Band Alignment Engineering in 2D Ferroelectric Van der Waals Heterostructures for All‐In‐One Optoelectronic Architecture

2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctiona...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 11; no. 2
Main Authors Lu, Yanan, Xie, Dabao, Zhang, Congmin, Cao, Dan, Chen, Xiaoshuang, Shu, Haibo
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In2Se3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 1012%. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system. An attractive strategy is proposed to regulate the band‐alignment type and band offset of 2D van der Waals heterostructures by the integration of atomically thin ferroelectrics and semiconductors. The 2D ferroelectric van der Waals heterostructures exhibit giant tunneling electroresistance ratio and broadband polarized photoresponse, which make them potential candidates to construct all‐in‐one optoelectronic architecture.
AbstractList 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In2Se3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 1012%. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system. An attractive strategy is proposed to regulate the band‐alignment type and band offset of 2D van der Waals heterostructures by the integration of atomically thin ferroelectrics and semiconductors. The 2D ferroelectric van der Waals heterostructures exhibit giant tunneling electroresistance ratio and broadband polarized photoresponse, which make them potential candidates to construct all‐in‐one optoelectronic architecture.
2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In 2 Se 3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 10 12 %. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system.
Abstract 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In2Se3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 1012%. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system.
Author Zhang, Congmin
Xie, Dabao
Chen, Xiaoshuang
Cao, Dan
Lu, Yanan
Shu, Haibo
Author_xml – sequence: 1
  givenname: Yanan
  surname: Lu
  fullname: Lu, Yanan
  organization: China Jiliang University
– sequence: 2
  givenname: Dabao
  surname: Xie
  fullname: Xie, Dabao
  organization: China Jiliang University
– sequence: 3
  givenname: Congmin
  surname: Zhang
  fullname: Zhang, Congmin
  organization: China Jiliang University
– sequence: 4
  givenname: Dan
  surname: Cao
  fullname: Cao, Dan
  organization: China Jiliang University
– sequence: 5
  givenname: Xiaoshuang
  surname: Chen
  fullname: Chen, Xiaoshuang
  organization: Chinese Academy of Science
– sequence: 6
  givenname: Haibo
  orcidid: 0000-0003-1728-2190
  surname: Shu
  fullname: Shu, Haibo
  email: shuhaibo@cjlu.edu.cn
  organization: China Jiliang University
BookMark eNqFkctOGzEUhq0KpFJg27VfIKlv48wsAw0QKVU2XLqzjj1ngtHERh6jKhILHoFn5ElqCCBUCXVjH1vn-3Ts_xvZCTEgId85G3PGxA_Afj0WTKhy0M0Xsid404y4Zr93PtRfyeEw3DDG-ERLVck9cn8EoaXT3q_CGkOms7DyATH5sKI-UPGTnmBKEXt0OXlHLyHQFhO9AugHeoYZUxxyunP5LuFAu5iKrH96eJyHsiwD0uVtfsVjKIJpctc-40v_AdntigYPX_d9cnEyOz8-Gy2Wp_Pj6WLkZN3oUW2FbhsLzFq0na4rZSe81qzSQkKL2GirOHQOoFGydlA5q6qJa0tZM2Bc7pP51ttGuDG3ya8hbUwEb14uYloZSNm7Ho2WVWtdi2wCoKRU1irr6vJXwnEpuC4utXW58vAhYWecz5B9DDmB7w1n5jkQ8xyIeQ-kYON_sLcxPgXkFvjje9z8p9tMZ4tftdDyLwmro08
CitedBy_id crossref_primary_10_1021_acsanm_4c04478
crossref_primary_10_1002_admt_202402121
crossref_primary_10_1002_adfm_202422304
Cites_doi 10.1126/sciadv.aba6173
10.1103/PhysRevB.101.014105
10.1021/acsami.0c08461
10.1038/s41928-022-00747-5
10.1103/PhysRevB.59.1758
10.1103/PhysRevLett.68.2512
10.1103/PhysRevB.31.6207
10.1038/nnano.2015.112
10.1093/nsr/nwab098
10.1002/aelm.202101022
10.1016/S0081-1947(08)60092-2
10.1038/ncomms12357
10.1021/jacs.9b11614
10.1007/s11467-022-1244-4
10.1002/inf2.12407
10.1039/D0TA01247E
10.1016/j.matt.2022.12.009
10.1038/s41524-021-00531-7
10.1038/s41467-021-24296-1
10.1063/1.2187006
10.1002/adfm.201504546
10.1103/PhysRevB.50.17953
10.1038/nphoton.2015.282
10.1126/sciadv.aav9743
10.1038/s41563-023-01676-0
10.1002/advs.202100075
10.1021/acs.nanolett.7b02198
10.1002/inf2.12412
10.1021/acsnano.8b06629
10.1038/s41467-020-16125-8
10.1103/PhysRevB.107.115427
10.1038/s41699-020-00189-7
10.1016/j.jmat.2022.06.003
10.1038/s43586-022-00139-1
10.1038/nnano.2017.208
10.1063/1.4952951
10.1002/smtd.202100932
10.1002/adfm.201900411
10.1103/PhysRevB.54.11169
10.1088/0953-8984/14/11/302
10.1002/adfm.202305589
10.1021/acsami.2c09674
10.1002/adma.201902434
10.1126/science.aad8609
10.1088/0957-4484/26/45/455202
10.1016/j.apmt.2019.07.004
10.1063/1.3382344
10.1002/sstr.202000136
10.1088/1367-2630/11/12/125012
10.1038/ncomms12725
10.1002/inf2.12317
10.1002/adma.202306772
10.1002/advs.202300120
10.1126/science.1254642
10.1038/natrevmats.2017.33
10.1002/adfm.202211548
10.1103/RevModPhys.64.1045
10.1103/PhysRevB.63.245407
10.1038/s41928-020-0441-9
10.1002/smll.202303675
10.1038/s42254-019-0043-5
10.1039/D0NR06872A
10.1038/s41467-018-05640-4
10.1002/adfm.202305822
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/aelm.202400269
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_635dbcde07aa4334bb4bc83452c13216
10_1002_aelm_202400269
AELM826
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang
  funderid: 2023YW75
– fundername: Scientific Research Fund of Zhejiang Provincial Education Department
  funderid: Y202249614
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LZ22F040003; LY22A040002
– fundername: National Natural Science Foundation of China
  funderid: 62174151
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3896-8b26d9ba0bbebf6854b718605623adee96b41afcaa9438ca5cb457cd8ca80a013
IEDL.DBID 24P
ISSN 2199-160X
IngestDate Wed Aug 27 00:54:51 EDT 2025
Sun Jul 06 05:06:32 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3896-8b26d9ba0bbebf6854b718605623adee96b41afcaa9438ca5cb457cd8ca80a013
ORCID 0000-0003-1728-2190
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400269
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_635dbcde07aa4334bb4bc83452c13216
crossref_citationtrail_10_1002_aelm_202400269
crossref_primary_10_1002_aelm_202400269
wiley_primary_10_1002_aelm_202400269_AELM826
PublicationCentury 2000
PublicationDate February 2025
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2002; 14
2017; 2
2023; 33
2023; 34
2023; 5
2023; 6
2016; 108
2019; 16
2020; B 101
2020; 12
2020; 11
2023; 107
2024; 36
2009; 11
2020; 6
2018; 9
2020; 3
2023; 22
1991; 44
1999; 59
2016; 353
2019; 29
2006; 124
2023; 10
2021; 8
2021; 7
2021; 5
2021; 2
2019; 5
2023; 18
2019; 1
2023; 19
2015; 10
2016; 10
2020; 32
1996; 54
2001; 63
2019; 142
2020; C8
2015; 26
2016; 7
2021; 12
2022; 4
2022; 5
2017; 17
2022; 6
2022; 8
2022; 9
2017; 12
2010; 132
2022; 14
1992; 68
2022; 2
2018; 12
1992; 64
1994; 50
1985; 31
2016; 26
2014; 345
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Wang J. (e_1_2_8_37_1) 2020; 8
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 345
  start-page: 668
  year: 2014
  publication-title: Science
– volume: 44
  start-page: 229
  year: 1991
  publication-title: Solid State Phys.
– volume: 12
  start-page: 4030
  year: 2021
  publication-title: Nat. Comm.
– volume: 16
  start-page: 435
  year: 2019
  publication-title: Appl. Mater. Today.
– volume: 8
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 3
  start-page: 466
  year: 2020
  publication-title: Nat. Electron.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 1
  start-page: 306
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 124
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 63
  year: 2001
  publication-title: Phys. Rev. B
– volume: 34
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 1169
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 707
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 248
  year: 2022
  publication-title: Nat. Electron.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2021
  publication-title: Small Stru.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 2512
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 2745
  year: 2002
  publication-title: J. Phys.: Condens. Matter.
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 8
  start-page: 1158
  year: 2022
  publication-title: J. Materiomics
– volume: C8
  start-page: 7350
  year: 2020
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 58
  year: 2022
  publication-title: Nat. Rev. Methods Primers
– volume: 17
  start-page: 5508
  year: 2017
  publication-title: Nano Lett.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 10
  start-page: 216
  year: 2016
  publication-title: Nat. Photon.
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 5
  start-page: 16
  year: 2021
  publication-title: npj 2D Mater. Appl.
– volume: 64
  start-page: 1045
  year: 1992
  publication-title: Rev. Mod. Phys.
– volume: 26
  year: 2015
  publication-title: Nanotechnology
– volume: 11
  year: 2009
  publication-title: New. J. Phys.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: 3344
  year: 2018
  publication-title: Nat. Comm.
– volume: 31
  start-page: 6207
  year: 1985
  publication-title: Phys. Rev. B
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 22
  start-page: 1499
  year: 2023
  publication-title: Nat. Mater.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 7
  start-page: 61
  year: 2021
  publication-title: npj Comput.Mater.
– volume: 142
  start-page: 1492
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 18
  year: 2023
  publication-title: Fron. Phys.
– volume: 11
  start-page: 2308
  year: 2020
  publication-title: Nat. Comm.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 353
  start-page: 274
  year: 2016
  publication-title: Science
– volume: B 101
  year: 2020
  publication-title: Phys. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Comm.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 1
  year: 2023
  publication-title: Matter
– volume: 5
  year: 2023
  publication-title: InfoMat
– volume: 12
  start-page: 1148
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_21_1
  doi: 10.1126/sciadv.aba6173
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevB.101.014105
– ident: e_1_2_8_17_1
  doi: 10.1021/acsami.0c08461
– ident: e_1_2_8_10_1
  doi: 10.1038/s41928-022-00747-5
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevLett.68.2512
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevB.31.6207
– ident: e_1_2_8_47_1
  doi: 10.1038/nnano.2015.112
– ident: e_1_2_8_52_1
  doi: 10.1093/nsr/nwab098
– ident: e_1_2_8_31_1
  doi: 10.1002/aelm.202101022
– ident: e_1_2_8_7_1
  doi: 10.1016/S0081-1947(08)60092-2
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms12357
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.9b11614
– ident: e_1_2_8_35_1
  doi: 10.1007/s11467-022-1244-4
– ident: e_1_2_8_13_1
  doi: 10.1002/inf2.12407
– volume: 8
  start-page: 7350
  year: 2020
  ident: e_1_2_8_37_1
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA01247E
– ident: e_1_2_8_4_1
  doi: 10.1016/j.matt.2022.12.009
– ident: e_1_2_8_42_1
  doi: 10.1038/s41524-021-00531-7
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-021-24296-1
– ident: e_1_2_8_59_1
  doi: 10.1063/1.2187006
– ident: e_1_2_8_48_1
  doi: 10.1002/adfm.201504546
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_27_1
  doi: 10.1038/nphoton.2015.282
– ident: e_1_2_8_41_1
  doi: 10.1126/sciadv.aav9743
– ident: e_1_2_8_34_1
  doi: 10.1038/s41563-023-01676-0
– ident: e_1_2_8_51_1
  doi: 10.1002/advs.202100075
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.nanolett.7b02198
– ident: e_1_2_8_32_1
  doi: 10.1002/inf2.12412
– ident: e_1_2_8_50_1
  doi: 10.1021/acsnano.8b06629
– ident: e_1_2_8_53_1
  doi: 10.1038/s41467-020-16125-8
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevB.107.115427
– ident: e_1_2_8_45_1
  doi: 10.1038/s41699-020-00189-7
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jmat.2022.06.003
– ident: e_1_2_8_11_1
  doi: 10.1038/s43586-022-00139-1
– ident: e_1_2_8_18_1
  doi: 10.1038/nnano.2017.208
– ident: e_1_2_8_8_1
  doi: 10.1063/1.4952951
– ident: e_1_2_8_9_1
  doi: 10.1002/smtd.202100932
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.201900411
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_61_1
  doi: 10.1088/0953-8984/14/11/302
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.202305589
– ident: e_1_2_8_19_1
  doi: 10.1021/acsami.2c09674
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201902434
– ident: e_1_2_8_26_1
  doi: 10.1126/science.aad8609
– ident: e_1_2_8_64_1
  doi: 10.1088/0957-4484/26/45/455202
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apmt.2019.07.004
– ident: e_1_2_8_58_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_16_1
  doi: 10.1002/sstr.202000136
– ident: e_1_2_8_6_1
  doi: 10.1088/1367-2630/11/12/125012
– ident: e_1_2_8_22_1
  doi: 10.1038/ncomms12725
– ident: e_1_2_8_23_1
  doi: 10.1002/inf2.12317
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.202306772
– ident: e_1_2_8_5_1
  doi: 10.1002/advs.202300120
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1254642
– ident: e_1_2_8_28_1
  doi: 10.1038/natrevmats.2017.33
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.202211548
– ident: e_1_2_8_57_1
  doi: 10.1103/RevModPhys.64.1045
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevB.63.245407
– ident: e_1_2_8_38_1
  doi: 10.1038/s41928-020-0441-9
– ident: e_1_2_8_14_1
  doi: 10.1002/smll.202303675
– ident: e_1_2_8_29_1
  doi: 10.1038/s42254-019-0043-5
– ident: e_1_2_8_44_1
  doi: 10.1039/D0NR06872A
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467-018-05640-4
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202305822
SSID ssj0001763453
Score 2.3392363
Snippet 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible...
Abstract 2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms 2D ferroelectrics
all‐in‐one optoelectronic synapse
band alignment
density‐functional theory
van der Waals heterostructures
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgckFqImsZ2kYwqtCqJ0odAtsi82qhSlVVU2Bn4Cv5FfwtlJSxgQC0uGyIqju0vunX1-j5ALxpgBo2NPQSjt0o30EMRGnogDMABMSLCnkUcP0XDC76Zi2pD6sj1hFT1wZbgOJsRcQa79WErOGFeKK0gYFyFgIRU4sm3MeY1iyq2u4GfDBVuzNPphR-rCHjy3LZOh7W5uZCFH1v8TnLrsMtglOzUspGn1OntkS5f75K2HZT5Ni9mL27KnDe5AOitpeEMHermcV0o2M6BPsqS5XtJniTFFh7bRZV7xw75iUU0RnuLDis_3j9sSL-NS0_FiNf8WwqFpY1fhgEwG_cfroVerJXiAoCPyEhVGeVdJXymtTJQIrjDvRA7gyFzrbqR4IA1I2eUsASlAcRFbagCZ-BKR4CFplfNSHxGaaGMgjuOEc8O5jhKOfwLFfBXEmhsQbeKtrZdBTSVuFS2KrCJBDjNr7Wxj7Ta53IxfVCQav47sWWdsRlnya3cDQyKrQyL7KyTa5Mq58o-5srR_P8LAPP6POU_IdmiVgV0_9ylpoXP1GcKVlTp3kfkF8n3p9w
  priority: 102
  providerName: Directory of Open Access Journals
Title Band Alignment Engineering in 2D Ferroelectric Van der Waals Heterostructures for All‐In‐One Optoelectronic Architecture
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400269
https://doaj.org/article/635dbcde07aa4334bb4bc83452c13216
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYKvXBBIIpYKMiHSr00InEcJzkuhdUWldIDP3uLZiY2WmmVoIXeOPQR-ow8ScfOsj8HhLjkEI1sacbj-cb2fCPElzRNHTmbR0gK_NENRAxiTZTlCTmiNAPy1cgXv8zwWp-PstFSFX_HDzE_cPOeEfZr7-CAD8cL0lCwE19J7t9AKlOuiY--vtaz5yv9e3HKwu6jAxUle2YZJSYevTA3xup4dYiVyBQI_FcBa4g4gy2xOYOKst_Zdlt8sM2OeDrh1F_2J-O7cI0vl_gE5biR6lQO7HTadt1txiRvoJG1ncpb4HUmh_7xS9txxv7hRFsyZOXBJs9___1o-HPZWHl5_9gumuPI_tJNwydxPTi7-j6MZh0UImIgYqIClalLhBjRojNFppFjkQmgB2prS4M6AUcApU4LgoxQZ7mnC4AiBkaHu2K9aRu7J2RhnaM8zwutndbWFJp3B0xjTHKrHWU9Eb1or6IZvbjvcjGpOmJkVXltV3Nt98TXufx9R6zxquSJN8ZcyhNihx_t9K6a-VfFuKlGqm2cA-g01YgaqWDbK-J8OzE98S2Y8o25qv7ZzwterPvvEz8QG8r3BQ6vuT-LdTajPWSw8ohHYT0ehVT_Pwag5sM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYKPcClalUQS4H6UKkXIhJnYifHpbBa2l3gwN8tsif2aqVVglZw48Aj8Iw8CWNnf9hDVfWSQzSyJY_H8814_A1jP9I0deisigwK7VM3OiIQK6NMJegQ00yjf408PJf9a_h9l82rCf1bmJYfYpFw85YRzmtv4D4hfbRkDdV24p-S-yJIIYs19hGkUN42BVwu0yxkPxC4KMk0iyiR8d2cujEWR6tDrLimwOC_iliDy-l9Zp9mWJF3W-V-YR9s_ZU9HVPsz7uT8Sjc4_N3hIJ8XHNxwnt2Om3a9jZj5De65pWd8ltNG433ffVL05LGPlKkzQmz0mCT1-eXs5o-F7XlF_cPzbI7Du--u2rYYte906tf_WjWQiFCQiIyyo2QVWF0bIw1TuYZGHJGMqAeXVlbSAOJdqh1AWmOOkMDmfJ8ATqPNcHDbbZeN7XdYTy3zqFSKgdwAFbmQMeDSWOTKAsOsw6L5qtX4oxf3Le5mJQtM7Io_WqXi9XusJ8L-fuWWeOvksdeGQspz4gdfjTTUTkzsJKAU2WwsrHSGtIUjAGDOeleIAXcieyww6DKf8xVdk8HQ9qtu_8n_p1t9K-Gg3Jwdv7nG9sUvklwKO3eY-ukUrtPyOXBHIS9-QYN0Ok6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeDDxAvoqi4PnMQvFjsI03bY9d1Wd8eXF28lGSaLAtLuyx68-BH8DP6SZykdR8HES89lCGFzEzyT5r8hpDjIAg0aBU5Enxhtm6EgyKWO2HkgQYIQgHmNvLtHe902VUv7M3c4q_4EJMNN5MZdrw2CT7K9dkUGirU0NwkN2cgfZ4skmWDysO4Xk6fui_d6T4LJhCzMErMzcTxuNv7YTe6_tl8I3Nzk0X4z0tWO-e018laLRZpWnl3gyyoYpO8N3HxT9PhoG9_5NMZoiAdFNRv0bYaj8uqvs0A6JMoaK7G9FlgpNGOOf5SVtTYN1xqUxSt2Njw6-PzssDHfaHo_ei1nJbHoenMv4Yt0m1fPJ53nLqGggMoRbgTS5_niRSulEpqHodM4mzErewRuVIJl8wTGoRIWBCDCEGyMDLAABG7AvXhNlkqykLtEBorrSGKopgxzZjiMcPxQQau9CLFNIQN4vz0XgY1YNzUuRhmFRrZz0xvZ5PebpCTif2oQmv8atk0zphYGSS2fVGO-1mdYRkqp1xCrtxICBYETEomIUbf-4Arbo83yKl15R_fytKLm1sM193_mR-RlYdWO7u5vLveI6u-KRJsj3bvkyX0qDpA5fIqD-vg_AYpY-oy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Band+Alignment+Engineering+in+2D+Ferroelectric+Van+der+Waals+Heterostructures+for+All%E2%80%90In%E2%80%90One+Optoelectronic+Architecture&rft.jtitle=Advanced+electronic+materials&rft.au=Lu%2C+Yanan&rft.au=Xie%2C+Dabao&rft.au=Zhang%2C+Congmin&rft.au=Cao%2C+Dan&rft.date=2025-02-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400269&rft.externalDBID=10.1002%252Faelm.202400269&rft.externalDocID=AELM826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon