Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art

COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taki...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 1; no. 4; p. 197
Main Authors Shinde, Gitanjali R., Kalamkar, Asmita B., Mahalle, Parikshit N., Dey, Nilanjan, Chaki, Jyotismita, Hassanien, Aboul Ella
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.
AbstractList COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.
COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.
ArticleNumber 197
Author Chaki, Jyotismita
Shinde, Gitanjali R.
Kalamkar, Asmita B.
Dey, Nilanjan
Hassanien, Aboul Ella
Mahalle, Parikshit N.
Author_xml – sequence: 1
  givenname: Gitanjali R.
  surname: Shinde
  fullname: Shinde, Gitanjali R.
  email: gr83gita@gmail.com
  organization: Department of Computer Engineering, Smt. Kashibai Navale College of Engineering
– sequence: 2
  givenname: Asmita B.
  surname: Kalamkar
  fullname: Kalamkar, Asmita B.
  organization: Department of Computer Engineering, Smt. Kashibai Navale College of Engineering
– sequence: 3
  givenname: Parikshit N.
  surname: Mahalle
  fullname: Mahalle, Parikshit N.
  organization: Department of Computer Engineering, Smt. Kashibai Navale College of Engineering, Department of Communication, Media and Information Technologies, Aalborg University
– sequence: 4
  givenname: Nilanjan
  surname: Dey
  fullname: Dey, Nilanjan
  organization: Department of Information Technology, Techno International New Town
– sequence: 5
  givenname: Jyotismita
  surname: Chaki
  fullname: Chaki, Jyotismita
  organization: School of Information Technology and Engineering, Vellore Institute of Technology
– sequence: 6
  givenname: Aboul Ella
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  organization: Faculty of Computers and Information, Information Technology Department, Cairo University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33063048$$D View this record in MEDLINE/PubMed
BookMark eNp9kctPFTEYxRuDEUT-ARemiRtcVPuYdloXJjcXURIMC3ztms7M10vJ3BbbmZvw31u44IMFmz7S3zk5_c5ztBNTBIReMvqWUdq-Kw03rSGUU0LrYoh5gva4UoxoQ9ud2zMnxsifu-iglEtaKUmbRslnaFcIqgRt9B76cZwy9K5MIa7wlzTAWLBPGS9TTtFtQp4LPgoFXAF8uDz7fnJEmHnzHi_w-Zw3cI2Tx9MF4PPJTUCSJ_VCFnl6gZ56NxY4uNv30bfjj1-Xn8np2aeT5eKU9EIbQ9wgairgChhXXnkQuoVm8MNAJQjZdax1vTNaat83faM6OphB-3rwutOuE_vow9b3au7WMPQQp-xGe5XD2uVrm1yw_7_EcGFXaWNbrg0XTTU4vDPI6dcMZbLrUHoYRxchzcXyRjItGdO0oq8foJdpzrF-z3IjBFfCCFmpV_8m-hPlfuYV0Fugz6mUDN72oU4vpJuAYbSM2puG7bZhW8u1tw1bU6X8gfTe_VGR2IpKheMK8t_Yj6h-A5IWtwc
CitedBy_id crossref_primary_10_1080_0952813X_2021_2021300
crossref_primary_10_1007_s42979_023_01835_9
crossref_primary_10_1016_j_rspp_2024_100013
crossref_primary_10_3390_electronics10141626
crossref_primary_10_1016_j_seps_2022_101249
crossref_primary_10_1145_3542818
crossref_primary_10_1016_j_idm_2021_12_003
crossref_primary_10_1016_j_jbi_2021_103941
crossref_primary_10_1080_23311916_2021_1958666
crossref_primary_10_1371_journal_pone_0255615
crossref_primary_10_1007_s11036_022_01966_y
crossref_primary_10_1186_s12879_022_07794_5
crossref_primary_10_3390_healthcare11050752
crossref_primary_10_1016_j_compeleceng_2022_107971
crossref_primary_10_1016_j_eswa_2022_116645
crossref_primary_10_69721_TPS_J_2021_13_1_09
crossref_primary_10_1007_s11063_021_10495_w
crossref_primary_10_1016_j_chaos_2020_110227
crossref_primary_10_1007_s40808_021_01332_z
crossref_primary_10_1007_s42979_021_00699_1
crossref_primary_10_1007_s10109_021_00366_2
crossref_primary_10_2139_ssrn_3695258
crossref_primary_10_1007_s13369_021_05904_0
crossref_primary_10_1371_journal_pgph_0000186
crossref_primary_10_1016_j_susoc_2022_05_002
crossref_primary_10_1088_1757_899X_1022_1_012022
crossref_primary_10_1016_j_asoc_2024_111359
crossref_primary_10_1080_0952813X_2022_2058618
crossref_primary_10_1093_imammb_dqab017
crossref_primary_10_1007_s42979_021_00496_w
crossref_primary_10_1002_pa_2601
crossref_primary_10_1007_s42979_021_00810_6
crossref_primary_10_1016_j_asoc_2020_106692
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_1016_j_matpr_2020_10_400
crossref_primary_10_56294_dm2024_404
crossref_primary_10_32604_cmc_2021_016816
crossref_primary_10_32604_cmc_2021_014918
crossref_primary_10_1007_s11042_023_17330_5
crossref_primary_10_1145_3673226
crossref_primary_10_1093_comjnl_bxac154
crossref_primary_10_4081_gh_2022_1070
crossref_primary_10_12688_f1000research_110958_1
crossref_primary_10_3390_healthcare10101874
crossref_primary_10_1016_j_epidem_2023_100715
crossref_primary_10_3390_bdcc7010011
crossref_primary_10_1007_s42979_024_03298_y
crossref_primary_10_1186_s12874_022_01579_9
crossref_primary_10_3390_math10203725
crossref_primary_10_1287_inte_2023_0009
crossref_primary_10_1016_j_prevetmed_2023_105964
crossref_primary_10_3390_analytics1020014
crossref_primary_10_1109_TIFS_2025_3546850
crossref_primary_10_1038_s41598_022_15478_y
crossref_primary_10_1007_s12559_021_09859_0
crossref_primary_10_1016_j_neucom_2022_09_005
crossref_primary_10_1007_s40031_021_00585_7
crossref_primary_10_1155_2022_3180742
crossref_primary_10_1016_j_imu_2022_100929
crossref_primary_10_1007_s12061_024_09588_5
crossref_primary_10_1016_j_asoc_2020_106932
crossref_primary_10_37394_232025_2024_6_1
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_1016_j_eswa_2022_119034
crossref_primary_10_1080_07391102_2021_1873190
crossref_primary_10_3390_forecast4030040
crossref_primary_10_1016_j_eswa_2021_115104
crossref_primary_10_1007_s11042_023_14543_6
crossref_primary_10_1007_s00500_022_07385_1
crossref_primary_10_1108_WJE_09_2020_0450
crossref_primary_10_5114_aoms_134716
crossref_primary_10_1134_S2070048223030171
crossref_primary_10_1007_s12559_021_09840_x
crossref_primary_10_1016_j_procs_2023_10_285
crossref_primary_10_2196_46087
crossref_primary_10_6339_24_JDS1124
crossref_primary_10_1016_j_chaos_2020_110547
crossref_primary_10_20948_mm_2022_11_07
crossref_primary_10_1007_s12539_021_00431_w
crossref_primary_10_1016_j_asoc_2021_107878
crossref_primary_10_1016_j_jbi_2021_103751
crossref_primary_10_36233_0507_4088_265
crossref_primary_10_1007_s42979_025_03658_2
crossref_primary_10_1098_rsos_211055
crossref_primary_10_3390_diagnostics13081484
crossref_primary_10_5269_bspm_63521
crossref_primary_10_1016_j_chaos_2021_111246
crossref_primary_10_3390_s23125543
crossref_primary_10_1016_j_ijforecast_2021_02_010
crossref_primary_10_1371_journal_pone_0287368
crossref_primary_10_1016_j_multra_2022_100030
crossref_primary_10_3390_biology9050094
crossref_primary_10_1007_s40031_021_00623_4
crossref_primary_10_1038_s41598_021_03322_8
crossref_primary_10_1007_s00146_021_01293_y
crossref_primary_10_1007_s40747_020_00199_4
crossref_primary_10_1016_j_isatra_2021_04_006
crossref_primary_10_1128_msystems_00018_23
crossref_primary_10_1007_s00779_020_01494_0
crossref_primary_10_1016_j_compbiomed_2020_103949
crossref_primary_10_35713_aic_v3_i1_1
crossref_primary_10_31202_ecjse_1012718
crossref_primary_10_3390_s21072435
crossref_primary_10_3389_fpubh_2022_912099
crossref_primary_10_3390_electronics11234015
crossref_primary_10_1109_TEVC_2021_3063217
crossref_primary_10_1111_exsy_13235
crossref_primary_10_1007_s42979_021_00598_5
crossref_primary_10_1109_ACCESS_2022_3159025
crossref_primary_10_1111_rsp3_12555
crossref_primary_10_1142_S0218488522400086
crossref_primary_10_1016_j_bspc_2021_103441
crossref_primary_10_1145_3465398
crossref_primary_10_1016_j_bspc_2023_105542
crossref_primary_10_1016_j_matpr_2021_07_266
crossref_primary_10_1016_j_procs_2022_01_052
crossref_primary_10_1080_08839514_2022_2055989
crossref_primary_10_4018_IJISSCM_316182
crossref_primary_10_15622_20_5_2
crossref_primary_10_1007_s13204_021_01868_7
crossref_primary_10_3390_app12031113
crossref_primary_10_1007_s00521_024_09697_9
crossref_primary_10_1007_s11135_021_01136_4
crossref_primary_10_1007_s10916_020_01645_z
crossref_primary_10_32604_csse_2022_019288
crossref_primary_10_1177_20552076221085057
crossref_primary_10_1080_02331888_2024_2334313
crossref_primary_10_1007_s41666_021_00105_8
crossref_primary_10_1016_j_asoc_2022_108691
crossref_primary_10_1093_bib_bbab339
crossref_primary_10_3390_diagnostics13071310
crossref_primary_10_1016_j_rineng_2025_104125
crossref_primary_10_1007_s13721_022_00367_1
crossref_primary_10_1109_TSMC_2022_3220080
crossref_primary_10_1016_j_chaos_2021_111227
crossref_primary_10_1038_s41598_022_11693_9
crossref_primary_10_1016_j_idm_2022_05_001
crossref_primary_10_1109_TAI_2022_3142241
Cites_doi 10.4324/9781315072371
10.1051/mmnp/2020006
10.4018/IJACI.2017100102
10.1016/0140-6736(90)92820-8
10.1007/s10916-018-1003-9
10.1101/2020.03.09.20033415
10.1613/jair.1.12162
10.1371/journal.pone.0096513
10.1101/2020.03.18.20038612
10.2807/1560-7917.ES.2020.25.10.2000199
10.1093/imammb/14.1.11
10.1109/SAIN.2018.8673334
10.1007/s10916-020-01562-1
10.1056/NEJMoa0906695
10.1101/2020.03.21.20040139
10.1016/j.asoc.2020.106282
10.20944/preprints202004.0507.v1
10.1101/2020.03.19.20038950
10.1101/2020.03.19.20037192
10.1109/ICSCCC.2018.8703300
10.1101/2020.03.19.20039388
10.31234/osf.io/5dyfc
10.1101/2020.03.13.20035261
10.2139/ssrn.3555879
10.1186/1741-7015-10-165
10.4018/IJACI.2018070104
10.2139/ssrn.3559609
10.1109/ICACT.2016.7423472
10.1101/2020.03.16.20037168
10.21203/rs.3.rs-20501/v3
10.1101/2020.03.25.20043711
10.1002/jid.795
10.1101/2020.03.16.20036723
10.1101/2020.03.22.20040287
10.1201/9781351030380
10.1101/2020.02.09.20021360
10.1007/BF03404018
10.1109/WAINA.2010.79
10.1101/2020.03.22.20038919
10.1038/s41591-020-0869-5
10.3389/fmed.2020.00169
10.1101/2020.03.17.20037689
10.1101/2020.03.21.20040444
10.1101/2020.03.21.20039867
10.1109/ICNC.2010.5583921
10.18203/2394-6040.ijcmph20210828
10.9781/ijimai.2020.02.002
10.1101/2020.03.14.20035873
10.1101/2020.02.11.20022186
10.1038/s41591-020-0883-7
10.1007/978-3-319-49736-5
10.1101/2020.03.14.20034884
10.20944/preprints202005.0176.v1
10.1007/978-981-13-1423-0_28
10.1353/jsh/10.4.538
10.1101/2020.03.11.20033639
10.1073/pnas.2004911117
10.1016/j.healthpol.2008.03.003
10.1101/2020.03.15.20036426
10.1007/978-3-319-76430-6_8
10.20944/preprints202005.0052.v1
10.20944/preprints202004.0257.v1
10.1101/2020.03.17.20037770
ContentType Journal Article
Copyright Springer Nature Singapore Pte Ltd 2020
Springer Nature Singapore Pte Ltd 2020.
Copyright_xml – notice: Springer Nature Singapore Pte Ltd 2020
– notice: Springer Nature Singapore Pte Ltd 2020.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1007/s42979-020-00209-9
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID PMC7289234
33063048
10_1007_s42979_020_00209_9
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
BSONS
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c3899-ad3250e26e126f6fe387e4dfdd05e35bb17aca9858fc4c46b0d9d8f46bf8b8ab3
IEDL.DBID BENPR
ISSN 2662-995X
2661-8907
IngestDate Thu Aug 21 18:37:13 EDT 2025
Thu Jul 10 21:54:01 EDT 2025
Sun Jul 13 04:03:24 EDT 2025
Wed Feb 19 02:04:21 EST 2025
Tue Jul 01 03:19:13 EDT 2025
Thu Apr 24 23:03:10 EDT 2025
Fri Feb 21 02:34:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
Epidemic
Prediction
Machine learning method
Pandemic
Big data
Forecasting models
Language English
License Springer Nature Singapore Pte Ltd 2020.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3899-ad3250e26e126f6fe387e4dfdd05e35bb17aca9858fc4c46b0d9d8f46bf8b8ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7289234
PMID 33063048
PQID 2933263935
PQPubID 6623307
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289234
proquest_miscellaneous_2451851180
proquest_journals_2933263935
pubmed_primary_33063048
crossref_citationtrail_10_1007_s42979_020_00209_9
crossref_primary_10_1007_s42979_020_00209_9
springer_journals_10_1007_s42979_020_00209_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200700
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationTitleAlternate SN Comput Sci
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Bayham J, Fenichel EP. The impact of school closure for COVID-19 on the US healthcare workforce and the net mortality effects. medRxiv. 2020.
Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM. Covid-19 outbreak prediction with machine learning. Available at SSRN 3580188. 2020.
Bullock J, Pham KH, Lam CS, Luengo-Oroz M. Mapping the landscape of artificial intelligence applications against COVID-19. arXiv preprint arXiv:2003.11336. 2020.
Zhu X, Zhang A, Xu S, Jia P, Tan X, Tian J, Wei T, Quan Z, Yu J. Spatially explicit modeling of 2019-nCoV epidemic trend based on mobile phone data in mainland China. medRxiv. 2020.
Rocha Filho TM, dos Santos FSG, Gomes VB, Rocha TA, Croda JH, Ramalho WM, Araujo WN Expected impact of COVID-19 outbreak in a major metropolitan area in Brazil. medRxiv. 2020.
FlahaultAValleronAJHIV and travel, no rationale for restrictionsLancet199033687241197119810.1016/0140-6736(90)92820-8
Park J, Kim J. Hong Kong sets ‘serious’ response to South Korea’s MERS outbreak.” Reuters, June 8. 2015
AchonuCLaporteAGardamMAThe financial impact of controlling a respiratory virus outbreak in a teaching hospital: lessons learned from SARSCanad J Public Health2005961525410.1007/BF03404018
Amiroch S, Pradana MS, Irawan MI, Mukhlash I. Maximum likelihood method on the construction of phylogenetic tree for identification the spreading of SARS epidemic. In: 2018 International symposium on advanced intelligent informatics (SAIN) 2018. (pp 137–141). IEEE.
Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak. medRxiv. 2020.
Sultana N, Sharma N. Statistical models for predicting swine flu incidences in India. In: 2018 First international conference on secure cyber computing and communication (ICSCCC). 2018 (pp. 134–138). IEEE.
Kumar J, Hembram KPSS. Epidemiological study of novel coronavirus (COVID-19). 2020 arXiv preprint https://arXiv:2003.11376.
Coelho FC, Lana RM, Cruz OG, Villela D, Bastos LS, Pastore y Piontti A, Davis JT, Vespignani A, Codeco C, Gomes MF. Assessing the potential impacts of COVID-19 in Brasil: mobility, morbidity and impact to the health system. medRxiv. 2020.
Santosh K, Das D, Pal U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. PREPRINT (Version 1) available at Research Square 3, 2020.
Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A, Shallcross L, Noursadeghi M, Pillay D, Pagel C, Wong WK, Langenberg C. Estimating excess 1-year mortality from COVID-19 according to underlying conditions and age in England: a rapid analysis using NHS health records in 3.8 million adults. medRxiv. 2020.
Bhatt C, Dey N, Ashour AS (eds). (2017). Internet of things and big data technologies for next generation healthcare.
Liu P, Beeler P, Chakrabarty RK. COVID-19 progression timeline and effectiveness of response-to-spread interventions across the United States. medRxiv. 2020
Botha AE, Dednam W. A simple iterative map forecast of the COVID-19 pandemic. arXiv preprint arXiv:2003.10532. 2020.
COVID-19 in India: guidance from the IndiaSIM Model- March 24, 2020. https://cddep.org/covid-19/.
VolpertVBanerjeeMPetrovskiiSOn a quarantine model of coronavirus infection and data analysisMath Modell Nat Phenomena20201524407941610.1051/mmnp/2020006
Long C, Ying Q, Fu X, Li Z, Gao Y. Forecasting the cumulative number of COVID-19 deaths in China: a Boltzmann function-based modeling study. medRxiv. 2020.
LiCChenLJChenXZhangMPangCPChenHRetrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020Eurosurveillance20202510200019910.2807/1560-7917.ES.2020.25.10.2000199
Batista M. Estimation of the final size of the second phase of the coronavirus COVID-19 epidemic by the logistic model.
He X, Lau EH, Wu P, Deng X, Wang J, Hao X, Lau YC, Wong JY, Guan Y, Tan X, Mo X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–675.
JainSKamimotoLBramleyAMSchmitzAMBenoitSRHospitalized patients with 2009 H1N1 influenza in the United States, April–June 2015New England J Med2009361201935194410.1056/NEJMoa0906695
Fong SJ, Li G, Dey N, Crespo RG Herrera-Viedma E. Finding an accurate early forecasting model from small dataset: a case of 2019-ncov novel coronavirus outbreak. arXiv preprint arXiv:2003.10776. 2020
Hu S, Liu M, Fong S, Song W, Dey N, Wong R. Forecasting China future MNP by deep learning. In: Behavior engineering and applications 2018 (pp. 169–210). Springer, Cham.
Pandemic risk. Background paper for world development report 2014: Risk and opportunity; managing risk for development, World Bank, Washington.
Zareie B, Roshani A, Mansournia MA, Rasouli MA, Moradi G. A model for COVID-19 prediction in Iran based on China parameters. medRxiv. 2020
Russo L, Anastassopoulou C, Tsakris A, Bifulco GN, Campana EF, Toraldo G, Siettos C. Tracing DAY-ZERO and forecasting the fade out of the COVID-19 outbreak in Lombardy, Italy: a compartmental modelling and numerical optimization approach. medRxiv. 2020
Siwiak MM, Szczesny P, Siwiak MP. From a single host to global spread. The global mobility based modelling of the COVID-19 pandemic implies higher infection and lower detection rates than current estimates. medRxiv. 2020
Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E. Composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Appl Soft Comput. 2020;106282.
Giuliani D, Dickson MM, Espa G, Santi F. Modelling and predicting the spread of coronavirus (COVID-19) infection in NUTS-3 Italian regions. arXiv preprint arXiv:2003.06664. 2020.
LanKWangDTFongSLiuLSWongKKDeyNA survey of data mining and deep learning in bioinformaticsJ Med Syst201842813910.1007/s10916-018-1003-9
Hu B, Gong J. Support vector machine based classification analysis of SARS spatial distribution. In: 2010 Sixth international conference on natural computation. 2010 (vol. 2, pp. 924–927). IEEE.
Traini MC, Caponi C, De Socio GV. Modelling the epidemic 2019-nCoV event in Italy: a preliminary note. medRxiv. 2020.
La S, Bogoch II, Ruktanonchai N, Watts AG, Li Y, Yu J, Lv X, Yang W, Hongjie Y, Khan K, Li Z. Assessing spread risk of Wuhan novel coronavirus within and beyond China, January–April 2020: a travel network-based modelling study. 2020.
Bhapkar HR, Mahalle P, Dhotre PS. Virus graph and COVID-19 pandemic: a graph theory approach. Preprints 2020, 2020040507 (https://doi.org/10.20944/preprints202004.0507.v1).
Kim D, Hong S, Choi S, Yoon T. Analysis of transmission route of MERS coronavirus using decision tree and Apriori algorithm. In: 2016 18th International conference on advanced communication technology (ICACT). 2016. (pp 559–565). IEEE.
Dicker RC, Coronado F, Koo D, Parrish RG. Principles of epidemiology in public health practice; an introduction to applied epidemiology and biostatistics. 2006
Teles P. Predicting the evolution Of SARS-Covid-2 in Portugal using an adapted SIR Model previously used in South Korea for the MERS outbreak. arXiv preprint https://arXiv:2003.10047. 2020
WangpingJKeHYangSWenzheCShengshuWShanshanYMiaoLExtended SIR prediction of the epidemics trend ofCOVID-19 in Italy and compared with HunanFront Med2020716910.3389/fmed.2020.00169
Weber A, Ianelli F, Goncalves S. Trend analysis of the COVID-19 pandemic in China and the rest of the world. arXiv preprint https://arXiv:2003.09032. 2020.
Caccavo D. Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model. medRxiv. 2020
SinghNMohantySRShort term price forecasting using adaptive generalized neuron modelInt J Ambient Comput Intell (IJACI)201893445610.4018/IJACI.2018070104
Gaudart J, Ghassani M, Mintsa J, Waku J, Rachdi M, Doumbo OK, Demongeot J (2010) Demographic and spatial factors as causes of an epidemic spread, the copule approach: application to the retro-prediction of the black death epidemy of 1346. In: 2010 IEEE 24th International conference on advanced information networking and applications workshops (pp 751–758). IEEE.
Dey N, Rajinikant V, Fong SJ, Kaiser MS, Mahmud M. Social-group-optimization assisted kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. 2020.
Siegenfeld AF, Bar-Yam Y. Eliminating COVID-19: a community-based analysis. arXiv preprint https://arXiv:2003.10086. 2020.
PlattCKing death: the black death and its aftermath in late-medieval England2014Oxon, U.K.Routledge10.4324/9781315072371
Jia L, Li K, Jiang Y, Guo X. Prediction and analysis of coronavirus disease 2019. arXiv preprint https://arXiv:2003.05447. 2020.
FriedenNMThe Russian cholera epidemic, 1892–93, and medical professionalizationJ Soc History197710453810.1353/jsh/10.4.538
Keogh-BrownMRSmithRDThe economic impact of SARS: how does the reality match the predictions?Health Policy200888111012010.1016/j.healthpol.2008.03.003
SantoshKCAI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal dataJ Med Syst20204451510.1007/s10916-020-01562-1
McKibbinWJSidorenkoAAGlobal macroeconomic consequences of pandemic influenza. analysis2006Sydney, AustraliaLowy Institute for International Policy
Hassanien AE, Dey N, Borra S (eds) (2018). Medical big data and internet of medical things: advances, challenges and applications. CRC Press, Boca Raton.
DeWitteSNMortality risk and survival in the aftermath of the medieval black deathPLoS ONE201495e9651310.1371/journal.pone.0096513
JainABhatnagarVConcoction of ambient intelligence and big data for better patient ministration servicesInt J Ambient Comput Intell (IJACI)201784193010.4018/IJACI.2017100102
Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, Mills MC. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceed nat acad sci 2020;117(18):9696–9698.
Toda AA. Su
J Wangping (209_CR42) 2020; 7
L Gordis (209_CR2) 2014
A Jain (209_CR28) 2017; 8
NM Frieden (209_CR6) 1977; 10
209_CR50
209_CR51
K Lan (209_CR27) 2018; 42
L Li (209_CR43) 2020; 5
209_CR56
209_CR57
209_CR14
209_CR58
209_CR15
209_CR59
209_CR52
209_CR53
A Flahault (209_CR9) 1990; 336
209_CR54
209_CR55
C Achonu (209_CR11) 2005; 96
209_CR17
209_CR18
209_CR60
209_CR61
209_CR62
209_CR23
209_CR67
209_CR1
209_CR24
209_CR68
209_CR25
209_CR69
209_CR26
209_CR63
209_CR20
209_CR64
209_CR21
209_CR65
209_CR22
209_CR66
C Li (209_CR48) 2020; 25
S Jain (209_CR13) 2009; 361
209_CR29
209_CR70
209_CR71
209_CR72
WJ McKibbin (209_CR7) 2006
209_CR73
M Tizzoni (209_CR12) 2012; 10
S Dixon (209_CR8) 2001; 13
SN DeWitte (209_CR4) 2014; 9
209_CR34
209_CR78
209_CR35
209_CR79
209_CR36
209_CR37
209_CR30
209_CR74
UNDP (United Nations Development Programme) (209_CR16) 2017
209_CR31
209_CR32
209_CR76
209_CR33
209_CR77
MR Keogh-Brown (209_CR10) 2008; 88
209_CR38
D Greenhalgh (209_CR19) 1997; 14
209_CR39
C Platt (209_CR3) 2014
209_CR81
209_CR82
209_CR83
209_CR40
209_CR84
KC Santosh (209_CR75) 2020; 44
209_CR80
209_CR45
209_CR47
209_CR41
209_CR85
J Diamond (209_CR5) 2009
209_CR44
N Singh (209_CR86) 2018; 9
V Volpert (209_CR46) 2020; 15
209_CR49
References_xml – reference: Botha AE, Dednam W. A simple iterative map forecast of the COVID-19 pandemic. arXiv preprint arXiv:2003.10532. 2020.
– reference: Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, Yan J, Niu J, Luo B. Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan. medRxiv. 2020.
– reference: Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, Mills MC. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceed nat acad sci 2020;117(18):9696–9698.
– reference: DeWitteSNMortality risk and survival in the aftermath of the medieval black deathPLoS ONE201495e9651310.1371/journal.pone.0096513
– reference: Gaudart J, Ghassani M, Mintsa J, Waku J, Rachdi M, Doumbo OK, Demongeot J (2010) Demographic and spatial factors as causes of an epidemic spread, the copule approach: application to the retro-prediction of the black death epidemy of 1346. In: 2010 IEEE 24th International conference on advanced information networking and applications workshops (pp 751–758). IEEE.
– reference: LiLYangZDangZMengCHuangJMengHShaoYPropagation analysis and prediction of the COVID-19Infect Dis Model20205282292
– reference: DeCaprio D, Gartner J, Burgess T, Kothari S, Sayed S. Building a COVID-19 vulnerability index. arXiv preprint https://arXiv:2003.07347. 2020.
– reference: Rajinikanth V, Dey N, Raj ANJ, Hassanien AE, Santosh KC, Raja N. Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images. 2020 arXiv preprint arXiv:2004.03431.
– reference: Park J, Kim J. Hong Kong sets ‘serious’ response to South Korea’s MERS outbreak.” Reuters, June 8. 2015
– reference: Webb G. Predicting the number of reported and unreported cases for the COVID-19 epidemic in South Korea, Italy, France and Germany. medRxiv. 2020.
– reference: FlahaultAValleronAJHIV and travel, no rationale for restrictionsLancet199033687241197119810.1016/0140-6736(90)92820-8
– reference: Fong SJ, Li G, Dey N, Crespo RG Herrera-Viedma E. Finding an accurate early forecasting model from small dataset: a case of 2019-ncov novel coronavirus outbreak. arXiv preprint arXiv:2003.10776. 2020
– reference: COVID-19 in India: guidance from the IndiaSIM Model- March 24, 2020. https://cddep.org/covid-19/.
– reference: SinghNMohantySRShort term price forecasting using adaptive generalized neuron modelInt J Ambient Comput Intell (IJACI)201893445610.4018/IJACI.2018070104
– reference: Kim D, Hong S, Choi S, Yoon T. Analysis of transmission route of MERS coronavirus using decision tree and Apriori algorithm. In: 2016 18th International conference on advanced communication technology (ICACT). 2016. (pp 559–565). IEEE.
– reference: Sultana N, Sharma N. Statistical models for predicting swine flu incidences in India. In: 2018 First international conference on secure cyber computing and communication (ICSCCC). 2018 (pp. 134–138). IEEE.
– reference: AchonuCLaporteAGardamMAThe financial impact of controlling a respiratory virus outbreak in a teaching hospital: lessons learned from SARSCanad J Public Health2005961525410.1007/BF03404018
– reference: Hu B, Gong J. Support vector machine based classification analysis of SARS spatial distribution. In: 2010 Sixth international conference on natural computation. 2010 (vol. 2, pp. 924–927). IEEE.
– reference: Giannakeas V, Bhatia D, Warkentin MT, Bogoch I, Stall NM. Estimating the maximum daily number of incident COVID-19 cases manageable by a healthcare system. medRxiv. 2020.
– reference: Weber A, Ianelli F, Goncalves S. Trend analysis of the COVID-19 pandemic in China and the rest of the world. arXiv preprint https://arXiv:2003.09032. 2020.
– reference: Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM. Covid-19 outbreak prediction with machine learning. Available at SSRN 3580188. 2020.
– reference: JainSKamimotoLBramleyAMSchmitzAMBenoitSRHospitalized patients with 2009 H1N1 influenza in the United States, April–June 2015New England J Med2009361201935194410.1056/NEJMoa0906695
– reference: JainABhatnagarVConcoction of ambient intelligence and big data for better patient ministration servicesInt J Ambient Comput Intell (IJACI)201784193010.4018/IJACI.2017100102
– reference: Teles P. Predicting the evolution Of SARS-Covid-2 in Portugal using an adapted SIR Model previously used in South Korea for the MERS outbreak. arXiv preprint https://arXiv:2003.10047. 2020
– reference: Rocha Filho TM, dos Santos FSG, Gomes VB, Rocha TA, Croda JH, Ramalho WM, Araujo WN Expected impact of COVID-19 outbreak in a major metropolitan area in Brazil. medRxiv. 2020.
– reference: Jia L, Li K, Jiang Y, Guo X. Prediction and analysis of coronavirus disease 2019. arXiv preprint https://arXiv:2003.05447. 2020.
– reference: Dey N, Fong S, Song W, Cho K Forecasting energy consumption from smart home sensor network by deep learning. In: International conference on smart trends for information technology and computer communications 2017 (pp. 255–265). Springer, Singapore.
– reference: Chen B, Liang H, Yuan X, Hu Y, Xu M, Zhao Y, Zhang B, Tian F, Zhu X. Roles of meteorological conditions in COVID-19 transmission on a worldwide scale. MedRxiv. 2020.
– reference: Hu S, Liu M, Fong S, Song W, Dey N, Wong R. Forecasting China future MNP by deep learning. In: Behavior engineering and applications 2018 (pp. 169–210). Springer, Cham.
– reference: Lu J. A new, simple projection model for COVID-19 pandemic. medRxiv. 2020.
– reference: Victor AO. Mathematical predictions for Covid-19 as a global pandemic. medRxiv. 2020.
– reference: Wagh CS, Mahalle PN, Wagh SJ. Epidemic peak for COVID-19 in India, 2020. Preprints 2020, 2020050176 (https://doi.org/10.20944/preprints202005.0176.v1).
– reference: Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, Colaneri M. Modelling the COVID-19 epidemic andimplementation of population-wide interventions in Italy. Nat Med. 2020;1–6.
– reference: LiCChenLJChenXZhangMPangCPChenHRetrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020Eurosurveillance20202510200019910.2807/1560-7917.ES.2020.25.10.2000199
– reference: Shi P, Dong Y, Yan H, Li X, Zhao C, Liu W, He M, Tang S, Xi S. The impact of temperature and absolute humidity on the coronavirus disease 2019 (COVID-19) outbreak-evidence from China. MedRxiv. 2020.
– reference: TizzoniMBajardiPPolettoCRamascoJJBalcanDReal-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdmBMC Med201210116510.1186/1741-7015-10-165
– reference: Caccavo D. Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model. medRxiv. 2020
– reference: Zareie B, Roshani A, Mansournia MA, Rasouli MA, Moradi G. A model for COVID-19 prediction in Iran based on China parameters. medRxiv. 2020
– reference: Nadim SS, Ghosh I, Chattopadhyay J. Short-term predictions and prevention strategies for COVID-2019: a model based study. arXiv preprint https://arXiv:2003.08150. 2020
– reference: Bhatt C, Dey N, Ashour AS (eds). (2017). Internet of things and big data technologies for next generation healthcare.
– reference: Hu Z, Ge Q, Li S, Jin L, Xiong M. Evaluating the effect of public health intervention on the global-wide spread trajectory of Covid-19. medRxiv. 2020.
– reference: WangpingJKeHYangSWenzheCShengshuWShanshanYMiaoLExtended SIR prediction of the epidemics trend ofCOVID-19 in Italy and compared with HunanFront Med2020716910.3389/fmed.2020.00169
– reference: He X, Lau EH, Wu P, Deng X, Wang J, Hao X, Lau YC, Wong JY, Guan Y, Tan X, Mo X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–675.
– reference: Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E. Composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Appl Soft Comput. 2020;106282.
– reference: Zhu X, Zhang A, Xu S, Jia P, Tan X, Tian J, Wei T, Quan Z, Yu J. Spatially explicit modeling of 2019-nCoV epidemic trend based on mobile phone data in mainland China. medRxiv. 2020.
– reference: Bhattacharjee S. Statistical investigation of relationship between spread of coronavirus disease (COVID-19) and environmental factors based on study of four mostly affected places of China and five mostly affected places of Italy. arXiv preprint arXiv:2003.11277. 2020
– reference: Dey N, Rajinikant V, Fong SJ, Kaiser MS, Mahmud M. Social-group-optimization assisted kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. 2020.
– reference: Coelho FC, Lana RM, Cruz OG, Villela D, Bastos LS, Pastore y Piontti A, Davis JT, Vespignani A, Codeco C, Gomes MF. Assessing the potential impacts of COVID-19 in Brasil: mobility, morbidity and impact to the health system. medRxiv. 2020.
– reference: World Health Organization online available on https://www.who.int/emergencies/diseases/novel-coronavirus-2019/.
– reference: Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A, Shallcross L, Noursadeghi M, Pillay D, Pagel C, Wong WK, Langenberg C. Estimating excess 1-year mortality from COVID-19 according to underlying conditions and age in England: a rapid analysis using NHS health records in 3.8 million adults. medRxiv. 2020.
– reference: Batista M. Estimation of the final size of the second phase of the coronavirus COVID-19 epidemic by the logistic model.
– reference: SantoshKCAI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal dataJ Med Syst20204451510.1007/s10916-020-01562-1
– reference: FriedenNMThe Russian cholera epidemic, 1892–93, and medical professionalizationJ Soc History197710453810.1353/jsh/10.4.538
– reference: Giuliani D, Dickson MM, Espa G, Santi F. Modelling and predicting the spread of coronavirus (COVID-19) infection in NUTS-3 Italian regions. arXiv preprint arXiv:2003.06664. 2020.
– reference: Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak. medRxiv. 2020.
– reference: GreenhalghDHAYGMathematical modelling of the spread of HIV/AIDS amongst injecting drug usersMath Med Biol J IMA199714111380867.9202210.1093/imammb/14.1.11
– reference: Siwiak MM, Szczesny P, Siwiak MP. From a single host to global spread. The global mobility based modelling of the COVID-19 pandemic implies higher infection and lower detection rates than current estimates. medRxiv. 2020
– reference: Liu P, Beeler P, Chakrabarty RK. COVID-19 progression timeline and effectiveness of response-to-spread interventions across the United States. medRxiv. 2020
– reference: La S, Bogoch II, Ruktanonchai N, Watts AG, Li Y, Yu J, Lv X, Yang W, Hongjie Y, Khan K, Li Z. Assessing spread risk of Wuhan novel coronavirus within and beyond China, January–April 2020: a travel network-based modelling study. 2020.
– reference: Pandemic risk. Background paper for world development report 2014: Risk and opportunity; managing risk for development, World Bank, Washington.
– reference: Hossain M, Junus A, Zhu X, Jia P, Wen TH, Pfeiffer D, Yuan HY. The effects of border control and quarantine measures on global spread of COVID-19. In: Alvin and Zhu, Xiaolin and Jia, Pengfei and Wen, Tzai-Hung and Pfeiffer, Dirk and Yuan, Hsiang-Yu, The effects of border control and quarantine measures on global spread of COVID-19 .2020 (March 2, 2020).
– reference: Traini MC, Caponi C, De Socio GV. Modelling the epidemic 2019-nCoV event in Italy: a preliminary note. medRxiv. 2020.
– reference: Russo L, Anastassopoulou C, Tsakris A, Bifulco GN, Campana EF, Toraldo G, Siettos C. Tracing DAY-ZERO and forecasting the fade out of the COVID-19 outbreak in Lombardy, Italy: a compartmental modelling and numerical optimization approach. medRxiv. 2020
– reference: Kumar J, Hembram KPSS. Epidemiological study of novel coronavirus (COVID-19). 2020 arXiv preprint https://arXiv:2003.11376.
– reference: Sameni R. Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus. arXiv preprint https://arXiv:2003.11371. 2020.
– reference: DiamondJGuns, germs, and steel: the fates of human societies2009New YorkNorton
– reference: Mahalle PN, Sable NP, Mahalle NP, Shinde GR Data analytics: COVID-19 prediction using multimodal data. Preprints 2020, 2020040257 (https://doi.org/10.20944/preprints202004.0257.v1).
– reference: Keogh-BrownMRSmithRDThe economic impact of SARS: how does the reality match the predictions?Health Policy200888111012010.1016/j.healthpol.2008.03.003
– reference: Bhapkar HR, Mahalle P, Dhotre PS. Virus graph and COVID-19 pandemic: a graph theory approach. Preprints 2020, 2020040507 (https://doi.org/10.20944/preprints202004.0507.v1).
– reference: Bayham J, Fenichel EP. The impact of school closure for COVID-19 on the US healthcare workforce and the net mortality effects. medRxiv. 2020.
– reference: VolpertVBanerjeeMPetrovskiiSOn a quarantine model of coronavirus infection and data analysisMath Modell Nat Phenomena20201524407941610.1051/mmnp/2020006
– reference: Toda AA. Susceptible-infected-recovered (sir) dynamics of covid-19 and economic impact. arXiv preprint arXiv:2003.11221. 2020
– reference: Bullock J, Pham KH, Lam CS, Luengo-Oroz M. Mapping the landscape of artificial intelligence applications against COVID-19. arXiv preprint arXiv:2003.11336. 2020.
– reference: GordisLEpidemiology20144Philadelphia, PAElsevier Saunders
– reference: McKibbinWJSidorenkoAAGlobal macroeconomic consequences of pandemic influenza. analysis2006Sydney, AustraliaLowy Institute for International Policy
– reference: Long C, Ying Q, Fu X, Li Z, Gao Y. Forecasting the cumulative number of COVID-19 deaths in China: a Boltzmann function-based modeling study. medRxiv. 2020.
– reference: UNDP (United Nations Development Programme)A socio-economic impact assessment of the Zika virus in Latin America and the Caribbean: with a focus on Brazil, Colombia, and Suriname2017UNDP, New YorkSynthesis report
– reference: Santosh K, Das D, Pal U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. PREPRINT (Version 1) available at Research Square 3, 2020.
– reference: PlattCKing death: the black death and its aftermath in late-medieval England2014Oxon, U.K.Routledge10.4324/9781315072371
– reference: LanKWangDTFongSLiuLSWongKKDeyNA survey of data mining and deep learning in bioinformaticsJ Med Syst201842813910.1007/s10916-018-1003-9
– reference: Dicker RC, Coronado F, Koo D, Parrish RG. Principles of epidemiology in public health practice; an introduction to applied epidemiology and biostatistics. 2006
– reference: Wang H, Zhang Y, Lu S, Wang S. Tracking and forecasting milepost moments of the epidemic in the early-outbreak: framework and applications to the COVID-19. medRxiv. 2020.
– reference: Hassanien AE, Dey N, Borra S (eds) (2018). Medical big data and internet of medical things: advances, challenges and applications. CRC Press, Boca Raton.
– reference: Siegenfeld AF, Bar-Yam Y. Eliminating COVID-19: a community-based analysis. arXiv preprint https://arXiv:2003.10086. 2020.
– reference: DixonSMcDonaldSRobertsJAIDS and economic growth in Africa: a panel data analysisJ Int Develop200113441142610.1002/jid.795
– reference: Amiroch S, Pradana MS, Irawan MI, Mukhlash I. Maximum likelihood method on the construction of phylogenetic tree for identification the spreading of SARS epidemic. In: 2018 International symposium on advanced intelligent informatics (SAIN) 2018. (pp 137–141). IEEE.
– volume-title: King death: the black death and its aftermath in late-medieval England
  year: 2014
  ident: 209_CR3
  doi: 10.4324/9781315072371
– volume: 15
  start-page: 24
  year: 2020
  ident: 209_CR46
  publication-title: Math Modell Nat Phenomena
  doi: 10.1051/mmnp/2020006
– ident: 209_CR1
– volume: 8
  start-page: 19
  issue: 4
  year: 2017
  ident: 209_CR28
  publication-title: Int J Ambient Comput Intell (IJACI)
  doi: 10.4018/IJACI.2017100102
– volume: 336
  start-page: 1197
  issue: 8724
  year: 1990
  ident: 209_CR9
  publication-title: Lancet
  doi: 10.1016/0140-6736(90)92820-8
– volume: 42
  start-page: 139
  issue: 8
  year: 2018
  ident: 209_CR27
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1003-9
– ident: 209_CR49
  doi: 10.1101/2020.03.09.20033415
– ident: 209_CR30
– ident: 209_CR80
  doi: 10.1613/jair.1.12162
– volume: 9
  start-page: e96513
  issue: 5
  year: 2014
  ident: 209_CR4
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0096513
– ident: 209_CR34
  doi: 10.1101/2020.03.18.20038612
– volume: 25
  start-page: 2000199
  issue: 10
  year: 2020
  ident: 209_CR48
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.10.2000199
– volume: 14
  start-page: 11
  issue: 1
  year: 1997
  ident: 209_CR19
  publication-title: Math Med Biol J IMA
  doi: 10.1093/imammb/14.1.11
– ident: 209_CR21
  doi: 10.1109/SAIN.2018.8673334
– volume-title: Global macroeconomic consequences of pandemic influenza. analysis
  year: 2006
  ident: 209_CR7
– volume: 44
  start-page: 1
  issue: 5
  year: 2020
  ident: 209_CR75
  publication-title: J Med Syst
  doi: 10.1007/s10916-020-01562-1
– volume: 361
  start-page: 1935
  issue: 20
  year: 2009
  ident: 209_CR13
  publication-title: New England J Med
  doi: 10.1056/NEJMoa0906695
– ident: 209_CR24
– ident: 209_CR54
  doi: 10.1101/2020.03.21.20040139
– ident: 209_CR14
– ident: 209_CR68
  doi: 10.1016/j.asoc.2020.106282
– ident: 209_CR79
  doi: 10.20944/preprints202004.0507.v1
– ident: 209_CR33
  doi: 10.1101/2020.03.19.20038950
– ident: 209_CR57
  doi: 10.1101/2020.03.19.20037192
– volume-title: Guns, germs, and steel: the fates of human societies
  year: 2009
  ident: 209_CR5
– ident: 209_CR23
  doi: 10.1109/ICSCCC.2018.8703300
– ident: 209_CR31
  doi: 10.1101/2020.03.19.20039388
– volume-title: Epidemiology
  year: 2014
  ident: 209_CR2
– ident: 209_CR37
– ident: 209_CR82
  doi: 10.31234/osf.io/5dyfc
– ident: 209_CR38
  doi: 10.1101/2020.03.13.20035261
– ident: 209_CR58
– ident: 209_CR53
  doi: 10.2139/ssrn.3555879
– volume: 10
  start-page: 165
  issue: 1
  year: 2012
  ident: 209_CR12
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-165
– volume-title: A socio-economic impact assessment of the Zika virus in Latin America and the Caribbean: with a focus on Brazil, Colombia, and Suriname
  year: 2017
  ident: 209_CR16
– ident: 209_CR44
– volume: 9
  start-page: 44
  issue: 3
  year: 2018
  ident: 209_CR86
  publication-title: Int J Ambient Comput Intell (IJACI)
  doi: 10.4018/IJACI.2018070104
– volume: 5
  start-page: 282
  year: 2020
  ident: 209_CR43
  publication-title: Infect Dis Model
– ident: 209_CR56
  doi: 10.2139/ssrn.3559609
– ident: 209_CR20
  doi: 10.1109/ICACT.2016.7423472
– ident: 209_CR65
  doi: 10.1101/2020.03.16.20037168
– ident: 209_CR50
  doi: 10.21203/rs.3.rs-20501/v3
– ident: 209_CR69
– ident: 209_CR55
– ident: 209_CR62
  doi: 10.1101/2020.03.25.20043711
– volume: 13
  start-page: 411
  issue: 4
  year: 2001
  ident: 209_CR8
  publication-title: J Int Develop
  doi: 10.1002/jid.795
– ident: 209_CR73
  doi: 10.1101/2020.03.16.20036723
– ident: 209_CR74
– ident: 209_CR63
  doi: 10.1101/2020.03.22.20040287
– ident: 209_CR59
– ident: 209_CR26
  doi: 10.1201/9781351030380
– ident: 209_CR78
– ident: 209_CR45
  doi: 10.1101/2020.02.09.20021360
– volume: 96
  start-page: 52
  issue: 1
  year: 2005
  ident: 209_CR11
  publication-title: Canad J Public Health
  doi: 10.1007/BF03404018
– ident: 209_CR18
  doi: 10.1109/WAINA.2010.79
– ident: 209_CR67
  doi: 10.1101/2020.03.22.20038919
– ident: 209_CR71
– ident: 209_CR61
  doi: 10.1038/s41591-020-0869-5
– volume: 7
  start-page: 169
  year: 2020
  ident: 209_CR42
  publication-title: Front Med
  doi: 10.3389/fmed.2020.00169
– ident: 209_CR35
  doi: 10.1101/2020.03.17.20037689
– ident: 209_CR32
  doi: 10.1101/2020.03.21.20040444
– ident: 209_CR64
– ident: 209_CR51
  doi: 10.1101/2020.03.21.20039867
– ident: 209_CR22
  doi: 10.1109/ICNC.2010.5583921
– ident: 209_CR83
– ident: 209_CR72
  doi: 10.18203/2394-6040.ijcmph20210828
– ident: 209_CR17
  doi: 10.9781/ijimai.2020.02.002
– ident: 209_CR29
– ident: 209_CR39
  doi: 10.1101/2020.03.14.20035873
– ident: 209_CR47
  doi: 10.1101/2020.02.11.20022186
– ident: 209_CR41
  doi: 10.1038/s41591-020-0883-7
– ident: 209_CR25
  doi: 10.1007/978-3-319-49736-5
– ident: 209_CR52
– ident: 209_CR40
  doi: 10.1101/2020.03.14.20034884
– ident: 209_CR77
  doi: 10.20944/preprints202005.0176.v1
– ident: 209_CR84
  doi: 10.1007/978-981-13-1423-0_28
– volume: 10
  start-page: 538
  issue: 4
  year: 1977
  ident: 209_CR6
  publication-title: J Soc History
  doi: 10.1353/jsh/10.4.538
– ident: 209_CR70
  doi: 10.1101/2020.03.11.20033639
– ident: 209_CR60
  doi: 10.1073/pnas.2004911117
– volume: 88
  start-page: 110
  issue: 1
  year: 2008
  ident: 209_CR10
  publication-title: Health Policy
  doi: 10.1016/j.healthpol.2008.03.003
– ident: 209_CR66
  doi: 10.1101/2020.03.15.20036426
– ident: 209_CR85
  doi: 10.1007/978-3-319-76430-6_8
– ident: 209_CR15
– ident: 209_CR76
  doi: 10.20944/preprints202005.0052.v1
– ident: 209_CR81
  doi: 10.20944/preprints202004.0257.v1
– ident: 209_CR36
  doi: 10.1101/2020.03.17.20037770
SSID ssj0002504465
Score 2.5588017
Snippet COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 197
SubjectTerms Acquired immune deficiency syndrome
AIDS
Big Data
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Coronaviruses
COVID-19
Data science
Data Structures and Information Theory
Decision making
Epidemics
Forecasting
Information Systems and Communication Service
Machine learning
Mathematical models
Mortality
Pandemics
Parameters
Pattern Recognition and Graphics
Software Engineering/Programming and Operating Systems
Survey
Survey Article
Viral diseases
Vision
Title Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art
URI https://link.springer.com/article/10.1007/s42979-020-00209-9
https://www.ncbi.nlm.nih.gov/pubmed/33063048
https://www.proquest.com/docview/2933263935
https://www.proquest.com/docview/2451851180
https://pubmed.ncbi.nlm.nih.gov/PMC7289234
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9YUXxDQ-MrbKk3gAgUU-nMTmBbXdykCiIGDQt8iObTFpSkazTuK_5y5NM3XT9pYothzfnX0_f9zvAF7mTsfS6pijgh0XyuOQctZyjf4IaxhjEgpO_jLLTk7F53k67zbcmu5a5XpObCdqW5e0R_4O3RIiDQok_XDxl1PWKDpd7VJobMEAp2CJi6_B-Hj27Xu_y0IEXaLNJ4mOKOZKpfMucqaNn8PJOFecVlAEmxRXm97pFuS8fXPyxvFp65Wmj-FRByfZaKX_HXjgql34Tfk2S93QjWZGyc7OG4bYlE2IrUBfnS2WDTtaHcywV5Ovvz4d8Ui9fs9G7MdyceX-sdozxIWsBaK89hxfODbxBE6nxz8nJ7xLoMBLos3j2iYoABdnLoozn3mXyNwJ660NU5ekxkS5LrWSqfSlKEVmQqus9PjgpZHaJE9hu6or9xwYDnsTukh6g5jDSC9VnmopdewVetkwCyBaC64oO3ZxSnJxXvS8yK2wC5Rz0Qq7UAG86etcrLg17i29v9ZH0Y2zpri2igAO-884QujYQ1euXmIZkUaEK2UYwLOV-vrmkoQ4x4QMIN9QbF-A2Lc3v1Rnf1oW7hyXqnEiAni7NoHr37q7F3v39-IFPIxbc6T7wPuwfblYugNEPZdmCFty-nEIg9F0PJ4NO0P_D-N2AAk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOcAFgdgCBYwEEggssjiJjYRQNcMwQxcOtHRuwY5tUalKyqRT1D_Fb-Q9Z6mGit56SxRne4vf5-V9j5AXuVWxMCpmoGDLuHTgUtYYpiAewR1a6wSTk3d2s-k-_zJP52vkT58Lg9sq-z7Rd9SmLnGO_B2EJUAamEj68fgXw6pRuLral9BozWLLnv2GIVvzYTYG_b6M48mnvdGUdVUFWIlcckyZBMK-jTMbxZnLnE1EbrlxxoSpTVKto1yVSopUuJKXPNOhkUY4OHBCC6UTeO41cp0niUSPEpPPw5wO0oFxX70Swl7MpEznXZ6Oz9aDrj-XDMdrCNIkk6ux8ALAvbhP85_FWh8DJ7fJrQ680s3W2u6QNVvdJQdY3bNUDe6fplha7aihgITpCLkR1OnhYtnQcbsMRF-Nvn6fjVkkX7-nm_TbcnFqz2jtKKBQ6mEvqx2DEwavuEf2r0Sw98l6VVf2IaHQyejQRsJpQDhaOCHzVAmhYichpodZQKJecEXZcZljSY2jYmBh9sIuQM6FF3YhA_JmuOe4ZfK4tPVGr4-i8-qmOLfBgDwfLoM_4iKLqmy9hDY8jRDFijAgD1r1Da9LEmQ44yIg-YpihwbI9b16pTr86Tm_cxgYxwkPyNveBM4_6_9_8ejyv3hGbkz3draL7dnu1mNyM_amiTuRN8j6yWJpnwDeOtFPvZFT8uOqveovjcY63w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Models+for+Coronavirus+Disease+%28COVID-19%29%3A+A+Survey+of+the+State-of-the-Art&rft.jtitle=SN+computer+science&rft.au=Shinde%2C+Gitanjali+R&rft.au=Kalamkar%2C+Asmita+B&rft.au=Mahalle%2C+Parikshit+N&rft.au=Dey%2C+Nilanjan&rft.date=2020-07-01&rft.eissn=2661-8907&rft.volume=1&rft.issue=4&rft.spage=197&rft_id=info:doi/10.1007%2Fs42979-020-00209-9&rft_id=info%3Apmid%2F33063048&rft.externalDocID=33063048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon