Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective
The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can...
Saved in:
Published in | SN computer science Vol. 2; no. 5; p. 377 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for
smart decision-making
in various applications domains. In the area of data science,
advanced analytics
methods including
machine learning
modeling can provide actionable insights or deeper knowledge about data, which makes the
computing
process automatic and smart. In this paper, we present a comprehensive view on “Data Science” including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world
application domains
including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential
research directions
within the scope of our study. Overall, this paper aims to serve as a reference point on
data science
and
advanced analytics
to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems. |
---|---|
AbstractList | The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for
smart decision-making
in various applications domains. In the area of data science,
advanced analytics
methods including
machine learning
modeling can provide actionable insights or deeper knowledge about data, which makes the
computing
process automatic and smart. In this paper, we present a comprehensive view on “Data Science” including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world
application domains
including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential
research directions
within the scope of our study. Overall, this paper aims to serve as a reference point on
data science
and
advanced analytics
to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems. The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on “Data Science” including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems. The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on "Data Science" including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems.The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for smart decision-making in various applications domains. In the area of data science, advanced analytics methods including machine learning modeling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. In this paper, we present a comprehensive view on "Data Science" including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world application domains including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential research directions within the scope of our study. Overall, this paper aims to serve as a reference point on data science and advanced analytics to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems. The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many more, in the current age of the Fourth Industrial Revolution (Industry 4.0 or 4IR). Extracting knowledge or useful insights from these data can be used for in various applications domains. In the area of data science, methods including modeling can provide actionable insights or deeper knowledge about data, which makes the process automatic and smart. In this paper, we present a comprehensive view on "Data Science" including various types of advanced analytics methods that can be applied to enhance the intelligence and capabilities of an application through smart decision-making in different scenarios. We also discuss and summarize ten potential real-world including business, healthcare, cybersecurity, urban and rural data science, and so on by taking into account data-driven smart computing and decision making. Based on this, we finally highlight the challenges and potential within the scope of our study. Overall, this paper aims to serve as a reference point on and to the researchers and decision-makers as well as application developers, particularly from the data-driven solution point of view for real-world problems. |
ArticleNumber | 377 |
Author | Sarker, Iqbal H. |
Author_xml | – sequence: 1 givenname: Iqbal H. orcidid: 0000-0003-1740-5517 surname: Sarker fullname: Sarker, Iqbal H. email: msarker@swin.edu.au organization: Swinburne University of Technology, Department of Computer Science and Engineering, Chittagong University of Engineering & Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34278328$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1UREvpH2CBLLFhgcGPPGwWlaoZXlJRkQoSO8tx7gwuiR3sJKj_Hs-k5dFFV76-_s7R0fV9jA588IDQU0ZfMUrr16ngqlaEckbytSqJfICOeFUxIhWtD_Y1J0qV3w7RSUpXlFJe0qKoykfoUBS8loLLIzSvzWjwpXXgLWDjW3zmTXc9Opve5BJfzBBnB7_wJoYe72Cyjm4Gjy97E0e8Cv0wjc5vX-I1WJdc8OST-ZEbi9kwdM6aMbcT_gwxDWDHLH-CHm5Ml-Dk5jxGX9-9_bL6QM4v3n9cnZ0TK6SSxHCmqJJCcSsqKsuWWihpWYFojGysNMC5EQ1joqZ1axVAAwxakJTLhjVUHKPTxXeYmh5aC36MptNDdDn9tQ7G6f9fvPuut2HWktdFUfNs8OLGIIafE6RR9y5Z6DrjIUxJ87IUXBSMFRl9fge9ClPM08yUEpxTLuiOevZvoj9Rbr8kA3IBbAwpRdho68b9BHNA12lG9W4B9LIAOi-A3i-A3kn5Hemt-70isYhShv0W4t_Y96h-A4kvwx4 |
CitedBy_id | crossref_primary_10_1016_j_iot_2022_100528 crossref_primary_10_1007_s11846_024_00828_z crossref_primary_10_1016_j_acalib_2024_102927 crossref_primary_10_1016_j_watres_2024_121499 crossref_primary_10_1016_j_caeai_2023_100145 crossref_primary_10_1016_j_joitmc_2024_100411 crossref_primary_10_1007_s44163_024_00129_0 crossref_primary_10_1016_j_imu_2022_100969 crossref_primary_10_3390_forecast6010010 crossref_primary_10_1002_slct_202400091 crossref_primary_10_1016_j_ifacol_2024_09_236 crossref_primary_10_2166_hydro_2025_258 crossref_primary_10_1038_s41598_024_74381_w crossref_primary_10_1016_j_egyr_2024_01_008 crossref_primary_10_1007_s10639_023_12223_4 crossref_primary_10_3390_systems12100415 crossref_primary_10_1016_j_est_2024_114982 crossref_primary_10_1016_j_ijme_2025_101138 crossref_primary_10_1016_j_rineng_2025_104265 crossref_primary_10_1002_eng2_12893 crossref_primary_10_1007_s11042_023_15500_z crossref_primary_10_1080_20421338_2024_2388619 crossref_primary_10_1016_j_dajour_2024_100405 crossref_primary_10_15622_ia_23_5_4 crossref_primary_10_3934_math_20231188 crossref_primary_10_1080_0144929X_2023_2286535 crossref_primary_10_3389_fspor_2023_1267548 crossref_primary_10_1109_ACCESS_2024_3375764 crossref_primary_10_1080_2573234X_2023_2285483 crossref_primary_10_3389_fpubh_2024_1333163 crossref_primary_10_1016_j_iot_2024_101082 crossref_primary_10_1007_s40033_022_00381_7 crossref_primary_10_1109_TNSM_2022_3233673 crossref_primary_10_1016_j_artint_2024_104197 crossref_primary_10_3390_ijerph20064775 crossref_primary_10_1016_j_dsm_2021_12_002 crossref_primary_10_1038_s41598_024_74057_5 crossref_primary_10_1007_s44196_024_00694_3 crossref_primary_10_1080_15456870_2023_2259532 crossref_primary_10_1615_TelecomRadEng_2024054002 crossref_primary_10_3390_fi15020071 crossref_primary_10_1007_s11042_022_14043_z crossref_primary_10_1016_j_rineng_2024_102132 crossref_primary_10_2478_amns_2024_3137 crossref_primary_10_48175_IJARSCT_11955 crossref_primary_10_4108_eetinis_v11i3_5237 crossref_primary_10_1016_j_bcra_2024_100207 crossref_primary_10_1002_spy2_212 crossref_primary_10_3390_w15020331 crossref_primary_10_61164_rmnm_v12i4_3340 crossref_primary_10_1016_j_compbiomed_2024_109389 crossref_primary_10_1007_s11356_024_33350_6 crossref_primary_10_3390_molecules28165936 crossref_primary_10_56294_saludcyt20241341 crossref_primary_10_2478_amns_2023_2_00208 crossref_primary_10_31637_epsir_2025_782 crossref_primary_10_1016_j_inffus_2023_102040 crossref_primary_10_2139_ssrn_4761521 crossref_primary_10_1007_s40031_024_01178_w crossref_primary_10_1007_s40745_022_00428_2 crossref_primary_10_1016_j_jiec_2024_09_035 crossref_primary_10_1007_s10620_024_08659_4 crossref_primary_10_1080_08874417_2023_2220294 crossref_primary_10_1109_JSEN_2023_3317645 crossref_primary_10_1109_MIS_2022_3218913 crossref_primary_10_1002_spy2_295 crossref_primary_10_3390_jcp2030031 crossref_primary_10_1016_j_technovation_2023_102869 crossref_primary_10_7717_peerj_cs_1361 crossref_primary_10_3390_s24041337 crossref_primary_10_1007_s11051_022_05535_y crossref_primary_10_1016_j_bjae_2023_04_003 crossref_primary_10_1109_ACCESS_2023_3332512 crossref_primary_10_3390_agronomy13030723 crossref_primary_10_3390_electronics13224408 crossref_primary_10_1186_s12544_024_00671_z crossref_primary_10_1007_s40745_022_00437_1 crossref_primary_10_1016_j_techsoc_2024_102662 crossref_primary_10_1016_S1470_2045_22_00011_0 crossref_primary_10_12688_f1000research_156525_2 crossref_primary_10_2139_ssrn_4054490 crossref_primary_10_3390_s24113630 crossref_primary_10_1007_s44353_024_00002_2 crossref_primary_10_12688_f1000research_156525_1 crossref_primary_10_12688_f1000research_156525_4 crossref_primary_10_12688_f1000research_156525_3 crossref_primary_10_3390_buildings14010259 crossref_primary_10_3390_fi15090285 crossref_primary_10_1007_s42791_024_00083_z crossref_primary_10_3390_mca29040049 crossref_primary_10_1016_j_artint_2023_103884 crossref_primary_10_1007_s12145_024_01382_8 crossref_primary_10_1007_s41471_023_00154_2 crossref_primary_10_1108_LHT_05_2023_0193 crossref_primary_10_1177_1063293X241297528 crossref_primary_10_3390_technologies12070099 crossref_primary_10_32604_cmc_2025_060765 crossref_primary_10_1007_s43621_024_00212_7 crossref_primary_10_15673_atbp_v15i2_2520 crossref_primary_10_1007_s40171_022_00328_7 crossref_primary_10_1051_e3sconf_202560502002 crossref_primary_10_3390_mi14050972 crossref_primary_10_3390_jmse12020240 crossref_primary_10_3390_su15054223 crossref_primary_10_2478_amns_2025_0183 crossref_primary_10_3390_sym13101975 crossref_primary_10_3390_bdcc8120187 crossref_primary_10_1016_j_future_2021_11_027 crossref_primary_10_59413_ajocs_v3_i2_5 crossref_primary_10_1007_s40745_022_00381_0 crossref_primary_10_1038_s41571_024_00909_8 crossref_primary_10_3390_sym16010081 crossref_primary_10_56294_dm202324 crossref_primary_10_1016_j_dsm_2024_03_002 crossref_primary_10_3390_standards3040028 crossref_primary_10_1371_journal_pdig_0000294 crossref_primary_10_1016_j_atech_2024_100483 crossref_primary_10_1016_j_heha_2024_100114 crossref_primary_10_3390_su141811698 crossref_primary_10_3390_technologies13010022 crossref_primary_10_1007_s00595_023_02662_4 crossref_primary_10_1016_j_icte_2024_05_007 crossref_primary_10_48175_IJARSCT_121170 crossref_primary_10_1186_s43093_025_00452_7 crossref_primary_10_1016_j_dcan_2024_02_007 crossref_primary_10_1007_s00521_023_08669_9 crossref_primary_10_1109_ACCESS_2022_3223085 crossref_primary_10_32604_cmc_2023_038437 crossref_primary_10_3389_fpubh_2022_837433 crossref_primary_10_36548_jtcsst_2023_3_008 crossref_primary_10_1016_j_ynexs_2025_100057 crossref_primary_10_1097_PCR_0000000000000517 crossref_primary_10_1109_ACCESS_2023_3294569 crossref_primary_10_1109_ACCESS_2025_3548542 crossref_primary_10_1016_j_ijdrr_2025_105260 crossref_primary_10_36680_j_itcon_2025_011 crossref_primary_10_1016_j_ifacol_2024_08_411 crossref_primary_10_1007_s11042_024_19022_0 crossref_primary_10_1063_5_0242129 crossref_primary_10_1051_shsconf_202317603006 |
Cites_doi | 10.1109/ITIA50152.2020.9312251 10.1016/j.compchemeng.2017.06.011 10.1108/WJSTSD-11-2016-0062 10.1016/j.ijpe.2019.05.022 10.1109/ICCUBEA.2018.8697476 10.1109/MilCIS.2015.7348942 10.1145/3451964.3451966 10.1016/j.ymeth.2016.12.014 10.1109/ACCESS.2018.2836950 10.1007/s10462-017-9552-8 10.1016/j.knosys.2020.106482 10.1080/03610926.2019.1622728 10.1016/j.future.2019.05.041 10.1007/s42979-021-00592-x 10.1145/2019583.2019588 10.1109/CoNMedia.2013.6708545 10.1007/s10489-020-01770-9 10.1109/ACCESS.2018.2884249 10.3390/ijgi8120584 10.1016/j.websem.2018.11.003 10.1561/2200000073 10.1145/304181.304187 10.1109/TDSC.2017.2762673 10.1016/j.iot.2021.100393 10.1007/978-3-642-35289-8_32 10.1007/978-0-387-09823-4_14 10.1080/10618600.2017.1384734 10.1109/MDSO.2006.22 10.1016/j.iot.2019.01.007 10.1186/s40537-016-0043-6 10.1099/00221287-17-1-201 10.1111/j.1467-6419.2007.00538.x 10.1186/s40537-019-0211-6 10.1109/CVPR.2016.90 10.1145/502585.502665 10.1080/10447318.2015.1087664 10.1007/s11036-019-01443-z 10.1016/j.jum.2019.12.001 10.1109/ICMLA.2018.00227 10.1109/5.58325 10.17512/pjms.2018.17.1.19 10.1016/j.jretai.2020.01.001 10.1109/ACCESS.2018.2815030 10.1186/s40537-015-0030-3 10.1007/s11036-020-01650-z 10.1109/5.726791 10.1145/335191.335372 10.1016/j.jnca.2020.102762 10.1145/276304.276314 10.1007/BF00153759 10.1007/s11042-018-6445-z 10.3390/machines6030038 10.1109/ICCUBEA.2018.8697606 10.1007/s00779-012-0511-8 10.1016/j.psep.2018.05.009 10.1109/CVPR.2017.195 10.1109/CVPR.2015.7298594 10.1007/s00778-019-00588-3 10.1109/TKDE.2017.2720168 10.1016/B978-012691360-6/50011-2 10.1186/s40537-019-0258-4 10.1109/ACCESS.2019.2925828 10.1145/2971648.2971747 10.1145/2968219.2971592 10.1007/978-3-030-38557-6_3 10.1016/j.dss.2020.113465 10.1016/j.ijinfomgt.2016.04.013 10.1093/comjnl/bxx082 10.1016/j.asoc.2008.06.001 10.1016/j.patcog.2017.08.016 10.1007/978-3-642-03270-7_5 10.1186/s40537-019-0219-y 10.1109/TPAMI.2015.2389824 10.1016/j.comnet.2010.05.010 10.1007/BF00116251 10.1186/s40537-019-0280-6 10.1186/s40537-018-0151-6 10.1007/s00779-005-0046-3 10.1109/WI.2005.147 10.1016/j.ijmedinf.2016.09.014 10.1145/2632048.2632052 10.1186/s40537-020-00328-3 10.1109/COMST.2020.2988293 10.1023/A:1007656703224 10.1109/69.846291 10.1038/s41467-020-17971-2 10.1098/rsif.2013.0789 10.1016/S0734-189X(87)80014-2 10.1017/9781108639286 10.1145/3076253 10.1007/s40745-015-0040-1 10.1109/ICDE.1995.380413 10.1162/089976601300014493 10.1007/s10586-017-1117-8 10.21105/joss.03021 10.1587/transcom.2018EBP3103 10.1023/A:1010933404324 10.1109/CISDA.2009.5356528 10.1145/1871437.1871702 10.26531/vnbu2020.249.02 10.20944/preprints202101.0457.v1 10.1145/3025171.3025184 10.1145/170036.170072 10.1109/CINTI.2012.6496753 10.3390/s16060790 10.20944/preprints202102.0340.v1 10.1108/DLP-10-2015-0022 10.1016/j.tplants.2014.08.004 10.1016/j.eswa.2008.01.039 10.3390/sym12050754 10.1109/MIS.2017.49 10.1145/3150226 10.1186/s40537-020-00318-5 10.1016/j.procs.2017.05.072 10.20982/tqmp.09.2.p079 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. Copyright Springer Nature B.V. Sep 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. – notice: Copyright Springer Nature B.V. Sep 2021 |
DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s42979-021-00765-8 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2661-8907 |
ExternalDocumentID | PMC8274472 34278328 10_1007_s42979_021_00765_8 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 2JN 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABHQN ABJNI ABMQK ABRTQ ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKFA ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFKRA AFOHR AFQWF AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS ATHPR AYFIA BAPOH BENPR BGLVJ BSONS CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS PHGZM PHGZT PQGLB PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX CITATION NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c3898-a219098392c36085d0ce5056e3ba8bc8ae22a3b113707dc9eebe1ede8028b1b03 |
IEDL.DBID | BENPR |
ISSN | 2662-995X 2661-8907 |
IngestDate | Thu Aug 21 17:37:41 EDT 2025 Thu Jul 10 18:25:40 EDT 2025 Fri Jul 25 20:20:58 EDT 2025 Mon Jul 21 05:59:21 EDT 2025 Tue Jul 01 05:14:02 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Mon Jul 21 06:07:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning Decision-making Data science applications Advanced analytics Smart computing Machine learning Data science Predictive analytics |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3898-a219098392c36085d0ce5056e3ba8bc8ae22a3b113707dc9eebe1ede8028b1b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1740-5517 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8274472 |
PMID | 34278328 |
PQID | 2932202304 |
PQPubID | 6623307 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8274472 proquest_miscellaneous_2553234114 proquest_journals_2932202304 pubmed_primary_34278328 crossref_citationtrail_10_1007_s42979_021_00765_8 crossref_primary_10_1007_s42979_021_00765_8 springer_journals_10_1007_s42979_021_00765_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Kolkata |
PublicationTitle | SN computer science |
PublicationTitleAbbrev | SN COMPUT. SCI |
PublicationTitleAlternate | SN Comput Sci |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
References | N Shukla (765_CR117) 2018 765_CR56 W Wang (765_CR134) 1997; 97 SA Harmon (765_CR41) 2020; 11 765_CR57 Z Li (765_CR70) 2019; 78 765_CR51 P Wei (765_CR136) 2019; 7 765_CR102 Y Mohamadou (765_CR78) 2020; 50 765_CR103 765_CR104 765_CR50 J Ya (765_CR142) 2017; 108 IH Sarker (765_CR107) 2020; 7 D Larson (765_CR65) 2016; 36 F Pedregosa (765_CR85) 2011; 12 765_CR49 DW Aha (765_CR5) 1991; 6 D Donoho (765_CR27) 2017; 26 765_CR45 765_CR46 IH Sarker (765_CR100) 2019; 6 765_CR47 D Kwon (765_CR63) 2019; 22 765_CR40 765_CR110 M Ankerst (765_CR8) 1999; 28 SS Keerthi (765_CR55) 2001; 13 765_CR112 765_CR43 765_CR113 MA Al-Garadi (765_CR7) 2020; 22 IH Sarker (765_CR101) 2019; 5 B Liu (765_CR71) 2020 L Cao (765_CR17) 2017; 50 KS Tuncel (765_CR130) 2018; 73 I Goodfellow (765_CR34) 2016 Z Engin (765_CR29) 2020; 9 P He (765_CR44) 2017; 15 MC Howard (765_CR48) 2016; 32 765_CR77 765_CR79 765_CR73 D Krukovets (765_CR61) 2020; 249 765_CR75 JL Leevy (765_CR69) 2018; 5 IH Sarker (765_CR106) 2020; 12 IH Sarker (765_CR105) 2021; 2 Y Xin (765_CR140) 2018; 6 S Perveen (765_CR86) 2018; 7 Y LeCun (765_CR67) 1998; 86 H-S Park (765_CR84) 2009; 36 P Zheng (765_CR146) 2006; 7 IH Sarker (765_CR115) 2019; 6 765_CR68 T Zheng (765_CR147) 2017; 97 M Kulin (765_CR62) 2016; 16 MJ Zaki (765_CR144) 2000; 12 765_CR60 AG Yong (765_CR143) 2013; 9 Q Zhao (765_CR145) 2003 A Rizk (765_CR97) 2020; 7 A Silvestrini (765_CR120) 2008; 22 S Safdar (765_CR99) 2018; 50 N Eagle (765_CR28) 2006; 10 765_CR15 765_CR16 IH Sarker (765_CR109) 2020; 25 GA Carpenter (765_CR18) 1987; 37 SS Kamble (765_CR52) 2020; 219 765_CR14 765_CR96 765_CR10 T Kohonen (765_CR58) 1990; 78 765_CR98 C Ma (765_CR74) 2014; 19 765_CR148 765_CR93 J Liu (765_CR72) 2018; 6 X Qin (765_CR91) 2020; 29 IH Sarker (765_CR114) 2020; 7 F Balducci (765_CR11) 2018; 6 765_CR90 J Han (765_CR38) 2011 H Zhu (765_CR149) 2014; 5 765_CR88 765_CR150 765_CR3 M Ester (765_CR30) 1996; 96 765_CR2 765_CR1 A Karpatne (765_CR53) 2017; 29 GEP Box (765_CR12) 2015 765_CR80 765_CR6 765_CR82 D Xu (765_CR141) 2015; 2 765_CR4 765_CR83 G Peyré (765_CR87) 2019; 11 K Wagstaff (765_CR131) 2001; 1 K He (765_CR42) 2015; 37 S Pouyanfar (765_CR89) 2018; 51 L Breiman (765_CR13) 2001; 45 IH Sarker (765_CR111) 2018; 61 S Le Cessie (765_CR66) 1992; 41 N Koroniotis (765_CR59) 2019; 100 C Rasmussen (765_CR94) 1999; 12 765_CR37 765_CR39 765_CR33 765_CR35 L Kaufman (765_CR54) 2009 765_CR36 ML Waskom (765_CR135) 2021; 6 765_CR121 765_CR122 765_CR123 765_CR32 765_CR124 765_CR125 765_CR127 765_CR128 765_CR118 765_CR119 JR Quinlan (765_CR92) 1986; 1 C-W Tsai (765_CR129) 2015; 2 IH Sarker (765_CR108) 2019; 6 A Marchand (765_CR76) 2020; 96 PA Flach (765_CR31) 2001; 42 K Weiss (765_CR137) 2016; 3 765_CR26 765_CR22 765_CR23 L Atzori (765_CR9) 2010; 54 A Chessel (765_CR20) 2017; 115 765_CR24 R Rawassizadeh (765_CR95) 2013; 17 765_CR25 M Schläpfer (765_CR116) 2014; 11 765_CR132 765_CR133 765_CR21 M Nilashi (765_CR81) 2017; 106 A Tajbakhsh (765_CR126) 2009; 9 765_CR138 765_CR139 P Lade (765_CR64) 2017; 32 765_CR19 |
References_xml | – ident: 765_CR150 doi: 10.1109/ITIA50152.2020.9312251 – volume: 5 start-page: 58 issue: 4 year: 2014 ident: 765_CR149 publication-title: ACM Trans Intell Syst Technol (TIST). – ident: 765_CR75 – volume: 106 start-page: 212 year: 2017 ident: 765_CR81 publication-title: Comput Chem Eng. doi: 10.1016/j.compchemeng.2017.06.011 – ident: 765_CR1 doi: 10.1108/WJSTSD-11-2016-0062 – volume: 219 start-page: 179 year: 2020 ident: 765_CR52 publication-title: Int J Prod Econ. doi: 10.1016/j.ijpe.2019.05.022 – ident: 765_CR56 doi: 10.1109/ICCUBEA.2018.8697476 – ident: 765_CR79 doi: 10.1109/MilCIS.2015.7348942 – ident: 765_CR14 – ident: 765_CR128 doi: 10.1145/3451964.3451966 – volume: 115 start-page: 110 year: 2017 ident: 765_CR20 publication-title: Methods. doi: 10.1016/j.ymeth.2016.12.014 – volume: 6 start-page: 35365 year: 2018 ident: 765_CR140 publication-title: IEEE Access. doi: 10.1109/ACCESS.2018.2836950 – ident: 765_CR90 – volume: 50 start-page: 597 issue: 4 year: 2018 ident: 765_CR99 publication-title: Artif Intell Rev. doi: 10.1007/s10462-017-9552-8 – ident: 765_CR83 doi: 10.1016/j.knosys.2020.106482 – ident: 765_CR119 doi: 10.1080/03610926.2019.1622728 – volume: 100 start-page: 779 year: 2019 ident: 765_CR59 publication-title: Future Gener Comput Syst. doi: 10.1016/j.future.2019.05.041 – volume: 2 start-page: 1 issue: 3 year: 2021 ident: 765_CR105 publication-title: SN Comput Sci. doi: 10.1007/s42979-021-00592-x – ident: 765_CR88 doi: 10.1145/2019583.2019588 – ident: 765_CR40 doi: 10.1109/CoNMedia.2013.6708545 – volume: 50 start-page: 3913 issue: 11 year: 2020 ident: 765_CR78 publication-title: Appl Intell. doi: 10.1007/s10489-020-01770-9 – volume: 7 start-page: 1365 year: 2018 ident: 765_CR86 publication-title: IEEE Access. doi: 10.1109/ACCESS.2018.2884249 – ident: 765_CR96 doi: 10.3390/ijgi8120584 – ident: 765_CR50 doi: 10.1016/j.websem.2018.11.003 – volume: 11 start-page: 355 issue: 5–6 year: 2019 ident: 765_CR87 publication-title: Found Trends Mach Learn. doi: 10.1561/2200000073 – volume: 28 start-page: 49 issue: 2 year: 1999 ident: 765_CR8 publication-title: ACM Sigmod Rec. doi: 10.1145/304181.304187 – volume: 1 start-page: 577 year: 2001 ident: 765_CR131 publication-title: ICML. – ident: 765_CR148 – volume: 41 start-page: 191 issue: 1 year: 1992 ident: 765_CR66 publication-title: J R Stat Soc Ser C (Applied Statistics) – volume: 15 start-page: 931 issue: 6 year: 2017 ident: 765_CR44 publication-title: IEEE Trans Dependable Secure Comput. doi: 10.1109/TDSC.2017.2762673 – ident: 765_CR93 – ident: 765_CR103 doi: 10.1016/j.iot.2021.100393 – volume: 12 start-page: 554 year: 1999 ident: 765_CR94 publication-title: Adv Neural Inf Process Syst. – ident: 765_CR46 doi: 10.1007/978-3-642-35289-8_32 – ident: 765_CR98 doi: 10.1007/978-0-387-09823-4_14 – volume: 26 start-page: 745 issue: 4 year: 2017 ident: 765_CR27 publication-title: J Comput Graph Stat. doi: 10.1080/10618600.2017.1384734 – ident: 765_CR49 – volume: 7 start-page: 3 issue: 3 year: 2006 ident: 765_CR146 publication-title: IEEE Distrib Syst Online. doi: 10.1109/MDSO.2006.22 – volume: 5 start-page: 180 year: 2019 ident: 765_CR101 publication-title: Internet Things. doi: 10.1016/j.iot.2019.01.007 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: 765_CR137 publication-title: J Big Data. doi: 10.1186/s40537-016-0043-6 – ident: 765_CR122 doi: 10.1099/00221287-17-1-201 – volume: 22 start-page: 458 issue: 3 year: 2008 ident: 765_CR120 publication-title: J Econ Surv. doi: 10.1111/j.1467-6419.2007.00538.x – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 765_CR108 publication-title: J Big Data. doi: 10.1186/s40537-019-0211-6 – ident: 765_CR43 doi: 10.1109/CVPR.2016.90 – ident: 765_CR24 doi: 10.1145/502585.502665 – volume: 32 start-page: 51 issue: 1 year: 2016 ident: 765_CR48 publication-title: Int J Hum Comput Interact. doi: 10.1080/10447318.2015.1087664 – volume: 25 start-page: 1151 issue: 3 year: 2020 ident: 765_CR109 publication-title: Mob Netw Appl. doi: 10.1007/s11036-019-01443-z – volume: 9 start-page: 140 issue: 2 year: 2020 ident: 765_CR29 publication-title: J Urban Manag. doi: 10.1016/j.jum.2019.12.001 – ident: 765_CR35 – ident: 765_CR118 doi: 10.1109/ICMLA.2018.00227 – volume: 78 start-page: 1464 issue: 9 year: 1990 ident: 765_CR58 publication-title: Proc IEEE. doi: 10.1109/5.58325 – ident: 765_CR121 doi: 10.17512/pjms.2018.17.1.19 – volume-title: Association rule mining: a survey year: 2003 ident: 765_CR145 – volume: 96 start-page: 328 issue: 3 year: 2020 ident: 765_CR76 publication-title: J Retail. doi: 10.1016/j.jretai.2020.01.001 – volume: 6 start-page: 19205 year: 2018 ident: 765_CR72 publication-title: IEEE Access. doi: 10.1109/ACCESS.2018.2815030 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 765_CR129 publication-title: J Big Data. doi: 10.1186/s40537-015-0030-3 – ident: 765_CR112 doi: 10.1007/s11036-020-01650-z – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 765_CR67 publication-title: Proc IEEE. doi: 10.1109/5.726791 – ident: 765_CR39 doi: 10.1145/335191.335372 – ident: 765_CR80 – ident: 765_CR113 doi: 10.1016/j.jnca.2020.102762 – ident: 765_CR2 doi: 10.1145/276304.276314 – volume: 6 start-page: 37 issue: 1 year: 1991 ident: 765_CR5 publication-title: Mach Learn. doi: 10.1007/BF00153759 – volume: 78 start-page: 6939 issue: 6 year: 2019 ident: 765_CR70 publication-title: Multimed Tools Appl. doi: 10.1007/s11042-018-6445-z – volume: 6 start-page: 38 issue: 3 year: 2018 ident: 765_CR11 publication-title: Machines. doi: 10.3390/machines6030038 – ident: 765_CR33 doi: 10.1109/ICCUBEA.2018.8697606 – volume: 97 start-page: 186 year: 1997 ident: 765_CR134 publication-title: VLDB. – volume-title: Time series analysis: forecasting and control year: 2015 ident: 765_CR12 – volume: 17 start-page: 621 issue: 4 year: 2013 ident: 765_CR95 publication-title: Pers Ubiquitous Comput. doi: 10.1007/s00779-012-0511-8 – ident: 765_CR32 – ident: 765_CR51 doi: 10.1016/j.psep.2018.05.009 – ident: 765_CR139 – ident: 765_CR15 – ident: 765_CR21 doi: 10.1109/CVPR.2017.195 – ident: 765_CR68 – ident: 765_CR125 doi: 10.1109/CVPR.2015.7298594 – volume: 29 start-page: 93 issue: 1 year: 2020 ident: 765_CR91 publication-title: VLDB J. doi: 10.1007/s00778-019-00588-3 – ident: 765_CR60 – volume: 96 start-page: 226 year: 1996 ident: 765_CR30 publication-title: Kdd. – volume: 29 start-page: 2318 issue: 10 year: 2017 ident: 765_CR53 publication-title: IEEE Trans Knowl Data Eng. doi: 10.1109/TKDE.2017.2720168 – ident: 765_CR23 doi: 10.1016/B978-012691360-6/50011-2 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 765_CR100 publication-title: J Big Data. doi: 10.1186/s40537-019-0258-4 – volume: 7 start-page: 87593 year: 2019 ident: 765_CR136 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2925828 – volume: 12 start-page: 2825 year: 2011 ident: 765_CR85 publication-title: J Mach Learn Res. – ident: 765_CR77 doi: 10.1145/2971648.2971747 – ident: 765_CR110 doi: 10.1145/2968219.2971592 – ident: 765_CR132 – ident: 765_CR6 doi: 10.1007/978-3-030-38557-6_3 – ident: 765_CR10 – ident: 765_CR133 doi: 10.1016/j.dss.2020.113465 – volume: 36 start-page: 700 issue: 5 year: 2016 ident: 765_CR65 publication-title: Int J Inf Manag. doi: 10.1016/j.ijinfomgt.2016.04.013 – volume: 61 start-page: 349 issue: 3 year: 2018 ident: 765_CR111 publication-title: Comput J. doi: 10.1093/comjnl/bxx082 – volume: 9 start-page: 462 issue: 2 year: 2009 ident: 765_CR126 publication-title: Appl Soft Comput. doi: 10.1016/j.asoc.2008.06.001 – volume-title: Deep learning year: 2016 ident: 765_CR34 – volume: 73 start-page: 202 year: 2018 ident: 765_CR130 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.016 – ident: 765_CR82 doi: 10.1007/978-3-642-03270-7_5 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 765_CR115 publication-title: J Big Data. doi: 10.1186/s40537-019-0219-y – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 765_CR42 publication-title: IEEE Trans Pattern Anal Mach Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 54 start-page: 2787 issue: 15 year: 2010 ident: 765_CR9 publication-title: Comput Netw. doi: 10.1016/j.comnet.2010.05.010 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 765_CR92 publication-title: Mach Learn. doi: 10.1007/BF00116251 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 765_CR97 publication-title: J Big Data. doi: 10.1186/s40537-019-0280-6 – volume: 5 start-page: 42 issue: 1 year: 2018 ident: 765_CR69 publication-title: J Big Data. doi: 10.1186/s40537-018-0151-6 – volume: 10 start-page: 255 issue: 4 year: 2006 ident: 765_CR28 publication-title: Pers Ubiquitous Comput. doi: 10.1007/s00779-005-0046-3 – ident: 765_CR37 doi: 10.1109/WI.2005.147 – volume: 97 start-page: 120 year: 2017 ident: 765_CR147 publication-title: Int J Med Inform. doi: 10.1016/j.ijmedinf.2016.09.014 – ident: 765_CR123 – ident: 765_CR124 doi: 10.1145/2632048.2632052 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 765_CR107 publication-title: J Big Data. doi: 10.1186/s40537-020-00328-3 – volume: 22 start-page: 1646 issue: 3 year: 2020 ident: 765_CR7 publication-title: IEEE Commun Surv Tutor. doi: 10.1109/COMST.2020.2988293 – volume: 42 start-page: 61 issue: 1–2 year: 2001 ident: 765_CR31 publication-title: Mach Learn. doi: 10.1023/A:1007656703224 – ident: 765_CR45 – volume-title: Data mining: concepts and techniques year: 2011 ident: 765_CR38 – volume: 12 start-page: 372 issue: 3 year: 2000 ident: 765_CR144 publication-title: IEEE Trans Knowl Data Eng. doi: 10.1109/69.846291 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 765_CR41 publication-title: Nat Commun. doi: 10.1038/s41467-020-17971-2 – ident: 765_CR4 – volume-title: Machine learning with TensorFlow year: 2018 ident: 765_CR117 – volume: 11 start-page: 20130789 issue: 98 year: 2014 ident: 765_CR116 publication-title: J R Soc Interface. doi: 10.1098/rsif.2013.0789 – ident: 765_CR73 – volume: 37 start-page: 54 issue: 1 year: 1987 ident: 765_CR18 publication-title: Comput Vis Graph Image Process. doi: 10.1016/S0734-189X(87)80014-2 – volume-title: Sentiment analysis: mining opinions, sentiments, and emotions year: 2020 ident: 765_CR71 doi: 10.1017/9781108639286 – ident: 765_CR138 – volume: 50 start-page: 1 issue: 3 year: 2017 ident: 765_CR17 publication-title: ACM Comput Surv (CSUR). doi: 10.1145/3076253 – volume: 2 start-page: 165 issue: 2 year: 2015 ident: 765_CR141 publication-title: Ann Data Sci. doi: 10.1007/s40745-015-0040-1 – ident: 765_CR47 doi: 10.1109/ICDE.1995.380413 – volume: 13 start-page: 637 issue: 3 year: 2001 ident: 765_CR55 publication-title: Neural Comput. doi: 10.1162/089976601300014493 – volume: 22 start-page: 949 issue: 1 year: 2019 ident: 765_CR63 publication-title: Cluster Comput. doi: 10.1007/s10586-017-1117-8 – volume-title: Finding groups in data: an introduction to cluster analysis, year: 2009 ident: 765_CR54 – volume: 6 start-page: 3021 issue: 60 year: 2021 ident: 765_CR135 publication-title: J Open Source Softw. doi: 10.21105/joss.03021 – ident: 765_CR57 doi: 10.1587/transcom.2018EBP3103 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 765_CR13 publication-title: Mach Learn. doi: 10.1023/A:1010933404324 – ident: 765_CR127 doi: 10.1109/CISDA.2009.5356528 – ident: 765_CR16 doi: 10.1145/1871437.1871702 – volume: 249 start-page: 13 year: 2020 ident: 765_CR61 publication-title: Visnyk Natl Bank Ukr. doi: 10.26531/vnbu2020.249.02 – ident: 765_CR102 doi: 10.20944/preprints202101.0457.v1 – ident: 765_CR26 doi: 10.1145/3025171.3025184 – ident: 765_CR3 doi: 10.1145/170036.170072 – ident: 765_CR25 doi: 10.1109/CINTI.2012.6496753 – volume: 16 start-page: 790 issue: 6 year: 2016 ident: 765_CR62 publication-title: Sensors. doi: 10.3390/s16060790 – ident: 765_CR104 doi: 10.20944/preprints202102.0340.v1 – ident: 765_CR36 – ident: 765_CR19 doi: 10.1108/DLP-10-2015-0022 – volume: 19 start-page: 798 issue: 12 year: 2014 ident: 765_CR74 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.08.004 – volume: 36 start-page: 3336 issue: 2 year: 2009 ident: 765_CR84 publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2008.01.039 – volume: 12 start-page: 754 issue: 5 year: 2020 ident: 765_CR106 publication-title: Symmetry. doi: 10.3390/sym12050754 – ident: 765_CR22 – volume: 32 start-page: 74 issue: 3 year: 2017 ident: 765_CR64 publication-title: IEEE Intell Syst. doi: 10.1109/MIS.2017.49 – volume: 51 start-page: 1 issue: 1 year: 2018 ident: 765_CR89 publication-title: ACM Comput Surv (CSUR). doi: 10.1145/3150226 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 765_CR114 publication-title: J Big Data. doi: 10.1186/s40537-020-00318-5 – volume: 108 start-page: 38 year: 2017 ident: 765_CR142 publication-title: Proc Comput Sci. doi: 10.1016/j.procs.2017.05.072 – volume: 9 start-page: 79 issue: 2 year: 2013 ident: 765_CR143 publication-title: Tutor Quant Methods Psychol. doi: 10.20982/tqmp.09.2.p079 |
SSID | ssj0002504465 |
Score | 2.6146255 |
SecondaryResourceType | review_article |
Snippet | The digital world has a wealth of data, such as internet of things (IoT) data, business data, health data, mobile data, urban data, security data, and many... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 377 |
SubjectTerms | Advances in Computational Approaches for Artificial Intelligence Analytics Artificial intelligence Automation Computation Computer Imaging Computer Science Computer Systems Organization and Communication Networks Cybersecurity Data analysis Data science Data Structures and Information Theory Decision analysis Decision making Image Processing, IoT and Cloud Applications Industrial applications Industry 4.0 Information Systems and Communication Service Internet of Things Machine learning Mathematical analysis Pattern Recognition and Graphics Review Review Article Software Engineering/Programming and Operating Systems Vision |
Title | Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective |
URI | https://link.springer.com/article/10.1007/s42979-021-00765-8 https://www.ncbi.nlm.nih.gov/pubmed/34278328 https://www.proquest.com/docview/2932202304 https://www.proquest.com/docview/2553234114 https://pubmed.ncbi.nlm.nih.gov/PMC8274472 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKXLggqrawvGSk3opVx5OHwwUVli2qVIraIu0tcmxHVCpZHgv9-51xvNkuqNwiZTaPnfHMF4_9fYy9B4TYMpNeGIBGpC4thXZWiSTPnSnBFYUPbJ_n-dll-mWcjeOE231cVjnLiSFRu4mlOfKPWJYUSX3L9OjmVpBqFHVXo4TGElvBFKzx42vl-PT84ns_y0IEXWnQk8RCpERZZuO4cybsn8NkXJSCVilQRyoTerE6PYOcz1dOPmmfhqo0WmdrEU7yT53_X7NXvn3DHodmangctdy0jgfqESJkPsRD_u2REoT_w2lvCSdjMbyjrMd_XGMk8U7pAe93wIdRgkd8DapV3cX-6Xnzi_lmzbfscnT68-RMRH0FYRGmaGEwW8mSEJKFHKGXk9YTIPJQG11bbbxSBuokgUIWzpYeHZ545zVikjqpJbxjy-2k9ZuMpwB5k0oL0hZp3jR13ZimNNCAwQ8cAwOWzP7XykbycdLA-F31tMnBFxX6ogq-qPSAfeh_c9NRb7xovTNzVxWH4X01D5oB2-9P4wCirohp_eQBbbIMFNbyBG02Ou_2t4MgRKLw4sWC33sDIudePNP-ugok3ZqoFws1YAezCJk_1v_fYuvlt9hmqypEK61x22HL07sHv4ugaFrvsSU9-rwX4_8vFXAJfg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLVcRroVAjwYlaOHYediWEENtlSx8g0Up7Sx3HEZUgW9ptK_4Uv5EZ57EsFb31tlIcZ-15JuP5PoCXClNskQjPrVIVj8vYcF06yaM0La1RZZb5gPa5n44P40-TZLIEv7teGDpW2fnE4KjLqaNv5G8wLEmi-hbxu5OfnFijqLraUWg0arHjf13iK9vZ2-0hyveVlKOtgw9j3rIKcIfBWXOLNioM5QVOpZhwlMJ5SgO8KqwunLZeSquKKFKZyEpnPC4z8qXXGImLqBAK570Ft2OlDFmUHn3sv-kQHFgc2Csx7EluTDJp-3RCtx66_sxwOhNB9a-E68VYeCXBvXpO859ibYiBo1VYaZNX9r7Rtnuw5Ov7cDG0M8taH8FsXbIAdELwz5v4k32-IHfkLxl1sjAazIen5GPZ1x-ot6zhlcDnbbBhS_jD9wJHVjPZXxV29mXeGvoADm9k3x_Ccj2t_WNguPdpFQunhMvitKqKorKVsapSFl-nrBpA1O1r7lqoc2Lc-J73IM1BFjnKIg-yyPUAXvf3nDRAH9eOXuvElbdGf5bPVXQAL_rLaK5Ug7G1n57jmCRREjOHCMc8aqTbP04F2hOJk2cLcu8HEBT44pX6-FuABNcE9JjJAWx0GjL_W_9fxZPrV7EOd8YHe7v57vb-zlO4K4Pm0um6NVienZ77Z5iOzYrnwQYYHN200f0BTY5Dog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Science+and+Analytics%3A+An+Overview+from+Data-Driven+Smart+Computing%2C+Decision-Making+and+Applications+Perspective&rft.jtitle=SN+computer+science&rft.au=Sarker%2C+Iqbal+H.&rft.date=2021-09-01&rft.pub=Springer+Singapore&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-021-00765-8&rft_id=info%3Apmid%2F34278328&rft.externalDocID=PMC8274472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |