Band Alignment Engineering in 2D Ferroelectric Van der Waals Heterostructures for All‐In‐One Optoelectronic Architecture
2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctiona...
Saved in:
Published in | Advanced electronic materials Vol. 11; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In2Se3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 1012%. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system.
An attractive strategy is proposed to regulate the band‐alignment type and band offset of 2D van der Waals heterostructures by the integration of atomically thin ferroelectrics and semiconductors. The 2D ferroelectric van der Waals heterostructures exhibit giant tunneling electroresistance ratio and broadband polarized photoresponse, which make them potential candidates to construct all‐in‐one optoelectronic architecture. |
---|---|
AbstractList | 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In2Se3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 1012%. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system.
An attractive strategy is proposed to regulate the band‐alignment type and band offset of 2D van der Waals heterostructures by the integration of atomically thin ferroelectrics and semiconductors. The 2D ferroelectric van der Waals heterostructures exhibit giant tunneling electroresistance ratio and broadband polarized photoresponse, which make them potential candidates to construct all‐in‐one optoelectronic architecture. 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In 2 Se 3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 10 12 %. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system. Abstract 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In2Se3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 1012%. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system. |
Author | Zhang, Congmin Xie, Dabao Chen, Xiaoshuang Cao, Dan Lu, Yanan Shu, Haibo |
Author_xml | – sequence: 1 givenname: Yanan surname: Lu fullname: Lu, Yanan organization: China Jiliang University – sequence: 2 givenname: Dabao surname: Xie fullname: Xie, Dabao organization: China Jiliang University – sequence: 3 givenname: Congmin surname: Zhang fullname: Zhang, Congmin organization: China Jiliang University – sequence: 4 givenname: Dan surname: Cao fullname: Cao, Dan organization: China Jiliang University – sequence: 5 givenname: Xiaoshuang surname: Chen fullname: Chen, Xiaoshuang organization: Chinese Academy of Science – sequence: 6 givenname: Haibo orcidid: 0000-0003-1728-2190 surname: Shu fullname: Shu, Haibo email: shuhaibo@cjlu.edu.cn organization: China Jiliang University |
BookMark | eNqFkctOGzEUhq0KpFJg27VfIKlv48wsAw0QKVU2XLqzjj1ngtHERh6jKhILHoFn5ElqCCBUCXVjH1vn-3Ts_xvZCTEgId85G3PGxA_Afj0WTKhy0M0Xsid404y4Zr93PtRfyeEw3DDG-ERLVck9cn8EoaXT3q_CGkOms7DyATH5sKI-UPGTnmBKEXt0OXlHLyHQFhO9AugHeoYZUxxyunP5LuFAu5iKrH96eJyHsiwD0uVtfsVjKIJpctc-40v_AdntigYPX_d9cnEyOz8-Gy2Wp_Pj6WLkZN3oUW2FbhsLzFq0na4rZSe81qzSQkKL2GirOHQOoFGydlA5q6qJa0tZM2Bc7pP51ttGuDG3ya8hbUwEb14uYloZSNm7Ho2WVWtdi2wCoKRU1irr6vJXwnEpuC4utXW58vAhYWecz5B9DDmB7w1n5jkQ8xyIeQ-kYON_sLcxPgXkFvjje9z8p9tMZ4tftdDyLwmro08 |
CitedBy_id | crossref_primary_10_1021_acsanm_4c04478 crossref_primary_10_1002_admt_202402121 crossref_primary_10_1002_adfm_202422304 |
Cites_doi | 10.1126/sciadv.aba6173 10.1103/PhysRevB.101.014105 10.1021/acsami.0c08461 10.1038/s41928-022-00747-5 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.68.2512 10.1103/PhysRevB.31.6207 10.1038/nnano.2015.112 10.1093/nsr/nwab098 10.1002/aelm.202101022 10.1016/S0081-1947(08)60092-2 10.1038/ncomms12357 10.1021/jacs.9b11614 10.1007/s11467-022-1244-4 10.1002/inf2.12407 10.1039/D0TA01247E 10.1016/j.matt.2022.12.009 10.1038/s41524-021-00531-7 10.1038/s41467-021-24296-1 10.1063/1.2187006 10.1002/adfm.201504546 10.1103/PhysRevB.50.17953 10.1038/nphoton.2015.282 10.1126/sciadv.aav9743 10.1038/s41563-023-01676-0 10.1002/advs.202100075 10.1021/acs.nanolett.7b02198 10.1002/inf2.12412 10.1021/acsnano.8b06629 10.1038/s41467-020-16125-8 10.1103/PhysRevB.107.115427 10.1038/s41699-020-00189-7 10.1016/j.jmat.2022.06.003 10.1038/s43586-022-00139-1 10.1038/nnano.2017.208 10.1063/1.4952951 10.1002/smtd.202100932 10.1002/adfm.201900411 10.1103/PhysRevB.54.11169 10.1088/0953-8984/14/11/302 10.1002/adfm.202305589 10.1021/acsami.2c09674 10.1002/adma.201902434 10.1126/science.aad8609 10.1088/0957-4484/26/45/455202 10.1016/j.apmt.2019.07.004 10.1063/1.3382344 10.1002/sstr.202000136 10.1088/1367-2630/11/12/125012 10.1038/ncomms12725 10.1002/inf2.12317 10.1002/adma.202306772 10.1002/advs.202300120 10.1126/science.1254642 10.1038/natrevmats.2017.33 10.1002/adfm.202211548 10.1103/RevModPhys.64.1045 10.1103/PhysRevB.63.245407 10.1038/s41928-020-0441-9 10.1002/smll.202303675 10.1038/s42254-019-0043-5 10.1039/D0NR06872A 10.1038/s41467-018-05640-4 10.1002/adfm.202305822 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/aelm.202400269 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_635dbcde07aa4334bb4bc83452c13216 10_1002_aelm_202400269 AELM826 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang funderid: 2023YW75 – fundername: Scientific Research Fund of Zhejiang Provincial Education Department funderid: Y202249614 – fundername: Natural Science Foundation of Zhejiang Province funderid: LZ22F040003; LY22A040002 – fundername: National Natural Science Foundation of China funderid: 62174151 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAMMB AAXRX AAZKR ABCUV ABJNI ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFPKN AGXDD AIACR AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI M~E O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c3896-8b26d9ba0bbebf6854b718605623adee96b41afcaa9438ca5cb457cd8ca80a013 |
IEDL.DBID | 24P |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 00:54:51 EDT 2025 Sun Jul 06 05:06:32 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Sun Jul 06 04:45:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3896-8b26d9ba0bbebf6854b718605623adee96b41afcaa9438ca5cb457cd8ca80a013 |
ORCID | 0000-0003-1728-2190 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400269 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_635dbcde07aa4334bb4bc83452c13216 crossref_citationtrail_10_1002_aelm_202400269 crossref_primary_10_1002_aelm_202400269 wiley_primary_10_1002_aelm_202400269_AELM826 |
PublicationCentury | 2000 |
PublicationDate | February 2025 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2002; 14 2017; 2 2023; 33 2023; 34 2023; 5 2023; 6 2016; 108 2019; 16 2020; B 101 2020; 12 2020; 11 2023; 107 2024; 36 2009; 11 2020; 6 2018; 9 2020; 3 2023; 22 1991; 44 1999; 59 2016; 353 2019; 29 2006; 124 2023; 10 2021; 8 2021; 7 2021; 5 2021; 2 2019; 5 2023; 18 2019; 1 2023; 19 2015; 10 2016; 10 2020; 32 1996; 54 2001; 63 2019; 142 2020; C8 2015; 26 2016; 7 2021; 12 2022; 4 2022; 5 2017; 17 2022; 6 2022; 8 2022; 9 2017; 12 2010; 132 2022; 14 1992; 68 2022; 2 2018; 12 1992; 64 1994; 50 1985; 31 2016; 26 2014; 345 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Wang J. (e_1_2_8_37_1) 2020; 8 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 4 year: 2022 publication-title: InfoMat – volume: 345 start-page: 668 year: 2014 publication-title: Science – volume: 44 start-page: 229 year: 1991 publication-title: Solid State Phys. – volume: 12 start-page: 4030 year: 2021 publication-title: Nat. Comm. – volume: 16 start-page: 435 year: 2019 publication-title: Appl. Mater. Today. – volume: 8 year: 2022 publication-title: Adv. Electron. Mater. – volume: 3 start-page: 466 year: 2020 publication-title: Nat. Electron. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 6 year: 2022 publication-title: Small Methods – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 1 start-page: 306 year: 2019 publication-title: Nat. Rev. Phys. – volume: 124 year: 2006 publication-title: J. Chem. Phys. – volume: 63 year: 2001 publication-title: Phys. Rev. B – volume: 34 year: 2023 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1169 year: 2016 publication-title: Adv. Funct. Mater. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 707 year: 2015 publication-title: Nat. Nanotechnol. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 248 year: 2022 publication-title: Nat. Electron. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 2 year: 2021 publication-title: Small Stru. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 68 start-page: 2512 year: 1992 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 2745 year: 2002 publication-title: J. Phys.: Condens. Matter. – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 8 start-page: 1158 year: 2022 publication-title: J. Materiomics – volume: C8 start-page: 7350 year: 2020 publication-title: J. Mater. Chem. – volume: 2 start-page: 58 year: 2022 publication-title: Nat. Rev. Methods Primers – volume: 17 start-page: 5508 year: 2017 publication-title: Nano Lett. – volume: 19 year: 2023 publication-title: Small – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces. – volume: 10 start-page: 216 year: 2016 publication-title: Nat. Photon. – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 5 start-page: 16 year: 2021 publication-title: npj 2D Mater. Appl. – volume: 64 start-page: 1045 year: 1992 publication-title: Rev. Mod. Phys. – volume: 26 year: 2015 publication-title: Nanotechnology – volume: 11 year: 2009 publication-title: New. J. Phys. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: 3344 year: 2018 publication-title: Nat. Comm. – volume: 31 start-page: 6207 year: 1985 publication-title: Phys. Rev. B – volume: 12 year: 2020 publication-title: Nanoscale – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 22 start-page: 1499 year: 2023 publication-title: Nat. Mater. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 7 start-page: 61 year: 2021 publication-title: npj Comput.Mater. – volume: 142 start-page: 1492 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 18 year: 2023 publication-title: Fron. Phys. – volume: 11 start-page: 2308 year: 2020 publication-title: Nat. Comm. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 353 start-page: 274 year: 2016 publication-title: Science – volume: B 101 year: 2020 publication-title: Phys. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 year: 2016 publication-title: Nat. Comm. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 107 year: 2023 publication-title: Phys. Rev. B – volume: 6 start-page: 1 year: 2023 publication-title: Matter – volume: 5 year: 2023 publication-title: InfoMat – volume: 12 start-page: 1148 year: 2017 publication-title: Nat. Nanotechnol. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_21_1 doi: 10.1126/sciadv.aba6173 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevB.101.014105 – ident: e_1_2_8_17_1 doi: 10.1021/acsami.0c08461 – ident: e_1_2_8_10_1 doi: 10.1038/s41928-022-00747-5 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevLett.68.2512 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevB.31.6207 – ident: e_1_2_8_47_1 doi: 10.1038/nnano.2015.112 – ident: e_1_2_8_52_1 doi: 10.1093/nsr/nwab098 – ident: e_1_2_8_31_1 doi: 10.1002/aelm.202101022 – ident: e_1_2_8_7_1 doi: 10.1016/S0081-1947(08)60092-2 – ident: e_1_2_8_24_1 doi: 10.1038/ncomms12357 – ident: e_1_2_8_36_1 doi: 10.1021/jacs.9b11614 – ident: e_1_2_8_35_1 doi: 10.1007/s11467-022-1244-4 – ident: e_1_2_8_13_1 doi: 10.1002/inf2.12407 – volume: 8 start-page: 7350 year: 2020 ident: e_1_2_8_37_1 publication-title: J. Mater. Chem. doi: 10.1039/D0TA01247E – ident: e_1_2_8_4_1 doi: 10.1016/j.matt.2022.12.009 – ident: e_1_2_8_42_1 doi: 10.1038/s41524-021-00531-7 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-021-24296-1 – ident: e_1_2_8_59_1 doi: 10.1063/1.2187006 – ident: e_1_2_8_48_1 doi: 10.1002/adfm.201504546 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_27_1 doi: 10.1038/nphoton.2015.282 – ident: e_1_2_8_41_1 doi: 10.1126/sciadv.aav9743 – ident: e_1_2_8_34_1 doi: 10.1038/s41563-023-01676-0 – ident: e_1_2_8_51_1 doi: 10.1002/advs.202100075 – ident: e_1_2_8_25_1 doi: 10.1021/acs.nanolett.7b02198 – ident: e_1_2_8_32_1 doi: 10.1002/inf2.12412 – ident: e_1_2_8_50_1 doi: 10.1021/acsnano.8b06629 – ident: e_1_2_8_53_1 doi: 10.1038/s41467-020-16125-8 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevB.107.115427 – ident: e_1_2_8_45_1 doi: 10.1038/s41699-020-00189-7 – ident: e_1_2_8_20_1 doi: 10.1016/j.jmat.2022.06.003 – ident: e_1_2_8_11_1 doi: 10.1038/s43586-022-00139-1 – ident: e_1_2_8_18_1 doi: 10.1038/nnano.2017.208 – ident: e_1_2_8_8_1 doi: 10.1063/1.4952951 – ident: e_1_2_8_9_1 doi: 10.1002/smtd.202100932 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.201900411 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_61_1 doi: 10.1088/0953-8984/14/11/302 – ident: e_1_2_8_2_1 doi: 10.1002/adfm.202305589 – ident: e_1_2_8_19_1 doi: 10.1021/acsami.2c09674 – ident: e_1_2_8_3_1 doi: 10.1002/adma.201902434 – ident: e_1_2_8_26_1 doi: 10.1126/science.aad8609 – ident: e_1_2_8_64_1 doi: 10.1088/0957-4484/26/45/455202 – ident: e_1_2_8_12_1 doi: 10.1016/j.apmt.2019.07.004 – ident: e_1_2_8_58_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_16_1 doi: 10.1002/sstr.202000136 – ident: e_1_2_8_6_1 doi: 10.1088/1367-2630/11/12/125012 – ident: e_1_2_8_22_1 doi: 10.1038/ncomms12725 – ident: e_1_2_8_23_1 doi: 10.1002/inf2.12317 – ident: e_1_2_8_46_1 doi: 10.1002/adma.202306772 – ident: e_1_2_8_5_1 doi: 10.1002/advs.202300120 – ident: e_1_2_8_1_1 doi: 10.1126/science.1254642 – ident: e_1_2_8_28_1 doi: 10.1038/natrevmats.2017.33 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.202211548 – ident: e_1_2_8_57_1 doi: 10.1103/RevModPhys.64.1045 – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevB.63.245407 – ident: e_1_2_8_38_1 doi: 10.1038/s41928-020-0441-9 – ident: e_1_2_8_14_1 doi: 10.1002/smll.202303675 – ident: e_1_2_8_29_1 doi: 10.1038/s42254-019-0043-5 – ident: e_1_2_8_44_1 doi: 10.1039/D0NR06872A – ident: e_1_2_8_43_1 doi: 10.1038/s41467-018-05640-4 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202305822 |
SSID | ssj0001763453 |
Score | 2.3392363 |
Snippet | 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible... Abstract 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | 2D ferroelectrics all‐in‐one optoelectronic synapse band alignment density‐functional theory van der Waals heterostructures |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgckFqImsZ2kYwqtCqJ0odAtsi82qhSlVVU2Bn4Cv5FfwtlJSxgQC0uGyIqju0vunX1-j5ALxpgBo2NPQSjt0o30EMRGnogDMABMSLCnkUcP0XDC76Zi2pD6sj1hFT1wZbgOJsRcQa79WErOGFeKK0gYFyFgIRU4sm3MeY1iyq2u4GfDBVuzNPphR-rCHjy3LZOh7W5uZCFH1v8TnLrsMtglOzUspGn1OntkS5f75K2HZT5Ni9mL27KnDe5AOitpeEMHermcV0o2M6BPsqS5XtJniTFFh7bRZV7xw75iUU0RnuLDis_3j9sSL-NS0_FiNf8WwqFpY1fhgEwG_cfroVerJXiAoCPyEhVGeVdJXymtTJQIrjDvRA7gyFzrbqR4IA1I2eUsASlAcRFbagCZ-BKR4CFplfNSHxGaaGMgjuOEc8O5jhKOfwLFfBXEmhsQbeKtrZdBTSVuFS2KrCJBDjNr7Wxj7Ta53IxfVCQav47sWWdsRlnya3cDQyKrQyL7KyTa5Mq58o-5srR_P8LAPP6POU_IdmiVgV0_9ylpoXP1GcKVlTp3kfkF8n3p9w priority: 102 providerName: Directory of Open Access Journals |
Title | Band Alignment Engineering in 2D Ferroelectric Van der Waals Heterostructures for All‐In‐One Optoelectronic Architecture |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400269 https://doaj.org/article/635dbcde07aa4334bb4bc83452c13216 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYKvXBBIIpYKMiHSr00InEcJzkuhdUWldIDP3uLZiY2WmmVoIXeOPQR-ow8ScfOsj8HhLjkEI1sacbj-cb2fCPElzRNHTmbR0gK_NENRAxiTZTlCTmiNAPy1cgXv8zwWp-PstFSFX_HDzE_cPOeEfZr7-CAD8cL0lCwE19J7t9AKlOuiY--vtaz5yv9e3HKwu6jAxUle2YZJSYevTA3xup4dYiVyBQI_FcBa4g4gy2xOYOKst_Zdlt8sM2OeDrh1F_2J-O7cI0vl_gE5biR6lQO7HTadt1txiRvoJG1ncpb4HUmh_7xS9txxv7hRFsyZOXBJs9___1o-HPZWHl5_9gumuPI_tJNwydxPTi7-j6MZh0UImIgYqIClalLhBjRojNFppFjkQmgB2prS4M6AUcApU4LgoxQZ7mnC4AiBkaHu2K9aRu7J2RhnaM8zwutndbWFJp3B0xjTHKrHWU9Eb1or6IZvbjvcjGpOmJkVXltV3Nt98TXufx9R6zxquSJN8ZcyhNihx_t9K6a-VfFuKlGqm2cA-g01YgaqWDbK-J8OzE98S2Y8o25qv7ZzwterPvvEz8QG8r3BQ6vuT-LdTajPWSw8ohHYT0ehVT_Pwag5sM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYKPcClalUQS4H6UKkXIhJnYifHpbBa2l3gwN8tsif2aqVVglZw48Aj8Iw8CWNnf9hDVfWSQzSyJY_H8814_A1jP9I0deisigwK7VM3OiIQK6NMJegQ00yjf408PJf9a_h9l82rCf1bmJYfYpFw85YRzmtv4D4hfbRkDdV24p-S-yJIIYs19hGkUN42BVwu0yxkPxC4KMk0iyiR8d2cujEWR6tDrLimwOC_iliDy-l9Zp9mWJF3W-V-YR9s_ZU9HVPsz7uT8Sjc4_N3hIJ8XHNxwnt2Om3a9jZj5De65pWd8ltNG433ffVL05LGPlKkzQmz0mCT1-eXs5o-F7XlF_cPzbI7Du--u2rYYte906tf_WjWQiFCQiIyyo2QVWF0bIw1TuYZGHJGMqAeXVlbSAOJdqh1AWmOOkMDmfJ8ATqPNcHDbbZeN7XdYTy3zqFSKgdwAFbmQMeDSWOTKAsOsw6L5qtX4oxf3Le5mJQtM7Io_WqXi9XusJ8L-fuWWeOvksdeGQspz4gdfjTTUTkzsJKAU2WwsrHSGtIUjAGDOeleIAXcieyww6DKf8xVdk8HQ9qtu_8n_p1t9K-Gg3Jwdv7nG9sUvklwKO3eY-ukUrtPyOXBHIS9-QYN0Ok6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeDDxAvoqi4PnMQvFjsI03bY9d1Wd8eXF28lGSaLAtLuyx68-BH8DP6SZykdR8HES89lCGFzEzyT5r8hpDjIAg0aBU5Enxhtm6EgyKWO2HkgQYIQgHmNvLtHe902VUv7M3c4q_4EJMNN5MZdrw2CT7K9dkUGirU0NwkN2cgfZ4skmWDysO4Xk6fui_d6T4LJhCzMErMzcTxuNv7YTe6_tl8I3Nzk0X4z0tWO-e018laLRZpWnl3gyyoYpO8N3HxT9PhoG9_5NMZoiAdFNRv0bYaj8uqvs0A6JMoaK7G9FlgpNGOOf5SVtTYN1xqUxSt2Njw6-PzssDHfaHo_ei1nJbHoenMv4Yt0m1fPJ53nLqGggMoRbgTS5_niRSulEpqHodM4mzErewRuVIJl8wTGoRIWBCDCEGyMDLAABG7AvXhNlkqykLtEBorrSGKopgxzZjiMcPxQQau9CLFNIQN4vz0XgY1YNzUuRhmFRrZz0xvZ5PebpCTif2oQmv8atk0zphYGSS2fVGO-1mdYRkqp1xCrtxICBYETEomIUbf-4Arbo83yKl15R_fytKLm1sM193_mR-RlYdWO7u5vLveI6u-KRJsj3bvkyX0qDpA5fIqD-vg_AYpY-oy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Band+Alignment+Engineering+in+2D+Ferroelectric+Van+der+Waals+Heterostructures+for+All%E2%80%90In%E2%80%90One+Optoelectronic+Architecture&rft.jtitle=Advanced+electronic+materials&rft.au=Lu%2C+Yanan&rft.au=Xie%2C+Dabao&rft.au=Zhang%2C+Congmin&rft.au=Cao%2C+Dan&rft.date=2025-02-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400269&rft.externalDBID=10.1002%252Faelm.202400269&rft.externalDocID=AELM826 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |