How to Modulate Catalytic Properties in Nanosystems: The Case of Iron-Ruthenium Nanoparticles

Ultrasmall FeRu bimetallic nanoparticles were prepared by co‐decomposition of two organometallic precursors, {Fe[N(Si(CH3)3)2]2}2 and (η4‐1,5‐cyclooctadiene)(η6‐1,3,5‐cyclooctatriene)ruthenium(0) (Ru(COD)(COT)), under dihydrogen at 150 °C in mesitylene. A series of FeRu nanoparticles of sizes of app...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 6; no. 6; pp. 1714 - 1720
Main Authors Kelsen, Vinciane, Meffre, Anca, Fazzini, Pier-Francesco, Lecante, Pierre, Chaudret, Bruno
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.06.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrasmall FeRu bimetallic nanoparticles were prepared by co‐decomposition of two organometallic precursors, {Fe[N(Si(CH3)3)2]2}2 and (η4‐1,5‐cyclooctadiene)(η6‐1,3,5‐cyclooctatriene)ruthenium(0) (Ru(COD)(COT)), under dihydrogen at 150 °C in mesitylene. A series of FeRu nanoparticles of sizes of approximately 1.8 nm and incorporating different ratios of iron to ruthenium were synthesized by varying the quantity of the ruthenium complex introduced (Fe/Ru=1:1, 1:0.5, 1:0.2, and 1:0.1). FeRu nanoparticles were characterized by TEM, high‐resolution TEM, and wide‐angle X‐ray scattering analyses. Their surface was studied by hydride titration and IR spectroscopy after CO adsorption and their magnetic properties were analyzed by using a superconducting quantum interference device (SQUID). The FeRu nanoparticles were used as catalysts in the hydrogenation of styrene and 2‐butanone. The results indicate that the selectivity of the nanoparticle catalysts can be modulated according to their composition and therefore represent a case study on fine‐tuning the reactivity of nanocatalysts and adjusting their selectivity in a given reaction. Singing a bimetallic tune: The selectivity of FeRu nanocatalysts in hydrogenation reactions can be tuned by adjusting the Ru content in bimetallic FeRu ultrasmall nanoparticles.
AbstractList Abstract Ultrasmall FeRu bimetallic nanoparticles were prepared by co‐decomposition of two organometallic precursors, {Fe[N(Si(CH 3 ) 3 ) 2 ] 2 } 2 and (η 4 ‐1,5‐cyclooctadiene)(η 6 ‐1,3,5‐cyclooctatriene)ruthenium(0) (Ru(COD)(COT)), under dihydrogen at 150 °C in mesitylene. A series of FeRu nanoparticles of sizes of approximately 1.8 nm and incorporating different ratios of iron to ruthenium were synthesized by varying the quantity of the ruthenium complex introduced (Fe/Ru=1:1, 1:0.5, 1:0.2, and 1:0.1). FeRu nanoparticles were characterized by TEM, high‐resolution TEM, and wide‐angle X‐ray scattering analyses. Their surface was studied by hydride titration and IR spectroscopy after CO adsorption and their magnetic properties were analyzed by using a superconducting quantum interference device (SQUID). The FeRu nanoparticles were used as catalysts in the hydrogenation of styrene and 2‐butanone. The results indicate that the selectivity of the nanoparticle catalysts can be modulated according to their composition and therefore represent a case study on fine‐tuning the reactivity of nanocatalysts and adjusting their selectivity in a given reaction.
Ultrasmall FeRu bimetallic nanoparticles were prepared by co-decomposition of two organometallic precursors, {Fe[N(Si(CH3)3)2]2}2 and (η4-1,5-cyclooctadiene)(η6-1,3,5-cyclooctatriene)ruthenium(0) (Ru(COD)(COT)), under dihydrogen at 150°C in mesitylene. A series of FeRu nanoparticles of sizes of approximately 1.8nm and incorporating different ratios of iron to ruthenium were synthesized by varying the quantity of the ruthenium complex introduced (Fe/Ru=1:1, 1:0.5, 1:0.2, and 1:0.1). FeRu nanoparticles were characterized by TEM, high-resolution TEM, and wide-angle X-ray scattering analyses. Their surface was studied by hydride titration and IR spectroscopy after CO adsorption and their magnetic properties were analyzed by using a superconducting quantum interference device (SQUID). The FeRu nanoparticles were used as catalysts in the hydrogenation of styrene and 2-butanone. The results indicate that the selectivity of the nanoparticle catalysts can be modulated according to their composition and therefore represent a case study on fine-tuning the reactivity of nanocatalysts and adjusting their selectivity in a given reaction. [PUBLICATION ABSTRACT]
Ultrasmall FeRu bimetallic nanoparticles were prepared by co‐decomposition of two organometallic precursors, {Fe[N(Si(CH3)3)2]2}2 and (η4‐1,5‐cyclooctadiene)(η6‐1,3,5‐cyclooctatriene)ruthenium(0) (Ru(COD)(COT)), under dihydrogen at 150 °C in mesitylene. A series of FeRu nanoparticles of sizes of approximately 1.8 nm and incorporating different ratios of iron to ruthenium were synthesized by varying the quantity of the ruthenium complex introduced (Fe/Ru=1:1, 1:0.5, 1:0.2, and 1:0.1). FeRu nanoparticles were characterized by TEM, high‐resolution TEM, and wide‐angle X‐ray scattering analyses. Their surface was studied by hydride titration and IR spectroscopy after CO adsorption and their magnetic properties were analyzed by using a superconducting quantum interference device (SQUID). The FeRu nanoparticles were used as catalysts in the hydrogenation of styrene and 2‐butanone. The results indicate that the selectivity of the nanoparticle catalysts can be modulated according to their composition and therefore represent a case study on fine‐tuning the reactivity of nanocatalysts and adjusting their selectivity in a given reaction. Singing a bimetallic tune: The selectivity of FeRu nanocatalysts in hydrogenation reactions can be tuned by adjusting the Ru content in bimetallic FeRu ultrasmall nanoparticles.
Ultrasmall FeRu bimetallic nanoparticles were prepared by co-decomposition of two organometallic precursors, Fe[N(Si(CH3)3) 2]22 and (η4-1,5- cyclooctadiene)(η6-1,3,5-cyclooctatriene)ruthenium(0) (Ru(COD)(COT)), under dihydrogen at 150 °C in mesitylene. A series of FeRu nanoparticles of sizes of approximately 1.8 nm and incorporating different ratios of iron to ruthenium were synthesized by varying the quantity of the ruthenium complex introduced (Fe/Ru=1:1, 1:0.5, 1:0.2, and 1:0.1). FeRu nanoparticles were characterized by TEM, high-resolution TEM, and wide-angle X-ray scattering analyses. Their surface was studied by hydride titration and IR spectroscopy after CO adsorption and their magnetic properties were analyzed by using a superconducting quantum interference device (SQUID). The FeRu nanoparticles were used as catalysts in the hydrogenation of styrene and 2-butanone. The results indicate that the selectivity of the nanoparticle catalysts can be modulated according to their composition and therefore represent a case study on fine-tuning the reactivity of nanocatalysts and adjusting their selectivity in a given reaction. Singing a bimetallic tune: The selectivity of FeRu nanocatalysts in hydrogenation reactions can be tuned by adjusting the Ru content in bimetallic FeRu ultrasmall nanoparticles.
Author Chaudret, Bruno
Meffre, Anca
Kelsen, Vinciane
Fazzini, Pier-Francesco
Lecante, Pierre
Author_xml – sequence: 1
  givenname: Vinciane
  surname: Kelsen
  fullname: Kelsen, Vinciane
  organization: LPCNO-INSA, Université de Toulouse, 135 avenue de Rangueil 31077 Toulouse Cedex 4 (France), Fax: (+33) 05-62-17-28-16
– sequence: 2
  givenname: Anca
  surname: Meffre
  fullname: Meffre, Anca
  organization: LPCNO-INSA, Université de Toulouse, 135 avenue de Rangueil 31077 Toulouse Cedex 4 (France), Fax: (+33) 05-62-17-28-16
– sequence: 3
  givenname: Pier-Francesco
  surname: Fazzini
  fullname: Fazzini, Pier-Francesco
  organization: LPCNO-INSA, Université de Toulouse, 135 avenue de Rangueil 31077 Toulouse Cedex 4 (France), Fax: (+33) 05-62-17-28-16
– sequence: 4
  givenname: Pierre
  surname: Lecante
  fullname: Lecante, Pierre
  organization: Centre d'Elaboration des Matériaux et d'Etudes Structurales, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France)
– sequence: 5
  givenname: Bruno
  surname: Chaudret
  fullname: Chaudret, Bruno
  email: chaudret@insa-toulouse.fr
  organization: LPCNO-INSA, Université de Toulouse, 135 avenue de Rangueil 31077 Toulouse Cedex 4 (France), Fax: (+33) 05-62-17-28-16
BackLink https://hal.science/hal-01766219$$DView record in HAL
BookMark eNqFkU1vEzEQhi3USvSDK2dLnDhs8MeuveZWVrRpFQKCICQkZHmdsbJlsw62tyX_vg6LIm6cxho9z2jm9Tk6GfwACL2kZEYJYW-sTXbGCOWEKCKfoTNaC1nwWqmT47smz9F5jPeECMVldYZ-zP0jTh5_8OuxNwlwY5Lp96mz-FPwOwipg4i7AS_N4OM-JtjGt3i1OYARsHf4Nvih-DymDQzduP3D7UzWbA_xEp0600d48bdeoK_X71fNvFh8vLltrhaFzevJwlXQtqKyxjG1boHVxhrulHNtuXaKWxCmNgq4W1etosyCLVsq8pklEwSY4Bfo9TR3Y3q9C93WhL32ptPzq4U-9AiVQjCqHmhmX03sLvhfI8Sk7_0YhryephVnUsqyZJmaTZQNPsYA7jiWEn2IWx_i1se4s6Am4bHrYf8fWjfNqvnXLSa3y_n-Prom_NRC5m_S35Y3evlu8b0md7X-wp8APcWVcw
CitedBy_id crossref_primary_10_1039_C6RA13709A
crossref_primary_10_1016_j_ccr_2015_07_013
crossref_primary_10_1021_acs_accounts_7b00378
crossref_primary_10_1007_s10562_014_1421_3
crossref_primary_10_1016_j_jallcom_2017_02_008
crossref_primary_10_1021_acsnano_0c09744
crossref_primary_10_1039_C6DT02541B
crossref_primary_10_1021_acscatal_1c02703
crossref_primary_10_1002_cnma_202000198
crossref_primary_10_1016_j_commatsci_2015_02_037
crossref_primary_10_1016_j_jcat_2022_01_030
crossref_primary_10_1039_D1GC02154K
crossref_primary_10_1021_acs_chemrev_9b00434
crossref_primary_10_1039_C9NR04149D
crossref_primary_10_1021_acscatal_6b00796
Cites_doi 10.1016/j.cattod.2011.11.025
10.1016/0021-9517(80)90303-6
10.1039/b614910c
10.1007/s10562-010-0448-3
10.1039/c2cy00533f
10.1016/S0304-8853(96)00079-0
10.1126/science.1215614
10.1021/nl302160d
10.1016/j.materresbull.2008.12.001
10.1021/cm035070u
10.1002/anie.200704763
10.1039/b820048c
10.1002/cctc.201100400
10.1016/0021-9517(79)90164-7
10.1063/1.126676
10.1021/cs200633k
10.1021/ja304487b
10.1006/jcat.2001.3394
10.1021/cm00027a005
10.1126/science.1092641
10.1007/s10562-010-0428-7
10.1021/ja003961m
10.1002/ange.200704763
10.1039/c0dt00177e
10.1016/j.powtec.2010.10.005
10.1021/ja211658t
10.1002/adsc.201000877
10.1021/ic801014f
10.1021/jp034215h
10.1002/cctc.201200666
10.1016/0021-9517(86)90077-1
10.1002/ange.201104959
10.1039/c3cc00152k
10.1039/c1jm12127h
10.1016/j.apcata.2007.06.018
10.1039/b601014h
10.1039/f19858102293
10.1021/ja805719c
10.1016/j.cattod.2011.09.012
10.1002/anie.201104959
10.1039/C2CY20561K
10.1007/BF00765229
10.1021/cm0715343
10.1021/ja304958u
10.1039/dt9820001019
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
1XC
DOI 10.1002/cctc.201300907
DatabaseName Istex
CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1867-3899
EndPage 1720
ExternalDocumentID oai_HAL_hal_01766219v1
3325714591
10_1002_cctc_201300907
CCTC201300907
ark_67375_WNG_NBLZ80J8_S
Genre article
GrantInformation_xml – fundername: European Union
  funderid: NANOSONWINGS 2009‐246763
– fundername: CNRS
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABDBF
ABHUG
ABPTK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADDAD
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
FEDTE
G-S
GODZA
HVGLF
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XFK
XV2
ZZTAW
AITYG
HGLYW
AAYXX
CITATION
1XC
ID FETCH-LOGICAL-c3897-f5ebb65caf29dbe28aca3f9ffb4df93ce6a8a9e3fd5b912cec4b160094260e263
ISSN 1867-3880
1867-3899
IngestDate Fri Sep 06 13:23:30 EDT 2024
Fri Sep 13 08:45:29 EDT 2024
Fri Aug 23 03:42:20 EDT 2024
Sat Aug 24 01:06:04 EDT 2024
Wed Jan 17 04:58:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Wide angle X-ray scattering
Organometallic precursors
Organometallics
Ruthenium
Catalyst selectivity
Catalytic properties
High-resolution TEM
Ruthenium complexes
Iron
Electron microscopy
Bimetallic nanoparticles
Hydrogenation
Nanoparticle catalysts
Ruthenium compounds
Synthesis (chemical)
Nanoparticles
Iron compounds
Hydrogenation reactions
Styrene
SQUIDs
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3897-f5ebb65caf29dbe28aca3f9ffb4df93ce6a8a9e3fd5b912cec4b160094260e263
Notes istex:5430CEBAB11CACFD63F126A735014D45DF725BBB
CNRS
ark:/67375/WNG-NBLZ80J8-S
European Union - No. NANOSONWINGS 2009-246763
ArticleID:CCTC201300907
ORCID 0000-0001-6337-6855
0000-0001-9290-6421
0000-0002-4307-6481
PQID 1532777442
PQPubID 986343
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_01766219v1
proquest_journals_1532777442
crossref_primary_10_1002_cctc_201300907
wiley_primary_10_1002_cctc_201300907_CCTC201300907
istex_primary_ark_67375_WNG_NBLZ80J8_S
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationTitleAlternate ChemCatChem
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
– name: Wiley
References H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. Lulian Dugulan, K. P. de Jong, Science 2012, 335, 835-838
P. Pertici, G. Vitulli, R. Lazzaroni, P. Salvadori, P. L. Barili, J. Chem. Soc. Dalton Trans. 1982, 1019-1022.
P. Lara, K. Philippot, B. Chaudret, ChemCatChem 2013, 5, 28-45.
G. L. Ott, T. Fleisch, W. N. Delgass, J. Catal. 1980, 65, 253-262
D. González-Gálvez, P. Nolis, K. Philippot, B. Chaudret, P. W. N. M. van Leeuwen, ACS Catal. 2012, 2, 317-321.
K. Lázár, W. M. Reiff, W. Mörke, L. Guczi, J. Catal. 1986, 100, 118-129
J. García-Antón, M. R. Axet, S. Jansat, K. Philippot, B. Chaudret, T. Pery, G. Buntkowsky, H.-H. Limbach, Angew. Chem. Int. Ed. 2008, 47, 2074-2078
Angew. Chem. 2011, 123, 10637-10640
M. Stein, J. Wieland, P. Steurer, F. Tölle, R. Mülhaupt, B. Breit, Adv. Synth. Catal. 2011, 353, 523-527.
M. H. G. Prechtl, M. Scariot, J. D. Scholten, G. Machado, S. R. Teixeira, J. Dupont, Inorg. Chem. 2008, 47, 8995-9001
B. Bachiller-Baeza, A. Guerrero-Ruiz, P. Wang, I. Rodríguez-Ramos, J. Catal. 2001, 204, 450-459
D. Gonzalez-Galvez, P. Lara, O. Rivada-Wheelaghan, S. Conejero, B. Chaudret, K. Philippot, P. W. N. M. Van Leeuwen, Catal. Sci. Technol. 2013, 3, 99-105.
F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Science 2004, 303, 821-823
J.-Q. Du, Y. Zhang, T. Tian, S.-C. Yan, H.-T. Wang, Mater. Res. Bull. 2009, 44, 1347-1351.
F. J. Berry, L. Liwu, W. Chengyu, T. Renyuan, Z. Su, L. Dongbai, J. Chem. Soc. Faraday Trans. 1 1985, 81, 2293-2305
A. Meffre, B. Mehdaoui, V. Kelsen, P. F. Fazzini, J. Carrey, S. Lachaize, M. Respaud, B. Chaudret, Nano Lett. 2012, 12, 4722-4728.
L.-M. Lacroix, S. Lachaize, A. Falqui, M. Respaud, B. Chaudret, J. Am. Chem. Soc. 2009, 131, 549-557
A. Gual, C. Godard, S. Castillon, D. Curulla-Ferre, C. Claver, Catal. Today 2012, 183, 154-171.
L. M. Lacroix, S. Lachaize, A. Falqui, T. Blon, J. Carrey, M. Respaud, F. Dumestre, C. Amiens, O. Margeat, B. Chaudret, P. Lecante, E. Snoeck, J. Appl. Phys. 2008, 103, 07D521.
C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P. Lecante, M.-J. Casanove, J. Am. Chem. Soc. 2001, 123, 7584-7593.
N. Popovska, K. Danova, I. Jipa, U. Zenneck, Powder Technol. 2011, 207, 17-25.
R. B. Bedford, M. Betham, D. W. Bruce, S. A. Davis, R. M. Frost, M. Hird, Chem. Commun. 2006, 1398-1400
M. Guerrero, A. Roucoux, A. Denicourt-Nowicki, H. Bricout, E. Monflier, V. Collière, K. Fajerwerg, K. Philippot, Catal. Today 2012, 183, 34-41
X. Wang, W. Yue, M. He, M. Liu, J. Zhang, Z. Liu, Chem. Mater. 2004, 16, 799-805.
G. L. Ott, T. Fleisch, W. N. Delgass, J. Catal. 1979, 60, 394-403
C. Bergounhou, C. Blandy, R. Choukroun, P. Lecante, C. Lorber, J. L. Pellegatta, New J. Chem. 2007, 31, 218-223.
N. Liakakos, B. Cormary, X.-J. Li, P. Lecante, M. Respaud, L. Maron, A. Falqui, A. Genovese, L. Vendier, S. Koïnis, B. Chaudret, K. Soulantica, J. Am. Chem. Soc. 2012, 134, 17922-17931.
H. M. Torres Galvis, J. H. Bitter, T. Davidian, M. Ruitenbeek, A. Iulian Dugulan, K. P. de Jong, J. Am. Chem. Soc. 2012, 134, 16207-16215
C. Rangheard, C. de J.  Fernandez, P.-H. Phua, J. Hoorn, L. Lefort, J. G. de Vries, Dalton Trans. 2010, 39, 8464-8471
F. Schwab, M. Lucas, P. Claus, Angew. Chem. Int. Ed. 2011, 50, 10453-10456
A. Welther, M. Bauer, M. Mayer, A. J. von Wangelin, ChemCatChem 2012, 4, 1088-1093.
K. R. Kannan, G. U. Kulkarni, C. N. R. Rao, Catal. Lett. 1992, 14, 149-163.
J. S. Bradley, E. W. Hill, C. Klein, B. Chaudret, A. Duteil, Chem. Mater. 1993, 5, 254-256.
J.-M. Andanson, S. Marx, A. Baiker, Catal. Sci. Technol. 2012, 2, 1403-1409.
V. Kelsen, B. Wendt, S. Werkmeister, K. Junge, M. Beller, B. Chaudret, Chem. Commun. 2013, 49, 3416-3418.
D. Zitoun, C. Amiens, B. Chaudret, M.-C. Fromen, P. Lecante, M.-J. Casanove, M. Respaud, J. Phys. Chem. B 2003, 107, 6997-7005.
D. Ciuculescu, C. Amiens, M. Respaud, A. Falqui, P. Lecante, R. E. Benfield, L. Jiang, K. Fauth, B. Chaudret, Chem. Mater. 2007, 19, 4624-4626
F. Novio, K. Philippot, B. Chaudret, Catal. Lett. 2010, 140, 1-7.
M. Kitada, K. Yamamoto, K. Momata, J. Magn. Magn. Mater. 1996, 161, 397-403
J. F. Sonnenberg, N. Coombs, P. A. Dube, R. H. Morris, J. Am. Chem. Soc. 2012, 134, 5893-5899.
Angew. Chem. 2008, 120, 2104-2108.
M. C. Bahome, L. L. Jewell, K. Padayachy, D. Hildebrandt, D. Glasser, A. K. Datye, N. J. Coville, Appl. Catal. A 2007, 328, 243-251.
M. Takahashi, H. Shoji, S. Kadowaki, D. D. Djayaprawira, Y. Komori, H. Domon, Appl. Phys. Lett. 2000, 76, 3457-3459.
P.-H. Phua, L. Lefort, J. A. F. Boogers, M. Tristany, J. G. de Vries, Chem. Commun. 2009, 3747-3749
D. Duraczyńska, A. Drelinkiewicz, E. Bielańska, E. M. Serwicka, L. Lityńska-Dobrzyńska, Catal. Lett. 2011, 141, 83-94.
A. Meffre, S. Lachaize, C. Gatel, M. Respaud, B. Chaudret, J. Mater. Chem. 2011, 21, 13464-13469.
2012; 183
2009; 44
2007; 19
2001; 123
2004; 303
2013; 3
2007; 328
2013; 49
2010; 39
1980; 65
2009
1985; 81
1996; 161
2006
1992; 14
2010; 140
2008; 103
2009; 131
2008 2008; 47 120
2007; 31
2013; 5
2012; 12
2011; 353
1993; 5
2001; 204
2012; 2
2011; 207
2003; 107
2012; 134
2004; 16
1986; 100
2000; 76
2008; 47
2011; 21
2011 2011; 50 123
1982
2011; 141
2012; 335
2012; 4
1979; 60
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
Lacroix L. M. (e_1_2_6_40_2) 2008; 103
e_1_2_6_46_3
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 4
  start-page: 1088
  year: 2012
  end-page: 1093
  publication-title: ChemCatChem
– volume: 2
  start-page: 1403
  year: 2012
  end-page: 1409
  publication-title: Catal. Sci. Technol.
– volume: 161
  start-page: 397
  year: 1996
  end-page: 403
  publication-title: J. Magn. Magn. Mater.
– volume: 123
  start-page: 7584
  year: 2001
  end-page: 7593
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 2293
  year: 1985
  end-page: 2305
  publication-title: J. Chem. Soc. Faraday Trans. 1
– volume: 21
  start-page: 13464
  year: 2011
  end-page: 13469
  publication-title: J. Mater. Chem.
– volume: 141
  start-page: 83
  year: 2011
  end-page: 94
  publication-title: Catal. Lett.
– volume: 183
  start-page: 154
  year: 2012
  end-page: 171
  publication-title: Catal. Today
– start-page: 1019
  year: 1982
  end-page: 1022
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 103
  start-page: 07D
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 16
  start-page: 799
  year: 2004
  end-page: 805
  publication-title: Chem. Mater.
– volume: 107
  start-page: 6997
  year: 2003
  end-page: 7005
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 28
  year: 2013
  end-page: 45
  publication-title: ChemCatChem
– volume: 204
  start-page: 450
  year: 2001
  end-page: 459
  publication-title: J. Catal.
– volume: 134
  start-page: 16207
  year: 2012
  end-page: 16215
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 549
  year: 2009
  end-page: 557
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 5893
  year: 2012
  end-page: 5899
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 1347
  year: 2009
  end-page: 1351
  publication-title: Mater. Res. Bull.
– volume: 47
  start-page: 8995
  year: 2008
  end-page: 9001
  publication-title: Inorg. Chem.
– volume: 335
  start-page: 835
  year: 2012
  end-page: 838
  publication-title: Science
– volume: 50 123
  start-page: 10453 10637
  year: 2011 2011
  end-page: 10456 10640
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 100
  start-page: 118
  year: 1986
  end-page: 129
  publication-title: J. Catal.
– volume: 5
  start-page: 254
  year: 1993
  end-page: 256
  publication-title: Chem. Mater.
– volume: 183
  start-page: 34
  year: 2012
  end-page: 41
  publication-title: Catal. Today
– volume: 140
  start-page: 1
  year: 2010
  end-page: 7
  publication-title: Catal. Lett.
– volume: 65
  start-page: 253
  year: 1980
  end-page: 262
  publication-title: J. Catal.
– volume: 19
  start-page: 4624
  year: 2007
  end-page: 4626
  publication-title: Chem. Mater.
– start-page: 1398
  year: 2006
  end-page: 1400
  publication-title: Chem. Commun.
– volume: 60
  start-page: 394
  year: 1979
  end-page: 403
  publication-title: J. Catal.
– volume: 39
  start-page: 8464
  year: 2010
  end-page: 8471
  publication-title: Dalton Trans.
– volume: 2
  start-page: 317
  year: 2012
  end-page: 321
  publication-title: ACS Catal.
– volume: 207
  start-page: 17
  year: 2011
  end-page: 25
  publication-title: Powder Technol.
– volume: 328
  start-page: 243
  year: 2007
  end-page: 251
  publication-title: Appl. Catal. A
– volume: 3
  start-page: 99
  year: 2013
  end-page: 105
  publication-title: Catal. Sci. Technol.
– volume: 47 120
  start-page: 2074 2104
  year: 2008 2008
  end-page: 2078 2108
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 303
  start-page: 821
  year: 2004
  end-page: 823
  publication-title: Science
– volume: 31
  start-page: 218
  year: 2007
  end-page: 223
  publication-title: New J. Chem.
– volume: 134
  start-page: 17922
  year: 2012
  end-page: 17931
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 4722
  year: 2012
  end-page: 4728
  publication-title: Nano Lett.
– volume: 49
  start-page: 3416
  year: 2013
  end-page: 3418
  publication-title: Chem. Commun.
– volume: 14
  start-page: 149
  year: 1992
  end-page: 163
  publication-title: Catal. Lett.
– volume: 353
  start-page: 523
  year: 2011
  end-page: 527
  publication-title: Adv. Synth. Catal.
– start-page: 3747
  year: 2009
  end-page: 3749
  publication-title: Chem. Commun.
– volume: 76
  start-page: 3457
  year: 2000
  end-page: 3459
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_6_4_2
  doi: 10.1016/j.cattod.2011.11.025
– ident: e_1_2_6_27_2
  doi: 10.1016/0021-9517(80)90303-6
– ident: e_1_2_6_43_2
  doi: 10.1039/b614910c
– ident: e_1_2_6_23_2
  doi: 10.1007/s10562-010-0448-3
– ident: e_1_2_6_33_2
  doi: 10.1039/c2cy00533f
– ident: e_1_2_6_52_2
  doi: 10.1016/S0304-8853(96)00079-0
– ident: e_1_2_6_2_2
  doi: 10.1126/science.1215614
– ident: e_1_2_6_12_2
– ident: e_1_2_6_50_2
  doi: 10.1021/nl302160d
– ident: e_1_2_6_30_2
  doi: 10.1016/j.materresbull.2008.12.001
– ident: e_1_2_6_37_2
  doi: 10.1021/cm035070u
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.200704763
– ident: e_1_2_6_9_2
  doi: 10.1039/b820048c
– ident: e_1_2_6_11_2
  doi: 10.1002/cctc.201100400
– ident: e_1_2_6_26_2
  doi: 10.1016/0021-9517(79)90164-7
– ident: e_1_2_6_53_2
  doi: 10.1063/1.126676
– ident: e_1_2_6_22_2
  doi: 10.1021/cs200633k
– ident: e_1_2_6_45_2
  doi: 10.1021/ja304487b
– ident: e_1_2_6_32_2
  doi: 10.1006/jcat.2001.3394
– ident: e_1_2_6_47_2
  doi: 10.1021/cm00027a005
– ident: e_1_2_6_13_2
  doi: 10.1126/science.1092641
– ident: e_1_2_6_48_2
  doi: 10.1007/s10562-010-0428-7
– ident: e_1_2_6_39_2
  doi: 10.1021/ja003961m
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.200704763
– volume: 103
  start-page: 07D
  year: 2008
  ident: e_1_2_6_40_2
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Lacroix L. M.
– ident: e_1_2_6_10_2
  doi: 10.1039/c0dt00177e
– ident: e_1_2_6_25_2
– ident: e_1_2_6_41_2
– ident: e_1_2_6_38_2
  doi: 10.1016/j.powtec.2010.10.005
– ident: e_1_2_6_6_2
  doi: 10.1021/ja211658t
– ident: e_1_2_6_5_2
  doi: 10.1002/adsc.201000877
– ident: e_1_2_6_20_2
  doi: 10.1021/ic801014f
– ident: e_1_2_6_49_2
  doi: 10.1021/jp034215h
– ident: e_1_2_6_17_2
  doi: 10.1002/cctc.201200666
– ident: e_1_2_6_35_2
  doi: 10.1016/0021-9517(86)90077-1
– ident: e_1_2_6_21_3
  doi: 10.1002/ange.201104959
– ident: e_1_2_6_16_2
  doi: 10.1039/c3cc00152k
– ident: e_1_2_6_34_2
– ident: e_1_2_6_15_2
  doi: 10.1039/c1jm12127h
– ident: e_1_2_6_29_2
  doi: 10.1016/j.apcata.2007.06.018
– ident: e_1_2_6_31_2
– ident: e_1_2_6_51_2
– ident: e_1_2_6_18_2
– ident: e_1_2_6_8_2
  doi: 10.1039/b601014h
– ident: e_1_2_6_28_2
  doi: 10.1039/f19858102293
– ident: e_1_2_6_14_2
  doi: 10.1021/ja805719c
– ident: e_1_2_6_19_2
  doi: 10.1016/j.cattod.2011.09.012
– ident: e_1_2_6_21_2
  doi: 10.1002/anie.201104959
– ident: e_1_2_6_1_2
– ident: e_1_2_6_24_2
  doi: 10.1039/C2CY20561K
– ident: e_1_2_6_7_2
– ident: e_1_2_6_36_2
  doi: 10.1007/BF00765229
– ident: e_1_2_6_42_2
  doi: 10.1021/cm0715343
– ident: e_1_2_6_3_2
  doi: 10.1021/ja304958u
– ident: e_1_2_6_44_2
  doi: 10.1039/dt9820001019
SSID ssj0069375
Score 2.1978514
Snippet Ultrasmall FeRu bimetallic nanoparticles were prepared by co‐decomposition of two organometallic precursors, {Fe[N(Si(CH3)3)2]2}2 and...
Abstract Ultrasmall FeRu bimetallic nanoparticles were prepared by co‐decomposition of two organometallic precursors, {Fe[N(Si(CH 3 ) 3 ) 2 ] 2 } 2 and (η 4...
Ultrasmall FeRu bimetallic nanoparticles were prepared by co-decomposition of two organometallic precursors, {Fe[N(Si(CH3)3)2]2}2 and...
Ultrasmall FeRu bimetallic nanoparticles were prepared by co-decomposition of two organometallic precursors, Fe[N(Si(CH3)3) 2]22 and (η4-1,5-...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1714
SubjectTerms electron microscopy
hydrogenation
iron
Magnetism
Nanoparticles
Physics
ruthenium
Title How to Modulate Catalytic Properties in Nanosystems: The Case of Iron-Ruthenium Nanoparticles
URI https://api.istex.fr/ark:/67375/WNG-NBLZ80J8-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201300907
https://www.proquest.com/docview/1532777442/abstract/
https://hal.science/hal-01766219
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lyQEuiKcIFLRCCA5Vir1-c2sMIVRpVIm0VFys3fVajShxlQeCnPgP_EN-CTNre21LFY9enGizfmTn29mZ8ew3hDznkRCBzcUglIEauEGYDgQ4PzDdmSXd0HOzFAP6R1N_fOIennlnnU6TIXizFvtye-W-kutIFdpArrhL9j8kay4KDfAd5AtHkDAc_0nGuh5cjvXMsAiXwu18_OI7UrAeY4x9iWSpGNAAFZoXlM2rKssi5kUQ__0SbL8y4cHR6e6L-eaLPuOySpprGrBIMAC3wY9aV1-UYZxTDNzz-kX9kd4mVuRN1ilBI77dznUlqb1jWJRNuoWu8aFWMq86TpSWe9WxTNMtQxS2W6dS7ZuCWeZip_F4rxGrLNRuCOoaaWmKVanZVpRPqnS134BkU-9iGffGGg5WmXXl-lDwzUqp2SvxTV5U1NxtE3Gbnt6f-2ozII5nsfl9h_RYEHlBl_QOhm-Go8oo8MEKxGxa80cr_lCLvWrfoWUf7Zxjdm4PJ_y3lgvUdKS0JTS7TW6VLgw9KNBxh3TU4i65EVeVA--RBHBJ1zmtcEkNLmmNSzpf0AYuX1NAJUVU0jyjiMpfP34aPNIWHu-Tk9HbWTwelIU8BhIEGAwyTwnhe5JnLEqFYiGX3MmiLBNumkWOVD4PeaScLPVEZDOppCtsH5NewdtWzHcekO4iX6iHhLqelQrwMhjnvsszHxSNLWBVgpHLMimcPnlZDV9yWfC1JAUzN0twoBMz0H3yDEbXdEKa9fHBJME2C1lTYSn_avfJCz34phtffsZUyMBLPk7fJdPh5FNoHYbJhz7ZraSTlBpilYA1wQLwr1zWJ0xL7C_PlLTA9Og6Jz0mN-spuEu66-VGPQG7eS2elpj8Dd_1uaU
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+Modulate+Catalytic+Properties+in+Nanosystems%3A+The+Case+of+Iron%E2%80%93Ruthenium+Nanoparticles&rft.jtitle=ChemCatChem&rft.au=Kelsen%2C+Vinciane&rft.au=Meffre%2C+Anca&rft.au=Fazzini%2C+Pier%E2%80%90Francesco&rft.au=Lecante%2C+Pierre&rft.date=2014-06-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=6&rft.issue=6&rft.spage=1714&rft.epage=1720&rft_id=info:doi/10.1002%2Fcctc.201300907&rft.externalDBID=10.1002%252Fcctc.201300907&rft.externalDocID=CCTC201300907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon