erOfLK9oSCwinTbhmQnSpBPDnRO8EllVlLlXVRCF8b7wPvc2c-itlbQO60ul8iK1zgZug3RKPIDVZtb4R8AQiKaGh1AQJiIduJQHabmxvgwkmTOCnWGp9Dwqceg-gj6ZaLKrJrtqnmohdbTrCJ6j4c8bX99Iz10YwauLDf826tPBQzR-ihRfMY2fdQtN3EsivBvBw-g4v0dUknihevw_E23CrRi6ovIEVtuTzm8hAmqr7d7rzwAvH_mw
link.rule.ids 315,783,787,1560,27936,27937,53918
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSA48Civ5VUfEAKk7CZ27KyPCLpqeZQ9UKk3y_EDEJvs0k0O5cR_4B_ySxjH2aUgKoSQfIgsP5IZO_5GM_MZ4CFLpcVzhCcikFXm0tJE8lInmRWM5YXN0zIkOL85EHuH-csjfrQBu-tcmPmi__UP8TESBUcR9gFx4xGCgiJBqyJHw33EBBZEHdloYf0mnONMZiGya__tdO1MQAidRcq92G-VKHzmWL-cUZv4HmfDz-4YmlyJ4SLLjr0wRJ98GrZNOTRffuN2_O8vvAqXe6BKnsVO12DD1dtw6RR94Tac78JHzfI6HE8RhFeBZZc8Doiy0rMnpL9hp9Lv65gpOTshH2uLa8mSpuNUD4loJlSSyqERMMPuta7RjI-Tfv_67XOLmm8rgrYz-XASsstI5J5e3oDDye6753tJf5tDYhAUNQnNtBc6HWtqLaMly0pe5E6WnnHtHHcudyazuLBLYSzWF1LmPDXWeGq8sJLdhK16XrvbQBCzppp6zwN8CpRxKfXCUG1c4QO7zgBGK_2pRSTtUJ2zfTxWQbYqyFbRVDGhomwH8AiVsW7850YKFTCAp6cb_m3UndWyUbhrgytG127eLlUw0wQiwQHciqvp54hSBBNS3vmXiXbgwvTFRL3eP3h1Fy5Gh1co92CrOW7dfcRNTfmg2xU_AMNBCbI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmonic+%28thermal%29+electromagnetically+induced+transparency+in+metallic+nanoparticle%E2%80%93quantum+dot+hybrid+systems&rft.jtitle=Nanotechnology&rft.au=Sadeghi%2C+S+M&rft.au=Deng%2C+L&rft.au=Li%2C+X&rft.au=Huang%2C+W-P&rft.date=2009-09-09&rft.pub=IOP+Publishing&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=20&rft.spage=365401&rft_id=info:doi/10.1088%2F0957-4484%2F20%2F36%2F365401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0957_4484_20_36_365401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon