Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective

The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 2; no. 5; p. 377
Main Author Sarker, Iqbal H.
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on “Data Science” including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.
AbstractList The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on “Data Science” including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.
The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on “Data Science” including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.
The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on "Data Science" including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on "Data Science" including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.
The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for in various applications domains. In the area of data science, methods including modeling can provide actionable insights or deeper knowledge about data, which makes the process automatic and smart. In this paper, we present a comprehensive view on "Data Science" including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential within the scope of our study. Overall, this paper aims to serve as a reference point on and to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.
ArticleNumber 377
Author Sarker, Iqbal H.
Author_xml – sequence: 1
  givenname: Iqbal H.
  orcidid: 0000-0003-1740-5517
  surname: Sarker
  fullname: Sarker, Iqbal H.
  email: msarker@swin.edu.au
  organization: Swinburne University of Technology, Department of Computer Science and Engineering, Chittagong University of Engineering & Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34278328$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpH2CBLLFhgcGPPGwWlaoZXlJRkQoSO8tx7gwuiR3sJKj_Hs-k5dFFV76-_s7R0fV9jA588IDQU0ZfMUrr16ngqlaEckbytSqJfICOeFUxIhWtD_Y1J0qV3w7RSUpXlFJe0qKoykfoUBS8loLLIzSvzWjwpXXgLWDjW3zmTXc9Opve5BJfzBBnB7_wJoYe72Cyjm4Gjy97E0e8Cv0wjc5vX-I1WJdc8OST-ZEbi9kwdM6aMbcT_gwxDWDHLH-CHm5Ml-Dk5jxGX9-9_bL6QM4v3n9cnZ0TK6SSxHCmqJJCcSsqKsuWWihpWYFojGysNMC5EQ1joqZ1axVAAwxakJTLhjVUHKPTxXeYmh5aC36MptNDdDn9tQ7G6f9fvPuut2HWktdFUfNs8OLGIIafE6RR9y5Z6DrjIUxJ87IUXBSMFRl9fge9ClPM08yUEpxTLuiOevZvoj9Rbr8kA3IBbAwpRdho68b9BHNA12lG9W4B9LIAOi-A3i-A3kn5Hemt-70isYhShv0W4t_Y96h-A4kvwx4
CitedBy_id crossref_primary_10_1016_j_iot_2022_100528
crossref_primary_10_1007_s11846_024_00828_z
crossref_primary_10_1016_j_acalib_2024_102927
crossref_primary_10_1016_j_watres_2024_121499
crossref_primary_10_1016_j_caeai_2023_100145
crossref_primary_10_1016_j_joitmc_2024_100411
crossref_primary_10_1007_s44163_024_00129_0
crossref_primary_10_1016_j_imu_2022_100969
crossref_primary_10_3390_forecast6010010
crossref_primary_10_1002_slct_202400091
crossref_primary_10_1016_j_ifacol_2024_09_236
crossref_primary_10_2166_hydro_2025_258
crossref_primary_10_1038_s41598_024_74381_w
crossref_primary_10_1016_j_egyr_2024_01_008
crossref_primary_10_1007_s10639_023_12223_4
crossref_primary_10_3390_systems12100415
crossref_primary_10_1016_j_est_2024_114982
crossref_primary_10_1016_j_ijme_2025_101138
crossref_primary_10_1016_j_rineng_2025_104265
crossref_primary_10_1002_eng2_12893
crossref_primary_10_1007_s11042_023_15500_z
crossref_primary_10_1080_20421338_2024_2388619
crossref_primary_10_1016_j_dajour_2024_100405
crossref_primary_10_15622_ia_23_5_4
crossref_primary_10_3934_math_20231188
crossref_primary_10_1080_0144929X_2023_2286535
crossref_primary_10_3389_fspor_2023_1267548
crossref_primary_10_1109_ACCESS_2024_3375764
crossref_primary_10_1080_2573234X_2023_2285483
crossref_primary_10_3389_fpubh_2024_1333163
crossref_primary_10_1016_j_iot_2024_101082
crossref_primary_10_1007_s40033_022_00381_7
crossref_primary_10_1109_TNSM_2022_3233673
crossref_primary_10_1016_j_artint_2024_104197
crossref_primary_10_3390_ijerph20064775
crossref_primary_10_1016_j_dsm_2021_12_002
crossref_primary_10_1038_s41598_024_74057_5
crossref_primary_10_1007_s44196_024_00694_3
crossref_primary_10_1080_15456870_2023_2259532
crossref_primary_10_1615_TelecomRadEng_2024054002
crossref_primary_10_3390_fi15020071
crossref_primary_10_1007_s11042_022_14043_z
crossref_primary_10_1016_j_rineng_2024_102132
crossref_primary_10_2478_amns_2024_3137
crossref_primary_10_48175_IJARSCT_11955
crossref_primary_10_4108_eetinis_v11i3_5237
crossref_primary_10_1016_j_bcra_2024_100207
crossref_primary_10_1002_spy2_212
crossref_primary_10_3390_w15020331
crossref_primary_10_61164_rmnm_v12i4_3340
crossref_primary_10_1016_j_compbiomed_2024_109389
crossref_primary_10_1007_s11356_024_33350_6
crossref_primary_10_3390_molecules28165936
crossref_primary_10_56294_saludcyt20241341
crossref_primary_10_2478_amns_2023_2_00208
crossref_primary_10_31637_epsir_2025_782
crossref_primary_10_1016_j_inffus_2023_102040
crossref_primary_10_2139_ssrn_4761521
crossref_primary_10_1007_s40031_024_01178_w
crossref_primary_10_1007_s40745_022_00428_2
crossref_primary_10_1016_j_jiec_2024_09_035
crossref_primary_10_1007_s10620_024_08659_4
crossref_primary_10_1080_08874417_2023_2220294
crossref_primary_10_1109_JSEN_2023_3317645
crossref_primary_10_1109_MIS_2022_3218913
crossref_primary_10_1002_spy2_295
crossref_primary_10_3390_jcp2030031
crossref_primary_10_1016_j_technovation_2023_102869
crossref_primary_10_7717_peerj_cs_1361
crossref_primary_10_3390_s24041337
crossref_primary_10_1007_s11051_022_05535_y
crossref_primary_10_1016_j_bjae_2023_04_003
crossref_primary_10_1109_ACCESS_2023_3332512
crossref_primary_10_3390_agronomy13030723
crossref_primary_10_3390_electronics13224408
crossref_primary_10_1186_s12544_024_00671_z
crossref_primary_10_1007_s40745_022_00437_1
crossref_primary_10_1016_j_techsoc_2024_102662
crossref_primary_10_1016_S1470_2045_22_00011_0
crossref_primary_10_12688_f1000research_156525_2
crossref_primary_10_2139_ssrn_4054490
crossref_primary_10_3390_s24113630
crossref_primary_10_1007_s44353_024_00002_2
crossref_primary_10_12688_f1000research_156525_1
crossref_primary_10_12688_f1000research_156525_4
crossref_primary_10_12688_f1000research_156525_3
crossref_primary_10_3390_buildings14010259
crossref_primary_10_3390_fi15090285
crossref_primary_10_1007_s42791_024_00083_z
crossref_primary_10_3390_mca29040049
crossref_primary_10_1016_j_artint_2023_103884
crossref_primary_10_1007_s12145_024_01382_8
crossref_primary_10_1007_s41471_023_00154_2
crossref_primary_10_1108_LHT_05_2023_0193
crossref_primary_10_1177_1063293X241297528
crossref_primary_10_3390_technologies12070099
crossref_primary_10_32604_cmc_2025_060765
crossref_primary_10_1007_s43621_024_00212_7
crossref_primary_10_15673_atbp_v15i2_2520
crossref_primary_10_1007_s40171_022_00328_7
crossref_primary_10_1051_e3sconf_202560502002
crossref_primary_10_3390_mi14050972
crossref_primary_10_3390_jmse12020240
crossref_primary_10_3390_su15054223
crossref_primary_10_2478_amns_2025_0183
crossref_primary_10_3390_sym13101975
crossref_primary_10_3390_bdcc8120187
crossref_primary_10_1016_j_future_2021_11_027
crossref_primary_10_59413_ajocs_v3_i2_5
crossref_primary_10_1007_s40745_022_00381_0
crossref_primary_10_1038_s41571_024_00909_8
crossref_primary_10_3390_sym16010081
crossref_primary_10_56294_dm202324
crossref_primary_10_1016_j_dsm_2024_03_002
crossref_primary_10_3390_standards3040028
crossref_primary_10_1371_journal_pdig_0000294
crossref_primary_10_1016_j_atech_2024_100483
crossref_primary_10_1016_j_heha_2024_100114
crossref_primary_10_3390_su141811698
crossref_primary_10_3390_technologies13010022
crossref_primary_10_1007_s00595_023_02662_4
crossref_primary_10_1016_j_icte_2024_05_007
crossref_primary_10_48175_IJARSCT_121170
crossref_primary_10_1186_s43093_025_00452_7
crossref_primary_10_1016_j_dcan_2024_02_007
crossref_primary_10_1007_s00521_023_08669_9
crossref_primary_10_1109_ACCESS_2022_3223085
crossref_primary_10_32604_cmc_2023_038437
crossref_primary_10_3389_fpubh_2022_837433
crossref_primary_10_36548_jtcsst_2023_3_008
crossref_primary_10_1016_j_ynexs_2025_100057
crossref_primary_10_1097_PCR_0000000000000517
crossref_primary_10_1109_ACCESS_2023_3294569
crossref_primary_10_1109_ACCESS_2025_3548542
crossref_primary_10_1016_j_ijdrr_2025_105260
crossref_primary_10_36680_j_itcon_2025_011
crossref_primary_10_1016_j_ifacol_2024_08_411
crossref_primary_10_1007_s11042_024_19022_0
crossref_primary_10_1063_5_0242129
crossref_primary_10_1051_shsconf_202317603006
Cites_doi 10.1109/ITIA50152.2020.9312251
10.1016/j.compchemeng.2017.06.011
10.1108/WJSTSD-11-2016-0062
10.1016/j.ijpe.2019.05.022
10.1109/ICCUBEA.2018.8697476
10.1109/MilCIS.2015.7348942
10.1145/3451964.3451966
10.1016/j.ymeth.2016.12.014
10.1109/ACCESS.2018.2836950
10.1007/s10462-017-9552-8
10.1016/j.knosys.2020.106482
10.1080/03610926.2019.1622728
10.1016/j.future.2019.05.041
10.1007/s42979-021-00592-x
10.1145/2019583.2019588
10.1109/CoNMedia.2013.6708545
10.1007/s10489-020-01770-9
10.1109/ACCESS.2018.2884249
10.3390/ijgi8120584
10.1016/j.websem.2018.11.003
10.1561/2200000073
10.1145/304181.304187
10.1109/TDSC.2017.2762673
10.1016/j.iot.2021.100393
10.1007/978-3-642-35289-8_32
10.1007/978-0-387-09823-4_14
10.1080/10618600.2017.1384734
10.1109/MDSO.2006.22
10.1016/j.iot.2019.01.007
10.1186/s40537-016-0043-6
10.1099/00221287-17-1-201
10.1111/j.1467-6419.2007.00538.x
10.1186/s40537-019-0211-6
10.1109/CVPR.2016.90
10.1145/502585.502665
10.1080/10447318.2015.1087664
10.1007/s11036-019-01443-z
10.1016/j.jum.2019.12.001
10.1109/ICMLA.2018.00227
10.1109/5.58325
10.17512/pjms.2018.17.1.19
10.1016/j.jretai.2020.01.001
10.1109/ACCESS.2018.2815030
10.1186/s40537-015-0030-3
10.1007/s11036-020-01650-z
10.1109/5.726791
10.1145/335191.335372
10.1016/j.jnca.2020.102762
10.1145/276304.276314
10.1007/BF00153759
10.1007/s11042-018-6445-z
10.3390/machines6030038
10.1109/ICCUBEA.2018.8697606
10.1007/s00779-012-0511-8
10.1016/j.psep.2018.05.009
10.1109/CVPR.2017.195
10.1109/CVPR.2015.7298594
10.1007/s00778-019-00588-3
10.1109/TKDE.2017.2720168
10.1016/B978-012691360-6/50011-2
10.1186/s40537-019-0258-4
10.1109/ACCESS.2019.2925828
10.1145/2971648.2971747
10.1145/2968219.2971592
10.1007/978-3-030-38557-6_3
10.1016/j.dss.2020.113465
10.1016/j.ijinfomgt.2016.04.013
10.1093/comjnl/bxx082
10.1016/j.asoc.2008.06.001
10.1016/j.patcog.2017.08.016
10.1007/978-3-642-03270-7_5
10.1186/s40537-019-0219-y
10.1109/TPAMI.2015.2389824
10.1016/j.comnet.2010.05.010
10.1007/BF00116251
10.1186/s40537-019-0280-6
10.1186/s40537-018-0151-6
10.1007/s00779-005-0046-3
10.1109/WI.2005.147
10.1016/j.ijmedinf.2016.09.014
10.1145/2632048.2632052
10.1186/s40537-020-00328-3
10.1109/COMST.2020.2988293
10.1023/A:1007656703224
10.1109/69.846291
10.1038/s41467-020-17971-2
10.1098/rsif.2013.0789
10.1016/S0734-189X(87)80014-2
10.1017/9781108639286
10.1145/3076253
10.1007/s40745-015-0040-1
10.1109/ICDE.1995.380413
10.1162/089976601300014493
10.1007/s10586-017-1117-8
10.21105/joss.03021
10.1587/transcom.2018EBP3103
10.1023/A:1010933404324
10.1109/CISDA.2009.5356528
10.1145/1871437.1871702
10.26531/vnbu2020.249.02
10.20944/preprints202101.0457.v1
10.1145/3025171.3025184
10.1145/170036.170072
10.1109/CINTI.2012.6496753
10.3390/s16060790
10.20944/preprints202102.0340.v1
10.1108/DLP-10-2015-0022
10.1016/j.tplants.2014.08.004
10.1016/j.eswa.2008.01.039
10.3390/sym12050754
10.1109/MIS.2017.49
10.1145/3150226
10.1186/s40537-020-00318-5
10.1016/j.procs.2017.05.072
10.20982/tqmp.09.2.p079
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
Copyright Springer Nature B.V. Sep 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
– notice: Copyright Springer Nature B.V. Sep 2021
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s42979-021-00765-8
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Advanced Technologies & Aerospace Collection

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID PMC8274472
34278328
10_1007_s42979_021_00765_8
Genre Journal Article
Review
GroupedDBID 0R~
2JN
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABHQN
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKFA
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFOHR
AFQWF
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
ATHPR
AYFIA
BAPOH
BENPR
BGLVJ
BSONS
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
PHGZM
PHGZT
PQGLB
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
CITATION
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c3898-a219098392c36085d0ce5056e3ba8bc8ae22a3b113707dc9eebe1ede8028b1b03
IEDL.DBID BENPR
ISSN 2662-995X
2661-8907
IngestDate Thu Aug 21 17:37:41 EDT 2025
Thu Jul 10 18:25:40 EDT 2025
Fri Jul 25 20:20:58 EDT 2025
Mon Jul 21 05:59:21 EDT 2025
Tue Jul 01 05:14:02 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Mon Jul 21 06:07:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Decision-making
Data science applications
Advanced analytics
Smart computing
Machine learning
Data science
Predictive analytics
Language English
License The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3898-a219098392c36085d0ce5056e3ba8bc8ae22a3b113707dc9eebe1ede8028b1b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1740-5517
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8274472
PMID 34278328
PQID 2932202304
PQPubID 6623307
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8274472
proquest_miscellaneous_2553234114
proquest_journals_2932202304
pubmed_primary_34278328
crossref_citationtrail_10_1007_s42979_021_00765_8
crossref_primary_10_1007_s42979_021_00765_8
springer_journals_10_1007_s42979_021_00765_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationTitleAlternate SN Comput Sci
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References N Shukla (765_CR117) 2018
765_CR56
W Wang (765_CR134) 1997; 97
SA Harmon (765_CR41) 2020; 11
765_CR57
Z Li (765_CR70) 2019; 78
765_CR51
P Wei (765_CR136) 2019; 7
765_CR102
Y Mohamadou (765_CR78) 2020; 50
765_CR103
765_CR104
765_CR50
J Ya (765_CR142) 2017; 108
IH Sarker (765_CR107) 2020; 7
D Larson (765_CR65) 2016; 36
F Pedregosa (765_CR85) 2011; 12
765_CR49
DW Aha (765_CR5) 1991; 6
D Donoho (765_CR27) 2017; 26
765_CR45
765_CR46
IH Sarker (765_CR100) 2019; 6
765_CR47
D Kwon (765_CR63) 2019; 22
765_CR40
765_CR110
M Ankerst (765_CR8) 1999; 28
SS Keerthi (765_CR55) 2001; 13
765_CR112
765_CR43
765_CR113
MA Al-Garadi (765_CR7) 2020; 22
IH Sarker (765_CR101) 2019; 5
B Liu (765_CR71) 2020
L Cao (765_CR17) 2017; 50
KS Tuncel (765_CR130) 2018; 73
I Goodfellow (765_CR34) 2016
Z Engin (765_CR29) 2020; 9
P He (765_CR44) 2017; 15
MC Howard (765_CR48) 2016; 32
765_CR77
765_CR79
765_CR73
D Krukovets (765_CR61) 2020; 249
765_CR75
JL Leevy (765_CR69) 2018; 5
IH Sarker (765_CR106) 2020; 12
IH Sarker (765_CR105) 2021; 2
Y Xin (765_CR140) 2018; 6
S Perveen (765_CR86) 2018; 7
Y LeCun (765_CR67) 1998; 86
H-S Park (765_CR84) 2009; 36
P Zheng (765_CR146) 2006; 7
IH Sarker (765_CR115) 2019; 6
765_CR68
T Zheng (765_CR147) 2017; 97
M Kulin (765_CR62) 2016; 16
MJ Zaki (765_CR144) 2000; 12
765_CR60
AG Yong (765_CR143) 2013; 9
Q Zhao (765_CR145) 2003
A Rizk (765_CR97) 2020; 7
A Silvestrini (765_CR120) 2008; 22
S Safdar (765_CR99) 2018; 50
N Eagle (765_CR28) 2006; 10
765_CR15
765_CR16
IH Sarker (765_CR109) 2020; 25
GA Carpenter (765_CR18) 1987; 37
SS Kamble (765_CR52) 2020; 219
765_CR14
765_CR96
765_CR10
T Kohonen (765_CR58) 1990; 78
765_CR98
C Ma (765_CR74) 2014; 19
765_CR148
765_CR93
J Liu (765_CR72) 2018; 6
X Qin (765_CR91) 2020; 29
IH Sarker (765_CR114) 2020; 7
F Balducci (765_CR11) 2018; 6
765_CR90
J Han (765_CR38) 2011
H Zhu (765_CR149) 2014; 5
765_CR88
765_CR150
765_CR3
M Ester (765_CR30) 1996; 96
765_CR2
765_CR1
A Karpatne (765_CR53) 2017; 29
GEP Box (765_CR12) 2015
765_CR80
765_CR6
765_CR82
D Xu (765_CR141) 2015; 2
765_CR4
765_CR83
G Peyré (765_CR87) 2019; 11
K Wagstaff (765_CR131) 2001; 1
K He (765_CR42) 2015; 37
S Pouyanfar (765_CR89) 2018; 51
L Breiman (765_CR13) 2001; 45
IH Sarker (765_CR111) 2018; 61
S Le Cessie (765_CR66) 1992; 41
N Koroniotis (765_CR59) 2019; 100
C Rasmussen (765_CR94) 1999; 12
765_CR37
765_CR39
765_CR33
765_CR35
L Kaufman (765_CR54) 2009
765_CR36
ML Waskom (765_CR135) 2021; 6
765_CR121
765_CR122
765_CR123
765_CR32
765_CR124
765_CR125
765_CR127
765_CR128
765_CR118
765_CR119
JR Quinlan (765_CR92) 1986; 1
C-W Tsai (765_CR129) 2015; 2
IH Sarker (765_CR108) 2019; 6
A Marchand (765_CR76) 2020; 96
PA Flach (765_CR31) 2001; 42
K Weiss (765_CR137) 2016; 3
765_CR26
765_CR22
765_CR23
L Atzori (765_CR9) 2010; 54
A Chessel (765_CR20) 2017; 115
765_CR24
R Rawassizadeh (765_CR95) 2013; 17
765_CR25
M Schläpfer (765_CR116) 2014; 11
765_CR132
765_CR133
765_CR21
M Nilashi (765_CR81) 2017; 106
A Tajbakhsh (765_CR126) 2009; 9
765_CR138
765_CR139
P Lade (765_CR64) 2017; 32
765_CR19
References_xml – ident: 765_CR150
  doi: 10.1109/ITIA50152.2020.9312251
– volume: 5
  start-page: 58
  issue: 4
  year: 2014
  ident: 765_CR149
  publication-title: ACM Trans Intell Syst Technol (TIST).
– ident: 765_CR75
– volume: 106
  start-page: 212
  year: 2017
  ident: 765_CR81
  publication-title: Comput Chem Eng.
  doi: 10.1016/j.compchemeng.2017.06.011
– ident: 765_CR1
  doi: 10.1108/WJSTSD-11-2016-0062
– volume: 219
  start-page: 179
  year: 2020
  ident: 765_CR52
  publication-title: Int J Prod Econ.
  doi: 10.1016/j.ijpe.2019.05.022
– ident: 765_CR56
  doi: 10.1109/ICCUBEA.2018.8697476
– ident: 765_CR79
  doi: 10.1109/MilCIS.2015.7348942
– ident: 765_CR14
– ident: 765_CR128
  doi: 10.1145/3451964.3451966
– volume: 115
  start-page: 110
  year: 2017
  ident: 765_CR20
  publication-title: Methods.
  doi: 10.1016/j.ymeth.2016.12.014
– volume: 6
  start-page: 35365
  year: 2018
  ident: 765_CR140
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2836950
– ident: 765_CR90
– volume: 50
  start-page: 597
  issue: 4
  year: 2018
  ident: 765_CR99
  publication-title: Artif Intell Rev.
  doi: 10.1007/s10462-017-9552-8
– ident: 765_CR83
  doi: 10.1016/j.knosys.2020.106482
– ident: 765_CR119
  doi: 10.1080/03610926.2019.1622728
– volume: 100
  start-page: 779
  year: 2019
  ident: 765_CR59
  publication-title: Future Gener Comput Syst.
  doi: 10.1016/j.future.2019.05.041
– volume: 2
  start-page: 1
  issue: 3
  year: 2021
  ident: 765_CR105
  publication-title: SN Comput Sci.
  doi: 10.1007/s42979-021-00592-x
– ident: 765_CR88
  doi: 10.1145/2019583.2019588
– ident: 765_CR40
  doi: 10.1109/CoNMedia.2013.6708545
– volume: 50
  start-page: 3913
  issue: 11
  year: 2020
  ident: 765_CR78
  publication-title: Appl Intell.
  doi: 10.1007/s10489-020-01770-9
– volume: 7
  start-page: 1365
  year: 2018
  ident: 765_CR86
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2884249
– ident: 765_CR96
  doi: 10.3390/ijgi8120584
– ident: 765_CR50
  doi: 10.1016/j.websem.2018.11.003
– volume: 11
  start-page: 355
  issue: 5–6
  year: 2019
  ident: 765_CR87
  publication-title: Found Trends Mach Learn.
  doi: 10.1561/2200000073
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 765_CR8
  publication-title: ACM Sigmod Rec.
  doi: 10.1145/304181.304187
– volume: 1
  start-page: 577
  year: 2001
  ident: 765_CR131
  publication-title: ICML.
– ident: 765_CR148
– volume: 41
  start-page: 191
  issue: 1
  year: 1992
  ident: 765_CR66
  publication-title: J R Stat Soc Ser C (Applied Statistics)
– volume: 15
  start-page: 931
  issue: 6
  year: 2017
  ident: 765_CR44
  publication-title: IEEE Trans Dependable Secure Comput.
  doi: 10.1109/TDSC.2017.2762673
– ident: 765_CR93
– ident: 765_CR103
  doi: 10.1016/j.iot.2021.100393
– volume: 12
  start-page: 554
  year: 1999
  ident: 765_CR94
  publication-title: Adv Neural Inf Process Syst.
– ident: 765_CR46
  doi: 10.1007/978-3-642-35289-8_32
– ident: 765_CR98
  doi: 10.1007/978-0-387-09823-4_14
– volume: 26
  start-page: 745
  issue: 4
  year: 2017
  ident: 765_CR27
  publication-title: J Comput Graph Stat.
  doi: 10.1080/10618600.2017.1384734
– ident: 765_CR49
– volume: 7
  start-page: 3
  issue: 3
  year: 2006
  ident: 765_CR146
  publication-title: IEEE Distrib Syst Online.
  doi: 10.1109/MDSO.2006.22
– volume: 5
  start-page: 180
  year: 2019
  ident: 765_CR101
  publication-title: Internet Things.
  doi: 10.1016/j.iot.2019.01.007
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: 765_CR137
  publication-title: J Big Data.
  doi: 10.1186/s40537-016-0043-6
– ident: 765_CR122
  doi: 10.1099/00221287-17-1-201
– volume: 22
  start-page: 458
  issue: 3
  year: 2008
  ident: 765_CR120
  publication-title: J Econ Surv.
  doi: 10.1111/j.1467-6419.2007.00538.x
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 765_CR108
  publication-title: J Big Data.
  doi: 10.1186/s40537-019-0211-6
– ident: 765_CR43
  doi: 10.1109/CVPR.2016.90
– ident: 765_CR24
  doi: 10.1145/502585.502665
– volume: 32
  start-page: 51
  issue: 1
  year: 2016
  ident: 765_CR48
  publication-title: Int J Hum Comput Interact.
  doi: 10.1080/10447318.2015.1087664
– volume: 25
  start-page: 1151
  issue: 3
  year: 2020
  ident: 765_CR109
  publication-title: Mob Netw Appl.
  doi: 10.1007/s11036-019-01443-z
– volume: 9
  start-page: 140
  issue: 2
  year: 2020
  ident: 765_CR29
  publication-title: J Urban Manag.
  doi: 10.1016/j.jum.2019.12.001
– ident: 765_CR35
– ident: 765_CR118
  doi: 10.1109/ICMLA.2018.00227
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 765_CR58
  publication-title: Proc IEEE.
  doi: 10.1109/5.58325
– ident: 765_CR121
  doi: 10.17512/pjms.2018.17.1.19
– volume-title: Association rule mining: a survey
  year: 2003
  ident: 765_CR145
– volume: 96
  start-page: 328
  issue: 3
  year: 2020
  ident: 765_CR76
  publication-title: J Retail.
  doi: 10.1016/j.jretai.2020.01.001
– volume: 6
  start-page: 19205
  year: 2018
  ident: 765_CR72
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2815030
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 765_CR129
  publication-title: J Big Data.
  doi: 10.1186/s40537-015-0030-3
– ident: 765_CR112
  doi: 10.1007/s11036-020-01650-z
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 765_CR67
  publication-title: Proc IEEE.
  doi: 10.1109/5.726791
– ident: 765_CR39
  doi: 10.1145/335191.335372
– ident: 765_CR80
– ident: 765_CR113
  doi: 10.1016/j.jnca.2020.102762
– ident: 765_CR2
  doi: 10.1145/276304.276314
– volume: 6
  start-page: 37
  issue: 1
  year: 1991
  ident: 765_CR5
  publication-title: Mach Learn.
  doi: 10.1007/BF00153759
– volume: 78
  start-page: 6939
  issue: 6
  year: 2019
  ident: 765_CR70
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-018-6445-z
– volume: 6
  start-page: 38
  issue: 3
  year: 2018
  ident: 765_CR11
  publication-title: Machines.
  doi: 10.3390/machines6030038
– ident: 765_CR33
  doi: 10.1109/ICCUBEA.2018.8697606
– volume: 97
  start-page: 186
  year: 1997
  ident: 765_CR134
  publication-title: VLDB.
– volume-title: Time series analysis: forecasting and control
  year: 2015
  ident: 765_CR12
– volume: 17
  start-page: 621
  issue: 4
  year: 2013
  ident: 765_CR95
  publication-title: Pers Ubiquitous Comput.
  doi: 10.1007/s00779-012-0511-8
– ident: 765_CR32
– ident: 765_CR51
  doi: 10.1016/j.psep.2018.05.009
– ident: 765_CR139
– ident: 765_CR15
– ident: 765_CR21
  doi: 10.1109/CVPR.2017.195
– ident: 765_CR68
– ident: 765_CR125
  doi: 10.1109/CVPR.2015.7298594
– volume: 29
  start-page: 93
  issue: 1
  year: 2020
  ident: 765_CR91
  publication-title: VLDB J.
  doi: 10.1007/s00778-019-00588-3
– ident: 765_CR60
– volume: 96
  start-page: 226
  year: 1996
  ident: 765_CR30
  publication-title: Kdd.
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  ident: 765_CR53
  publication-title: IEEE Trans Knowl Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– ident: 765_CR23
  doi: 10.1016/B978-012691360-6/50011-2
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 765_CR100
  publication-title: J Big Data.
  doi: 10.1186/s40537-019-0258-4
– volume: 7
  start-page: 87593
  year: 2019
  ident: 765_CR136
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2925828
– volume: 12
  start-page: 2825
  year: 2011
  ident: 765_CR85
  publication-title: J Mach Learn Res.
– ident: 765_CR77
  doi: 10.1145/2971648.2971747
– ident: 765_CR110
  doi: 10.1145/2968219.2971592
– ident: 765_CR132
– ident: 765_CR6
  doi: 10.1007/978-3-030-38557-6_3
– ident: 765_CR10
– ident: 765_CR133
  doi: 10.1016/j.dss.2020.113465
– volume: 36
  start-page: 700
  issue: 5
  year: 2016
  ident: 765_CR65
  publication-title: Int J Inf Manag.
  doi: 10.1016/j.ijinfomgt.2016.04.013
– volume: 61
  start-page: 349
  issue: 3
  year: 2018
  ident: 765_CR111
  publication-title: Comput J.
  doi: 10.1093/comjnl/bxx082
– volume: 9
  start-page: 462
  issue: 2
  year: 2009
  ident: 765_CR126
  publication-title: Appl Soft Comput.
  doi: 10.1016/j.asoc.2008.06.001
– volume-title: Deep learning
  year: 2016
  ident: 765_CR34
– volume: 73
  start-page: 202
  year: 2018
  ident: 765_CR130
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.016
– ident: 765_CR82
  doi: 10.1007/978-3-642-03270-7_5
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 765_CR115
  publication-title: J Big Data.
  doi: 10.1186/s40537-019-0219-y
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 765_CR42
  publication-title: IEEE Trans Pattern Anal Mach Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 54
  start-page: 2787
  issue: 15
  year: 2010
  ident: 765_CR9
  publication-title: Comput Netw.
  doi: 10.1016/j.comnet.2010.05.010
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 765_CR92
  publication-title: Mach Learn.
  doi: 10.1007/BF00116251
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 765_CR97
  publication-title: J Big Data.
  doi: 10.1186/s40537-019-0280-6
– volume: 5
  start-page: 42
  issue: 1
  year: 2018
  ident: 765_CR69
  publication-title: J Big Data.
  doi: 10.1186/s40537-018-0151-6
– volume: 10
  start-page: 255
  issue: 4
  year: 2006
  ident: 765_CR28
  publication-title: Pers Ubiquitous Comput.
  doi: 10.1007/s00779-005-0046-3
– ident: 765_CR37
  doi: 10.1109/WI.2005.147
– volume: 97
  start-page: 120
  year: 2017
  ident: 765_CR147
  publication-title: Int J Med Inform.
  doi: 10.1016/j.ijmedinf.2016.09.014
– ident: 765_CR123
– ident: 765_CR124
  doi: 10.1145/2632048.2632052
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 765_CR107
  publication-title: J Big Data.
  doi: 10.1186/s40537-020-00328-3
– volume: 22
  start-page: 1646
  issue: 3
  year: 2020
  ident: 765_CR7
  publication-title: IEEE Commun Surv Tutor.
  doi: 10.1109/COMST.2020.2988293
– volume: 42
  start-page: 61
  issue: 1–2
  year: 2001
  ident: 765_CR31
  publication-title: Mach Learn.
  doi: 10.1023/A:1007656703224
– ident: 765_CR45
– volume-title: Data mining: concepts and techniques
  year: 2011
  ident: 765_CR38
– volume: 12
  start-page: 372
  issue: 3
  year: 2000
  ident: 765_CR144
  publication-title: IEEE Trans Knowl Data Eng.
  doi: 10.1109/69.846291
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 765_CR41
  publication-title: Nat Commun.
  doi: 10.1038/s41467-020-17971-2
– ident: 765_CR4
– volume-title: Machine learning with TensorFlow
  year: 2018
  ident: 765_CR117
– volume: 11
  start-page: 20130789
  issue: 98
  year: 2014
  ident: 765_CR116
  publication-title: J R Soc Interface.
  doi: 10.1098/rsif.2013.0789
– ident: 765_CR73
– volume: 37
  start-page: 54
  issue: 1
  year: 1987
  ident: 765_CR18
  publication-title: Comput Vis Graph Image Process.
  doi: 10.1016/S0734-189X(87)80014-2
– volume-title: Sentiment analysis: mining opinions, sentiments, and emotions
  year: 2020
  ident: 765_CR71
  doi: 10.1017/9781108639286
– ident: 765_CR138
– volume: 50
  start-page: 1
  issue: 3
  year: 2017
  ident: 765_CR17
  publication-title: ACM Comput Surv (CSUR).
  doi: 10.1145/3076253
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 765_CR141
  publication-title: Ann Data Sci.
  doi: 10.1007/s40745-015-0040-1
– ident: 765_CR47
  doi: 10.1109/ICDE.1995.380413
– volume: 13
  start-page: 637
  issue: 3
  year: 2001
  ident: 765_CR55
  publication-title: Neural Comput.
  doi: 10.1162/089976601300014493
– volume: 22
  start-page: 949
  issue: 1
  year: 2019
  ident: 765_CR63
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-1117-8
– volume-title: Finding groups in data: an introduction to cluster analysis,
  year: 2009
  ident: 765_CR54
– volume: 6
  start-page: 3021
  issue: 60
  year: 2021
  ident: 765_CR135
  publication-title: J Open Source Softw.
  doi: 10.21105/joss.03021
– ident: 765_CR57
  doi: 10.1587/transcom.2018EBP3103
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 765_CR13
  publication-title: Mach Learn.
  doi: 10.1023/A:1010933404324
– ident: 765_CR127
  doi: 10.1109/CISDA.2009.5356528
– ident: 765_CR16
  doi: 10.1145/1871437.1871702
– volume: 249
  start-page: 13
  year: 2020
  ident: 765_CR61
  publication-title: Visnyk Natl Bank Ukr.
  doi: 10.26531/vnbu2020.249.02
– ident: 765_CR102
  doi: 10.20944/preprints202101.0457.v1
– ident: 765_CR26
  doi: 10.1145/3025171.3025184
– ident: 765_CR3
  doi: 10.1145/170036.170072
– ident: 765_CR25
  doi: 10.1109/CINTI.2012.6496753
– volume: 16
  start-page: 790
  issue: 6
  year: 2016
  ident: 765_CR62
  publication-title: Sensors.
  doi: 10.3390/s16060790
– ident: 765_CR104
  doi: 10.20944/preprints202102.0340.v1
– ident: 765_CR36
– ident: 765_CR19
  doi: 10.1108/DLP-10-2015-0022
– volume: 19
  start-page: 798
  issue: 12
  year: 2014
  ident: 765_CR74
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.08.004
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 765_CR84
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2008.01.039
– volume: 12
  start-page: 754
  issue: 5
  year: 2020
  ident: 765_CR106
  publication-title: Symmetry.
  doi: 10.3390/sym12050754
– ident: 765_CR22
– volume: 32
  start-page: 74
  issue: 3
  year: 2017
  ident: 765_CR64
  publication-title: IEEE Intell Syst.
  doi: 10.1109/MIS.2017.49
– volume: 51
  start-page: 1
  issue: 1
  year: 2018
  ident: 765_CR89
  publication-title: ACM Comput Surv (CSUR).
  doi: 10.1145/3150226
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 765_CR114
  publication-title: J Big Data.
  doi: 10.1186/s40537-020-00318-5
– volume: 108
  start-page: 38
  year: 2017
  ident: 765_CR142
  publication-title: Proc Comput Sci.
  doi: 10.1016/j.procs.2017.05.072
– volume: 9
  start-page: 79
  issue: 2
  year: 2013
  ident: 765_CR143
  publication-title: Tutor Quant Methods Psychol.
  doi: 10.20982/tqmp.09.2.p079
SSID ssj0002504465
Score 2.6146255
SecondaryResourceType review_article
Snippet The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 377
SubjectTerms Advances in Computational Approaches for Artificial Intelligence
Analytics
Artificial intelligence
Automation
Computation
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Cybersecurity
Data analysis
Data science
Data Structures and Information Theory
Decision analysis
Decision making
Image Processing, IoT and Cloud Applications
Industrial applications
Industry 4.0
Information Systems and Communication Service
Internet of Things
Machine learning
Mathematical analysis
Pattern Recognition and Graphics
Review
Review Article
Software Engineering/Programming and Operating Systems
Vision
Title Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective
URI https://link.springer.com/article/10.1007/s42979-021-00765-8
https://www.ncbi.nlm.nih.gov/pubmed/34278328
https://www.proquest.com/docview/2932202304
https://www.proquest.com/docview/2553234114
https://pubmed.ncbi.nlm.nih.gov/PMC8274472
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKXLggqrawvGSk3opVx5OHwwUVli2qVIraIu0tcmxHVCpZHgv9-51xvNkuqNwiZTaPnfHMF4_9fYy9B4TYMpNeGIBGpC4thXZWiSTPnSnBFYUPbJ_n-dll-mWcjeOE231cVjnLiSFRu4mlOfKPWJYUSX3L9OjmVpBqFHVXo4TGElvBFKzx42vl-PT84ns_y0IEXWnQk8RCpERZZuO4cybsn8NkXJSCVilQRyoTerE6PYOcz1dOPmmfhqo0WmdrEU7yT53_X7NXvn3DHodmangctdy0jgfqESJkPsRD_u2REoT_w2lvCSdjMbyjrMd_XGMk8U7pAe93wIdRgkd8DapV3cX-6Xnzi_lmzbfscnT68-RMRH0FYRGmaGEwW8mSEJKFHKGXk9YTIPJQG11bbbxSBuokgUIWzpYeHZ545zVikjqpJbxjy-2k9ZuMpwB5k0oL0hZp3jR13ZimNNCAwQ8cAwOWzP7XykbycdLA-F31tMnBFxX6ogq-qPSAfeh_c9NRb7xovTNzVxWH4X01D5oB2-9P4wCirohp_eQBbbIMFNbyBG02Ou_2t4MgRKLw4sWC33sDIudePNP-ugok3ZqoFws1YAezCJk_1v_fYuvlt9hmqypEK61x22HL07sHv4ugaFrvsSU9-rwX4_8vFXAJfg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLVcRroVAjwYlaOHYediWEENtlSx8g0Up7Sx3HEZUgW9ptK_4Uv5EZ57EsFb31tlIcZ-15JuP5PoCXClNskQjPrVIVj8vYcF06yaM0La1RZZb5gPa5n44P40-TZLIEv7teGDpW2fnE4KjLqaNv5G8wLEmi-hbxu5OfnFijqLraUWg0arHjf13iK9vZ2-0hyveVlKOtgw9j3rIKcIfBWXOLNioM5QVOpZhwlMJ5SgO8KqwunLZeSquKKFKZyEpnPC4z8qXXGImLqBAK570Ft2OlDFmUHn3sv-kQHFgc2Csx7EluTDJp-3RCtx66_sxwOhNB9a-E68VYeCXBvXpO859ibYiBo1VYaZNX9r7Rtnuw5Ov7cDG0M8taH8FsXbIAdELwz5v4k32-IHfkLxl1sjAazIen5GPZ1x-ot6zhlcDnbbBhS_jD9wJHVjPZXxV29mXeGvoADm9k3x_Ccj2t_WNguPdpFQunhMvitKqKorKVsapSFl-nrBpA1O1r7lqoc2Lc-J73IM1BFjnKIg-yyPUAXvf3nDRAH9eOXuvElbdGf5bPVXQAL_rLaK5Ug7G1n57jmCRREjOHCMc8aqTbP04F2hOJk2cLcu8HEBT44pX6-FuABNcE9JjJAWx0GjL_W_9fxZPrV7EOd8YHe7v57vb-zlO4K4Pm0um6NVienZ77Z5iOzYrnwQYYHN200f0BTY5Dog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Science+and+Analytics%3A+An+Overview+from+Data-Driven+Smart+Computing%2C+Decision-Making+and+Applications+Perspective&rft.jtitle=SN+computer+science&rft.au=Sarker%2C+Iqbal+H.&rft.date=2021-09-01&rft.pub=Springer+Singapore&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-021-00765-8&rft_id=info%3Apmid%2F34278328&rft.externalDocID=PMC8274472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon