Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art
COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taki...
Saved in:
Published in | SN computer science Vol. 1; no. 4; p. 197 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.07.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic. |
---|---|
AbstractList | COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic. COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic. |
ArticleNumber | 197 |
Author | Chaki, Jyotismita Shinde, Gitanjali R. Kalamkar, Asmita B. Dey, Nilanjan Hassanien, Aboul Ella Mahalle, Parikshit N. |
Author_xml | – sequence: 1 givenname: Gitanjali R. surname: Shinde fullname: Shinde, Gitanjali R. email: gr83gita@gmail.com organization: Department of Computer Engineering, Smt. Kashibai Navale College of Engineering – sequence: 2 givenname: Asmita B. surname: Kalamkar fullname: Kalamkar, Asmita B. organization: Department of Computer Engineering, Smt. Kashibai Navale College of Engineering – sequence: 3 givenname: Parikshit N. surname: Mahalle fullname: Mahalle, Parikshit N. organization: Department of Computer Engineering, Smt. Kashibai Navale College of Engineering, Department of Communication, Media and Information Technologies, Aalborg University – sequence: 4 givenname: Nilanjan surname: Dey fullname: Dey, Nilanjan organization: Department of Information Technology, Techno International New Town – sequence: 5 givenname: Jyotismita surname: Chaki fullname: Chaki, Jyotismita organization: School of Information Technology and Engineering, Vellore Institute of Technology – sequence: 6 givenname: Aboul Ella surname: Hassanien fullname: Hassanien, Aboul Ella organization: Faculty of Computers and Information, Information Technology Department, Cairo University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33063048$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctPFTEYxRuDEUT-ARemiRtcVPuYdloXJjcXURIMC3ztms7M10vJ3BbbmZvw31u44IMFmz7S3zk5_c5ztBNTBIReMvqWUdq-Kw03rSGUU0LrYoh5gva4UoxoQ9ud2zMnxsifu-iglEtaKUmbRslnaFcIqgRt9B76cZwy9K5MIa7wlzTAWLBPGS9TTtFtQp4LPgoFXAF8uDz7fnJEmHnzHi_w-Zw3cI2Tx9MF4PPJTUCSJ_VCFnl6gZ56NxY4uNv30bfjj1-Xn8np2aeT5eKU9EIbQ9wgairgChhXXnkQuoVm8MNAJQjZdax1vTNaat83faM6OphB-3rwutOuE_vow9b3au7WMPQQp-xGe5XD2uVrm1yw_7_EcGFXaWNbrg0XTTU4vDPI6dcMZbLrUHoYRxchzcXyRjItGdO0oq8foJdpzrF-z3IjBFfCCFmpV_8m-hPlfuYV0Fugz6mUDN72oU4vpJuAYbSM2puG7bZhW8u1tw1bU6X8gfTe_VGR2IpKheMK8t_Yj6h-A5IWtwc |
CitedBy_id | crossref_primary_10_1080_0952813X_2021_2021300 crossref_primary_10_1007_s42979_023_01835_9 crossref_primary_10_1016_j_rspp_2024_100013 crossref_primary_10_3390_electronics10141626 crossref_primary_10_1016_j_seps_2022_101249 crossref_primary_10_1145_3542818 crossref_primary_10_1016_j_idm_2021_12_003 crossref_primary_10_1016_j_jbi_2021_103941 crossref_primary_10_1080_23311916_2021_1958666 crossref_primary_10_1371_journal_pone_0255615 crossref_primary_10_1007_s11036_022_01966_y crossref_primary_10_1186_s12879_022_07794_5 crossref_primary_10_3390_healthcare11050752 crossref_primary_10_1016_j_compeleceng_2022_107971 crossref_primary_10_1016_j_eswa_2022_116645 crossref_primary_10_69721_TPS_J_2021_13_1_09 crossref_primary_10_1007_s11063_021_10495_w crossref_primary_10_1016_j_chaos_2020_110227 crossref_primary_10_1007_s40808_021_01332_z crossref_primary_10_1007_s42979_021_00699_1 crossref_primary_10_1007_s10109_021_00366_2 crossref_primary_10_2139_ssrn_3695258 crossref_primary_10_1007_s13369_021_05904_0 crossref_primary_10_1371_journal_pgph_0000186 crossref_primary_10_1016_j_susoc_2022_05_002 crossref_primary_10_1088_1757_899X_1022_1_012022 crossref_primary_10_1016_j_asoc_2024_111359 crossref_primary_10_1080_0952813X_2022_2058618 crossref_primary_10_1093_imammb_dqab017 crossref_primary_10_1007_s42979_021_00496_w crossref_primary_10_1002_pa_2601 crossref_primary_10_1007_s42979_021_00810_6 crossref_primary_10_1016_j_asoc_2020_106692 crossref_primary_10_1016_j_chaos_2020_110338 crossref_primary_10_1016_j_matpr_2020_10_400 crossref_primary_10_56294_dm2024_404 crossref_primary_10_32604_cmc_2021_016816 crossref_primary_10_32604_cmc_2021_014918 crossref_primary_10_1007_s11042_023_17330_5 crossref_primary_10_1145_3673226 crossref_primary_10_1093_comjnl_bxac154 crossref_primary_10_4081_gh_2022_1070 crossref_primary_10_12688_f1000research_110958_1 crossref_primary_10_3390_healthcare10101874 crossref_primary_10_1016_j_epidem_2023_100715 crossref_primary_10_3390_bdcc7010011 crossref_primary_10_1007_s42979_024_03298_y crossref_primary_10_1186_s12874_022_01579_9 crossref_primary_10_3390_math10203725 crossref_primary_10_1287_inte_2023_0009 crossref_primary_10_1016_j_prevetmed_2023_105964 crossref_primary_10_3390_analytics1020014 crossref_primary_10_1109_TIFS_2025_3546850 crossref_primary_10_1038_s41598_022_15478_y crossref_primary_10_1007_s12559_021_09859_0 crossref_primary_10_1016_j_neucom_2022_09_005 crossref_primary_10_1007_s40031_021_00585_7 crossref_primary_10_1155_2022_3180742 crossref_primary_10_1016_j_imu_2022_100929 crossref_primary_10_1007_s12061_024_09588_5 crossref_primary_10_1016_j_asoc_2020_106932 crossref_primary_10_37394_232025_2024_6_1 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_1016_j_eswa_2022_119034 crossref_primary_10_1080_07391102_2021_1873190 crossref_primary_10_3390_forecast4030040 crossref_primary_10_1016_j_eswa_2021_115104 crossref_primary_10_1007_s11042_023_14543_6 crossref_primary_10_1007_s00500_022_07385_1 crossref_primary_10_1108_WJE_09_2020_0450 crossref_primary_10_5114_aoms_134716 crossref_primary_10_1134_S2070048223030171 crossref_primary_10_1007_s12559_021_09840_x crossref_primary_10_1016_j_procs_2023_10_285 crossref_primary_10_2196_46087 crossref_primary_10_6339_24_JDS1124 crossref_primary_10_1016_j_chaos_2020_110547 crossref_primary_10_20948_mm_2022_11_07 crossref_primary_10_1007_s12539_021_00431_w crossref_primary_10_1016_j_asoc_2021_107878 crossref_primary_10_1016_j_jbi_2021_103751 crossref_primary_10_36233_0507_4088_265 crossref_primary_10_1007_s42979_025_03658_2 crossref_primary_10_1098_rsos_211055 crossref_primary_10_3390_diagnostics13081484 crossref_primary_10_5269_bspm_63521 crossref_primary_10_1016_j_chaos_2021_111246 crossref_primary_10_3390_s23125543 crossref_primary_10_1016_j_ijforecast_2021_02_010 crossref_primary_10_1371_journal_pone_0287368 crossref_primary_10_1016_j_multra_2022_100030 crossref_primary_10_3390_biology9050094 crossref_primary_10_1007_s40031_021_00623_4 crossref_primary_10_1038_s41598_021_03322_8 crossref_primary_10_1007_s00146_021_01293_y crossref_primary_10_1007_s40747_020_00199_4 crossref_primary_10_1016_j_isatra_2021_04_006 crossref_primary_10_1128_msystems_00018_23 crossref_primary_10_1007_s00779_020_01494_0 crossref_primary_10_1016_j_compbiomed_2020_103949 crossref_primary_10_35713_aic_v3_i1_1 crossref_primary_10_31202_ecjse_1012718 crossref_primary_10_3390_s21072435 crossref_primary_10_3389_fpubh_2022_912099 crossref_primary_10_3390_electronics11234015 crossref_primary_10_1109_TEVC_2021_3063217 crossref_primary_10_1111_exsy_13235 crossref_primary_10_1007_s42979_021_00598_5 crossref_primary_10_1109_ACCESS_2022_3159025 crossref_primary_10_1111_rsp3_12555 crossref_primary_10_1142_S0218488522400086 crossref_primary_10_1016_j_bspc_2021_103441 crossref_primary_10_1145_3465398 crossref_primary_10_1016_j_bspc_2023_105542 crossref_primary_10_1016_j_matpr_2021_07_266 crossref_primary_10_1016_j_procs_2022_01_052 crossref_primary_10_1080_08839514_2022_2055989 crossref_primary_10_4018_IJISSCM_316182 crossref_primary_10_15622_20_5_2 crossref_primary_10_1007_s13204_021_01868_7 crossref_primary_10_3390_app12031113 crossref_primary_10_1007_s00521_024_09697_9 crossref_primary_10_1007_s11135_021_01136_4 crossref_primary_10_1007_s10916_020_01645_z crossref_primary_10_32604_csse_2022_019288 crossref_primary_10_1177_20552076221085057 crossref_primary_10_1080_02331888_2024_2334313 crossref_primary_10_1007_s41666_021_00105_8 crossref_primary_10_1016_j_asoc_2022_108691 crossref_primary_10_1093_bib_bbab339 crossref_primary_10_3390_diagnostics13071310 crossref_primary_10_1016_j_rineng_2025_104125 crossref_primary_10_1007_s13721_022_00367_1 crossref_primary_10_1109_TSMC_2022_3220080 crossref_primary_10_1016_j_chaos_2021_111227 crossref_primary_10_1038_s41598_022_11693_9 crossref_primary_10_1016_j_idm_2022_05_001 crossref_primary_10_1109_TAI_2022_3142241 |
Cites_doi | 10.4324/9781315072371 10.1051/mmnp/2020006 10.4018/IJACI.2017100102 10.1016/0140-6736(90)92820-8 10.1007/s10916-018-1003-9 10.1101/2020.03.09.20033415 10.1613/jair.1.12162 10.1371/journal.pone.0096513 10.1101/2020.03.18.20038612 10.2807/1560-7917.ES.2020.25.10.2000199 10.1093/imammb/14.1.11 10.1109/SAIN.2018.8673334 10.1007/s10916-020-01562-1 10.1056/NEJMoa0906695 10.1101/2020.03.21.20040139 10.1016/j.asoc.2020.106282 10.20944/preprints202004.0507.v1 10.1101/2020.03.19.20038950 10.1101/2020.03.19.20037192 10.1109/ICSCCC.2018.8703300 10.1101/2020.03.19.20039388 10.31234/osf.io/5dyfc 10.1101/2020.03.13.20035261 10.2139/ssrn.3555879 10.1186/1741-7015-10-165 10.4018/IJACI.2018070104 10.2139/ssrn.3559609 10.1109/ICACT.2016.7423472 10.1101/2020.03.16.20037168 10.21203/rs.3.rs-20501/v3 10.1101/2020.03.25.20043711 10.1002/jid.795 10.1101/2020.03.16.20036723 10.1101/2020.03.22.20040287 10.1201/9781351030380 10.1101/2020.02.09.20021360 10.1007/BF03404018 10.1109/WAINA.2010.79 10.1101/2020.03.22.20038919 10.1038/s41591-020-0869-5 10.3389/fmed.2020.00169 10.1101/2020.03.17.20037689 10.1101/2020.03.21.20040444 10.1101/2020.03.21.20039867 10.1109/ICNC.2010.5583921 10.18203/2394-6040.ijcmph20210828 10.9781/ijimai.2020.02.002 10.1101/2020.03.14.20035873 10.1101/2020.02.11.20022186 10.1038/s41591-020-0883-7 10.1007/978-3-319-49736-5 10.1101/2020.03.14.20034884 10.20944/preprints202005.0176.v1 10.1007/978-981-13-1423-0_28 10.1353/jsh/10.4.538 10.1101/2020.03.11.20033639 10.1073/pnas.2004911117 10.1016/j.healthpol.2008.03.003 10.1101/2020.03.15.20036426 10.1007/978-3-319-76430-6_8 10.20944/preprints202005.0052.v1 10.20944/preprints202004.0257.v1 10.1101/2020.03.17.20037770 |
ContentType | Journal Article |
Copyright | Springer Nature Singapore Pte Ltd 2020 Springer Nature Singapore Pte Ltd 2020. |
Copyright_xml | – notice: Springer Nature Singapore Pte Ltd 2020 – notice: Springer Nature Singapore Pte Ltd 2020. |
DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1007/s42979-020-00209-9 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2661-8907 |
ExternalDocumentID | PMC7289234 33063048 10_1007_s42979_020_00209_9 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ BSONS CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c3899-ad3250e26e126f6fe387e4dfdd05e35bb17aca9858fc4c46b0d9d8f46bf8b8ab3 |
IEDL.DBID | BENPR |
ISSN | 2662-995X 2661-8907 |
IngestDate | Thu Aug 21 18:37:13 EDT 2025 Thu Jul 10 21:54:01 EDT 2025 Sun Jul 13 04:03:24 EDT 2025 Wed Feb 19 02:04:21 EST 2025 Tue Jul 01 03:19:13 EDT 2025 Thu Apr 24 23:03:10 EDT 2025 Fri Feb 21 02:34:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 Epidemic Prediction Machine learning method Pandemic Big data Forecasting models |
Language | English |
License | Springer Nature Singapore Pte Ltd 2020. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3899-ad3250e26e126f6fe387e4dfdd05e35bb17aca9858fc4c46b0d9d8f46bf8b8ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7289234 |
PMID | 33063048 |
PQID | 2933263935 |
PQPubID | 6623307 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289234 proquest_miscellaneous_2451851180 proquest_journals_2933263935 pubmed_primary_33063048 crossref_citationtrail_10_1007_s42979_020_00209_9 crossref_primary_10_1007_s42979_020_00209_9 springer_journals_10_1007_s42979_020_00209_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200700 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Kolkata |
PublicationTitle | SN computer science |
PublicationTitleAbbrev | SN COMPUT. SCI |
PublicationTitleAlternate | SN Comput Sci |
PublicationYear | 2020 |
Publisher | Springer Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
References | Bayham J, Fenichel EP. The impact of school closure for COVID-19 on the US healthcare workforce and the net mortality effects. medRxiv. 2020. Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM. Covid-19 outbreak prediction with machine learning. Available at SSRN 3580188. 2020. Bullock J, Pham KH, Lam CS, Luengo-Oroz M. Mapping the landscape of artificial intelligence applications against COVID-19. arXiv preprint arXiv:2003.11336. 2020. Zhu X, Zhang A, Xu S, Jia P, Tan X, Tian J, Wei T, Quan Z, Yu J. Spatially explicit modeling of 2019-nCoV epidemic trend based on mobile phone data in mainland China. medRxiv. 2020. Rocha Filho TM, dos Santos FSG, Gomes VB, Rocha TA, Croda JH, Ramalho WM, Araujo WN Expected impact of COVID-19 outbreak in a major metropolitan area in Brazil. medRxiv. 2020. FlahaultAValleronAJHIV and travel, no rationale for restrictionsLancet199033687241197119810.1016/0140-6736(90)92820-8 Park J, Kim J. Hong Kong sets ‘serious’ response to South Korea’s MERS outbreak.” Reuters, June 8. 2015 AchonuCLaporteAGardamMAThe financial impact of controlling a respiratory virus outbreak in a teaching hospital: lessons learned from SARSCanad J Public Health2005961525410.1007/BF03404018 Amiroch S, Pradana MS, Irawan MI, Mukhlash I. Maximum likelihood method on the construction of phylogenetic tree for identification the spreading of SARS epidemic. In: 2018 International symposium on advanced intelligent informatics (SAIN) 2018. (pp 137–141). IEEE. Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak. medRxiv. 2020. Sultana N, Sharma N. Statistical models for predicting swine flu incidences in India. In: 2018 First international conference on secure cyber computing and communication (ICSCCC). 2018 (pp. 134–138). IEEE. Kumar J, Hembram KPSS. Epidemiological study of novel coronavirus (COVID-19). 2020 arXiv preprint https://arXiv:2003.11376. Coelho FC, Lana RM, Cruz OG, Villela D, Bastos LS, Pastore y Piontti A, Davis JT, Vespignani A, Codeco C, Gomes MF. Assessing the potential impacts of COVID-19 in Brasil: mobility, morbidity and impact to the health system. medRxiv. 2020. Santosh K, Das D, Pal U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. PREPRINT (Version 1) available at Research Square 3, 2020. Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A, Shallcross L, Noursadeghi M, Pillay D, Pagel C, Wong WK, Langenberg C. Estimating excess 1-year mortality from COVID-19 according to underlying conditions and age in England: a rapid analysis using NHS health records in 3.8 million adults. medRxiv. 2020. Bhatt C, Dey N, Ashour AS (eds). (2017). Internet of things and big data technologies for next generation healthcare. Liu P, Beeler P, Chakrabarty RK. COVID-19 progression timeline and effectiveness of response-to-spread interventions across the United States. medRxiv. 2020 Botha AE, Dednam W. A simple iterative map forecast of the COVID-19 pandemic. arXiv preprint arXiv:2003.10532. 2020. COVID-19 in India: guidance from the IndiaSIM Model- March 24, 2020. https://cddep.org/covid-19/. VolpertVBanerjeeMPetrovskiiSOn a quarantine model of coronavirus infection and data analysisMath Modell Nat Phenomena20201524407941610.1051/mmnp/2020006 Long C, Ying Q, Fu X, Li Z, Gao Y. Forecasting the cumulative number of COVID-19 deaths in China: a Boltzmann function-based modeling study. medRxiv. 2020. LiCChenLJChenXZhangMPangCPChenHRetrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020Eurosurveillance20202510200019910.2807/1560-7917.ES.2020.25.10.2000199 Batista M. Estimation of the final size of the second phase of the coronavirus COVID-19 epidemic by the logistic model. He X, Lau EH, Wu P, Deng X, Wang J, Hao X, Lau YC, Wong JY, Guan Y, Tan X, Mo X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–675. JainSKamimotoLBramleyAMSchmitzAMBenoitSRHospitalized patients with 2009 H1N1 influenza in the United States, April–June 2015New England J Med2009361201935194410.1056/NEJMoa0906695 Fong SJ, Li G, Dey N, Crespo RG Herrera-Viedma E. Finding an accurate early forecasting model from small dataset: a case of 2019-ncov novel coronavirus outbreak. arXiv preprint arXiv:2003.10776. 2020 Hu S, Liu M, Fong S, Song W, Dey N, Wong R. Forecasting China future MNP by deep learning. In: Behavior engineering and applications 2018 (pp. 169–210). Springer, Cham. Pandemic risk. Background paper for world development report 2014: Risk and opportunity; managing risk for development, World Bank, Washington. Zareie B, Roshani A, Mansournia MA, Rasouli MA, Moradi G. A model for COVID-19 prediction in Iran based on China parameters. medRxiv. 2020 Russo L, Anastassopoulou C, Tsakris A, Bifulco GN, Campana EF, Toraldo G, Siettos C. Tracing DAY-ZERO and forecasting the fade out of the COVID-19 outbreak in Lombardy, Italy: a compartmental modelling and numerical optimization approach. medRxiv. 2020 Siwiak MM, Szczesny P, Siwiak MP. From a single host to global spread. The global mobility based modelling of the COVID-19 pandemic implies higher infection and lower detection rates than current estimates. medRxiv. 2020 Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E. Composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Appl Soft Comput. 2020;106282. Giuliani D, Dickson MM, Espa G, Santi F. Modelling and predicting the spread of coronavirus (COVID-19) infection in NUTS-3 Italian regions. arXiv preprint arXiv:2003.06664. 2020. LanKWangDTFongSLiuLSWongKKDeyNA survey of data mining and deep learning in bioinformaticsJ Med Syst201842813910.1007/s10916-018-1003-9 Hu B, Gong J. Support vector machine based classification analysis of SARS spatial distribution. In: 2010 Sixth international conference on natural computation. 2010 (vol. 2, pp. 924–927). IEEE. Traini MC, Caponi C, De Socio GV. Modelling the epidemic 2019-nCoV event in Italy: a preliminary note. medRxiv. 2020. La S, Bogoch II, Ruktanonchai N, Watts AG, Li Y, Yu J, Lv X, Yang W, Hongjie Y, Khan K, Li Z. Assessing spread risk of Wuhan novel coronavirus within and beyond China, January–April 2020: a travel network-based modelling study. 2020. Bhapkar HR, Mahalle P, Dhotre PS. Virus graph and COVID-19 pandemic: a graph theory approach. Preprints 2020, 2020040507 (https://doi.org/10.20944/preprints202004.0507.v1). Kim D, Hong S, Choi S, Yoon T. Analysis of transmission route of MERS coronavirus using decision tree and Apriori algorithm. In: 2016 18th International conference on advanced communication technology (ICACT). 2016. (pp 559–565). IEEE. Dicker RC, Coronado F, Koo D, Parrish RG. Principles of epidemiology in public health practice; an introduction to applied epidemiology and biostatistics. 2006 Teles P. Predicting the evolution Of SARS-Covid-2 in Portugal using an adapted SIR Model previously used in South Korea for the MERS outbreak. arXiv preprint https://arXiv:2003.10047. 2020 WangpingJKeHYangSWenzheCShengshuWShanshanYMiaoLExtended SIR prediction of the epidemics trend ofCOVID-19 in Italy and compared with HunanFront Med2020716910.3389/fmed.2020.00169 Weber A, Ianelli F, Goncalves S. Trend analysis of the COVID-19 pandemic in China and the rest of the world. arXiv preprint https://arXiv:2003.09032. 2020. Caccavo D. Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model. medRxiv. 2020 SinghNMohantySRShort term price forecasting using adaptive generalized neuron modelInt J Ambient Comput Intell (IJACI)201893445610.4018/IJACI.2018070104 Gaudart J, Ghassani M, Mintsa J, Waku J, Rachdi M, Doumbo OK, Demongeot J (2010) Demographic and spatial factors as causes of an epidemic spread, the copule approach: application to the retro-prediction of the black death epidemy of 1346. In: 2010 IEEE 24th International conference on advanced information networking and applications workshops (pp 751–758). IEEE. Dey N, Rajinikant V, Fong SJ, Kaiser MS, Mahmud M. Social-group-optimization assisted kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. 2020. Siegenfeld AF, Bar-Yam Y. Eliminating COVID-19: a community-based analysis. arXiv preprint https://arXiv:2003.10086. 2020. PlattCKing death: the black death and its aftermath in late-medieval England2014Oxon, U.K.Routledge10.4324/9781315072371 Jia L, Li K, Jiang Y, Guo X. Prediction and analysis of coronavirus disease 2019. arXiv preprint https://arXiv:2003.05447. 2020. FriedenNMThe Russian cholera epidemic, 1892–93, and medical professionalizationJ Soc History197710453810.1353/jsh/10.4.538 Keogh-BrownMRSmithRDThe economic impact of SARS: how does the reality match the predictions?Health Policy200888111012010.1016/j.healthpol.2008.03.003 SantoshKCAI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal dataJ Med Syst20204451510.1007/s10916-020-01562-1 McKibbinWJSidorenkoAAGlobal macroeconomic consequences of pandemic influenza. analysis2006Sydney, AustraliaLowy Institute for International Policy Hassanien AE, Dey N, Borra S (eds) (2018). Medical big data and internet of medical things: advances, challenges and applications. CRC Press, Boca Raton. DeWitteSNMortality risk and survival in the aftermath of the medieval black deathPLoS ONE201495e9651310.1371/journal.pone.0096513 JainABhatnagarVConcoction of ambient intelligence and big data for better patient ministration servicesInt J Ambient Comput Intell (IJACI)201784193010.4018/IJACI.2017100102 Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, Mills MC. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceed nat acad sci 2020;117(18):9696–9698. Toda AA. Su J Wangping (209_CR42) 2020; 7 L Gordis (209_CR2) 2014 A Jain (209_CR28) 2017; 8 NM Frieden (209_CR6) 1977; 10 209_CR50 209_CR51 K Lan (209_CR27) 2018; 42 L Li (209_CR43) 2020; 5 209_CR56 209_CR57 209_CR14 209_CR58 209_CR15 209_CR59 209_CR52 209_CR53 A Flahault (209_CR9) 1990; 336 209_CR54 209_CR55 C Achonu (209_CR11) 2005; 96 209_CR17 209_CR18 209_CR60 209_CR61 209_CR62 209_CR23 209_CR67 209_CR1 209_CR24 209_CR68 209_CR25 209_CR69 209_CR26 209_CR63 209_CR20 209_CR64 209_CR21 209_CR65 209_CR22 209_CR66 C Li (209_CR48) 2020; 25 S Jain (209_CR13) 2009; 361 209_CR29 209_CR70 209_CR71 209_CR72 WJ McKibbin (209_CR7) 2006 209_CR73 M Tizzoni (209_CR12) 2012; 10 S Dixon (209_CR8) 2001; 13 SN DeWitte (209_CR4) 2014; 9 209_CR34 209_CR78 209_CR35 209_CR79 209_CR36 209_CR37 209_CR30 209_CR74 UNDP (United Nations Development Programme) (209_CR16) 2017 209_CR31 209_CR32 209_CR76 209_CR33 209_CR77 MR Keogh-Brown (209_CR10) 2008; 88 209_CR38 D Greenhalgh (209_CR19) 1997; 14 209_CR39 C Platt (209_CR3) 2014 209_CR81 209_CR82 209_CR83 209_CR40 209_CR84 KC Santosh (209_CR75) 2020; 44 209_CR80 209_CR45 209_CR47 209_CR41 209_CR85 J Diamond (209_CR5) 2009 209_CR44 N Singh (209_CR86) 2018; 9 V Volpert (209_CR46) 2020; 15 209_CR49 |
References_xml | – reference: Botha AE, Dednam W. A simple iterative map forecast of the COVID-19 pandemic. arXiv preprint arXiv:2003.10532. 2020. – reference: Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, Yan J, Niu J, Luo B. Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan. medRxiv. 2020. – reference: Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, Mills MC. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceed nat acad sci 2020;117(18):9696–9698. – reference: DeWitteSNMortality risk and survival in the aftermath of the medieval black deathPLoS ONE201495e9651310.1371/journal.pone.0096513 – reference: Gaudart J, Ghassani M, Mintsa J, Waku J, Rachdi M, Doumbo OK, Demongeot J (2010) Demographic and spatial factors as causes of an epidemic spread, the copule approach: application to the retro-prediction of the black death epidemy of 1346. In: 2010 IEEE 24th International conference on advanced information networking and applications workshops (pp 751–758). IEEE. – reference: LiLYangZDangZMengCHuangJMengHShaoYPropagation analysis and prediction of the COVID-19Infect Dis Model20205282292 – reference: DeCaprio D, Gartner J, Burgess T, Kothari S, Sayed S. Building a COVID-19 vulnerability index. arXiv preprint https://arXiv:2003.07347. 2020. – reference: Rajinikanth V, Dey N, Raj ANJ, Hassanien AE, Santosh KC, Raja N. Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images. 2020 arXiv preprint arXiv:2004.03431. – reference: Park J, Kim J. Hong Kong sets ‘serious’ response to South Korea’s MERS outbreak.” Reuters, June 8. 2015 – reference: Webb G. Predicting the number of reported and unreported cases for the COVID-19 epidemic in South Korea, Italy, France and Germany. medRxiv. 2020. – reference: FlahaultAValleronAJHIV and travel, no rationale for restrictionsLancet199033687241197119810.1016/0140-6736(90)92820-8 – reference: Fong SJ, Li G, Dey N, Crespo RG Herrera-Viedma E. Finding an accurate early forecasting model from small dataset: a case of 2019-ncov novel coronavirus outbreak. arXiv preprint arXiv:2003.10776. 2020 – reference: COVID-19 in India: guidance from the IndiaSIM Model- March 24, 2020. https://cddep.org/covid-19/. – reference: SinghNMohantySRShort term price forecasting using adaptive generalized neuron modelInt J Ambient Comput Intell (IJACI)201893445610.4018/IJACI.2018070104 – reference: Kim D, Hong S, Choi S, Yoon T. Analysis of transmission route of MERS coronavirus using decision tree and Apriori algorithm. In: 2016 18th International conference on advanced communication technology (ICACT). 2016. (pp 559–565). IEEE. – reference: Sultana N, Sharma N. Statistical models for predicting swine flu incidences in India. In: 2018 First international conference on secure cyber computing and communication (ICSCCC). 2018 (pp. 134–138). IEEE. – reference: AchonuCLaporteAGardamMAThe financial impact of controlling a respiratory virus outbreak in a teaching hospital: lessons learned from SARSCanad J Public Health2005961525410.1007/BF03404018 – reference: Hu B, Gong J. Support vector machine based classification analysis of SARS spatial distribution. In: 2010 Sixth international conference on natural computation. 2010 (vol. 2, pp. 924–927). IEEE. – reference: Giannakeas V, Bhatia D, Warkentin MT, Bogoch I, Stall NM. Estimating the maximum daily number of incident COVID-19 cases manageable by a healthcare system. medRxiv. 2020. – reference: Weber A, Ianelli F, Goncalves S. Trend analysis of the COVID-19 pandemic in China and the rest of the world. arXiv preprint https://arXiv:2003.09032. 2020. – reference: Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM. Covid-19 outbreak prediction with machine learning. Available at SSRN 3580188. 2020. – reference: JainSKamimotoLBramleyAMSchmitzAMBenoitSRHospitalized patients with 2009 H1N1 influenza in the United States, April–June 2015New England J Med2009361201935194410.1056/NEJMoa0906695 – reference: JainABhatnagarVConcoction of ambient intelligence and big data for better patient ministration servicesInt J Ambient Comput Intell (IJACI)201784193010.4018/IJACI.2017100102 – reference: Teles P. Predicting the evolution Of SARS-Covid-2 in Portugal using an adapted SIR Model previously used in South Korea for the MERS outbreak. arXiv preprint https://arXiv:2003.10047. 2020 – reference: Rocha Filho TM, dos Santos FSG, Gomes VB, Rocha TA, Croda JH, Ramalho WM, Araujo WN Expected impact of COVID-19 outbreak in a major metropolitan area in Brazil. medRxiv. 2020. – reference: Jia L, Li K, Jiang Y, Guo X. Prediction and analysis of coronavirus disease 2019. arXiv preprint https://arXiv:2003.05447. 2020. – reference: Dey N, Fong S, Song W, Cho K Forecasting energy consumption from smart home sensor network by deep learning. In: International conference on smart trends for information technology and computer communications 2017 (pp. 255–265). Springer, Singapore. – reference: Chen B, Liang H, Yuan X, Hu Y, Xu M, Zhao Y, Zhang B, Tian F, Zhu X. Roles of meteorological conditions in COVID-19 transmission on a worldwide scale. MedRxiv. 2020. – reference: Hu S, Liu M, Fong S, Song W, Dey N, Wong R. Forecasting China future MNP by deep learning. In: Behavior engineering and applications 2018 (pp. 169–210). Springer, Cham. – reference: Lu J. A new, simple projection model for COVID-19 pandemic. medRxiv. 2020. – reference: Victor AO. Mathematical predictions for Covid-19 as a global pandemic. medRxiv. 2020. – reference: Wagh CS, Mahalle PN, Wagh SJ. Epidemic peak for COVID-19 in India, 2020. Preprints 2020, 2020050176 (https://doi.org/10.20944/preprints202005.0176.v1). – reference: Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, Colaneri M. Modelling the COVID-19 epidemic andimplementation of population-wide interventions in Italy. Nat Med. 2020;1–6. – reference: LiCChenLJChenXZhangMPangCPChenHRetrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020Eurosurveillance20202510200019910.2807/1560-7917.ES.2020.25.10.2000199 – reference: Shi P, Dong Y, Yan H, Li X, Zhao C, Liu W, He M, Tang S, Xi S. The impact of temperature and absolute humidity on the coronavirus disease 2019 (COVID-19) outbreak-evidence from China. MedRxiv. 2020. – reference: TizzoniMBajardiPPolettoCRamascoJJBalcanDReal-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdmBMC Med201210116510.1186/1741-7015-10-165 – reference: Caccavo D. Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model. medRxiv. 2020 – reference: Zareie B, Roshani A, Mansournia MA, Rasouli MA, Moradi G. A model for COVID-19 prediction in Iran based on China parameters. medRxiv. 2020 – reference: Nadim SS, Ghosh I, Chattopadhyay J. Short-term predictions and prevention strategies for COVID-2019: a model based study. arXiv preprint https://arXiv:2003.08150. 2020 – reference: Bhatt C, Dey N, Ashour AS (eds). (2017). Internet of things and big data technologies for next generation healthcare. – reference: Hu Z, Ge Q, Li S, Jin L, Xiong M. Evaluating the effect of public health intervention on the global-wide spread trajectory of Covid-19. medRxiv. 2020. – reference: WangpingJKeHYangSWenzheCShengshuWShanshanYMiaoLExtended SIR prediction of the epidemics trend ofCOVID-19 in Italy and compared with HunanFront Med2020716910.3389/fmed.2020.00169 – reference: He X, Lau EH, Wu P, Deng X, Wang J, Hao X, Lau YC, Wong JY, Guan Y, Tan X, Mo X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–675. – reference: Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E. Composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Appl Soft Comput. 2020;106282. – reference: Zhu X, Zhang A, Xu S, Jia P, Tan X, Tian J, Wei T, Quan Z, Yu J. Spatially explicit modeling of 2019-nCoV epidemic trend based on mobile phone data in mainland China. medRxiv. 2020. – reference: Bhattacharjee S. Statistical investigation of relationship between spread of coronavirus disease (COVID-19) and environmental factors based on study of four mostly affected places of China and five mostly affected places of Italy. arXiv preprint arXiv:2003.11277. 2020 – reference: Dey N, Rajinikant V, Fong SJ, Kaiser MS, Mahmud M. Social-group-optimization assisted kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. 2020. – reference: Coelho FC, Lana RM, Cruz OG, Villela D, Bastos LS, Pastore y Piontti A, Davis JT, Vespignani A, Codeco C, Gomes MF. Assessing the potential impacts of COVID-19 in Brasil: mobility, morbidity and impact to the health system. medRxiv. 2020. – reference: World Health Organization online available on https://www.who.int/emergencies/diseases/novel-coronavirus-2019/. – reference: Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A, Shallcross L, Noursadeghi M, Pillay D, Pagel C, Wong WK, Langenberg C. Estimating excess 1-year mortality from COVID-19 according to underlying conditions and age in England: a rapid analysis using NHS health records in 3.8 million adults. medRxiv. 2020. – reference: Batista M. Estimation of the final size of the second phase of the coronavirus COVID-19 epidemic by the logistic model. – reference: SantoshKCAI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal dataJ Med Syst20204451510.1007/s10916-020-01562-1 – reference: FriedenNMThe Russian cholera epidemic, 1892–93, and medical professionalizationJ Soc History197710453810.1353/jsh/10.4.538 – reference: Giuliani D, Dickson MM, Espa G, Santi F. Modelling and predicting the spread of coronavirus (COVID-19) infection in NUTS-3 Italian regions. arXiv preprint arXiv:2003.06664. 2020. – reference: Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak. medRxiv. 2020. – reference: GreenhalghDHAYGMathematical modelling of the spread of HIV/AIDS amongst injecting drug usersMath Med Biol J IMA199714111380867.9202210.1093/imammb/14.1.11 – reference: Siwiak MM, Szczesny P, Siwiak MP. From a single host to global spread. The global mobility based modelling of the COVID-19 pandemic implies higher infection and lower detection rates than current estimates. medRxiv. 2020 – reference: Liu P, Beeler P, Chakrabarty RK. COVID-19 progression timeline and effectiveness of response-to-spread interventions across the United States. medRxiv. 2020 – reference: La S, Bogoch II, Ruktanonchai N, Watts AG, Li Y, Yu J, Lv X, Yang W, Hongjie Y, Khan K, Li Z. Assessing spread risk of Wuhan novel coronavirus within and beyond China, January–April 2020: a travel network-based modelling study. 2020. – reference: Pandemic risk. Background paper for world development report 2014: Risk and opportunity; managing risk for development, World Bank, Washington. – reference: Hossain M, Junus A, Zhu X, Jia P, Wen TH, Pfeiffer D, Yuan HY. The effects of border control and quarantine measures on global spread of COVID-19. In: Alvin and Zhu, Xiaolin and Jia, Pengfei and Wen, Tzai-Hung and Pfeiffer, Dirk and Yuan, Hsiang-Yu, The effects of border control and quarantine measures on global spread of COVID-19 .2020 (March 2, 2020). – reference: Traini MC, Caponi C, De Socio GV. Modelling the epidemic 2019-nCoV event in Italy: a preliminary note. medRxiv. 2020. – reference: Russo L, Anastassopoulou C, Tsakris A, Bifulco GN, Campana EF, Toraldo G, Siettos C. Tracing DAY-ZERO and forecasting the fade out of the COVID-19 outbreak in Lombardy, Italy: a compartmental modelling and numerical optimization approach. medRxiv. 2020 – reference: Kumar J, Hembram KPSS. Epidemiological study of novel coronavirus (COVID-19). 2020 arXiv preprint https://arXiv:2003.11376. – reference: Sameni R. Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus. arXiv preprint https://arXiv:2003.11371. 2020. – reference: DiamondJGuns, germs, and steel: the fates of human societies2009New YorkNorton – reference: Mahalle PN, Sable NP, Mahalle NP, Shinde GR Data analytics: COVID-19 prediction using multimodal data. Preprints 2020, 2020040257 (https://doi.org/10.20944/preprints202004.0257.v1). – reference: Keogh-BrownMRSmithRDThe economic impact of SARS: how does the reality match the predictions?Health Policy200888111012010.1016/j.healthpol.2008.03.003 – reference: Bhapkar HR, Mahalle P, Dhotre PS. Virus graph and COVID-19 pandemic: a graph theory approach. Preprints 2020, 2020040507 (https://doi.org/10.20944/preprints202004.0507.v1). – reference: Bayham J, Fenichel EP. The impact of school closure for COVID-19 on the US healthcare workforce and the net mortality effects. medRxiv. 2020. – reference: VolpertVBanerjeeMPetrovskiiSOn a quarantine model of coronavirus infection and data analysisMath Modell Nat Phenomena20201524407941610.1051/mmnp/2020006 – reference: Toda AA. Susceptible-infected-recovered (sir) dynamics of covid-19 and economic impact. arXiv preprint arXiv:2003.11221. 2020 – reference: Bullock J, Pham KH, Lam CS, Luengo-Oroz M. Mapping the landscape of artificial intelligence applications against COVID-19. arXiv preprint arXiv:2003.11336. 2020. – reference: GordisLEpidemiology20144Philadelphia, PAElsevier Saunders – reference: McKibbinWJSidorenkoAAGlobal macroeconomic consequences of pandemic influenza. analysis2006Sydney, AustraliaLowy Institute for International Policy – reference: Long C, Ying Q, Fu X, Li Z, Gao Y. Forecasting the cumulative number of COVID-19 deaths in China: a Boltzmann function-based modeling study. medRxiv. 2020. – reference: UNDP (United Nations Development Programme)A socio-economic impact assessment of the Zika virus in Latin America and the Caribbean: with a focus on Brazil, Colombia, and Suriname2017UNDP, New YorkSynthesis report – reference: Santosh K, Das D, Pal U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. PREPRINT (Version 1) available at Research Square 3, 2020. – reference: PlattCKing death: the black death and its aftermath in late-medieval England2014Oxon, U.K.Routledge10.4324/9781315072371 – reference: LanKWangDTFongSLiuLSWongKKDeyNA survey of data mining and deep learning in bioinformaticsJ Med Syst201842813910.1007/s10916-018-1003-9 – reference: Dicker RC, Coronado F, Koo D, Parrish RG. Principles of epidemiology in public health practice; an introduction to applied epidemiology and biostatistics. 2006 – reference: Wang H, Zhang Y, Lu S, Wang S. Tracking and forecasting milepost moments of the epidemic in the early-outbreak: framework and applications to the COVID-19. medRxiv. 2020. – reference: Hassanien AE, Dey N, Borra S (eds) (2018). Medical big data and internet of medical things: advances, challenges and applications. CRC Press, Boca Raton. – reference: Siegenfeld AF, Bar-Yam Y. Eliminating COVID-19: a community-based analysis. arXiv preprint https://arXiv:2003.10086. 2020. – reference: DixonSMcDonaldSRobertsJAIDS and economic growth in Africa: a panel data analysisJ Int Develop200113441142610.1002/jid.795 – reference: Amiroch S, Pradana MS, Irawan MI, Mukhlash I. Maximum likelihood method on the construction of phylogenetic tree for identification the spreading of SARS epidemic. In: 2018 International symposium on advanced intelligent informatics (SAIN) 2018. (pp 137–141). IEEE. – volume-title: King death: the black death and its aftermath in late-medieval England year: 2014 ident: 209_CR3 doi: 10.4324/9781315072371 – volume: 15 start-page: 24 year: 2020 ident: 209_CR46 publication-title: Math Modell Nat Phenomena doi: 10.1051/mmnp/2020006 – ident: 209_CR1 – volume: 8 start-page: 19 issue: 4 year: 2017 ident: 209_CR28 publication-title: Int J Ambient Comput Intell (IJACI) doi: 10.4018/IJACI.2017100102 – volume: 336 start-page: 1197 issue: 8724 year: 1990 ident: 209_CR9 publication-title: Lancet doi: 10.1016/0140-6736(90)92820-8 – volume: 42 start-page: 139 issue: 8 year: 2018 ident: 209_CR27 publication-title: J Med Syst doi: 10.1007/s10916-018-1003-9 – ident: 209_CR49 doi: 10.1101/2020.03.09.20033415 – ident: 209_CR30 – ident: 209_CR80 doi: 10.1613/jair.1.12162 – volume: 9 start-page: e96513 issue: 5 year: 2014 ident: 209_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0096513 – ident: 209_CR34 doi: 10.1101/2020.03.18.20038612 – volume: 25 start-page: 2000199 issue: 10 year: 2020 ident: 209_CR48 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.10.2000199 – volume: 14 start-page: 11 issue: 1 year: 1997 ident: 209_CR19 publication-title: Math Med Biol J IMA doi: 10.1093/imammb/14.1.11 – ident: 209_CR21 doi: 10.1109/SAIN.2018.8673334 – volume-title: Global macroeconomic consequences of pandemic influenza. analysis year: 2006 ident: 209_CR7 – volume: 44 start-page: 1 issue: 5 year: 2020 ident: 209_CR75 publication-title: J Med Syst doi: 10.1007/s10916-020-01562-1 – volume: 361 start-page: 1935 issue: 20 year: 2009 ident: 209_CR13 publication-title: New England J Med doi: 10.1056/NEJMoa0906695 – ident: 209_CR24 – ident: 209_CR54 doi: 10.1101/2020.03.21.20040139 – ident: 209_CR14 – ident: 209_CR68 doi: 10.1016/j.asoc.2020.106282 – ident: 209_CR79 doi: 10.20944/preprints202004.0507.v1 – ident: 209_CR33 doi: 10.1101/2020.03.19.20038950 – ident: 209_CR57 doi: 10.1101/2020.03.19.20037192 – volume-title: Guns, germs, and steel: the fates of human societies year: 2009 ident: 209_CR5 – ident: 209_CR23 doi: 10.1109/ICSCCC.2018.8703300 – ident: 209_CR31 doi: 10.1101/2020.03.19.20039388 – volume-title: Epidemiology year: 2014 ident: 209_CR2 – ident: 209_CR37 – ident: 209_CR82 doi: 10.31234/osf.io/5dyfc – ident: 209_CR38 doi: 10.1101/2020.03.13.20035261 – ident: 209_CR58 – ident: 209_CR53 doi: 10.2139/ssrn.3555879 – volume: 10 start-page: 165 issue: 1 year: 2012 ident: 209_CR12 publication-title: BMC Med doi: 10.1186/1741-7015-10-165 – volume-title: A socio-economic impact assessment of the Zika virus in Latin America and the Caribbean: with a focus on Brazil, Colombia, and Suriname year: 2017 ident: 209_CR16 – ident: 209_CR44 – volume: 9 start-page: 44 issue: 3 year: 2018 ident: 209_CR86 publication-title: Int J Ambient Comput Intell (IJACI) doi: 10.4018/IJACI.2018070104 – volume: 5 start-page: 282 year: 2020 ident: 209_CR43 publication-title: Infect Dis Model – ident: 209_CR56 doi: 10.2139/ssrn.3559609 – ident: 209_CR20 doi: 10.1109/ICACT.2016.7423472 – ident: 209_CR65 doi: 10.1101/2020.03.16.20037168 – ident: 209_CR50 doi: 10.21203/rs.3.rs-20501/v3 – ident: 209_CR69 – ident: 209_CR55 – ident: 209_CR62 doi: 10.1101/2020.03.25.20043711 – volume: 13 start-page: 411 issue: 4 year: 2001 ident: 209_CR8 publication-title: J Int Develop doi: 10.1002/jid.795 – ident: 209_CR73 doi: 10.1101/2020.03.16.20036723 – ident: 209_CR74 – ident: 209_CR63 doi: 10.1101/2020.03.22.20040287 – ident: 209_CR59 – ident: 209_CR26 doi: 10.1201/9781351030380 – ident: 209_CR78 – ident: 209_CR45 doi: 10.1101/2020.02.09.20021360 – volume: 96 start-page: 52 issue: 1 year: 2005 ident: 209_CR11 publication-title: Canad J Public Health doi: 10.1007/BF03404018 – ident: 209_CR18 doi: 10.1109/WAINA.2010.79 – ident: 209_CR67 doi: 10.1101/2020.03.22.20038919 – ident: 209_CR71 – ident: 209_CR61 doi: 10.1038/s41591-020-0869-5 – volume: 7 start-page: 169 year: 2020 ident: 209_CR42 publication-title: Front Med doi: 10.3389/fmed.2020.00169 – ident: 209_CR35 doi: 10.1101/2020.03.17.20037689 – ident: 209_CR32 doi: 10.1101/2020.03.21.20040444 – ident: 209_CR64 – ident: 209_CR51 doi: 10.1101/2020.03.21.20039867 – ident: 209_CR22 doi: 10.1109/ICNC.2010.5583921 – ident: 209_CR83 – ident: 209_CR72 doi: 10.18203/2394-6040.ijcmph20210828 – ident: 209_CR17 doi: 10.9781/ijimai.2020.02.002 – ident: 209_CR29 – ident: 209_CR39 doi: 10.1101/2020.03.14.20035873 – ident: 209_CR47 doi: 10.1101/2020.02.11.20022186 – ident: 209_CR41 doi: 10.1038/s41591-020-0883-7 – ident: 209_CR25 doi: 10.1007/978-3-319-49736-5 – ident: 209_CR52 – ident: 209_CR40 doi: 10.1101/2020.03.14.20034884 – ident: 209_CR77 doi: 10.20944/preprints202005.0176.v1 – ident: 209_CR84 doi: 10.1007/978-981-13-1423-0_28 – volume: 10 start-page: 538 issue: 4 year: 1977 ident: 209_CR6 publication-title: J Soc History doi: 10.1353/jsh/10.4.538 – ident: 209_CR70 doi: 10.1101/2020.03.11.20033639 – ident: 209_CR60 doi: 10.1073/pnas.2004911117 – volume: 88 start-page: 110 issue: 1 year: 2008 ident: 209_CR10 publication-title: Health Policy doi: 10.1016/j.healthpol.2008.03.003 – ident: 209_CR66 doi: 10.1101/2020.03.15.20036426 – ident: 209_CR85 doi: 10.1007/978-3-319-76430-6_8 – ident: 209_CR15 – ident: 209_CR76 doi: 10.20944/preprints202005.0052.v1 – ident: 209_CR81 doi: 10.20944/preprints202004.0257.v1 – ident: 209_CR36 doi: 10.1101/2020.03.17.20037770 |
SSID | ssj0002504465 |
Score | 2.5588017 |
Snippet | COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 197 |
SubjectTerms | Acquired immune deficiency syndrome AIDS Big Data Computer Imaging Computer Science Computer Systems Organization and Communication Networks Coronaviruses COVID-19 Data science Data Structures and Information Theory Decision making Epidemics Forecasting Information Systems and Communication Service Machine learning Mathematical models Mortality Pandemics Parameters Pattern Recognition and Graphics Software Engineering/Programming and Operating Systems Survey Survey Article Viral diseases Vision |
Title | Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art |
URI | https://link.springer.com/article/10.1007/s42979-020-00209-9 https://www.ncbi.nlm.nih.gov/pubmed/33063048 https://www.proquest.com/docview/2933263935 https://www.proquest.com/docview/2451851180 https://pubmed.ncbi.nlm.nih.gov/PMC7289234 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9YUXxDQ-MrbKk3gAgUU-nMTmBbXdykCiIGDQt8iObTFpSkazTuK_5y5NM3XT9pYothzfnX0_f9zvAF7mTsfS6pijgh0XyuOQctZyjf4IaxhjEgpO_jLLTk7F53k67zbcmu5a5XpObCdqW5e0R_4O3RIiDQok_XDxl1PWKDpd7VJobMEAp2CJi6_B-Hj27Xu_y0IEXaLNJ4mOKOZKpfMucqaNn8PJOFecVlAEmxRXm97pFuS8fXPyxvFp65Wmj-FRByfZaKX_HXjgql34Tfk2S93QjWZGyc7OG4bYlE2IrUBfnS2WDTtaHcywV5Ovvz4d8Ui9fs9G7MdyceX-sdozxIWsBaK89hxfODbxBE6nxz8nJ7xLoMBLos3j2iYoABdnLoozn3mXyNwJ660NU5ekxkS5LrWSqfSlKEVmQqus9PjgpZHaJE9hu6or9xwYDnsTukh6g5jDSC9VnmopdewVetkwCyBaC64oO3ZxSnJxXvS8yK2wC5Rz0Qq7UAG86etcrLg17i29v9ZH0Y2zpri2igAO-884QujYQ1euXmIZkUaEK2UYwLOV-vrmkoQ4x4QMIN9QbF-A2Lc3v1Rnf1oW7hyXqnEiAni7NoHr37q7F3v39-IFPIxbc6T7wPuwfblYugNEPZdmCFty-nEIg9F0PJ4NO0P_D-N2AAk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOcAFgdgCBYwEEggssjiJjYRQNcMwQxcOtHRuwY5tUalKyqRT1D_Fb-Q9Z6mGit56SxRne4vf5-V9j5AXuVWxMCpmoGDLuHTgUtYYpiAewR1a6wSTk3d2s-k-_zJP52vkT58Lg9sq-z7Rd9SmLnGO_B2EJUAamEj68fgXw6pRuLral9BozWLLnv2GIVvzYTYG_b6M48mnvdGUdVUFWIlcckyZBMK-jTMbxZnLnE1EbrlxxoSpTVKto1yVSopUuJKXPNOhkUY4OHBCC6UTeO41cp0niUSPEpPPw5wO0oFxX70Swl7MpEznXZ6Oz9aDrj-XDMdrCNIkk6ux8ALAvbhP85_FWh8DJ7fJrQ680s3W2u6QNVvdJQdY3bNUDe6fplha7aihgITpCLkR1OnhYtnQcbsMRF-Nvn6fjVkkX7-nm_TbcnFqz2jtKKBQ6mEvqx2DEwavuEf2r0Sw98l6VVf2IaHQyejQRsJpQDhaOCHzVAmhYichpodZQKJecEXZcZljSY2jYmBh9sIuQM6FF3YhA_JmuOe4ZfK4tPVGr4-i8-qmOLfBgDwfLoM_4iKLqmy9hDY8jRDFijAgD1r1Da9LEmQ44yIg-YpihwbI9b16pTr86Tm_cxgYxwkPyNveBM4_6_9_8ejyv3hGbkz3draL7dnu1mNyM_amiTuRN8j6yWJpnwDeOtFPvZFT8uOqveovjcY63w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Models+for+Coronavirus+Disease+%28COVID-19%29%3A+A+Survey+of+the+State-of-the-Art&rft.jtitle=SN+computer+science&rft.au=Shinde%2C+Gitanjali+R&rft.au=Kalamkar%2C+Asmita+B&rft.au=Mahalle%2C+Parikshit+N&rft.au=Dey%2C+Nilanjan&rft.date=2020-07-01&rft.eissn=2661-8907&rft.volume=1&rft.issue=4&rft.spage=197&rft_id=info:doi/10.1007%2Fs42979-020-00209-9&rft_id=info%3Apmid%2F33063048&rft.externalDocID=33063048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |