Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats
Cortical circuitries are highly sensitive to experience during early life but this phase of heightened plasticity decreases with development. We recently demonstrated that fluoxetine reinstates a juvenile‐like form of plasticity in the adult visual system. Here we explored cellular and molecular mec...
Saved in:
Published in | The European journal of neuroscience Vol. 33; no. 1; pp. 49 - 57 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cortical circuitries are highly sensitive to experience during early life but this phase of heightened plasticity decreases with development. We recently demonstrated that fluoxetine reinstates a juvenile‐like form of plasticity in the adult visual system. Here we explored cellular and molecular mechanisms that underlie the occurrence of these plastic phenomena. Adult rats were intracortically treated with serotonin (5‐HT) whereas long‐term fluoxetine‐treated rats were infused with the 5‐HT1A‐receptor antagonist WAY‐100635, brain‐derived neurotrophic factor (BDNF) scavenger trkB‐IgG or the mitogen‐activated protein kinase inhibitor U0126. Plasticity was assessed as variations of visual cortex responsiveness after unilateral eyelid suture and reverse occlusion by using an electrophysiological approach. Real‐time PCR and chromatin immunoprecipitation analysis were then used to explore alterations in gene expression and modifications of chromatin structure associated with the plastic outcome caused by fluoxetine in the visual system. Local infusion of 5‐HT into visual cortex restored susceptibility to monocular deprivation in adulthood whereas infusion of WAY‐100635, trkB‐IgG or U0126 prevented the process of plasticity reactivation in fluoxetine‐treated animals. Long‐term fluoxetine treatment promoted a transient increase of Bdnf expression in the visual cortex, which was paralleled by an increased histone acetylation status at Bdnf promoter regions and by decreased expression of Hdac5. Accordingly, enhancing histone acetylation levels by systemic treatment with Trichostatin‐A reactivated plasticity in the adult while WAY‐100635‐infusion prevented epigenetic modifications in Bdnf promoter areas. The data suggest a key role for 5‐HT1A receptor and BDNF‐trkB signalling in driving a transitory epigenetic remodelling of chromatin structure that underlies the reactivation of plasticity in the visual system. |
---|---|
AbstractList | Cortical circuitries are highly sensitive to experience during early life but this phase of heightened plasticity decreases with development. We recently demonstrated that fluoxetine reinstates a juvenile‐like form of plasticity in the adult visual system. Here we explored cellular and molecular mechanisms that underlie the occurrence of these plastic phenomena. Adult rats were intracortically treated with serotonin (5‐HT) whereas long‐term fluoxetine‐treated rats were infused with the 5‐HT1A‐receptor antagonist WAY‐100635, brain‐derived neurotrophic factor (BDNF) scavenger trkB‐IgG or the mitogen‐activated protein kinase inhibitor U0126. Plasticity was assessed as variations of visual cortex responsiveness after unilateral eyelid suture and reverse occlusion by using an electrophysiological approach. Real‐time PCR and chromatin immunoprecipitation analysis were then used to explore alterations in gene expression and modifications of chromatin structure associated with the plastic outcome caused by fluoxetine in the visual system. Local infusion of 5‐HT into visual cortex restored susceptibility to monocular deprivation in adulthood whereas infusion of WAY‐100635, trkB‐IgG or U0126 prevented the process of plasticity reactivation in fluoxetine‐treated animals. Long‐term fluoxetine treatment promoted a transient increase of Bdnf expression in the visual cortex, which was paralleled by an increased histone acetylation status at Bdnf promoter regions and by decreased expression of Hdac5. Accordingly, enhancing histone acetylation levels by systemic treatment with Trichostatin‐A reactivated plasticity in the adult while WAY‐100635‐infusion prevented epigenetic modifications in Bdnf promoter areas. The data suggest a key role for 5‐HT1A receptor and BDNF‐trkB signalling in driving a transitory epigenetic remodelling of chromatin structure that underlies the reactivation of plasticity in the visual system. Cortical circuitries are highly sensitive to experience during early life but this phase of heightened plasticity decreases with development. We recently demonstrated that fluoxetine reinstates a juvenile-like form of plasticity in the adult visual system. Here we explored cellular and molecular mechanisms that underlie the occurrence of these plastic phenomena. Adult rats were intracortically treated with serotonin (5-HT) whereas long-term fluoxetine-treated rats were infused with the 5-HT(1A) -receptor antagonist WAY-100635, brain-derived neurotrophic factor (BDNF) scavenger trkB-IgG or the mitogen-activated protein kinase inhibitor U0126. Plasticity was assessed as variations of visual cortex responsiveness after unilateral eyelid suture and reverse occlusion by using an electrophysiological approach. Real-time PCR and chromatin immunoprecipitation analysis were then used to explore alterations in gene expression and modifications of chromatin structure associated with the plastic outcome caused by fluoxetine in the visual system. Local infusion of 5-HT into visual cortex restored susceptibility to monocular deprivation in adulthood whereas infusion of WAY-100635, trkB-IgG or U0126 prevented the process of plasticity reactivation in fluoxetine-treated animals. Long-term fluoxetine treatment promoted a transient increase of Bdnf expression in the visual cortex, which was paralleled by an increased histone acetylation status at Bdnf promoter regions and by decreased expression of Hdac5. Accordingly, enhancing histone acetylation levels by systemic treatment with Trichostatin-A reactivated plasticity in the adult while WAY-100635-infusion prevented epigenetic modifications in Bdnf promoter areas. The data suggest a key role for 5-HT(1A) receptor and BDNF-trkB signalling in driving a transitory epigenetic remodelling of chromatin structure that underlies the reactivation of plasticity in the visual system. |
Author | Tiraboschi, Ettore Spolidoro, Maria Vetencourt, José Fernando Maya Castrén, Eero Maffei, Lamberto |
Author_xml | – sequence: 1 givenname: José Fernando Maya surname: Vetencourt fullname: Vetencourt, José Fernando Maya organization: Scuola Normale Superiore, Neurobiology Laboratory, Via Moruzzi 1, CNR, Pisa 56100, Italy – sequence: 2 givenname: Ettore surname: Tiraboschi fullname: Tiraboschi, Ettore organization: Neuroscience Centre, University of Helsinki, Helsinki, Finland – sequence: 3 givenname: Maria surname: Spolidoro fullname: Spolidoro, Maria organization: Scuola Normale Superiore, Neurobiology Laboratory, Via Moruzzi 1, CNR, Pisa 56100, Italy – sequence: 4 givenname: Eero surname: Castrén fullname: Castrén, Eero organization: Neuroscience Centre, University of Helsinki, Helsinki, Finland – sequence: 5 givenname: Lamberto surname: Maffei fullname: Maffei, Lamberto organization: Neuroscience Institute, CNR, Pisa, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21156002$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vEzEQxS3UiqaFr4B847TBf9Ze-8ABRaVAq_bQolZcLNc7SR12vantheTb4yUlV-YyY8_vzeG9U3QUhgAIYUrmtNSH9ZzWklRaSDVnpPySplZqvn2FZofFEZoRLXilqHw4QacprQkhStbiNTphlApJCJuh9S3EIQ_BB5yjX60gJmzLaEPyEDKGjV9BgOwd7sE92eBTj_OTzTiCDynbDEXQjl3Gv3wabYfdEDNs8aazqah83uFyO9qc3qDjpe0SvH3pZ-j75_O7xZfq6ubi6-LTVeW40qrSNWMtZZrWmjVOWLcsT-JE6xRnVkJrHdPqsWnsUjlpQQtbUyacJpxL1mp-ht7v727i8DxCyqb3yUHX2QDDmIwWtSgGMfpfUjEmhCCaF_LdCzk-9tCaTfS9jTvzz8gCfNwDv30Hu8OeEjMFZtZmysVMuZgpMPM3MLM159-up6noq73ep-LeQW_jTyMb3ghzf31hmssfcvEg780l_wOuepux |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2014_08_040 crossref_primary_10_1016_j_expneurol_2020_113515 crossref_primary_10_1002_cne_25001 crossref_primary_10_1111_ejn_12206 crossref_primary_10_4161_epi_26027 crossref_primary_10_1016_j_isci_2024_109507 crossref_primary_10_1111_opo_12712 crossref_primary_10_1016_j_bbr_2013_03_011 crossref_primary_10_1016_j_neuropharm_2012_06_061 crossref_primary_10_3389_fpsyt_2021_802581 crossref_primary_10_1016_j_neubiorev_2014_03_012 crossref_primary_10_1155_2013_683909 crossref_primary_10_1371_journal_pone_0213616 crossref_primary_10_7554_eLife_20975 crossref_primary_10_1016_j_neuroimage_2021_118039 crossref_primary_10_1016_j_neuropharm_2017_07_033 crossref_primary_10_1155_2013_568354 crossref_primary_10_1016_j_expneurol_2016_01_022 crossref_primary_10_1146_annurev_psych_010814_015104 crossref_primary_10_4196_kjpp_2015_19_6_523 crossref_primary_10_4196_kjpp_2012_16_1_65 crossref_primary_10_3389_fphar_2023_1103999 crossref_primary_10_1016_j_pnpbp_2012_03_011 crossref_primary_10_1073_pnas_1820836117 crossref_primary_10_1016_j_neuropharm_2013_04_002 crossref_primary_10_1038_s41398_020_01008_9 crossref_primary_10_1155_2013_605079 crossref_primary_10_1016_j_neuroscience_2014_06_056 crossref_primary_10_1111_ejn_14512 crossref_primary_10_1016_j_neuropharm_2012_03_027 crossref_primary_10_1155_2012_631965 crossref_primary_10_3389_fnmol_2021_708004 crossref_primary_10_4137_JEN_S12958 crossref_primary_10_1016_j_expneurol_2012_12_004 crossref_primary_10_31887_DCNS_2014_16_1_adayer crossref_primary_10_1016_j_brainres_2013_04_049 crossref_primary_10_1016_j_mehy_2013_07_014 crossref_primary_10_1007_s00415_019_09480_0 crossref_primary_10_3390_jcm7060117 crossref_primary_10_1017_S0142716417000236 crossref_primary_10_1152_physrev_00036_2012 crossref_primary_10_3389_fncel_2020_00082 crossref_primary_10_1016_j_yhbeh_2015_05_005 crossref_primary_10_1080_23311908_2019_1668222 crossref_primary_10_3389_fncel_2017_00139 crossref_primary_10_1523_ENEURO_0126_15_2015 crossref_primary_10_1007_s12652_020_02039_2 crossref_primary_10_1016_j_neubiorev_2017_03_007 crossref_primary_10_1002_jdn_10052 crossref_primary_10_1038_s41398_021_01456_x crossref_primary_10_4137_JEN_S39888 crossref_primary_10_3389_fendo_2022_847322 crossref_primary_10_1134_S0362119718030180 crossref_primary_10_1016_j_neuroscience_2013_09_013 crossref_primary_10_1155_2012_250421 crossref_primary_10_1021_acschemneuro_5b00033 crossref_primary_10_1093_cercor_bhy280 crossref_primary_10_1016_j_ejpn_2016_07_007 crossref_primary_10_3389_fncel_2016_00022 crossref_primary_10_1038_s41433_019_0360_z crossref_primary_10_1007_s00429_019_01959_w crossref_primary_10_1016_j_nbd_2016_07_010 crossref_primary_10_1016_j_brs_2024_04_001 crossref_primary_10_3109_10799893_2011_599393 crossref_primary_10_1007_s00429_016_1232_y crossref_primary_10_1523_JNEUROSCI_3287_12_2012 crossref_primary_10_3389_fnmol_2021_710303 crossref_primary_10_1186_s13041_018_0404_5 crossref_primary_10_1007_s12031_011_9702_4 crossref_primary_10_1080_14737175_2017_1373020 crossref_primary_10_1073_pnas_2026676118 crossref_primary_10_1111_jnc_14103 crossref_primary_10_1007_s00213_013_3389_x crossref_primary_10_3389_fnmol_2021_806376 crossref_primary_10_1016_j_semcdb_2021_05_010 crossref_primary_10_1016_j_neubiorev_2018_04_001 crossref_primary_10_1016_j_pharmthera_2012_08_015 crossref_primary_10_1002_ana_25184 crossref_primary_10_1016_j_tins_2012_12_010 crossref_primary_10_1177_1545968315600523 crossref_primary_10_1016_j_neuropharm_2015_10_016 crossref_primary_10_1038_ncomms1323 crossref_primary_10_1038_s41467_018_04840_2 crossref_primary_10_1016_j_jneumeth_2015_07_012 crossref_primary_10_1016_j_pneurobio_2021_102073 crossref_primary_10_1177_0269881112460107 crossref_primary_10_1113_jphysiol_2012_234237 crossref_primary_10_1016_j_cell_2014_10_035 crossref_primary_10_1016_j_tins_2016_02_003 crossref_primary_10_1038_mp_2017_61 crossref_primary_10_3390_ijms25010519 crossref_primary_10_1016_j_neuroscience_2018_03_043 crossref_primary_10_1016_j_neubiorev_2022_104811 crossref_primary_10_1016_j_heares_2014_06_004 |
ContentType | Journal Article |
Copyright | 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd – notice: 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1111/j.1460-9568.2010.07488.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 57 |
ExternalDocumentID | 21156002 EJN7488 ark_67375_WNG_7KZ6CX6W_K |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 7X8 7TK |
ID | FETCH-LOGICAL-c3898-9422d12914927c5acf2d10c5dc832a6edac298b77af8c6ae95a4125c903362d93 |
IEDL.DBID | DR2 |
ISSN | 0953-816X |
IngestDate | Sat Aug 17 03:56:58 EDT 2024 Fri Aug 16 09:22:29 EDT 2024 Sat Sep 28 07:55:45 EDT 2024 Sat Aug 24 00:50:26 EDT 2024 Wed Oct 30 09:52:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3898-9422d12914927c5acf2d10c5dc832a6edac298b77af8c6ae95a4125c903362d93 |
Notes | istex:AD5EA7E312E853E18D267B363050F905B5E626DF ark:/67375/WNG-7KZ6CX6W-K ArticleID:EJN7488 J.F.M.V. and E.T. authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21156002 |
PQID | 822555093 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_954595621 proquest_miscellaneous_822555093 pubmed_primary_21156002 wiley_primary_10_1111_j_1460_9568_2010_07488_x_EJN7488 istex_primary_ark_67375_WNG_7KZ6CX6W_K |
PublicationCentury | 2000 |
PublicationDate | 2011-01 January 2011 2011-Jan 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Nestler, E. (2009) Epigenetic mechanisms in psychiatry. Biol. Psychiatry, 65, 189-190. Huang, Z.J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M.F., Maffei, L. & Tonegawa, S. (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98, 739-755. van Harten, J. (1993) Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin. Pharmacokinet., 24, 203-220. Kouzarides, T. (2007) Chromatin modifications and their functions. Cell, 128, 693-705. Maya Vetencourt, J.F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., O'Leary, O.F., Castrén, E. & Maffei, L. (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science, 320, 385-388. Korzus, E., Rosenfeld, M.G. & Mayford, M. (2003) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42, 961-972. Wang, J.W., David, D.J., Monckton, J.E., Battaglia, F. & Hen, R. (2008) Chronic fluoxetine stimulates the maturation and synaptic plasticity of adult-born hippocampal granule cells. J. Neurosci., 28, 1374-1384. Di Cristo, G., Berardi, N., Cancedda, L., Pizzorusso, T., Putignano, E., Ratto, G.M. & Maffei, L. (2001) Requirement of ERK activation for visual cortical plasticity. Science, 292, 2337-2340. Guirado, R., Varea, E., Castillo-Gomez, E., Gomez-Climent, M.A., Rovira-Esteban, L., Blasco-Ibanez, J.M., Crespo, C., Martìnez-Guijarro, F.J. & Nàcher, J. (2009) Effect of chronic fluoxetine treatment on the rat somatosensory cortex: activation and induction of neuronal structural plasticity. Neurosci. Lett., 457, 12-15. Wiesel, T. & Hubel, D. (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol., 26, 1003-1017. Krishnan, V. & Nestler, E.J. (2008) The molecular neurobiology of depression. Nature, 455, 894-902. Prusky, G.T., West, P.W. & Douglas, R.M. (2000) Experience-dependent plasticity of visual acuity in rats. Eur. J. Neurosci., 12, 3781-3786. Hubel, D. & Wiesel, T. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol., 206, 419-436. Menard, J. & Treit, D. (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci. Biobehav. Rev., 23, 591-613. Schmitz, D., Empson, R.M. & Heinemann, U. (1995) Serotonin reduces inhibition via 5-HT1A receptors in area CA1 of rat hippocampal slices in vitro. J. Neurosci., 15, 7217-7225. Rubenstein, J. & Merzenich, M. (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav., 2, 255-257. Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods, 25, 402-408. O'Leary, O.F., Wu, X. & Castrén, E. (2009) Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of ovariectomized rat: role of BDNF signaling. Psychoneuroendocrinology, 34, 367-381. Bramley, J.R., Sollars, P.J., Pickard, G.E. & Dudek, F.E. (2005) 5-HT1B receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus. J. Neuropshysiol., 93, 3157-3164. Normann, C., Schmitz, D., Furmaier, A., Doing, C. & Bach, M. (2007) Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol. Psychiatry, 62, 373-380. Covington, H.E., Maze, I., LaPlant, Q.C., Vialou, V.F., Ohnishi, Y.N., Berton, O., Fass, D.M., Renthal, W., Rush, A.J., 3rd, Wu, E.Y., Ghose, S., Krishnan, V., Russo, S.J., Tamminga, C., Haggarty, S.J. & Nestler, E. (2009) Antidepressant actions of histone deacetylase inhibitors. J. Neurosci., 29, 11451-11460. Katz, L.C. & Shatz, C.J. (1996) Synaptic activity and the construction of cortical circuits. Science, 274, 1133-1138. Harauzov, A., Spolidoro, M., Di Cristo, G., De Pasquale, R., Cancedda, L., Pizzorusso, T., Viegi, A., Berardi, N. & Maffei, L. (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci., 30, 361-371. Gordon, J.A. & Stryker, M.P. (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci., 16, 3274-3286. Ampuero, E., Rubio, F.J., Falcon, R., Sandoval, M., Diaz-Veliz, G., Gonzalez, R.E., Earle, N., Dagnino-Subiabre, A., Aboitiz, F., Orrego, F. & Wyneken, U. (2010) Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience, 169, 98-108. Gu, Q. & Singer, W. (1995) Involvement of serotonin in developmental plasticity of kitten visual cortex. Eur. J. Neurosci., 7, 1146-1153. Chawla, S., Vanhoutte, P., Arnold, F., Huang, C. & Bading, H. (2003) Neuronal activity-dependent shuttling of HDAC4 and HDAC5. J. Neurochem., 85, 151-159. Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N. & Maffei, L. (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proc. Natl. Acad. Sci. USA, 103, 8517-8522. van Praag, H., Kempermann, G. & Gage, F.H. (2000) Neural consequences of environmental enrichment. Nat. Rev. Neurosci., 1, 191-198. Silingardi, D., Scali, M., Begliuomini, G. & Pizzorusso, T. (2010) Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation. Eur. J. Neurosci., 31, 2185-2192. Fernandez, F., Morishita, W., Zuniga, E., Nguyen, J., Blank, M., Malenka, R.C. & Garner, C.C. (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down Syndrome. Nat. Neurosci., 10, 411-413. Feighner, J.P. & Boyer, W.F. (1989) Serotonin-1A anxiolytics: an overview. Psychopathology, 22, 21-26. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. (2007) Recovery of learning and memory is associated with chromatin remodeling. Nature, 447, 178-182. He, H.Y., Hodos, W. & Quinlan, E.M. (2006) Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J. Neurosci., 26, 2951-2955. Sargent, P.A., Kjaer, K.H., Bench, C.J., Rabiner, E.A., Messa, C., Meyer, J., Gunn, R.N., Grasby, P.M. & Cowen, P.J. (2000) Brain serotonin 1A receptor bindings measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch. Gen. Psychiatry, 57, 174-180. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res., 34, 709-720. Aznar, S., Qian, Z., Shah, R., Rahbek, B. & Knudsen, G.M. (2003) The 5-HT1A receptor is located on calbindin- and parvalbumin-containing neurons in rat brain. Brain Res., 959, 58-67. Kurdistani, S.K., Tavazoie, S. & Grunstein, M. (2004) Mapping global histone acetylation patterns to gene expression. Cell, 117, 721-733. Tsankova, N.M., Berton, O., Renthal, W., Kumar, A., Neve, R.L. & Nestler, E.J. (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 9, 519-525. Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., Santarelli, L., Beck, S. & Hen, R. (2002) Serotonin1A receptor acts during development to establish anxiety-like behaviour in the adult. Nature, 416, 396-400. Hensch, T. (2005) Critical period plasticity in local cortical circuitries. Nat. Rev. Neurosci., 6, 877-888. Renthal, W., Maze, I., Krishnan, V., Covington, H.E., Xiao, G., Kumar, A., Russo, S.J., Graham, A., Tsankova, N., Kippin, T.E., Kerstetter, K.A., Neve, R.L., Haggarty, S.J., McKinsey, T.A., Bassel-Duby, R., Olson, E.N. & Nestler, E.J. (2007) Histone deacetylase 5 epigenetically controls behavioural adaptations to chronic emotional stimuli. Neuron, 56, 517-529. Shahbazian, M.D. & Grunstein, M. (2007) Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem., 76, 75-100. Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W. & Maffei, L. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science, 298, 1248-1251. LeVay, S., Wiesel, T.N. & Hubel, D.H. (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol., 191, 1-51. Lyckman, A.W., Horng, S., Leamey, C.A., Tropea, D., Watakabe, A., Van Wart, A., McCurry, C., Yamamori, T. & Sur, M. (2008) Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation. Proc. Natl. Acad. Sci. USA, 105, 9409-9414. Putignano, E., Lonetti, G., Cancedda, L., Ratto, G., Costa, M., Maffei, L. & Pizzorusso, T. (2007) Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron, 53, 747-759. Santarelli, L., Saxe, M., Groos, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C. & Hen, R. (2003) Requirement of hippocampal neurogenesis for the behavioural effects of antidepressants. Science, 301, 805-809. Dani, V., Chang, Q., Maffei, A., Turrigiano, G.G., Jaenisch, R. & Nelson, S.B. (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. USA, 102, 12560-12565. Nibuya, M., Morinobu, S. & Duman, R. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci., 15, 7539-7547. Wang, Y., Gu, Q. & Cnyder, M.S. (1997) Blockade of serotonin-2C receptors by mesulergine reduces ocular dominance plasticity in kitten visual cortex. Exp. Brain Res., 114, 321-328. Tsankova, N.M., Renthal, W., Kuman, A. & Nestler, E.J. (2007) Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci., 8, 355-367. Koyama, S., Kubo, C., Rhee, J.S. & Akaike, N. (1999) Presynaptic serotonergic inhibition of GA 2003; 959 1997; 114 1993; 24 2005; 21 2008; 105 2000; 1 1970; 206 2007; 76 2003; 53 2010; 67 2001; 292 2000; 12 2005; 102 2000; 57 2006; 26 2008; 28 1994; 34 2003; 2 2007; 8 1999; 98 2007; 62 2003; 85 2010; 30 2003; 42 2001; 98 2003; 89 1963; 26 2010; 31 1989; 22 2009; 65 2007; 447 2007; 128 1995; 15 2010; 169 2002; 298 2006; 9 1999; 23 1980; 191 2002; 416 2007; 53 2007; 10 2008; 320 2007; 54 1996; 16 2001; 25 2007; 56 2009; 29 2009; 457 1995; 7 2009; 34 2005; 6 2005; 93 1996; 274 2008; 455 2009; 4 2003; 301 2004; 117 1999; 518 2006; 103 |
References_xml | – volume: 298 start-page: 1248 year: 2002 end-page: 1251 article-title: Reactivation of ocular dominance plasticity in the adult visual cortex publication-title: Science – volume: 206 start-page: 437 year: 1970 end-page: 455 article-title: Consequences of monocular deprivation on visual behaviour in kittens publication-title: J. Physiol. – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta C(T)) method publication-title: Methods – volume: 2 start-page: 255 year: 2003 end-page: 257 article-title: Model of autism: increased ratio of excitation/inhibition in key neural systems publication-title: Genes Brain Behav. – volume: 10 start-page: 679 year: 2007 end-page: 681 article-title: Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition publication-title: Nat. Neurosci. – volume: 42 start-page: 961 year: 2003 end-page: 972 article-title: CBP histone acetyltransferase activity is a critical component of memory consolidation publication-title: Neuron – volume: 23 start-page: 591 year: 1999 end-page: 613 article-title: Effects of centrally administered anxiolytic compounds in animal models of anxiety publication-title: Neurosci. Biobehav. Rev. – volume: 57 start-page: 174 year: 2000 end-page: 180 article-title: Brain serotonin 1A receptor bindings measured by positron emission tomography with [11C]WAY‐100635: effects of depression and antidepressant treatment publication-title: Arch. Gen. Psychiatry – volume: 76 start-page: 75 year: 2007 end-page: 100 article-title: Functions of site‐specific histone acetylation and deacetylation publication-title: Annu. Rev. Biochem. – volume: 416 start-page: 396 year: 2002 end-page: 400 article-title: Serotonin1A receptor acts during development to establish anxiety‐like behaviour in the adult publication-title: Nature – volume: 67 start-page: 821 year: 2010 end-page: 833 article-title: Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition publication-title: Neuron – volume: 128 start-page: 693 year: 2007 end-page: 705 article-title: Chromatin modifications and their functions publication-title: Cell – volume: 10 start-page: 1134 year: 2007 end-page: 1136 article-title: Experience‐dependent recovery of vision following chronic deprivation amblyopia publication-title: Nat. Neurosci. – volume: 8 start-page: 355 year: 2007 end-page: 367 article-title: Epigenetic regulation in psychiatric disorders publication-title: Nat. Rev. Neurosci. – volume: 206 start-page: 419 year: 1970 end-page: 436 article-title: The period of susceptibility to the physiological effects of unilateral eye closure in kittens publication-title: J. Physiol. – volume: 191 start-page: 1 year: 1980 end-page: 51 article-title: The development of ocular dominance columns in normal and visually deprived monkeys publication-title: J. Comp. Neurol. – volume: 53 start-page: 747 year: 2007 end-page: 759 article-title: Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity publication-title: Neuron – volume: 959 start-page: 58 year: 2003 end-page: 67 article-title: The 5‐HT receptor is located on calbindin‐ and parvalbumin‐containing neurons in rat brain publication-title: Brain Res. – volume: 105 start-page: 9409 year: 2008 end-page: 9414 article-title: Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation publication-title: Proc. Natl. Acad. Sci. USA – volume: 56 start-page: 517 year: 2007 end-page: 529 article-title: Histone deacetylase 5 epigenetically controls behavioural adaptations to chronic emotional stimuli publication-title: Neuron – volume: 29 start-page: 11451 year: 2009 end-page: 11460 article-title: Antidepressant actions of histone deacetylase inhibitors publication-title: J. Neurosci. – volume: 6 start-page: 877 year: 2005 end-page: 888 article-title: Critical period plasticity in local cortical circuitries publication-title: Nat. Rev. Neurosci. – volume: 320 start-page: 385 year: 2008 end-page: 388 article-title: The antidepressant fluoxetine restores plasticity in the adult visual cortex publication-title: Science – volume: 26 start-page: 1003 year: 1963 end-page: 1017 article-title: Single‐cell responses in striate cortex of kittens deprived of vision in one eye publication-title: J. Neurophysiol. – volume: 4 start-page: 45 year: 2009 end-page: 50 article-title: Frontiers of neuronal plasticity: can we treat amblyopia in adulthood? publication-title: Ophthalmol. Int. – volume: 15 start-page: 7217 year: 1995 end-page: 7225 article-title: Serotonin reduces inhibition via 5‐HT1A receptors in area CA1 of rat hippocampal slices publication-title: J. Neurosci. – volume: 30 start-page: 361 year: 2010 end-page: 371 article-title: Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity publication-title: J. Neurosci. – volume: 34 start-page: 709 year: 1994 end-page: 720 article-title: Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation publication-title: Vision Res. – volume: 455 start-page: 894 year: 2008 end-page: 902 article-title: The molecular neurobiology of depression publication-title: Nature – volume: 98 start-page: 11662 year: 2001 end-page: 11667 article-title: Initial recovery of vision after early monocular deprivation in kittens is faster when both eyes are open publication-title: Proc. Natl. Acad. Sci. USA – volume: 457 start-page: 12 year: 2009 end-page: 15 article-title: Effect of chronic fluoxetine treatment on the rat somatosensory cortex: activation and induction of neuronal structural plasticity publication-title: Neurosci. Lett. – volume: 93 start-page: 3157 year: 2005 end-page: 3164 article-title: 5‐HT1B receptor‐mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus publication-title: J. Neuropshysiol. – volume: 169 start-page: 98 year: 2010 end-page: 108 article-title: Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex publication-title: Neuroscience – volume: 54 start-page: 961 year: 2007 end-page: 972 article-title: Homeostatic regulation of eye‐specific responses in visual cortex during ocular dominance plasticity publication-title: Neuron – volume: 103 start-page: 8517 year: 2006 end-page: 8522 article-title: Structural and functional recovery from early monocular deprivation in adult rats publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 241 year: 2005 end-page: 246 article-title: Is mood chemistry? publication-title: Nat. Rev. Neurosci. – volume: 62 start-page: 373 year: 2007 end-page: 380 article-title: Long‐term plasticity of visually evoked potentials in humans is altered in major depression publication-title: Biol. Psychiatry – volume: 102 start-page: 12560 year: 2005 end-page: 12565 article-title: Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome publication-title: Proc. Natl. Acad. Sci. USA – volume: 89 start-page: 1278 year: 2003 end-page: 1287 article-title: Heterogeneous actions of serotonin on interneurons in rat visual cortex publication-title: J. Neurophysiol. – volume: 21 start-page: 1299 year: 2005 end-page: 1303 article-title: Short‐term treatment with the antidepressant fluoxetine triggers pyramidal spine synapse formation in rat hippocampus publication-title: Eur. J. Neurosci. – volume: 12 start-page: 3781 year: 2000 end-page: 3786 article-title: Experience‐dependent plasticity of visual acuity in rats publication-title: Eur. J. Neurosci. – volume: 31 start-page: 2185 year: 2010 end-page: 2192 article-title: Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long‐term monocular deprivation publication-title: Eur. J. Neurosci. – volume: 1 start-page: 191 year: 2000 end-page: 198 article-title: Neural consequences of environmental enrichment publication-title: Nat. Rev. Neurosci. – volume: 292 start-page: 2337 year: 2001 end-page: 2340 article-title: Requirement of ERK activation for visual cortical plasticity publication-title: Science – volume: 10 start-page: 411 year: 2007 end-page: 413 article-title: Pharmacotherapy for cognitive impairment in a mouse model of Down Syndrome publication-title: Nat. Neurosci. – volume: 98 start-page: 739 year: 1999 end-page: 755 article-title: BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex publication-title: Cell – volume: 26 start-page: 2951 year: 2006 end-page: 2955 article-title: Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex publication-title: J. Neurosci. – volume: 24 start-page: 203 year: 1993 end-page: 220 article-title: Clinical pharmacokinetics of selective serotonin reuptake inhibitors publication-title: Clin. Pharmacokinet. – volume: 9 start-page: 519 year: 2006 end-page: 525 article-title: Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action publication-title: Nat. Neurosci. – volume: 301 start-page: 805 year: 2003 end-page: 809 article-title: Requirement of hippocampal neurogenesis for the behavioural effects of antidepressants publication-title: Science – volume: 114 start-page: 321 year: 1997 end-page: 328 article-title: Blockade of serotonin‐2C receptors by mesulergine reduces ocular dominance plasticity in kitten visual cortex publication-title: Exp. Brain Res. – volume: 28 start-page: 1374 year: 2008 end-page: 1384 article-title: Chronic fluoxetine stimulates the maturation and synaptic plasticity of adult‐born hippocampal granule cells publication-title: J. Neurosci. – volume: 518 start-page: 525 year: 1999 end-page: 538 article-title: Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons publication-title: J. Physiol. – volume: 117 start-page: 721 year: 2004 end-page: 733 article-title: Mapping global histone acetylation patterns to gene expression publication-title: Cell – volume: 53 start-page: 193 year: 2003 end-page: 203 article-title: Is there a role for 5HT1A agonists in the treatment of depression? publication-title: Biol. Psychiatry – volume: 274 start-page: 1133 year: 1996 end-page: 1138 article-title: Synaptic activity and the construction of cortical circuits publication-title: Science – volume: 34 start-page: 367 year: 2009 end-page: 381 article-title: Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of ovariectomized rat: role of BDNF signaling publication-title: Psychoneuroendocrinology – volume: 447 start-page: 178 year: 2007 end-page: 182 article-title: Recovery of learning and memory is associated with chromatin remodeling publication-title: Nature – volume: 16 start-page: 3274 year: 1996 end-page: 3286 article-title: Experience‐dependent plasticity of binocular responses in the primary visual cortex of the mouse publication-title: J. Neurosci. – volume: 85 start-page: 151 year: 2003 end-page: 159 article-title: Neuronal activity‐dependent shuttling of HDAC4 and HDAC5 publication-title: J. Neurochem. – volume: 65 start-page: 189 year: 2009 end-page: 190 article-title: Epigenetic mechanisms in psychiatry publication-title: Biol. Psychiatry – volume: 22 start-page: 21 year: 1989 end-page: 26 article-title: Serotonin‐1A anxiolytics: an overview publication-title: Psychopathology – volume: 15 start-page: 7539 year: 1995 end-page: 7547 article-title: Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments publication-title: J. Neurosci. – volume: 7 start-page: 1146 year: 1995 end-page: 1153 article-title: Involvement of serotonin in developmental plasticity of kitten visual cortex publication-title: Eur. J. Neurosci. |
SSID | ssj0008645 |
Score | 2.3816946 |
Snippet | Cortical circuitries are highly sensitive to experience during early life but this phase of heightened plasticity decreases with development. We recently... |
SourceID | proquest pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 49 |
SubjectTerms | acetylation Animals BDNF Brain-Derived Neurotrophic Factor - genetics Brain-Derived Neurotrophic Factor - metabolism Butadienes - pharmacology Chromatin - metabolism Chromatin - ultrastructure Enzyme Inhibitors - pharmacology Epigenesis, Genetic - drug effects Epigenesis, Genetic - physiology epigenetics fluoxetine Fluoxetine - pharmacology Indexing in process Neuronal Plasticity - drug effects Neuronal Plasticity - physiology Nitriles - pharmacology Piperazines - pharmacology plasticity Pyridines - pharmacology Rats Rats, Long-Evans Receptor, Serotonin, 5-HT1A - metabolism Receptor, trkB - metabolism Sensory Deprivation serotonin Serotonin - pharmacology Serotonin Antagonists - pharmacology Serotonin Uptake Inhibitors - pharmacology Signal Transduction - physiology Visual Cortex - drug effects Visual Cortex - physiology |
Title | Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats |
URI | https://api.istex.fr/ark:/67375/WNG-7KZ6CX6W-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2010.07488.x https://www.ncbi.nlm.nih.gov/pubmed/21156002 https://search.proquest.com/docview/822555093 https://search.proquest.com/docview/954595621 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5Cu4wLjI0fBYZ8QLulSuLYcY5T2Zg20QNiWsXFcmxnlKpp1aRTx1_Pe05b1GlcEFIOjhInsd-z_b2X7z0DfFTG8YrzJBLW2ChLjIsUd1VkChfHzotSFBQ7_GUoL66zy5EYrflPFAvT5YfYOtxoZIT5mga4KZuHgzyOKNxtzdDKURn7hCcTnhO769PXP5mklAz7FVN2tUglcrRL6nn0QQhXqadXj2HPXSgb1qLz5zDZtKKjoEz6y7bs218PEjz-n2YewLM1ZGWnnY69gCe-PoSj0xrN9ek9O2GBRBq884ewP9hsIHcEP3EemrXk7mXtYnx7i0CTGSzi4khBmMzPKRMoBVGyqacA5HEzZe0P07KFH9ch0gkrUH4QdjdulvgJlpjBKzZHxE9k8Pae4bNRhZuXcH1-9m1wEa23dogsIiScYrM0dQg10D5LcyuMrfA0tsJZnGGM9M7YtFBlnptKWWl8IUyGUMwWMccV1xX8FezVs9q_AcYrJ4T0FS-zNHM-LXPPlUI1U7YyRpQ9OAli1PMufYc2iwmx2XKhb4afdX71XQ5G8kZf9YBt5Kyxp-jHian9bNloBFECLbmC__2WApEoyihNevC6U5Ht-9DEJliZ9kAGQW8v7NhfsSYRaxKxDiLWK312OaTS23-t-A6edi5wOt7DXrtY-mPEUG35IYyO33FwEa4 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED4U6ZAufSR9uE8ORTYZsihS1Bi4Sd048VAkiNGFoEgqcVPLhi0XTn997yjbhYN0KQpooCBREnl35HenewB8VMbxkvNOJKyxUdoxLlLclZHJXRw7LwqRU-zw2UD2LtKToRiuygFRLEyTH2JjcCPJCOs1CTgZpO9KeRxRvNvKRStDbmwjoHyI0s-pjsOnr39ySSkZKhZTfrVIdeRw263n3ichYKW5Xt6HPrfBbNiNjp_Aj_U4GieUm_aiLtr2150Uj_9poE_h8Qq1ssOGzZ7BA1_twf5hhRr7-JYdsOBHGgz0e7DbXdeQ24fvuBRNarL4sno2urpCrMkMNnF_pDhM5qeUDJTiKNnYUwzyaD5m9bWp2cyPqhDshB0oRQj7OZov8BMsOQcv2RRBP_mD17cMn41cPH8OF8dH591etKruEFkESbjKpkniEG2gipZkVhhb4mlshbO4yBjpnbFJroosM6Wy0vhcmBTRmM1jjpuuy_kL2KkmlX8FjJdOCOlLXqRJ6nxSZJ4rhZymbGmMKFpwEOiop00GD21mN-TQlgl9Ofiss_432R3KS91vAVsTWuNM0b8TU_nJYq4RRwlU5nL-91tyBKNIo6TTgpcNj2zeh1o2IcukBTJQenNhSwWLNZFYE4l1ILFe6qOTAbVe_2vHD7DbOz871adfBv038KixiNPxFnbq2cK_Q0hVF--DqPwGfn4Vxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hIQEvAzY-Or78gPaWKo1jx3mcyspYoUKIaRUvlmM7o1RNqzZFHX89d05b1Gm8IKQ8OEqcxL4P_-5ydwZ4q4zjJeedSFhjo7RjXKS4KyOTuzh2XhQip9zhTwN5dpGeD8VwHf9EuTBNfYitw40kI-hrEvCZK28KeRxRuts6QitDZmwjnrybSgTCBJC-_CklpWTYsJjKq0WqI4e7UT23PgnxKk316jbwuYtlw2LUewjjzTCaGJRxe1kXbfvrRoXH_zPOR7C_xqzspGGyx3DHVwdweFKhvT65ZscsRJEG9_wB3O9udpA7hB-oiKY1-XtZPR9dXSHSZAabuDpSFibzMyoFSlmUbOIpA3m0mLD6u6nZ3I-qkOqEHahACPs5WizxEyyFBq_YDCE_RYPX1wyfjTy8eAIXvdOv3bNovbdDZBEioY5Nk8Qh1kADLcmsMLbE09gKZ1HFGOmdsUmuiiwzpbLS-FyYFLGYzWOOS67L-VPYq6aVfw6Ml04I6UtepEnqfFJkniuFfKZsaYwoWnAcyKhnTf0ObeZjCmfLhL4cvNdZ_5vsDuWl7reAbeiscaboz4mp_HS50IiiBJpyOf_7LTlCUaRR0mnBs4ZFtu9DG5twZdICGQi9vbBjgMWaSKyJxDqQWK_06fmAWkf_2vEN3Pv8rqc_fhj0X8CDxh1Ox0vYq-dL_wrxVF28DoLyGyX2FHU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serotonin+triggers+a+transient+epigenetic+mechanism+that+reinstates+adult+visual+cortex+plasticity+in+rats&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Vetencourt%2C+Jos%C3%A9+Fernando+Maya&rft.au=Tiraboschi%2C+Ettore&rft.au=Spolidoro%2C+Maria&rft.au=Castr%C3%A9n%2C+Eero&rft.date=2011-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=33&rft.issue=1&rft.spage=49&rft.epage=57&rft_id=info:doi/10.1111%2Fj.1460-9568.2010.07488.x&rft.externalDBID=10.1111%252Fj.1460-9568.2010.07488.x&rft.externalDocID=EJN7488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |