Thermal flight performance reveals impact of warming on bumblebee foraging potential
The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight...
Saved in:
Published in | Functional ecology Vol. 35; no. 11; pp. 2508 - 2522 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0269-8463 1365-2435 |
DOI | 10.1111/1365-2435.13887 |
Cover
Loading…
Abstract | The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited.
Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events.
Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris, varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit.
Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance.
By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article. |
---|---|
AbstractList | The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited.
Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events.
Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee,
Bombus terrestris
, varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit.
Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance.
By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision.
A free
Plain Language Summary
can be found within the Supporting Information of this article. The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited.Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events.Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris, varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit.Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance.By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision.A free Plain Language Summary can be found within the Supporting Information of this article. The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited. Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events. Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris, varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit. Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance. By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. |
Author | Kenna, Daniel Pawar, Samraat Gill, Richard J. |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0001-9427-697X surname: Kenna fullname: Kenna, Daniel email: d.kenna17@imperial.ac.uk organization: Silwood Park Campus – sequence: 2 givenname: Samraat orcidid: 0000-0001-8375-5684 surname: Pawar fullname: Pawar, Samraat organization: Silwood Park Campus – sequence: 3 givenname: Richard J. orcidid: 0000-0001-9389-1284 surname: Gill fullname: Gill, Richard J. email: r.gill@imperial.ac.uk organization: Silwood Park Campus |
BookMark | eNqFkEFPwyAYhomZidv07JXEi5c6CqW0R7NsamLiZZ4J4NeNhUKlnWb_XuaMh13G5UvevM8HPBM08sEDQrc5ecjTmeWs5BktGH_IWVWJCzT-T0ZoTGhZZ1VRsis06fstIaTmlI7RarWB2CqHG2fXmwF3EJuQAm8AR_gC5Xps206ZAYcGf6vYWr_GwWO9a7UDDYBTX60PaRcG8INV7hpdNgmEm785Re_LxWr-nL2-Pb3MH18zw6paZGXFNNEih0JpKugHlIwXvFac8AoECEa05o2hhuqCmLrMhYCK0MaYQjXMKDZF98e9XQyfO-gH2dregHPKQ9j1kpasLEidp29P0d1JdRt20afXScrrIqkSydQUzY4tE0PfR2hkF22r4l7mRB4sy4NTeXAqfy0ngp8Qxg5qsMEPUVl3nvu2DvbnrpHLxfzI_QAADJEM |
CitedBy_id | crossref_primary_10_1007_s00442_023_05332_x crossref_primary_10_1038_s41598_025_85851_0 crossref_primary_10_1098_rspb_2024_1598 crossref_primary_10_1016_j_ijpara_2023_03_003 crossref_primary_10_1242_bio_060179 crossref_primary_10_1007_s00442_022_05184_x crossref_primary_10_1007_s12080_022_00551_z crossref_primary_10_1093_ee_nvac090 crossref_primary_10_1016_j_ibmb_2023_103932 crossref_primary_10_3390_agriculture12111795 crossref_primary_10_1093_jee_toae205 crossref_primary_10_1111_1365_2656_13788 crossref_primary_10_1111_oik_10639 crossref_primary_10_1093_ee_nvac093 crossref_primary_10_1002_ece3_10290 crossref_primary_10_1093_conphys_coae031 crossref_primary_10_1111_1365_2435_14253 crossref_primary_10_3389_fphys_2023_1251235 crossref_primary_10_1016_j_aspen_2024_102311 crossref_primary_10_1038_s41558_023_01720_6 crossref_primary_10_1098_rspb_2024_0352 crossref_primary_10_1098_rspb_2024_1001 crossref_primary_10_1016_j_anbehav_2022_04_012 crossref_primary_10_1080_00063657_2022_2157373 crossref_primary_10_1016_j_chemosphere_2024_142881 crossref_primary_10_1111_ele_14158 crossref_primary_10_1073_pnas_2300886121 crossref_primary_10_1016_j_aspen_2024_102326 crossref_primary_10_1098_rspb_2024_2216 crossref_primary_10_26786_1920_7603_2024_753 crossref_primary_10_1093_beheco_arac045 crossref_primary_10_1111_1365_2656_14186 crossref_primary_10_1016_j_jinsphys_2024_104723 crossref_primary_10_1093_beheco_arad112 crossref_primary_10_1111_1748_5967_12689 crossref_primary_10_1080_00218839_2022_2110431 crossref_primary_10_1086_733183 crossref_primary_10_1080_15230430_2023_2178149 crossref_primary_10_1098_rspb_2024_0040 crossref_primary_10_1016_j_jtherbio_2024_103830 crossref_primary_10_1016_j_jtherbio_2025_104068 crossref_primary_10_1111_gcb_16196 |
Cites_doi | 10.1111/1365‐2664.12792 10.1111/gcb.12264 10.1006/anbe.2002.3041 10.1111/jbi.12236 10.1038/s41598‐020‐73391‐8 10.1073/pnas.1015178108 10.1101/2020.05.06.079525 10.1038/s41467‐019‐08974‐9 10.1126/science.1098704 10.1111/j.1365‐2311.2010.01198.x 10.1038/s41598‐019‐49025‐z 10.1007/s13592‐011‐0086‐9 10.1111/j.1365‐2656.2007.01333.x 10.1126/science.aax8591 10.1111/j.1095‐8312.2012.02042.x 10.1098/rsbl.2017.0125 10.1890/08‐1498.1 10.2903/j.efsa.2013.3295 10.1073/pnas.1316145111 10.1093/ae/50.4.212 10.1242/jeb.01777 10.1146/annurev.ento.42.1.207 10.1086/527502 10.1303/aez.2003.275 10.2307/2256344 10.1002/joc.5086 10.1016/j.chemosphere.2019.124408 10.1007/s13592‐020‐00771‐4 10.3390/insects11030191 10.1111/j.1461‐0248.2007.01018.x 10.1111/1365‐2435.12292 10.1016/j.baae.2021.03.008 10.1007/s10044‐015‐0501‐3 10.1038/nature20588 10.1038/s41559‐019‐1062‐4 10.1371/journal.pone.0234498 10.1046/j.1365‐2435.1999.00351.x 10.1038/sdata.2018.246 10.1098/rspb.2013.1149 10.1038/ncomms5359 10.1242/jeb.187807 10.1086/498181 10.1073/pnas.1208682110 10.1371/journal.pone.0160333 10.1086/318112 10.1890/15‐0546/suppinfo 10.1126/sciadv.aay3115 10.1111/j.1365‐2311.2006.00801.x 10.1038/s41467‐018‐02992‐9 10.5061/dryad.kr577.Funding 10.1073/pnas.0709472105 10.1046/j.1439-0418.2000.00484.x 10.1515/9780691186344 10.1016/j.anbehav.2019.12.018 10.1111/een.12517 10.1007/s00040‐002‐8293‐z 10.1371/journal.pone.0105432 10.1242/jeb.01582 10.1029/2018GL080252 10.1038/nature11585 10.1093/icb/19.1.357 10.1046/j.1570‐7458.1997.00186.x 10.1086/665568 10.1016/j.tree.2011.03.005 10.1051/apido:2006019 10.1111/j.1365‐2311.1993.tb01075.x 10.1016/j.biocon.2017.11.026 10.1002/ece3.5143 10.1146/annurev.physiol.62.1.179 10.1007/s00265‐005‐0916‐8 10.1175/BAMS‐D‐16‐0259.1 10.1038/s41598‐018‐32665‐y 10.1126/science.aaa7031 10.1038/s41598‐017‐01361‐8 10.1080/10635150801898912 10.1111/j.1600‐0587.1980.tb00715.x 10.1016/j.biocon.2019.01.020 10.1111/1365‐2656.13319 10.1371/journal.pone.0148983 10.1016/j.agee.2011.03.020 10.1111/j.1365‐2486.2012.02691.x 10.1111/1365‐2435.13251 10.1046/j.1365‐2664.1999.00428.x 10.1086/physzool.64.3.30158209 10.1007/BF00706595 10.1038/nature14391 10.1111/j.1365‐2435.2007.01329.x 10.1127/entom.gen/24/1999/23 10.5061/dryad.18931zcxr 10.1080/00218839.2020.1771879 10.1007/s00442‐007‐0752‐9 10.1890/03‐9000 10.1111/ddi.13155 10.1242/jeb.01510 10.1007/s00040‐010‐0064‐7 10.1155/2010/536430 10.1016/j.jtherbio.2006.06.002 10.18637/jss.v067.i01 10.1242/jeb.01818 10.1111/1365‐2435.12809 10.1111/j.1365‐2664.2010.01929.x 10.1111/j.0030‐1299.2004.13510.x 10.1002/bimj.200810425 10.1111/1365‐2435.12145 10.1111/een.12521 10.1111/j.0269‐8463.2005.00946.x 10.1016/B978-0-12-803592-4.00040-7 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.13887 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 2522 |
ExternalDocumentID | 10_1111_1365_2435_13887 FEC13887 |
Genre | article |
GrantInformation_xml | – fundername: Natural Environment Research Council funderid: NE/L002515/1; NE/P012574/1 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c3897-683b0b71e4ab272de635459a5058e7e730bb5fc2c2b40c96177e802fcc4af3ca3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:36:34 EDT 2025 Fri Jul 25 05:37:49 EDT 2025 Tue Jul 01 01:15:52 EDT 2025 Thu Apr 24 22:52:06 EDT 2025 Wed Jan 22 16:28:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3897-683b0b71e4ab272de635459a5058e7e730bb5fc2c2b40c96177e802fcc4af3ca3 |
Notes | Funding information Kris Crandell Handling Editor D.K. is supported by the NERC Science and Solutions for a Changing Planet (SSCP) DTP program (NE/L002515/1). The work was also supported by a NERC grant (NE/P012574/1) awarded to R.J.G. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9389-1284 0000-0001-9427-697X 0000-0001-8375-5684 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13887 |
PQID | 2594136724 |
PQPubID | 1066355 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2636409146 proquest_journals_2594136724 crossref_primary_10_1111_1365_2435_13887 crossref_citationtrail_10_1111_1365_2435_13887 wiley_primary_10_1111_1365_2435_13887_FEC13887 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2006; 31 1997; 42 2019; 10 2020; 161 2006; 37 2020; 15 2016; 540 2012; 18 2008; 105 1975; 96 2020; 11 2014; 28 2020; 10 2018; 45 2018; 43 2012; 491 2018; 9 2018; 8 2018; 5 2000; 124 2018; 217 2009; 90 2014; 14 2020; 89 2013; 110 1979; 19 2018; 221 2019; 9 2010; 2010 2010; 35 2016; 19 2013; 108 2019; 33 2015; 521 1999; 24 2000; 73 2008; 57 2003; 38 2014; 41 2008; 50 2007; 10 2004; 305 1994; 82 2019; 222 2016; 11 2015; 67 2004; 50 2005; 19 2021; 53 2002; 64 2017; 54 1991; 64 2007; 153 1999; 36 2020; 26 2018; 99 2016; 26 2011; 142 2017; 7 1997; 83 2010; 57 2013; 27 2006; 79 2020; 59 2008; 77 2015; 349 2020; 367 2013; 280 2013; 19 2002; 49 2020; 6 2017; 31 2020; 4 2014; 5 2013; 11 2017; 37 2000 2020; 51 1999; 13 2000; 62 2019; 237 2011; 26 2014; 9 2007; 21 2019; 232 2004; 85 2009 2003 2014; 111 2004; 107 1993; 18 2011; 108 2021 2020 2017; 13 1980; 3 2019 2005; 208 2017 2016 2011; 48 2014 2012; 85 2008; 171 2005; 58 e_1_2_10_21_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 Gill R. J. (e_1_2_10_32_1) 2016 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 IPCC (e_1_2_10_56_1) 2014 e_1_2_10_10_1 e_1_2_10_33_1 Goulson D. (e_1_2_10_35_1) 2003 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 Heinrich B. (e_1_2_10_44_1) 1994; 82 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 Wickham P. O. (e_1_2_10_110_1) 2009 e_1_2_10_11_1 e_1_2_10_30_1 R Core Team (e_1_2_10_86_1) 2019 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 Oyen K. J. (e_1_2_10_80_1) 2018; 221 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 Kuznetsova A. (e_1_2_10_68_1) 2017 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 43 start-page: 458 issue: 4 year: 2018 end-page: 462 article-title: Mean body size predicts colony performance in the common eastern bumble bee ( ) publication-title: Ecological Entomology – volume: 208 start-page: 1161 issue: 6 year: 2005 end-page: 1173 article-title: Honeybee flight metabolic rate: Does it depend upon air temperature? publication-title: Journal of Experimental Biology – volume: 491 start-page: 105 issue: 7422 year: 2012 end-page: 108 article-title: Combined pesticide exposure severely affects individual‐ and colony‐level traits in bees publication-title: Nature – volume: 62 start-page: 179 issue: 1 year: 2000 end-page: 205 article-title: Flight respiration and energetics publication-title: Annual Review of Physiology – volume: 222 start-page: 1 issue: 1 year: 2019 end-page: 10 article-title: Flight energetics, caste dimorphism and scaling properties in the bumblebee, Bombus impatiens publication-title: Journal of Experimental Biology – volume: 11 start-page: 3295 issue: 7 year: 2013 article-title: Guidance on the risk assessment of plant protection products on bees ( , spp. and solitary bees) publication-title: EFSA Journal – volume: 48 start-page: 3 issue: 1 year: 2011 end-page: 8 article-title: Translating research into action; bumblebee conservation as a case study publication-title: Journal of Applied Ecology – volume: 11 start-page: 191 issue: 3 year: 2020 article-title: Equivocal evidence for colony level stress effects on bumble bee pollination services publication-title: Insects – volume: 83 start-page: 317 issue: 3 year: 1997 end-page: 322 article-title: Comparison of the performance of leafhoppers on flight mills with that to be expected in free flight publication-title: Entomologia Experimentalis et Applicata – volume: 153 start-page: 589 issue: 3 year: 2007 end-page: 596 article-title: Bee foraging ranges and their relationship to body size publication-title: Oecologia – year: 2020 article-title: Is diversity in worker body size important for the performance of bumble bee colonies? publication-title: BioRxiv – volume: 280 start-page: 20131149 issue: 1765 year: 2013 article-title: Can terrestrial ectotherms escape the heat of climate change by moving? publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 9 start-page: 5637 issue: 10 year: 2019 end-page: 5650 article-title: Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees publication-title: Ecology and Evolution – volume: 64 start-page: 123 issue: 1 year: 2002 end-page: 130 article-title: Can alloethism in workers of the bumblebee, , be explained in terms of foraging efficiency? publication-title: Animal Behaviour – volume: 59 start-page: 1027 issue: 5 year: 2020 end-page: 1032 article-title: Effect of cold narcosis on foraging behavior of European honey bees ( ) tracked using a radio‐frequency identification (RFID) system publication-title: Journal of Apicultural Research – start-page: 135 year: 2016 end-page: 206 – year: 2014 – volume: 5 start-page: 4359 year: 2014 article-title: Pesticide risk assessment in free‐ranging bees is weather and landscape dependent publication-title: Nature Communications – volume: 24 start-page: 23 issue: 1 year: 1999 end-page: 30 article-title: Metabolic rates and metabolic power of honeybees in tethered flight related to temperature and drag (Hymenoptera: ) publication-title: Entomologia Generalis – volume: 90 start-page: 2223 issue: 8 year: 2009 end-page: 2232 article-title: Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field publication-title: Ecology – volume: 77 start-page: 406 issue: 2 year: 2008 end-page: 415 article-title: Bumblebee flight distances in relation to the forage landscape publication-title: Journal of Animal Ecology – volume: 13 start-page: 711 issue: 5 year: 1999 end-page: 724 article-title: Thermoregulatory abilities of Alaskan bees: Effects of size, phylogeny and ecology publication-title: Functional Ecology – volume: 171 start-page: E102 issue: 3 year: 2008 end-page: E118 article-title: Why ‘Suboptimal’ is optimal: Jensen's inequality and ectotherm thermal preferences publication-title: The American Naturalist – volume: 51 start-page: 911 year: 2020 end-page: 920 article-title: Hyperthermic stress resistance of bumblebee males: Test case of Belgian species publication-title: Apidologie – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States publication-title: Nature Communications – volume: 19 start-page: 487 issue: 2 year: 2016 end-page: 493 article-title: Frequency analysis of a bumblebee ( ) wingbeat publication-title: Pattern Analysis and Applications – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 10 article-title: Ensuring access to high‐quality resources reduces the impacts of heat stress on bees publication-title: Scientific Reports – volume: 31 start-page: 389 issue: 4 year: 2006 end-page: 394 article-title: Foraging trip duration of bumblebees in relation to landscape‐wide resource availability publication-title: Ecological Entomology – volume: 111 start-page: 5610 issue: 15 year: 2014 end-page: 5615 article-title: Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 67 start-page: 1 issue: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – volume: 82 start-page: 164 issue: 2 year: 1994 end-page: 170 article-title: Thermoregulation in bees publication-title: American Scientist – year: 2019 – volume: 57 start-page: 193 issue: 2 year: 2010 end-page: 197 article-title: Small worker bumble bees ( ) are hardier against starvation than their larger sisters publication-title: Insectes Sociaux – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 6 article-title: Widespread losses of pollinating insects in Britain publication-title: Nature Communications – volume: 37 start-page: 421 issue: 4 year: 2006 end-page: 451 article-title: A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination publication-title: Apidologie – volume: 11 issue: 3 year: 2016 article-title: Landscape simplification constrains adult size in a native ground‐nesting bee publication-title: PLoS ONE – volume: 9 issue: 8 year: 2014 article-title: Energetic optimisation of foraging honeybees: Flexible change of strategies in response to environmental challenges publication-title: PLoS ONE – volume: 105 start-page: 6668 issue: 18 year: 2008 end-page: 6672 article-title: Impacts of climate warming on terrestrial ectotherms across latitude publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 145 issue: 19 year: 2005 end-page: 151 article-title: Effects of climate on intra‐and interspecific size variation in bumblebees publication-title: Functional Ecology – volume: 27 start-page: 1415 issue: 6 year: 2013 end-page: 1423 article-title: Heat stress and the fitness consequences of climate change for terrestrial ectotherms publication-title: Functional Ecology – volume: 50 start-page: 212 issue: 4 year: 2004 end-page: 218 article-title: Tracking insects with harmonic radar: A case study publication-title: American Entomologist – volume: 6 issue: 6 year: 2020 article-title: Kinematic flexibility allows bumblebees to increase energetic efficiency when carrying heavy loads publication-title: Science Advances – volume: 3 start-page: 104 issue: 2 year: 1980 end-page: 110 article-title: Effects of weather on foraging‐flights of bumblebees (Hymenoptera, ) in a subalpine/alpine area publication-title: Ecography – volume: 13 start-page: 20170125 issue: 6 year: 2017 article-title: Physiological thermal limits predict differential responses of bees to urban heat‐island effects publication-title: Biology Letters – volume: 232 start-page: 8 year: 2019 end-page: 27 article-title: Worldwide decline of the entomofauna: A review of its drivers publication-title: Biological Conservation – volume: 36 start-page: 519 issue: 4 year: 1999 end-page: 533 article-title: A landscape‐scale study of bumble bee foraging range and constancy, using harmonic radar publication-title: Journal of Applied Ecology – volume: 26 start-page: 285 issue: 6 year: 2011 end-page: 291 article-title: Declining body size: A third universal response to warming? publication-title: Trends in Ecology & Evolution – volume: 208 start-page: 2045 issue: 11 year: 2005 end-page: 2053 article-title: Learning in two contexts: The effects of interference and body size in bumblebees publication-title: Journal of Experimental Biology – volume: 10 start-page: 17063 issue: 1 year: 2020 article-title: Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee publication-title: Scientific Reports – volume: 73 start-page: 765 issue: 6 year: 2000 end-page: 771 article-title: Energy metabolism during insect flight: Biochemical design and physiological performance publication-title: Physiological and Biochemical Zoology – volume: 11 issue: 8 year: 2016 article-title: Life‐long radar tracking of bumblebees publication-title: PLoS ONE – volume: 26 start-page: 726 issue: 3 year: 2016 end-page: 739 article-title: Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species publication-title: Ecological Applications – volume: 208 start-page: 3895 issue: 20 year: 2005 end-page: 3905 article-title: Visual control of flight speed in honeybees publication-title: Journal of Experimental Biology – volume: 11 issue: 2 year: 2016 article-title: Size and sex‐dependent shrinkage of Dutch bees during one‐and‐a‐half centuries of land‐use change publication-title: PLoS ONE – volume: 54 start-page: 1199 issue: 4 year: 2017 end-page: 1208 article-title: Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting publication-title: Journal of Applied Ecology – volume: 18 start-page: 2135 issue: 7 year: 2012 end-page: 2146 article-title: Evaluating drivers of vulnerability to climate change: A guide for insect conservation strategies publication-title: Global Change Biology – volume: 349 start-page: 177 issue: 6244 year: 2015 end-page: 180 article-title: Climate change impacts on bumblebees converge across continents publication-title: Science – volume: 367 start-page: 685 issue: 6478 year: 2020 end-page: 688 article-title: Climate change contributes to widespread declines among bumble bees across continents publication-title: Science – start-page: 453 year: 2017 end-page: 464 – volume: 217 start-page: 437 year: 2018 end-page: 445 article-title: Decline of bumble bees in northeastern North America, with special focus on publication-title: Biological Conservation – volume: 305 start-page: 994 issue: 5686 year: 2004 end-page: 997 article-title: More intense, more frequent, and longer lasting heat waves in the 21st century publication-title: Science – volume: 85 start-page: 1771 issue: 7 year: 2004 end-page: 1789 article-title: Toward a metabolic theory of ecology publication-title: Ecology – volume: 38 start-page: 275 issue: 3 year: 2003 end-page: 280 article-title: Effect of temperature on the foraging activity of L. (Hymenoptera: ) on greenhouse hot pepper ( L.) publication-title: Applied Entomology and Zoology – start-page: 55 year: 2009 end-page: 61 – volume: 108 start-page: 565 issue: 3 year: 2013 end-page: 578 article-title: Size‐dependent insect flight energetics at different sugar supplies publication-title: Biological Journal of the Linnean Society – volume: 64 start-page: 823 issue: 3 year: 1991 end-page: 835 article-title: The effect of thorax temperature on force production during tethered flight in honeybee ( ) drones, workers, and queens publication-title: Physiological Zoology – volume: 50 start-page: 346 issue: 3 year: 2008 end-page: 363 article-title: Simultaneous inference in general parametric models publication-title: Biometrical Journal – year: 2021 – volume: 208 start-page: 3593 issue: 18 year: 2005 end-page: 3602 article-title: Allometric scaling of flight energetics in orchid bees: Evolution of flux capacities and flux rates publication-title: Journal of Experimental Biology – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 10 article-title: Climate change‐driven range losses among bumblebee species are poised to accelerate publication-title: Scientific Reports – volume: 15 issue: 6 year: 2020 article-title: Landscape composition and local floral resources influence foraging behavior but not the size of Cresson (Hymenoptera: Apidae) workers publication-title: PLoS ONE – volume: 49 start-page: 142 issue: 2 year: 2002 end-page: 146 article-title: Size variation and foraging rate in bumblebees ( ) publication-title: Insectes Sociaux – volume: 237 start-page: 124408 year: 2019 article-title: Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation publication-title: Chemosphere – volume: 28 start-page: 1459 issue: 6 year: 2014 end-page: 1471 article-title: Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure publication-title: Functional Ecology – volume: 37 start-page: 4302 issue: 12 year: 2017 end-page: 4315 article-title: WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 35 start-page: 424 issue: 4 year: 2010 end-page: 435 article-title: Ontogeny of worker body size distribution in bumble bee ( ) colonies publication-title: Ecological Entomology – volume: 221 start-page: 1 issue: 8 year: 2018 end-page: 11 article-title: Critical thermal limits of bumble bees ( ) are marked by stereotypical behaviors and are unchanged by acclimation, age, or feeding status publication-title: Journal of Experimental Biology – volume: 14 start-page: 244 issue: 23 year: 2014 end-page: 254 article-title: Big bees do a better job: Intraspecific size variation influences pollination effectiveness publication-title: Journal of Pollination Ecology – volume: 89 start-page: 2440 issue: 11 year: 2020 end-page: 2450 article-title: How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends publication-title: Journal of Animal Ecology – volume: 110 start-page: 555 issue: 2 year: 2013 end-page: 558 article-title: Resource diversity and landscape‐level homogeneity drive native bee foraging publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 start-page: 1741 issue: 12 year: 2020 end-page: 1751 article-title: Wildlife conservation strategies should incorporate both taxon identity and geographical context – Further evidence with bumblebees publication-title: Diversity and Distributions – volume: 41 start-page: 700 issue: 4 year: 2014 end-page: 712 article-title: Determining habitat suitability for bumblebees in a mountain system: A baseline approach for testing the impact of climate change on the occurrence and abundance of species publication-title: Journal of Biogeography – volume: 521 start-page: 38 issue: 7550 year: 2015 end-page: 40 article-title: Ecology: Tasteless pesticides affect bees in the field publication-title: Nature – volume: 124 start-page: 299 issue: 7–8 year: 2000 end-page: 306 article-title: Foraging habitats and foraging distances of bumblebees, spp. (Hym., ), in an agricultural landscape publication-title: Journal of Applied Entomology – volume: 10 start-page: 299 issue: 4 year: 2007 end-page: 314 article-title: Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land‐use change publication-title: Ecology Letters – volume: 43 start-page: 397 issue: 4 year: 2018 end-page: 411 article-title: The tethered flight technique as a tool for studying life‐history strategies associated with migration in insects publication-title: Ecological Entomology – volume: 19 start-page: 3103 issue: 10 year: 2013 end-page: 3110 article-title: Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops publication-title: Global Change Biology – volume: 89 start-page: 1277 issue: 5 year: 2020 end-page: 1285 article-title: The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude publication-title: Journal of Animal Ecology – volume: 108 start-page: 10591 issue: 26 year: 2011 end-page: 10596 article-title: Systematic variation in the temperature dependence of physiological and ecological traits publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 142 start-page: 137 issue: 3–4 year: 2011 end-page: 143 article-title: Pollination services in the UK: How important are honeybees? publication-title: Agriculture, Ecosystems and Environment – volume: 19 start-page: 357 issue: 1 year: 1979 end-page: 366 article-title: Integrating thermal physiology and ecology of ectotherms: A discussion of approaches publication-title: Integrative and Comparative Biology – volume: 540 start-page: 220 issue: 7632 year: 2016 end-page: 229 article-title: Safeguarding pollinators and their values to human well‐being publication-title: Nature – volume: 96 start-page: 155 issue: 2 year: 1975 end-page: 166 article-title: Thermoregulation in bumblebees – II. Energetics of warm‐up and free flight publication-title: Journal of Comparative Physiology – year: 2003 – year: 2000 – volume: 21 start-page: 1130 issue: 6 year: 2007 end-page: 1136 article-title: Bigger is better: Implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees publication-title: Functional Ecology – volume: 31 start-page: 26 issue: 1 year: 2017 end-page: 37 article-title: Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps publication-title: Functional Ecology – volume: 107 start-page: 471 issue: 3 year: 2004 end-page: 478 article-title: Use of genetic markers to quantify bumblebee foraging range and nest density publication-title: Oikos – volume: 58 start-page: 152 issue: 2 year: 2005 end-page: 156 article-title: Effects of experience and weather on foraging rate and pollen versus nectar collection in the bumblebee, publication-title: Behavioral Ecology and Sociobiology – volume: 31 start-page: 541 issue: 7 year: 2006 end-page: 545 article-title: Estimating and comparing thermal performance curves publication-title: Journal of Thermal Biology – volume: 99 start-page: 49 issue: 1 year: 2018 end-page: 60 article-title: More‐persistent weak stratospheric polar vortex States linked to cold extremes publication-title: Bulletin of the American Meteorological Society – volume: 5 start-page: 180246 issue: 2018 year: 2018 article-title: Data descriptor: A global dataset of air temperature derived from satellite remote sensing and weather stations publication-title: Scientific Data – volume: 79 start-page: 188 issue: 1 year: 2006 end-page: 193 article-title: Changes in temperature and light alter the flight speed of hornets ( L.) publication-title: Physiological and Biochemical Zoology – volume: 33 start-page: 467 issue: 3 year: 2019 end-page: 478 article-title: Integrating vital rates explains optimal worker size for resource return by bumblebee workers publication-title: Functional Ecology – volume: 45 start-page: 414 issue: 20 year: 2018 end-page: 422 article-title: North American weather regimes are becoming more persistent: Is Arctic amplification a factor? publication-title: Geophysical Research Letters – volume: 161 start-page: 23 year: 2020 end-page: 31 article-title: Gone with the wind: Effects of wind on honey bee visit rate and foraging behaviour publication-title: Animal Behaviour – volume: 53 start-page: 116 year: 2021 end-page: 123 article-title: Long‐term data shows increasing dominance of with climate warming publication-title: Basic and Applied Ecology – volume: 4 start-page: 115 issue: 1 year: 2020 end-page: 121 article-title: Phenological shifts alter the seasonal structure of pollinator assemblages in Europe publication-title: Nature Ecology and Evolution – volume: 7 start-page: 1201 issue: 1 year: 2017 article-title: A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability publication-title: Scientific Reports – volume: 18 start-page: 17 issue: 1 year: 1993 end-page: 30 article-title: Temperature and the pollinating activity of social bees publication-title: Ecological Entomology – volume: 57 start-page: 58 issue: 1 year: 2008 end-page: 75 article-title: Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: ) publication-title: Systematic Biology – volume: 42 start-page: 207 issue: 1 year: 1997 end-page: 230 article-title: Physiology and ecology of dispersal polymorphism in insects publication-title: Annual Review of Entomology – year: 2017 – volume: 85 start-page: 656 issue: 6 year: 2012 end-page: 670 article-title: Morphological and physiological idiosyncrasies lead to interindividual variation in flight metabolic rate in worker bumblebees ( ) publication-title: Physiological and Biochemical Zoology – volume: 2010 start-page: 1 year: 2010 end-page: 8 article-title: Ambient air temperature does not predict whether small or large workers forage in bumble bees ( ) publication-title: Psyche: A Journal of Entomology – ident: e_1_2_10_3_1 doi: 10.1111/1365‐2664.12792 – volume-title: Bumblebees: Behaviour and ecology year: 2003 ident: e_1_2_10_35_1 – ident: e_1_2_10_87_1 doi: 10.1111/gcb.12264 – ident: e_1_2_10_36_1 doi: 10.1006/anbe.2002.3041 – ident: e_1_2_10_48_1 doi: 10.1111/jbi.12236 – ident: e_1_2_10_83_1 doi: 10.1038/s41598‐020‐73391‐8 – ident: e_1_2_10_22_1 doi: 10.1073/pnas.1015178108 – ident: e_1_2_10_51_1 doi: 10.1101/2020.05.06.079525 – ident: e_1_2_10_85_1 doi: 10.1038/s41467‐019‐08974‐9 – ident: e_1_2_10_72_1 doi: 10.1126/science.1098704 – ident: e_1_2_10_19_1 doi: 10.1111/j.1365‐2311.2010.01198.x – ident: e_1_2_10_106_1 doi: 10.1038/s41598‐019‐49025‐z – ident: e_1_2_10_111_1 doi: 10.1007/s13592‐011‐0086‐9 – ident: e_1_2_10_79_1 doi: 10.1111/j.1365‐2656.2007.01333.x – ident: e_1_2_10_98_1 doi: 10.1126/science.aax8591 – ident: e_1_2_10_60_1 doi: 10.1111/j.1095‐8312.2012.02042.x – ident: e_1_2_10_40_1 doi: 10.1098/rsbl.2017.0125 – ident: e_1_2_10_74_1 doi: 10.1890/08‐1498.1 – ident: e_1_2_10_26_1 doi: 10.2903/j.efsa.2013.3295 – ident: e_1_2_10_103_1 doi: 10.1073/pnas.1316145111 – ident: e_1_2_10_75_1 doi: 10.1093/ae/50.4.212 – ident: e_1_2_10_20_1 doi: 10.1242/jeb.01777 – ident: e_1_2_10_116_1 doi: 10.1146/annurev.ento.42.1.207 – ident: e_1_2_10_71_1 doi: 10.1086/527502 – ident: e_1_2_10_69_1 doi: 10.1303/aez.2003.275 – ident: e_1_2_10_92_1 doi: 10.2307/2256344 – ident: e_1_2_10_27_1 doi: 10.1002/joc.5086 – volume-title: lmerTest package: Tests in linear mixed effects models year: 2017 ident: e_1_2_10_68_1 – ident: e_1_2_10_104_1 doi: 10.1016/j.chemosphere.2019.124408 – ident: e_1_2_10_115_1 doi: 10.1007/s13592‐020‐00771‐4 – ident: e_1_2_10_39_1 doi: 10.3390/insects11030191 – ident: e_1_2_10_66_1 doi: 10.1111/j.1461‐0248.2007.01018.x – ident: e_1_2_10_33_1 doi: 10.1111/1365‐2435.12292 – ident: e_1_2_10_47_1 doi: 10.1016/j.baae.2021.03.008 – ident: e_1_2_10_94_1 doi: 10.1007/s10044‐015‐0501‐3 – ident: e_1_2_10_84_1 doi: 10.1038/nature20588 – ident: e_1_2_10_24_1 doi: 10.1038/s41559‐019‐1062‐4 – ident: e_1_2_10_30_1 doi: 10.1371/journal.pone.0234498 – ident: e_1_2_10_8_1 doi: 10.1046/j.1365‐2435.1999.00351.x – ident: e_1_2_10_52_1 doi: 10.1038/sdata.2018.246 – ident: e_1_2_10_12_1 doi: 10.1098/rspb.2013.1149 – ident: e_1_2_10_46_1 doi: 10.1038/ncomms5359 – start-page: 55 volume-title: Ecology of butterflies in Europe year: 2009 ident: e_1_2_10_110_1 – ident: e_1_2_10_7_1 doi: 10.1242/jeb.187807 – ident: e_1_2_10_100_1 doi: 10.1086/498181 – ident: e_1_2_10_58_1 doi: 10.1073/pnas.1208682110 – ident: e_1_2_10_112_1 doi: 10.1371/journal.pone.0160333 – ident: e_1_2_10_102_1 doi: 10.1086/318112 – ident: e_1_2_10_89_1 doi: 10.1890/15‐0546/suppinfo – volume-title: Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_10_56_1 – ident: e_1_2_10_15_1 doi: 10.1126/sciadv.aay3115 – ident: e_1_2_10_109_1 doi: 10.1111/j.1365‐2311.2006.00801.x – ident: e_1_2_10_14_1 doi: 10.1038/s41467‐018‐02992‐9 – ident: e_1_2_10_90_1 doi: 10.5061/dryad.kr577.Funding – ident: e_1_2_10_23_1 doi: 10.1073/pnas.0709472105 – ident: e_1_2_10_108_1 doi: 10.1046/j.1439-0418.2000.00484.x – ident: e_1_2_10_25_1 doi: 10.1515/9780691186344 – ident: e_1_2_10_45_1 doi: 10.1016/j.anbehav.2019.12.018 – ident: e_1_2_10_49_1 doi: 10.1111/een.12517 – ident: e_1_2_10_99_1 doi: 10.1007/s00040‐002‐8293‐z – ident: e_1_2_10_101_1 doi: 10.1371/journal.pone.0105432 – ident: e_1_2_10_114_1 doi: 10.1242/jeb.01582 – ident: e_1_2_10_28_1 doi: 10.1029/2018GL080252 – ident: e_1_2_10_34_1 doi: 10.1038/nature11585 – ident: e_1_2_10_55_1 doi: 10.1093/icb/19.1.357 – ident: e_1_2_10_91_1 doi: 10.1046/j.1570‐7458.1997.00186.x – ident: e_1_2_10_97_1 doi: 10.1086/665568 – ident: e_1_2_10_29_1 doi: 10.1016/j.tree.2011.03.005 – ident: e_1_2_10_107_1 doi: 10.1051/apido:2006019 – ident: e_1_2_10_16_1 doi: 10.1111/j.1365‐2311.1993.tb01075.x – ident: e_1_2_10_57_1 doi: 10.1016/j.biocon.2017.11.026 – ident: e_1_2_10_61_1 doi: 10.1002/ece3.5143 – ident: e_1_2_10_41_1 doi: 10.1146/annurev.physiol.62.1.179 – ident: e_1_2_10_82_1 doi: 10.1007/s00265‐005‐0916‐8 – ident: e_1_2_10_67_1 doi: 10.1175/BAMS‐D‐16‐0259.1 – ident: e_1_2_10_96_1 doi: 10.1038/s41598‐018‐32665‐y – ident: e_1_2_10_63_1 doi: 10.1126/science.aaa7031 – ident: e_1_2_10_105_1 doi: 10.1038/s41598‐017‐01361‐8 – ident: e_1_2_10_50_1 doi: 10.1080/10635150801898912 – ident: e_1_2_10_70_1 doi: 10.1111/j.1600‐0587.1980.tb00715.x – ident: e_1_2_10_93_1 doi: 10.1016/j.biocon.2019.01.020 – volume: 82 start-page: 164 issue: 2 year: 1994 ident: e_1_2_10_44_1 article-title: Thermoregulation in bees publication-title: American Scientist – ident: e_1_2_10_9_1 doi: 10.1111/1365‐2656.13319 – ident: e_1_2_10_77_1 doi: 10.1371/journal.pone.0148983 – ident: e_1_2_10_10_1 doi: 10.1016/j.agee.2011.03.020 – volume: 221 start-page: 1 issue: 8 year: 2018 ident: e_1_2_10_80_1 article-title: Critical thermal limits of bumble bees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age, or feeding status publication-title: Journal of Experimental Biology – ident: e_1_2_10_4_1 doi: 10.1111/j.1365‐2486.2012.02691.x – ident: e_1_2_10_64_1 doi: 10.1111/1365‐2435.13251 – ident: e_1_2_10_78_1 doi: 10.1046/j.1365‐2664.1999.00428.x – ident: e_1_2_10_13_1 doi: 10.1086/physzool.64.3.30158209 – ident: e_1_2_10_43_1 doi: 10.1007/BF00706595 – ident: e_1_2_10_88_1 doi: 10.1038/nature14391 – ident: e_1_2_10_59_1 doi: 10.1111/j.1365‐2435.2007.01329.x – ident: e_1_2_10_54_1 doi: 10.1127/entom.gen/24/1999/23 – ident: e_1_2_10_62_1 doi: 10.5061/dryad.18931zcxr – ident: e_1_2_10_76_1 doi: 10.1080/00218839.2020.1771879 – ident: e_1_2_10_38_1 doi: 10.1007/s00442‐007‐0752‐9 – ident: e_1_2_10_11_1 doi: 10.1890/03‐9000 – ident: e_1_2_10_31_1 doi: 10.1111/ddi.13155 – ident: e_1_2_10_113_1 doi: 10.1242/jeb.01510 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_10_86_1 – ident: e_1_2_10_17_1 doi: 10.1007/s00040‐010‐0064‐7 – ident: e_1_2_10_18_1 doi: 10.1155/2010/536430 – start-page: 135 volume-title: Advances in ecological research year: 2016 ident: e_1_2_10_32_1 – ident: e_1_2_10_2_1 doi: 10.1016/j.jtherbio.2006.06.002 – ident: e_1_2_10_6_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_10_5_1 doi: 10.1242/jeb.01818 – ident: e_1_2_10_95_1 doi: 10.1111/1365‐2435.12809 – ident: e_1_2_10_37_1 doi: 10.1111/j.1365‐2664.2010.01929.x – ident: e_1_2_10_21_1 doi: 10.1111/j.0030‐1299.2004.13510.x – ident: e_1_2_10_53_1 doi: 10.1002/bimj.200810425 – ident: e_1_2_10_65_1 doi: 10.1111/1365‐2435.12145 – ident: e_1_2_10_73_1 doi: 10.1111/een.12521 – ident: e_1_2_10_81_1 doi: 10.1111/j.0269‐8463.2005.00946.x – ident: e_1_2_10_42_1 doi: 10.1016/B978-0-12-803592-4.00040-7 |
SSID | ssj0009522 |
Score | 2.5508654 |
Snippet | The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2508 |
SubjectTerms | Adaptability alloethism ambient temperature Body mass Body size body weight Bombus terrestris Bumblebees climate Climate change Colonies ecosystems Endurance Flight Flight characteristics foraging range Global warming insect flight insect pollinator Insects labor force life history Mass distribution Mathematical analysis Plant reproduction Pollination Pollinators Temperature Temperature dependence tethered flight mill Thermal environments thermal performance curve weather Weather forecasting worker size dependence Workers (insect caste) |
Title | Thermal flight performance reveals impact of warming on bumblebee foraging potential |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13887 https://www.proquest.com/docview/2594136724 https://www.proquest.com/docview/2636409146 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86ELz4PZzOEcGDl5YuTZvsKGNjCIrIBt5KkqUerO1wHaJ_ve_1Y5sDEfEW0oSmeV-_17z3QshVaIOQy67vBJIJcFBi35GaB45SYDA0B0TLMBv57j4cTfjtU1BHE2IuTFkfYvnDDSWj0Nco4ErP14S8jM8Ca-92fZAU0MLYg7Doka2V3S3PEVjYc8DS-lVxH4zl2Zj_3S6twOY6ZC1sznCf6Hq1ZajJi7vItWs-Nwo5_utzDshehUjpTclCh2TLpkdkp7yj8gNaA1O1moNVUhxMqLTC_JiMgddAvyc0TtDVp7NVMgLFClHA4bTMxqRZTN8Vht880yylevGqE6CvpTC-uC6JzrIc45dUckImw8G4P3Kq2xocA6BHOKH0tadF13KlmWBTC1CGBz0FEEtaYUGTaB3EhhlgAc_0ADkJKz0WG8NV7BvlN0kjzVJ7SqgAtWI9q8XUSlAwQlpAYbGRnoHesCdaxK1pFZmqlDneqJFEtUuDuxnhbkbFbrbI9XLCrKzi8fPQdk38qBLneQQ-Isfadoy3yOXyMQginq6o1GYLGBP6ITjLYHlgeQWlf3tVNBz0i8bZXyeck12GsTVFTmSbNPK3hb0AcJTrDtlm_KFTSMEXyCcBtA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4gejFb3E6NYIHLx1dmjbZUWRj6raDTPBWkph6sLZDV0T_el_S7kNBRLyFNmnTvLz3fi99HwBnkQkjJpqBFwrK0UBJAk8oFnpSosJQDBEttdHI_UHUvWPX9-H9XCxMmR9ieuBmOcPJa8vg9kB6jstLBy1U941mgKyyCMu2rrczq27pXOLd8k8CjVoe6tqgSu9jvXm-PeCrZprBzXnQ6rROZwP0ZL6ls8lToxirhv74lsrxfx-0CesVKCUX5S7aggWTbcNKWabyHVttXbX22rO4OBxQCYbXHRjidkMRn5IktdY-Gc3iEYhNEoWbnJQBmSRPyJu0HjiPJM-IKp5ViiQ2BPu7iklklI-tC5NMd-Gu0x5edr2qYIOnEfdwLxKB8hVvGiYV5fTBIJphYUsiyhKGGxQmSoWJphp3ga9bCJ64ET5NtGYyCbQM9mApyzOzD4SjZDG-UfzBCJQxXBgEYokWvsarUYvXoDEhVqyrbOa2qEYaT6wau5qxXc3YrWYNzqcDRmUij5-71ifUjyuOfo3RTGQ2vR1lNTid3kZetD9YZGbyAvtEQYT2MiofnJ4j9W-vijvtS9c4-OuAE1jtDvu9uHc1uDmENWpdbVyIZB2Wxi-FOUKsNFbHjhk-Ad_bBPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64oHhxHxzXCB68dOikaZI5yiy4I6LgrSSZ1IO1HXQG0V_vS5eZURARb6FN2jRv-17z3gvAEbchZ7IZeKGkAh2UOPCkZqGnFBoMzRDRUpeNfHXNT-_Z-UNYRRO6XJiiPsT4h5uTjFxfOwEf9OMpIS_is9DaN5oBSsoszDPuS8fYnVs6VXe32EigvOWhqQ3K6j4umOfbA74apgnanMasudHprYCuplvEmjw1RkPdMB_fKjn-63tWYbmEpOSk4KE1mLHpOiwUh1S-Y6trylatO8mKwwGlWnjdgDtkNlTwCYkT5-uTwSQbgbgSUcjipEjHJFlM3pSLv3kkWUr06FknSGBLsH9-XhIZZEMXwKSSTbjvde_ap155XINnEPUIj8tA-1o0LVOaCtq3iGVY2FKIsaQVFlWJ1mFsqEEe8E0LoZOw0qexMUzFgVFBDebSLLVbQATqFetbLfpWooYR0iIMi430DV7lLVGHRkWryJS1zN2RGklU-TRuNSO3mlG-mnU4Hg8YFGU8fu66WxE_KuX5NUInkbnidpTV4XB8GyXRba-o1GYj7MMDjt4ymh6cXk7p314V9brtvLH91wEHsHjT6UWXZ9cXO7BEXZxNnh-5C3PDl5HdQ6A01Pu5KHwC1xIDsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+flight+performance+reveals+impact+of+warming+on+bumblebee+foraging+potential&rft.jtitle=Functional+ecology&rft.au=Kenna%2C+Daniel&rft.au=Pawar%2C+Samraat&rft.au=Gill%2C+Richard+J.&rft.date=2021-11-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=35&rft.issue=11&rft.spage=2508&rft.epage=2522&rft_id=info:doi/10.1111%2F1365-2435.13887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2435_13887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |