Thermal flight performance reveals impact of warming on bumblebee foraging potential

The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 35; no. 11; pp. 2508 - 2522
Main Authors Kenna, Daniel, Pawar, Samraat, Gill, Richard J.
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text
ISSN0269-8463
1365-2435
DOI10.1111/1365-2435.13887

Cover

Loading…
Abstract The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited. Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events. Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris, varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit. Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance. By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
AbstractList The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited. Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events. Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris , varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit. Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance. By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision. A free Plain Language Summary can be found within the Supporting Information of this article.
The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited.Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events.Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris, varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit.Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance.By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision.A free Plain Language Summary can be found within the Supporting Information of this article.
The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited. Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events. Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris, varies over a temperature range (12–30℃). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature‐mediated size dependence of flight performance owing to the large intra‐colony variation in worker body size they exhibit. Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12℃; however, flight endurance increased as temperatures rose, peaking around 25℃ after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12℃ only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller‐bodied insects may benefit disproportionately more from warming than larger‐bodied ones in terms of flight performance. By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature‐mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27℃ supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
Author Kenna, Daniel
Pawar, Samraat
Gill, Richard J.
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0001-9427-697X
  surname: Kenna
  fullname: Kenna, Daniel
  email: d.kenna17@imperial.ac.uk
  organization: Silwood Park Campus
– sequence: 2
  givenname: Samraat
  orcidid: 0000-0001-8375-5684
  surname: Pawar
  fullname: Pawar, Samraat
  organization: Silwood Park Campus
– sequence: 3
  givenname: Richard J.
  orcidid: 0000-0001-9389-1284
  surname: Gill
  fullname: Gill, Richard J.
  email: r.gill@imperial.ac.uk
  organization: Silwood Park Campus
BookMark eNqFkEFPwyAYhomZidv07JXEi5c6CqW0R7NsamLiZZ4J4NeNhUKlnWb_XuaMh13G5UvevM8HPBM08sEDQrc5ecjTmeWs5BktGH_IWVWJCzT-T0ZoTGhZZ1VRsis06fstIaTmlI7RarWB2CqHG2fXmwF3EJuQAm8AR_gC5Xps206ZAYcGf6vYWr_GwWO9a7UDDYBTX60PaRcG8INV7hpdNgmEm785Re_LxWr-nL2-Pb3MH18zw6paZGXFNNEih0JpKugHlIwXvFac8AoECEa05o2hhuqCmLrMhYCK0MaYQjXMKDZF98e9XQyfO-gH2dregHPKQ9j1kpasLEidp29P0d1JdRt20afXScrrIqkSydQUzY4tE0PfR2hkF22r4l7mRB4sy4NTeXAqfy0ngp8Qxg5qsMEPUVl3nvu2DvbnrpHLxfzI_QAADJEM
CitedBy_id crossref_primary_10_1007_s00442_023_05332_x
crossref_primary_10_1038_s41598_025_85851_0
crossref_primary_10_1098_rspb_2024_1598
crossref_primary_10_1016_j_ijpara_2023_03_003
crossref_primary_10_1242_bio_060179
crossref_primary_10_1007_s00442_022_05184_x
crossref_primary_10_1007_s12080_022_00551_z
crossref_primary_10_1093_ee_nvac090
crossref_primary_10_1016_j_ibmb_2023_103932
crossref_primary_10_3390_agriculture12111795
crossref_primary_10_1093_jee_toae205
crossref_primary_10_1111_1365_2656_13788
crossref_primary_10_1111_oik_10639
crossref_primary_10_1093_ee_nvac093
crossref_primary_10_1002_ece3_10290
crossref_primary_10_1093_conphys_coae031
crossref_primary_10_1111_1365_2435_14253
crossref_primary_10_3389_fphys_2023_1251235
crossref_primary_10_1016_j_aspen_2024_102311
crossref_primary_10_1038_s41558_023_01720_6
crossref_primary_10_1098_rspb_2024_0352
crossref_primary_10_1098_rspb_2024_1001
crossref_primary_10_1016_j_anbehav_2022_04_012
crossref_primary_10_1080_00063657_2022_2157373
crossref_primary_10_1016_j_chemosphere_2024_142881
crossref_primary_10_1111_ele_14158
crossref_primary_10_1073_pnas_2300886121
crossref_primary_10_1016_j_aspen_2024_102326
crossref_primary_10_1098_rspb_2024_2216
crossref_primary_10_26786_1920_7603_2024_753
crossref_primary_10_1093_beheco_arac045
crossref_primary_10_1111_1365_2656_14186
crossref_primary_10_1016_j_jinsphys_2024_104723
crossref_primary_10_1093_beheco_arad112
crossref_primary_10_1111_1748_5967_12689
crossref_primary_10_1080_00218839_2022_2110431
crossref_primary_10_1086_733183
crossref_primary_10_1080_15230430_2023_2178149
crossref_primary_10_1098_rspb_2024_0040
crossref_primary_10_1016_j_jtherbio_2024_103830
crossref_primary_10_1016_j_jtherbio_2025_104068
crossref_primary_10_1111_gcb_16196
Cites_doi 10.1111/1365‐2664.12792
10.1111/gcb.12264
10.1006/anbe.2002.3041
10.1111/jbi.12236
10.1038/s41598‐020‐73391‐8
10.1073/pnas.1015178108
10.1101/2020.05.06.079525
10.1038/s41467‐019‐08974‐9
10.1126/science.1098704
10.1111/j.1365‐2311.2010.01198.x
10.1038/s41598‐019‐49025‐z
10.1007/s13592‐011‐0086‐9
10.1111/j.1365‐2656.2007.01333.x
10.1126/science.aax8591
10.1111/j.1095‐8312.2012.02042.x
10.1098/rsbl.2017.0125
10.1890/08‐1498.1
10.2903/j.efsa.2013.3295
10.1073/pnas.1316145111
10.1093/ae/50.4.212
10.1242/jeb.01777
10.1146/annurev.ento.42.1.207
10.1086/527502
10.1303/aez.2003.275
10.2307/2256344
10.1002/joc.5086
10.1016/j.chemosphere.2019.124408
10.1007/s13592‐020‐00771‐4
10.3390/insects11030191
10.1111/j.1461‐0248.2007.01018.x
10.1111/1365‐2435.12292
10.1016/j.baae.2021.03.008
10.1007/s10044‐015‐0501‐3
10.1038/nature20588
10.1038/s41559‐019‐1062‐4
10.1371/journal.pone.0234498
10.1046/j.1365‐2435.1999.00351.x
10.1038/sdata.2018.246
10.1098/rspb.2013.1149
10.1038/ncomms5359
10.1242/jeb.187807
10.1086/498181
10.1073/pnas.1208682110
10.1371/journal.pone.0160333
10.1086/318112
10.1890/15‐0546/suppinfo
10.1126/sciadv.aay3115
10.1111/j.1365‐2311.2006.00801.x
10.1038/s41467‐018‐02992‐9
10.5061/dryad.kr577.Funding
10.1073/pnas.0709472105
10.1046/j.1439-0418.2000.00484.x
10.1515/9780691186344
10.1016/j.anbehav.2019.12.018
10.1111/een.12517
10.1007/s00040‐002‐8293‐z
10.1371/journal.pone.0105432
10.1242/jeb.01582
10.1029/2018GL080252
10.1038/nature11585
10.1093/icb/19.1.357
10.1046/j.1570‐7458.1997.00186.x
10.1086/665568
10.1016/j.tree.2011.03.005
10.1051/apido:2006019
10.1111/j.1365‐2311.1993.tb01075.x
10.1016/j.biocon.2017.11.026
10.1002/ece3.5143
10.1146/annurev.physiol.62.1.179
10.1007/s00265‐005‐0916‐8
10.1175/BAMS‐D‐16‐0259.1
10.1038/s41598‐018‐32665‐y
10.1126/science.aaa7031
10.1038/s41598‐017‐01361‐8
10.1080/10635150801898912
10.1111/j.1600‐0587.1980.tb00715.x
10.1016/j.biocon.2019.01.020
10.1111/1365‐2656.13319
10.1371/journal.pone.0148983
10.1016/j.agee.2011.03.020
10.1111/j.1365‐2486.2012.02691.x
10.1111/1365‐2435.13251
10.1046/j.1365‐2664.1999.00428.x
10.1086/physzool.64.3.30158209
10.1007/BF00706595
10.1038/nature14391
10.1111/j.1365‐2435.2007.01329.x
10.1127/entom.gen/24/1999/23
10.5061/dryad.18931zcxr
10.1080/00218839.2020.1771879
10.1007/s00442‐007‐0752‐9
10.1890/03‐9000
10.1111/ddi.13155
10.1242/jeb.01510
10.1007/s00040‐010‐0064‐7
10.1155/2010/536430
10.1016/j.jtherbio.2006.06.002
10.18637/jss.v067.i01
10.1242/jeb.01818
10.1111/1365‐2435.12809
10.1111/j.1365‐2664.2010.01929.x
10.1111/j.0030‐1299.2004.13510.x
10.1002/bimj.200810425
10.1111/1365‐2435.12145
10.1111/een.12521
10.1111/j.0269‐8463.2005.00946.x
10.1016/B978-0-12-803592-4.00040-7
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.13887
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Entomology Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 2522
ExternalDocumentID 10_1111_1365_2435_13887
FEC13887
Genre article
GrantInformation_xml – fundername: Natural Environment Research Council
  funderid: NE/L002515/1; NE/P012574/1
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c3897-683b0b71e4ab272de635459a5058e7e730bb5fc2c2b40c96177e802fcc4af3ca3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:36:34 EDT 2025
Fri Jul 25 05:37:49 EDT 2025
Tue Jul 01 01:15:52 EDT 2025
Thu Apr 24 22:52:06 EDT 2025
Wed Jan 22 16:28:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3897-683b0b71e4ab272de635459a5058e7e730bb5fc2c2b40c96177e802fcc4af3ca3
Notes Funding information
Kris Crandell
Handling Editor
D.K. is supported by the NERC Science and Solutions for a Changing Planet (SSCP) DTP program (NE/L002515/1). The work was also supported by a NERC grant (NE/P012574/1) awarded to R.J.G.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9389-1284
0000-0001-9427-697X
0000-0001-8375-5684
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13887
PQID 2594136724
PQPubID 1066355
PageCount 8
ParticipantIDs proquest_miscellaneous_2636409146
proquest_journals_2594136724
crossref_primary_10_1111_1365_2435_13887
crossref_citationtrail_10_1111_1365_2435_13887
wiley_primary_10_1111_1365_2435_13887_FEC13887
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006; 31
1997; 42
2019; 10
2020; 161
2006; 37
2020; 15
2016; 540
2012; 18
2008; 105
1975; 96
2020; 11
2014; 28
2020; 10
2018; 45
2018; 43
2012; 491
2018; 9
2018; 8
2018; 5
2000; 124
2018; 217
2009; 90
2014; 14
2020; 89
2013; 110
1979; 19
2018; 221
2019; 9
2010; 2010
2010; 35
2016; 19
2013; 108
2019; 33
2015; 521
1999; 24
2000; 73
2008; 57
2003; 38
2014; 41
2008; 50
2007; 10
2004; 305
1994; 82
2019; 222
2016; 11
2015; 67
2004; 50
2005; 19
2021; 53
2002; 64
2017; 54
1991; 64
2007; 153
1999; 36
2020; 26
2018; 99
2016; 26
2011; 142
2017; 7
1997; 83
2010; 57
2013; 27
2006; 79
2020; 59
2008; 77
2015; 349
2020; 367
2013; 280
2013; 19
2002; 49
2020; 6
2017; 31
2020; 4
2014; 5
2013; 11
2017; 37
2000
2020; 51
1999; 13
2000; 62
2019; 237
2011; 26
2014; 9
2007; 21
2019; 232
2004; 85
2009
2003
2014; 111
2004; 107
1993; 18
2011; 108
2021
2020
2017; 13
1980; 3
2019
2005; 208
2017
2016
2011; 48
2014
2012; 85
2008; 171
2005; 58
e_1_2_10_21_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
Gill R. J. (e_1_2_10_32_1) 2016
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
IPCC (e_1_2_10_56_1) 2014
e_1_2_10_10_1
e_1_2_10_33_1
Goulson D. (e_1_2_10_35_1) 2003
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
Heinrich B. (e_1_2_10_44_1) 1994; 82
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
Wickham P. O. (e_1_2_10_110_1) 2009
e_1_2_10_11_1
e_1_2_10_30_1
R Core Team (e_1_2_10_86_1) 2019
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
Oyen K. J. (e_1_2_10_80_1) 2018; 221
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
Kuznetsova A. (e_1_2_10_68_1) 2017
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 43
  start-page: 458
  issue: 4
  year: 2018
  end-page: 462
  article-title: Mean body size predicts colony performance in the common eastern bumble bee ( )
  publication-title: Ecological Entomology
– volume: 208
  start-page: 1161
  issue: 6
  year: 2005
  end-page: 1173
  article-title: Honeybee flight metabolic rate: Does it depend upon air temperature?
  publication-title: Journal of Experimental Biology
– volume: 491
  start-page: 105
  issue: 7422
  year: 2012
  end-page: 108
  article-title: Combined pesticide exposure severely affects individual‐ and colony‐level traits in bees
  publication-title: Nature
– volume: 62
  start-page: 179
  issue: 1
  year: 2000
  end-page: 205
  article-title: Flight respiration and energetics
  publication-title: Annual Review of Physiology
– volume: 222
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  article-title: Flight energetics, caste dimorphism and scaling properties in the bumblebee, Bombus impatiens
  publication-title: Journal of Experimental Biology
– volume: 11
  start-page: 3295
  issue: 7
  year: 2013
  article-title: Guidance on the risk assessment of plant protection products on bees ( , spp. and solitary bees)
  publication-title: EFSA Journal
– volume: 48
  start-page: 3
  issue: 1
  year: 2011
  end-page: 8
  article-title: Translating research into action; bumblebee conservation as a case study
  publication-title: Journal of Applied Ecology
– volume: 11
  start-page: 191
  issue: 3
  year: 2020
  article-title: Equivocal evidence for colony level stress effects on bumble bee pollination services
  publication-title: Insects
– volume: 83
  start-page: 317
  issue: 3
  year: 1997
  end-page: 322
  article-title: Comparison of the performance of leafhoppers on flight mills with that to be expected in free flight
  publication-title: Entomologia Experimentalis et Applicata
– volume: 153
  start-page: 589
  issue: 3
  year: 2007
  end-page: 596
  article-title: Bee foraging ranges and their relationship to body size
  publication-title: Oecologia
– year: 2020
  article-title: Is diversity in worker body size important for the performance of bumble bee colonies?
  publication-title: BioRxiv
– volume: 280
  start-page: 20131149
  issue: 1765
  year: 2013
  article-title: Can terrestrial ectotherms escape the heat of climate change by moving?
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 9
  start-page: 5637
  issue: 10
  year: 2019
  end-page: 5650
  article-title: Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees
  publication-title: Ecology and Evolution
– volume: 64
  start-page: 123
  issue: 1
  year: 2002
  end-page: 130
  article-title: Can alloethism in workers of the bumblebee, , be explained in terms of foraging efficiency?
  publication-title: Animal Behaviour
– volume: 59
  start-page: 1027
  issue: 5
  year: 2020
  end-page: 1032
  article-title: Effect of cold narcosis on foraging behavior of European honey bees ( ) tracked using a radio‐frequency identification (RFID) system
  publication-title: Journal of Apicultural Research
– start-page: 135
  year: 2016
  end-page: 206
– year: 2014
– volume: 5
  start-page: 4359
  year: 2014
  article-title: Pesticide risk assessment in free‐ranging bees is weather and landscape dependent
  publication-title: Nature Communications
– volume: 24
  start-page: 23
  issue: 1
  year: 1999
  end-page: 30
  article-title: Metabolic rates and metabolic power of honeybees in tethered flight related to temperature and drag (Hymenoptera: )
  publication-title: Entomologia Generalis
– volume: 90
  start-page: 2223
  issue: 8
  year: 2009
  end-page: 2232
  article-title: Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field
  publication-title: Ecology
– volume: 77
  start-page: 406
  issue: 2
  year: 2008
  end-page: 415
  article-title: Bumblebee flight distances in relation to the forage landscape
  publication-title: Journal of Animal Ecology
– volume: 13
  start-page: 711
  issue: 5
  year: 1999
  end-page: 724
  article-title: Thermoregulatory abilities of Alaskan bees: Effects of size, phylogeny and ecology
  publication-title: Functional Ecology
– volume: 171
  start-page: E102
  issue: 3
  year: 2008
  end-page: E118
  article-title: Why ‘Suboptimal’ is optimal: Jensen's inequality and ectotherm thermal preferences
  publication-title: The American Naturalist
– volume: 51
  start-page: 911
  year: 2020
  end-page: 920
  article-title: Hyperthermic stress resistance of bumblebee males: Test case of Belgian species
  publication-title: Apidologie
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States
  publication-title: Nature Communications
– volume: 19
  start-page: 487
  issue: 2
  year: 2016
  end-page: 493
  article-title: Frequency analysis of a bumblebee ( ) wingbeat
  publication-title: Pattern Analysis and Applications
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  article-title: Ensuring access to high‐quality resources reduces the impacts of heat stress on bees
  publication-title: Scientific Reports
– volume: 31
  start-page: 389
  issue: 4
  year: 2006
  end-page: 394
  article-title: Foraging trip duration of bumblebees in relation to landscape‐wide resource availability
  publication-title: Ecological Entomology
– volume: 111
  start-page: 5610
  issue: 15
  year: 2014
  end-page: 5615
  article-title: Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 82
  start-page: 164
  issue: 2
  year: 1994
  end-page: 170
  article-title: Thermoregulation in bees
  publication-title: American Scientist
– year: 2019
– volume: 57
  start-page: 193
  issue: 2
  year: 2010
  end-page: 197
  article-title: Small worker bumble bees ( ) are hardier against starvation than their larger sisters
  publication-title: Insectes Sociaux
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 6
  article-title: Widespread losses of pollinating insects in Britain
  publication-title: Nature Communications
– volume: 37
  start-page: 421
  issue: 4
  year: 2006
  end-page: 451
  article-title: A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination
  publication-title: Apidologie
– volume: 11
  issue: 3
  year: 2016
  article-title: Landscape simplification constrains adult size in a native ground‐nesting bee
  publication-title: PLoS ONE
– volume: 9
  issue: 8
  year: 2014
  article-title: Energetic optimisation of foraging honeybees: Flexible change of strategies in response to environmental challenges
  publication-title: PLoS ONE
– volume: 105
  start-page: 6668
  issue: 18
  year: 2008
  end-page: 6672
  article-title: Impacts of climate warming on terrestrial ectotherms across latitude
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 145
  issue: 19
  year: 2005
  end-page: 151
  article-title: Effects of climate on intra‐and interspecific size variation in bumblebees
  publication-title: Functional Ecology
– volume: 27
  start-page: 1415
  issue: 6
  year: 2013
  end-page: 1423
  article-title: Heat stress and the fitness consequences of climate change for terrestrial ectotherms
  publication-title: Functional Ecology
– volume: 50
  start-page: 212
  issue: 4
  year: 2004
  end-page: 218
  article-title: Tracking insects with harmonic radar: A case study
  publication-title: American Entomologist
– volume: 6
  issue: 6
  year: 2020
  article-title: Kinematic flexibility allows bumblebees to increase energetic efficiency when carrying heavy loads
  publication-title: Science Advances
– volume: 3
  start-page: 104
  issue: 2
  year: 1980
  end-page: 110
  article-title: Effects of weather on foraging‐flights of bumblebees (Hymenoptera, ) in a subalpine/alpine area
  publication-title: Ecography
– volume: 13
  start-page: 20170125
  issue: 6
  year: 2017
  article-title: Physiological thermal limits predict differential responses of bees to urban heat‐island effects
  publication-title: Biology Letters
– volume: 232
  start-page: 8
  year: 2019
  end-page: 27
  article-title: Worldwide decline of the entomofauna: A review of its drivers
  publication-title: Biological Conservation
– volume: 36
  start-page: 519
  issue: 4
  year: 1999
  end-page: 533
  article-title: A landscape‐scale study of bumble bee foraging range and constancy, using harmonic radar
  publication-title: Journal of Applied Ecology
– volume: 26
  start-page: 285
  issue: 6
  year: 2011
  end-page: 291
  article-title: Declining body size: A third universal response to warming?
  publication-title: Trends in Ecology & Evolution
– volume: 208
  start-page: 2045
  issue: 11
  year: 2005
  end-page: 2053
  article-title: Learning in two contexts: The effects of interference and body size in bumblebees
  publication-title: Journal of Experimental Biology
– volume: 10
  start-page: 17063
  issue: 1
  year: 2020
  article-title: Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee
  publication-title: Scientific Reports
– volume: 73
  start-page: 765
  issue: 6
  year: 2000
  end-page: 771
  article-title: Energy metabolism during insect flight: Biochemical design and physiological performance
  publication-title: Physiological and Biochemical Zoology
– volume: 11
  issue: 8
  year: 2016
  article-title: Life‐long radar tracking of bumblebees
  publication-title: PLoS ONE
– volume: 26
  start-page: 726
  issue: 3
  year: 2016
  end-page: 739
  article-title: Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species
  publication-title: Ecological Applications
– volume: 208
  start-page: 3895
  issue: 20
  year: 2005
  end-page: 3905
  article-title: Visual control of flight speed in honeybees
  publication-title: Journal of Experimental Biology
– volume: 11
  issue: 2
  year: 2016
  article-title: Size and sex‐dependent shrinkage of Dutch bees during one‐and‐a‐half centuries of land‐use change
  publication-title: PLoS ONE
– volume: 54
  start-page: 1199
  issue: 4
  year: 2017
  end-page: 1208
  article-title: Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting
  publication-title: Journal of Applied Ecology
– volume: 18
  start-page: 2135
  issue: 7
  year: 2012
  end-page: 2146
  article-title: Evaluating drivers of vulnerability to climate change: A guide for insect conservation strategies
  publication-title: Global Change Biology
– volume: 349
  start-page: 177
  issue: 6244
  year: 2015
  end-page: 180
  article-title: Climate change impacts on bumblebees converge across continents
  publication-title: Science
– volume: 367
  start-page: 685
  issue: 6478
  year: 2020
  end-page: 688
  article-title: Climate change contributes to widespread declines among bumble bees across continents
  publication-title: Science
– start-page: 453
  year: 2017
  end-page: 464
– volume: 217
  start-page: 437
  year: 2018
  end-page: 445
  article-title: Decline of bumble bees in northeastern North America, with special focus on
  publication-title: Biological Conservation
– volume: 305
  start-page: 994
  issue: 5686
  year: 2004
  end-page: 997
  article-title: More intense, more frequent, and longer lasting heat waves in the 21st century
  publication-title: Science
– volume: 85
  start-page: 1771
  issue: 7
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– volume: 38
  start-page: 275
  issue: 3
  year: 2003
  end-page: 280
  article-title: Effect of temperature on the foraging activity of L. (Hymenoptera: ) on greenhouse hot pepper ( L.)
  publication-title: Applied Entomology and Zoology
– start-page: 55
  year: 2009
  end-page: 61
– volume: 108
  start-page: 565
  issue: 3
  year: 2013
  end-page: 578
  article-title: Size‐dependent insect flight energetics at different sugar supplies
  publication-title: Biological Journal of the Linnean Society
– volume: 64
  start-page: 823
  issue: 3
  year: 1991
  end-page: 835
  article-title: The effect of thorax temperature on force production during tethered flight in honeybee ( ) drones, workers, and queens
  publication-title: Physiological Zoology
– volume: 50
  start-page: 346
  issue: 3
  year: 2008
  end-page: 363
  article-title: Simultaneous inference in general parametric models
  publication-title: Biometrical Journal
– year: 2021
– volume: 208
  start-page: 3593
  issue: 18
  year: 2005
  end-page: 3602
  article-title: Allometric scaling of flight energetics in orchid bees: Evolution of flux capacities and flux rates
  publication-title: Journal of Experimental Biology
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 10
  article-title: Climate change‐driven range losses among bumblebee species are poised to accelerate
  publication-title: Scientific Reports
– volume: 15
  issue: 6
  year: 2020
  article-title: Landscape composition and local floral resources influence foraging behavior but not the size of Cresson (Hymenoptera: Apidae) workers
  publication-title: PLoS ONE
– volume: 49
  start-page: 142
  issue: 2
  year: 2002
  end-page: 146
  article-title: Size variation and foraging rate in bumblebees ( )
  publication-title: Insectes Sociaux
– volume: 237
  start-page: 124408
  year: 2019
  article-title: Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation
  publication-title: Chemosphere
– volume: 28
  start-page: 1459
  issue: 6
  year: 2014
  end-page: 1471
  article-title: Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure
  publication-title: Functional Ecology
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  end-page: 4315
  article-title: WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 35
  start-page: 424
  issue: 4
  year: 2010
  end-page: 435
  article-title: Ontogeny of worker body size distribution in bumble bee ( ) colonies
  publication-title: Ecological Entomology
– volume: 221
  start-page: 1
  issue: 8
  year: 2018
  end-page: 11
  article-title: Critical thermal limits of bumble bees ( ) are marked by stereotypical behaviors and are unchanged by acclimation, age, or feeding status
  publication-title: Journal of Experimental Biology
– volume: 14
  start-page: 244
  issue: 23
  year: 2014
  end-page: 254
  article-title: Big bees do a better job: Intraspecific size variation influences pollination effectiveness
  publication-title: Journal of Pollination Ecology
– volume: 89
  start-page: 2440
  issue: 11
  year: 2020
  end-page: 2450
  article-title: How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends
  publication-title: Journal of Animal Ecology
– volume: 110
  start-page: 555
  issue: 2
  year: 2013
  end-page: 558
  article-title: Resource diversity and landscape‐level homogeneity drive native bee foraging
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 26
  start-page: 1741
  issue: 12
  year: 2020
  end-page: 1751
  article-title: Wildlife conservation strategies should incorporate both taxon identity and geographical context – Further evidence with bumblebees
  publication-title: Diversity and Distributions
– volume: 41
  start-page: 700
  issue: 4
  year: 2014
  end-page: 712
  article-title: Determining habitat suitability for bumblebees in a mountain system: A baseline approach for testing the impact of climate change on the occurrence and abundance of species
  publication-title: Journal of Biogeography
– volume: 521
  start-page: 38
  issue: 7550
  year: 2015
  end-page: 40
  article-title: Ecology: Tasteless pesticides affect bees in the field
  publication-title: Nature
– volume: 124
  start-page: 299
  issue: 7–8
  year: 2000
  end-page: 306
  article-title: Foraging habitats and foraging distances of bumblebees, spp. (Hym., ), in an agricultural landscape
  publication-title: Journal of Applied Entomology
– volume: 10
  start-page: 299
  issue: 4
  year: 2007
  end-page: 314
  article-title: Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land‐use change
  publication-title: Ecology Letters
– volume: 43
  start-page: 397
  issue: 4
  year: 2018
  end-page: 411
  article-title: The tethered flight technique as a tool for studying life‐history strategies associated with migration in insects
  publication-title: Ecological Entomology
– volume: 19
  start-page: 3103
  issue: 10
  year: 2013
  end-page: 3110
  article-title: Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops
  publication-title: Global Change Biology
– volume: 89
  start-page: 1277
  issue: 5
  year: 2020
  end-page: 1285
  article-title: The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude
  publication-title: Journal of Animal Ecology
– volume: 108
  start-page: 10591
  issue: 26
  year: 2011
  end-page: 10596
  article-title: Systematic variation in the temperature dependence of physiological and ecological traits
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 142
  start-page: 137
  issue: 3–4
  year: 2011
  end-page: 143
  article-title: Pollination services in the UK: How important are honeybees?
  publication-title: Agriculture, Ecosystems and Environment
– volume: 19
  start-page: 357
  issue: 1
  year: 1979
  end-page: 366
  article-title: Integrating thermal physiology and ecology of ectotherms: A discussion of approaches
  publication-title: Integrative and Comparative Biology
– volume: 540
  start-page: 220
  issue: 7632
  year: 2016
  end-page: 229
  article-title: Safeguarding pollinators and their values to human well‐being
  publication-title: Nature
– volume: 96
  start-page: 155
  issue: 2
  year: 1975
  end-page: 166
  article-title: Thermoregulation in bumblebees – II. Energetics of warm‐up and free flight
  publication-title: Journal of Comparative Physiology
– year: 2003
– year: 2000
– volume: 21
  start-page: 1130
  issue: 6
  year: 2007
  end-page: 1136
  article-title: Bigger is better: Implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees
  publication-title: Functional Ecology
– volume: 31
  start-page: 26
  issue: 1
  year: 2017
  end-page: 37
  article-title: Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps
  publication-title: Functional Ecology
– volume: 107
  start-page: 471
  issue: 3
  year: 2004
  end-page: 478
  article-title: Use of genetic markers to quantify bumblebee foraging range and nest density
  publication-title: Oikos
– volume: 58
  start-page: 152
  issue: 2
  year: 2005
  end-page: 156
  article-title: Effects of experience and weather on foraging rate and pollen versus nectar collection in the bumblebee,
  publication-title: Behavioral Ecology and Sociobiology
– volume: 31
  start-page: 541
  issue: 7
  year: 2006
  end-page: 545
  article-title: Estimating and comparing thermal performance curves
  publication-title: Journal of Thermal Biology
– volume: 99
  start-page: 49
  issue: 1
  year: 2018
  end-page: 60
  article-title: More‐persistent weak stratospheric polar vortex States linked to cold extremes
  publication-title: Bulletin of the American Meteorological Society
– volume: 5
  start-page: 180246
  issue: 2018
  year: 2018
  article-title: Data descriptor: A global dataset of air temperature derived from satellite remote sensing and weather stations
  publication-title: Scientific Data
– volume: 79
  start-page: 188
  issue: 1
  year: 2006
  end-page: 193
  article-title: Changes in temperature and light alter the flight speed of hornets ( L.)
  publication-title: Physiological and Biochemical Zoology
– volume: 33
  start-page: 467
  issue: 3
  year: 2019
  end-page: 478
  article-title: Integrating vital rates explains optimal worker size for resource return by bumblebee workers
  publication-title: Functional Ecology
– volume: 45
  start-page: 414
  issue: 20
  year: 2018
  end-page: 422
  article-title: North American weather regimes are becoming more persistent: Is Arctic amplification a factor?
  publication-title: Geophysical Research Letters
– volume: 161
  start-page: 23
  year: 2020
  end-page: 31
  article-title: Gone with the wind: Effects of wind on honey bee visit rate and foraging behaviour
  publication-title: Animal Behaviour
– volume: 53
  start-page: 116
  year: 2021
  end-page: 123
  article-title: Long‐term data shows increasing dominance of with climate warming
  publication-title: Basic and Applied Ecology
– volume: 4
  start-page: 115
  issue: 1
  year: 2020
  end-page: 121
  article-title: Phenological shifts alter the seasonal structure of pollinator assemblages in Europe
  publication-title: Nature Ecology and Evolution
– volume: 7
  start-page: 1201
  issue: 1
  year: 2017
  article-title: A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability
  publication-title: Scientific Reports
– volume: 18
  start-page: 17
  issue: 1
  year: 1993
  end-page: 30
  article-title: Temperature and the pollinating activity of social bees
  publication-title: Ecological Entomology
– volume: 57
  start-page: 58
  issue: 1
  year: 2008
  end-page: 75
  article-title: Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: )
  publication-title: Systematic Biology
– volume: 42
  start-page: 207
  issue: 1
  year: 1997
  end-page: 230
  article-title: Physiology and ecology of dispersal polymorphism in insects
  publication-title: Annual Review of Entomology
– year: 2017
– volume: 85
  start-page: 656
  issue: 6
  year: 2012
  end-page: 670
  article-title: Morphological and physiological idiosyncrasies lead to interindividual variation in flight metabolic rate in worker bumblebees ( )
  publication-title: Physiological and Biochemical Zoology
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 8
  article-title: Ambient air temperature does not predict whether small or large workers forage in bumble bees ( )
  publication-title: Psyche: A Journal of Entomology
– ident: e_1_2_10_3_1
  doi: 10.1111/1365‐2664.12792
– volume-title: Bumblebees: Behaviour and ecology
  year: 2003
  ident: e_1_2_10_35_1
– ident: e_1_2_10_87_1
  doi: 10.1111/gcb.12264
– ident: e_1_2_10_36_1
  doi: 10.1006/anbe.2002.3041
– ident: e_1_2_10_48_1
  doi: 10.1111/jbi.12236
– ident: e_1_2_10_83_1
  doi: 10.1038/s41598‐020‐73391‐8
– ident: e_1_2_10_22_1
  doi: 10.1073/pnas.1015178108
– ident: e_1_2_10_51_1
  doi: 10.1101/2020.05.06.079525
– ident: e_1_2_10_85_1
  doi: 10.1038/s41467‐019‐08974‐9
– ident: e_1_2_10_72_1
  doi: 10.1126/science.1098704
– ident: e_1_2_10_19_1
  doi: 10.1111/j.1365‐2311.2010.01198.x
– ident: e_1_2_10_106_1
  doi: 10.1038/s41598‐019‐49025‐z
– ident: e_1_2_10_111_1
  doi: 10.1007/s13592‐011‐0086‐9
– ident: e_1_2_10_79_1
  doi: 10.1111/j.1365‐2656.2007.01333.x
– ident: e_1_2_10_98_1
  doi: 10.1126/science.aax8591
– ident: e_1_2_10_60_1
  doi: 10.1111/j.1095‐8312.2012.02042.x
– ident: e_1_2_10_40_1
  doi: 10.1098/rsbl.2017.0125
– ident: e_1_2_10_74_1
  doi: 10.1890/08‐1498.1
– ident: e_1_2_10_26_1
  doi: 10.2903/j.efsa.2013.3295
– ident: e_1_2_10_103_1
  doi: 10.1073/pnas.1316145111
– ident: e_1_2_10_75_1
  doi: 10.1093/ae/50.4.212
– ident: e_1_2_10_20_1
  doi: 10.1242/jeb.01777
– ident: e_1_2_10_116_1
  doi: 10.1146/annurev.ento.42.1.207
– ident: e_1_2_10_71_1
  doi: 10.1086/527502
– ident: e_1_2_10_69_1
  doi: 10.1303/aez.2003.275
– ident: e_1_2_10_92_1
  doi: 10.2307/2256344
– ident: e_1_2_10_27_1
  doi: 10.1002/joc.5086
– volume-title: lmerTest package: Tests in linear mixed effects models
  year: 2017
  ident: e_1_2_10_68_1
– ident: e_1_2_10_104_1
  doi: 10.1016/j.chemosphere.2019.124408
– ident: e_1_2_10_115_1
  doi: 10.1007/s13592‐020‐00771‐4
– ident: e_1_2_10_39_1
  doi: 10.3390/insects11030191
– ident: e_1_2_10_66_1
  doi: 10.1111/j.1461‐0248.2007.01018.x
– ident: e_1_2_10_33_1
  doi: 10.1111/1365‐2435.12292
– ident: e_1_2_10_47_1
  doi: 10.1016/j.baae.2021.03.008
– ident: e_1_2_10_94_1
  doi: 10.1007/s10044‐015‐0501‐3
– ident: e_1_2_10_84_1
  doi: 10.1038/nature20588
– ident: e_1_2_10_24_1
  doi: 10.1038/s41559‐019‐1062‐4
– ident: e_1_2_10_30_1
  doi: 10.1371/journal.pone.0234498
– ident: e_1_2_10_8_1
  doi: 10.1046/j.1365‐2435.1999.00351.x
– ident: e_1_2_10_52_1
  doi: 10.1038/sdata.2018.246
– ident: e_1_2_10_12_1
  doi: 10.1098/rspb.2013.1149
– ident: e_1_2_10_46_1
  doi: 10.1038/ncomms5359
– start-page: 55
  volume-title: Ecology of butterflies in Europe
  year: 2009
  ident: e_1_2_10_110_1
– ident: e_1_2_10_7_1
  doi: 10.1242/jeb.187807
– ident: e_1_2_10_100_1
  doi: 10.1086/498181
– ident: e_1_2_10_58_1
  doi: 10.1073/pnas.1208682110
– ident: e_1_2_10_112_1
  doi: 10.1371/journal.pone.0160333
– ident: e_1_2_10_102_1
  doi: 10.1086/318112
– ident: e_1_2_10_89_1
  doi: 10.1890/15‐0546/suppinfo
– volume-title: Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_10_56_1
– ident: e_1_2_10_15_1
  doi: 10.1126/sciadv.aay3115
– ident: e_1_2_10_109_1
  doi: 10.1111/j.1365‐2311.2006.00801.x
– ident: e_1_2_10_14_1
  doi: 10.1038/s41467‐018‐02992‐9
– ident: e_1_2_10_90_1
  doi: 10.5061/dryad.kr577.Funding
– ident: e_1_2_10_23_1
  doi: 10.1073/pnas.0709472105
– ident: e_1_2_10_108_1
  doi: 10.1046/j.1439-0418.2000.00484.x
– ident: e_1_2_10_25_1
  doi: 10.1515/9780691186344
– ident: e_1_2_10_45_1
  doi: 10.1016/j.anbehav.2019.12.018
– ident: e_1_2_10_49_1
  doi: 10.1111/een.12517
– ident: e_1_2_10_99_1
  doi: 10.1007/s00040‐002‐8293‐z
– ident: e_1_2_10_101_1
  doi: 10.1371/journal.pone.0105432
– ident: e_1_2_10_114_1
  doi: 10.1242/jeb.01582
– ident: e_1_2_10_28_1
  doi: 10.1029/2018GL080252
– ident: e_1_2_10_34_1
  doi: 10.1038/nature11585
– ident: e_1_2_10_55_1
  doi: 10.1093/icb/19.1.357
– ident: e_1_2_10_91_1
  doi: 10.1046/j.1570‐7458.1997.00186.x
– ident: e_1_2_10_97_1
  doi: 10.1086/665568
– ident: e_1_2_10_29_1
  doi: 10.1016/j.tree.2011.03.005
– ident: e_1_2_10_107_1
  doi: 10.1051/apido:2006019
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1365‐2311.1993.tb01075.x
– ident: e_1_2_10_57_1
  doi: 10.1016/j.biocon.2017.11.026
– ident: e_1_2_10_61_1
  doi: 10.1002/ece3.5143
– ident: e_1_2_10_41_1
  doi: 10.1146/annurev.physiol.62.1.179
– ident: e_1_2_10_82_1
  doi: 10.1007/s00265‐005‐0916‐8
– ident: e_1_2_10_67_1
  doi: 10.1175/BAMS‐D‐16‐0259.1
– ident: e_1_2_10_96_1
  doi: 10.1038/s41598‐018‐32665‐y
– ident: e_1_2_10_63_1
  doi: 10.1126/science.aaa7031
– ident: e_1_2_10_105_1
  doi: 10.1038/s41598‐017‐01361‐8
– ident: e_1_2_10_50_1
  doi: 10.1080/10635150801898912
– ident: e_1_2_10_70_1
  doi: 10.1111/j.1600‐0587.1980.tb00715.x
– ident: e_1_2_10_93_1
  doi: 10.1016/j.biocon.2019.01.020
– volume: 82
  start-page: 164
  issue: 2
  year: 1994
  ident: e_1_2_10_44_1
  article-title: Thermoregulation in bees
  publication-title: American Scientist
– ident: e_1_2_10_9_1
  doi: 10.1111/1365‐2656.13319
– ident: e_1_2_10_77_1
  doi: 10.1371/journal.pone.0148983
– ident: e_1_2_10_10_1
  doi: 10.1016/j.agee.2011.03.020
– volume: 221
  start-page: 1
  issue: 8
  year: 2018
  ident: e_1_2_10_80_1
  article-title: Critical thermal limits of bumble bees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age, or feeding status
  publication-title: Journal of Experimental Biology
– ident: e_1_2_10_4_1
  doi: 10.1111/j.1365‐2486.2012.02691.x
– ident: e_1_2_10_64_1
  doi: 10.1111/1365‐2435.13251
– ident: e_1_2_10_78_1
  doi: 10.1046/j.1365‐2664.1999.00428.x
– ident: e_1_2_10_13_1
  doi: 10.1086/physzool.64.3.30158209
– ident: e_1_2_10_43_1
  doi: 10.1007/BF00706595
– ident: e_1_2_10_88_1
  doi: 10.1038/nature14391
– ident: e_1_2_10_59_1
  doi: 10.1111/j.1365‐2435.2007.01329.x
– ident: e_1_2_10_54_1
  doi: 10.1127/entom.gen/24/1999/23
– ident: e_1_2_10_62_1
  doi: 10.5061/dryad.18931zcxr
– ident: e_1_2_10_76_1
  doi: 10.1080/00218839.2020.1771879
– ident: e_1_2_10_38_1
  doi: 10.1007/s00442‐007‐0752‐9
– ident: e_1_2_10_11_1
  doi: 10.1890/03‐9000
– ident: e_1_2_10_31_1
  doi: 10.1111/ddi.13155
– ident: e_1_2_10_113_1
  doi: 10.1242/jeb.01510
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_10_86_1
– ident: e_1_2_10_17_1
  doi: 10.1007/s00040‐010‐0064‐7
– ident: e_1_2_10_18_1
  doi: 10.1155/2010/536430
– start-page: 135
  volume-title: Advances in ecological research
  year: 2016
  ident: e_1_2_10_32_1
– ident: e_1_2_10_2_1
  doi: 10.1016/j.jtherbio.2006.06.002
– ident: e_1_2_10_6_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_10_5_1
  doi: 10.1242/jeb.01818
– ident: e_1_2_10_95_1
  doi: 10.1111/1365‐2435.12809
– ident: e_1_2_10_37_1
  doi: 10.1111/j.1365‐2664.2010.01929.x
– ident: e_1_2_10_21_1
  doi: 10.1111/j.0030‐1299.2004.13510.x
– ident: e_1_2_10_53_1
  doi: 10.1002/bimj.200810425
– ident: e_1_2_10_65_1
  doi: 10.1111/1365‐2435.12145
– ident: e_1_2_10_73_1
  doi: 10.1111/een.12521
– ident: e_1_2_10_81_1
  doi: 10.1111/j.0269‐8463.2005.00946.x
– ident: e_1_2_10_42_1
  doi: 10.1016/B978-0-12-803592-4.00040-7
SSID ssj0009522
Score 2.5508654
Snippet The effects of environmental temperature on components of insect flight determine life‐history traits, fitness, adaptability and, ultimately, organism...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2508
SubjectTerms Adaptability
alloethism
ambient temperature
Body mass
Body size
body weight
Bombus terrestris
Bumblebees
climate
Climate change
Colonies
ecosystems
Endurance
Flight
Flight characteristics
foraging range
Global warming
insect flight
insect pollinator
Insects
labor force
life history
Mass distribution
Mathematical analysis
Plant reproduction
Pollination
Pollinators
Temperature
Temperature dependence
tethered flight mill
Thermal environments
thermal performance curve
weather
Weather forecasting
worker size dependence
Workers (insect caste)
Title Thermal flight performance reveals impact of warming on bumblebee foraging potential
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13887
https://www.proquest.com/docview/2594136724
https://www.proquest.com/docview/2636409146
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86ELz4PZzOEcGDl5YuTZvsKGNjCIrIBt5KkqUerO1wHaJ_ve_1Y5sDEfEW0oSmeV-_17z3QshVaIOQy67vBJIJcFBi35GaB45SYDA0B0TLMBv57j4cTfjtU1BHE2IuTFkfYvnDDSWj0Nco4ErP14S8jM8Ca-92fZAU0MLYg7Doka2V3S3PEVjYc8DS-lVxH4zl2Zj_3S6twOY6ZC1sznCf6Hq1ZajJi7vItWs-Nwo5_utzDshehUjpTclCh2TLpkdkp7yj8gNaA1O1moNVUhxMqLTC_JiMgddAvyc0TtDVp7NVMgLFClHA4bTMxqRZTN8Vht880yylevGqE6CvpTC-uC6JzrIc45dUckImw8G4P3Kq2xocA6BHOKH0tadF13KlmWBTC1CGBz0FEEtaYUGTaB3EhhlgAc_0ADkJKz0WG8NV7BvlN0kjzVJ7SqgAtWI9q8XUSlAwQlpAYbGRnoHesCdaxK1pFZmqlDneqJFEtUuDuxnhbkbFbrbI9XLCrKzi8fPQdk38qBLneQQ-Isfadoy3yOXyMQginq6o1GYLGBP6ITjLYHlgeQWlf3tVNBz0i8bZXyeck12GsTVFTmSbNPK3hb0AcJTrDtlm_KFTSMEXyCcBtA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4gejFb3E6NYIHLx1dmjbZUWRj6raDTPBWkph6sLZDV0T_el_S7kNBRLyFNmnTvLz3fi99HwBnkQkjJpqBFwrK0UBJAk8oFnpSosJQDBEttdHI_UHUvWPX9-H9XCxMmR9ieuBmOcPJa8vg9kB6jstLBy1U941mgKyyCMu2rrczq27pXOLd8k8CjVoe6tqgSu9jvXm-PeCrZprBzXnQ6rROZwP0ZL6ls8lToxirhv74lsrxfx-0CesVKCUX5S7aggWTbcNKWabyHVttXbX22rO4OBxQCYbXHRjidkMRn5IktdY-Gc3iEYhNEoWbnJQBmSRPyJu0HjiPJM-IKp5ViiQ2BPu7iklklI-tC5NMd-Gu0x5edr2qYIOnEfdwLxKB8hVvGiYV5fTBIJphYUsiyhKGGxQmSoWJphp3ga9bCJ64ET5NtGYyCbQM9mApyzOzD4SjZDG-UfzBCJQxXBgEYokWvsarUYvXoDEhVqyrbOa2qEYaT6wau5qxXc3YrWYNzqcDRmUij5-71ifUjyuOfo3RTGQ2vR1lNTid3kZetD9YZGbyAvtEQYT2MiofnJ4j9W-vijvtS9c4-OuAE1jtDvu9uHc1uDmENWpdbVyIZB2Wxi-FOUKsNFbHjhk-Ad_bBPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64oHhxHxzXCB68dOikaZI5yiy4I6LgrSSZ1IO1HXQG0V_vS5eZURARb6FN2jRv-17z3gvAEbchZ7IZeKGkAh2UOPCkZqGnFBoMzRDRUpeNfHXNT-_Z-UNYRRO6XJiiPsT4h5uTjFxfOwEf9OMpIS_is9DaN5oBSsoszDPuS8fYnVs6VXe32EigvOWhqQ3K6j4umOfbA74apgnanMasudHprYCuplvEmjw1RkPdMB_fKjn-63tWYbmEpOSk4KE1mLHpOiwUh1S-Y6trylatO8mKwwGlWnjdgDtkNlTwCYkT5-uTwSQbgbgSUcjipEjHJFlM3pSLv3kkWUr06FknSGBLsH9-XhIZZEMXwKSSTbjvde_ap155XINnEPUIj8tA-1o0LVOaCtq3iGVY2FKIsaQVFlWJ1mFsqEEe8E0LoZOw0qexMUzFgVFBDebSLLVbQATqFetbLfpWooYR0iIMi430DV7lLVGHRkWryJS1zN2RGklU-TRuNSO3mlG-mnU4Hg8YFGU8fu66WxE_KuX5NUInkbnidpTV4XB8GyXRba-o1GYj7MMDjt4ymh6cXk7p314V9brtvLH91wEHsHjT6UWXZ9cXO7BEXZxNnh-5C3PDl5HdQ6A01Pu5KHwC1xIDsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+flight+performance+reveals+impact+of+warming+on+bumblebee+foraging+potential&rft.jtitle=Functional+ecology&rft.au=Kenna%2C+Daniel&rft.au=Pawar%2C+Samraat&rft.au=Gill%2C+Richard+J.&rft.date=2021-11-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=35&rft.issue=11&rft.spage=2508&rft.epage=2522&rft_id=info:doi/10.1111%2F1365-2435.13887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2435_13887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon