Soil extracellular enzyme activity and stoichiometry in China's forests

Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial a...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 34; no. 7; pp. 1461 - 1471
Main Authors Zhou, Luhong, Liu, Shangshi, Shen, Haihua, Zhao, Mengying, Xu, Longchao, Xing, Aijun, Fang, Jingyun, Sayer, Emma
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown. Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry. We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively. Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
AbstractList Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown. Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry. We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively. Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models. A free Plain Language Summary can be found within the Supporting Information of this article.
Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown. Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry. We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively. Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown. Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry. We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively. Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models. A free Plain Language Summary can be found within the Supporting Information of this article.
Author Sayer, Emma
Shen, Haihua
Fang, Jingyun
Zhou, Luhong
Zhao, Mengying
Xing, Aijun
Liu, Shangshi
Xu, Longchao
Author_xml – sequence: 1
  givenname: Luhong
  orcidid: 0000-0003-0697-2532
  surname: Zhou
  fullname: Zhou, Luhong
  organization: Peking University
– sequence: 2
  givenname: Shangshi
  surname: Liu
  fullname: Liu, Shangshi
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Haihua
  surname: Shen
  fullname: Shen, Haihua
  email: shen.haihua@ibcas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Mengying
  orcidid: 0000-0002-8622-5352
  surname: Zhao
  fullname: Zhao, Mengying
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Longchao
  surname: Xu
  fullname: Xu, Longchao
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Aijun
  surname: Xing
  fullname: Xing, Aijun
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Jingyun
  surname: Fang
  fullname: Fang, Jingyun
  email: jyfang@urban.pku.edu.cn
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Emma
  surname: Sayer
  fullname: Sayer, Emma
BookMark eNqFkM9LwzAYhoNMcE7PXgse9NItza92RynbFAYe1HPI0oRltMlMWrX-9aZOPOyyXD4I7_O9H88lGFlnFQA3GZxm8c0yzGiKCKbTDFNKz8D4_2cExhCxeVoQhi_AZQg7COGcIjQGqxdn6kR9tV5IVdddLXyi7HffqETI1nyYtk-ErZLQOiO3xjWq9X1ibFJujRV3IdHOq9CGK3CuRR3U9d-cgLfl4rV8TNfPq6fyYZ1KXMxpiitCC6JzCWnBEMaIZFrrqsoxUwyTDa0EgRUuCJaVkEwypYuN0JBESEAF8QTcH_buvXvvYjNvTBguF1a5LnBEo4siZyiP0duj6M513sbrOCIIxvIoIaZmh5T0LgSvNN970wjf8wzyQSwfNPJBI_8VGwl6REjTitY4GyWa-jT3aWrVn6rhy0V54H4AdyGMPA
CitedBy_id crossref_primary_10_1016_j_foreco_2023_121360
crossref_primary_10_3390_su16020480
crossref_primary_10_1016_j_still_2024_106241
crossref_primary_10_1007_s11104_024_06978_z
crossref_primary_10_2139_ssrn_3967013
crossref_primary_10_1111_ejss_70000
crossref_primary_10_1007_s11104_024_07171_y
crossref_primary_10_1016_j_apsoil_2021_104269
crossref_primary_10_1021_acs_est_3c08104
crossref_primary_10_1007_s11104_023_05878_y
crossref_primary_10_1088_1748_9326_ad5b75
crossref_primary_10_1016_j_soilbio_2022_108929
crossref_primary_10_3390_f13111943
crossref_primary_10_3390_f13111944
crossref_primary_10_1016_j_soilbio_2021_108429
crossref_primary_10_3390_agronomy15010143
crossref_primary_10_1016_j_compag_2024_108831
crossref_primary_10_1016_j_apsoil_2021_104290
crossref_primary_10_1016_j_apsoil_2022_104691
crossref_primary_10_1016_j_scitotenv_2024_171269
crossref_primary_10_2139_ssrn_4016956
crossref_primary_10_1016_j_still_2022_105494
crossref_primary_10_3390_f15030568
crossref_primary_10_3389_fpls_2022_1090954
crossref_primary_10_3390_agronomy13051368
crossref_primary_10_1007_s11104_023_05971_2
crossref_primary_10_1016_j_scitotenv_2024_177082
crossref_primary_10_1093_jpe_rtae065
crossref_primary_10_1007_s00248_024_02412_0
crossref_primary_10_1016_j_scitotenv_2024_170688
crossref_primary_10_1016_j_agee_2024_109322
crossref_primary_10_3390_agriculture13050938
crossref_primary_10_1016_j_jenvman_2024_120574
crossref_primary_10_1111_rec_13909
crossref_primary_10_1016_j_scitotenv_2021_151583
crossref_primary_10_1038_s43247_022_00523_5
crossref_primary_10_1016_j_foreco_2020_118880
crossref_primary_10_1016_j_pedsph_2023_04_003
crossref_primary_10_1016_j_soilbio_2023_109210
crossref_primary_10_1111_1365_2435_14361
crossref_primary_10_1016_j_geoderma_2023_116329
crossref_primary_10_1016_j_ejsobi_2023_103539
crossref_primary_10_1016_j_scitotenv_2024_172731
crossref_primary_10_1016_j_soilbio_2020_107928
crossref_primary_10_3389_fpls_2023_1124139
crossref_primary_10_1016_j_apsoil_2022_104594
crossref_primary_10_3390_f14071447
crossref_primary_10_1016_j_scitotenv_2024_176891
crossref_primary_10_1016_j_foreco_2021_119358
crossref_primary_10_1007_s10533_023_01022_1
crossref_primary_10_1016_j_catena_2022_106243
crossref_primary_10_1016_j_ecolind_2022_109729
crossref_primary_10_1016_j_soilbio_2022_108853
crossref_primary_10_3389_fmicb_2023_974316
crossref_primary_10_3389_fpls_2022_975169
crossref_primary_10_3390_f13122075
crossref_primary_10_1007_s42729_022_00840_w
crossref_primary_10_3390_f15061040
crossref_primary_10_1016_j_catena_2022_106901
crossref_primary_10_1016_j_apsoil_2023_104862
crossref_primary_10_1016_j_jes_2025_03_005
crossref_primary_10_3390_f14081514
crossref_primary_10_1016_j_scitotenv_2023_168349
crossref_primary_10_18307_2022_0316
crossref_primary_10_3390_f13060845
crossref_primary_10_1016_j_apsoil_2022_104529
crossref_primary_10_1016_j_catena_2024_107961
crossref_primary_10_3390_f13122102
crossref_primary_10_1016_j_catena_2024_108535
crossref_primary_10_1007_s11104_024_06511_2
crossref_primary_10_1007_s11104_022_05521_2
crossref_primary_10_1016_j_catena_2024_108015
crossref_primary_10_2139_ssrn_3998977
crossref_primary_10_1111_gcb_16765
crossref_primary_10_1016_j_catena_2021_105849
crossref_primary_10_1016_j_soilbio_2021_108513
crossref_primary_10_1016_j_agee_2022_108006
crossref_primary_10_3389_fenvs_2023_1298027
crossref_primary_10_1016_j_scitotenv_2023_162504
crossref_primary_10_3390_f14010034
crossref_primary_10_3389_fpls_2022_1053009
crossref_primary_10_1016_j_apsoil_2025_105908
crossref_primary_10_1016_j_jenvman_2021_114215
crossref_primary_10_3390_f15040724
crossref_primary_10_3390_microorganisms12112314
crossref_primary_10_1016_j_chemosphere_2023_139045
crossref_primary_10_1016_j_geoderma_2024_116819
crossref_primary_10_1016_j_jclepro_2024_140731
crossref_primary_10_1002_saj2_20655
crossref_primary_10_1016_j_foreco_2025_122543
crossref_primary_10_1016_j_catena_2021_105613
crossref_primary_10_1016_j_apsoil_2024_105555
crossref_primary_10_3389_fevo_2023_1137172
crossref_primary_10_1016_j_soilbio_2023_108967
crossref_primary_10_1016_j_apsoil_2024_105319
crossref_primary_10_1002_ldr_4034
crossref_primary_10_1021_acs_est_2c09634
crossref_primary_10_3389_fmicb_2024_1403338
crossref_primary_10_1016_j_ejsobi_2024_103639
Cites_doi 10.1038/ngeo846
10.1890/08-0127.1
10.1007/s10533-018-0499-x
10.1890/11-0721.1
10.1007/s10533-014-0058-z
10.1016/j.soilbio.2016.10.020
10.1016/j.scitotenv.2017.07.060
10.1007/s11258-017-0775-1
10.1016/j.soilbio.2016.04.008
10.1016/S0038-0717(02)00074-3
10.1073/pnas.1700304115
10.1126/science.aav0550
10.1016/S0038-0717(01)00158-4
10.1023/A:1006316117817
10.1016/j.apsoil.2013.10.012
10.1016/j.soilbio.2014.02.015
10.1111/gcb.12536
10.1007/s10533-010-9482-x
10.1890/14-1327.1
10.1016/j.pedobi.2017.03.001
10.1016/j.soilbio.2018.02.022
10.1016/j.soilbio.2014.04.017
10.1111/j.1461-0248.2008.01245.x
10.1016/j.soilbio.2012.05.011
10.1016/j.soilbio.2017.11.014
10.1016/j.geoderma.2019.04.029
10.1002/2016JG003352
10.1007/978-3-319-24277-4
10.1016/j.geoderma.2018.10.017
10.1038/nclimate1951
10.1002/ecm.1279
10.1038/nmicrobiol.2017.105
10.5194/bg-10-1717-2013
10.1890/14-0777.1
10.1890/15-2110.1
10.1007/s00792-012-0465-9
10.1016/j.soilbio.2011.03.017
10.1038/ngeo2516
10.1002/jpln.200900267
10.1038/nature12670
10.1126/sciadv.aaq1689
10.1007/BF01007573
10.1038/nature08632
10.1007/s11273-017-9584-5
10.3389/fmicb.2014.00022
10.1007/s10533-013-9849-x
10.1111/j.2041-210X.2011.00153.x
10.1016/j.soilbio.2009.02.029
10.1111/geb.12190
10.1038/s41467-018-06232-y
10.1111/j.1365-2486.2011.02545.x
10.1016/j.soilbio.2012.11.009
10.1201/9781420005271
10.1111/geb.12029
10.1016/S0038-0717(03)00154-8
10.1007/s11104-010-0391-5
10.1007/s10533-011-9619-6
ContentType Journal Article
Copyright 2020 British Ecological Society
Functional Ecology © 2020 British Ecological Society
Copyright_xml – notice: 2020 British Ecological Society
– notice: Functional Ecology © 2020 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.13555
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1471
ExternalDocumentID 10_1111_1365_2435_13555
FEC13555
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31330012
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M641074
– fundername: National Key Research and Development Program
  funderid: 2017YFC0503901
– fundername: Key Research Program of Frontier Sciences, CAS
  funderid: QYZDY‐SSW‐SMC011
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c3895-3d4584f7c0586233241fffdd736e634b5da40d3843cdac6c6ef8baf0484fa0e03
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:28:03 EDT 2025
Fri Jul 25 06:38:08 EDT 2025
Thu Apr 24 22:50:11 EDT 2025
Tue Jul 01 01:15:50 EDT 2025
Wed Jan 22 16:34:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3895-3d4584f7c0586233241fffdd736e634b5da40d3843cdac6c6ef8baf0484fa0e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8622-5352
0000-0003-0697-2532
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13555
PQID 2420332009
PQPubID 1066355
PageCount 11
ParticipantIDs proquest_miscellaneous_2511187627
proquest_journals_2420332009
crossref_primary_10_1111_1365_2435_13555
crossref_citationtrail_10_1111_1365_2435_13555
wiley_primary_10_1111_1365_2435_13555_FEC13555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 121
2009; 41
2013; 3
2017; 2
2000; 49
2013; 22
1999; 46
2012; 18
2012; 16
2018; 88
2014; 23
2019; 365
2012; 53
2014; 20
2018; 9
2010; 20
2014; 5
2013; 58
2018; 4
2013; 10
2015; 85
2016; 86
2010; 3
2017; 61
2017; 219
2018; 141
2014; 117
2011; 338
2011
2017; 607–608
2002; 34
2015; 122
2015; 96
2013; 502
2003; 35
2016; 98
2007
2016; 121
2008; 11
2019; 348
2002
2011; 174
2015; 8
2018; 26
2012; 109
2012; 93
2011; 102
2012; 3
2018; 117
2020
2018; 115
2009; 462
2019
2018
2011; 43
2017
2016
2019; 337
2014; 74
2017; 104
2014; 75
e_1_2_8_28_1
Oksanen J. (e_1_2_8_33_1) 2019
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_5_1
e_1_2_8_7_1
Wei T. (e_1_2_8_55_1) 2017
e_1_2_8_9_1
R Development Core Team. (e_1_2_8_36_1) 2019
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
Harrell F. E. (e_1_2_8_20_1) 2019
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Sterner R. W. (e_1_2_8_46_1) 2002
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Allison S. D. (e_1_2_8_3_1) 2011
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Zhou L. (e_1_2_8_65_1) 2020
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil
  publication-title: Soil Biology & Biochemistry
– volume: 22
  start-page: 737
  year: 2013
  end-page: 749
  article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 16
  start-page: 669
  year: 2012
  end-page: 679
  article-title: Biogeography of bacterial communities in hot springs: A focus on the actinobacteria
  publication-title: Extremophiles
– volume: 3
  start-page: 909
  year: 2013
  end-page: 912
  article-title: Global soil carbon projections are improved by modelling microbial processes
  publication-title: Nature Climate Change
– volume: 109
  start-page: 189
  year: 2012
  end-page: 202
  article-title: Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests
  publication-title: Biogeochemistry
– volume: 141
  start-page: 23
  year: 2018
  end-page: 39
  article-title: Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts
  publication-title: Biogeochemistry
– volume: 34
  start-page: 139
  year: 2002
  end-page: 162
  article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
  publication-title: Soil Biology & Biochemistry
– volume: 86
  start-page: 172
  year: 2016
  end-page: 189
  article-title: Stoichiometry of microbial carbon use efficiency in soils
  publication-title: Ecological Monographs
– volume: 102
  start-page: 31
  year: 2011
  end-page: 43
  article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse
  publication-title: Biogeochemistry
– year: 2018
– volume: 46
  start-page: 45
  year: 1999
  end-page: 65
  article-title: Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests
  publication-title: Biogeochemistry
– volume: 11
  start-page: 1252
  year: 2008
  end-page: 1264
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecology Letters
– volume: 348
  start-page: 107
  year: 2019
  end-page: 114
  article-title: Estimation of plot‐level soil carbon stocks in China's forests using intensive soil sampling
  publication-title: Geoderma
– volume: 98
  start-page: 74
  year: 2016
  end-page: 84
  article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China
  publication-title: Soil Biology & Biochemistry
– volume: 337
  start-page: 630
  year: 2019
  end-page: 640
  article-title: How microbes cope with short‐term N addition in a forest‐ecological stoichiometry
  publication-title: Geoderma
– volume: 502
  start-page: 672
  year: 2013
  end-page: 676
  article-title: Decoupling of soil nutrient cycles as a function of aridity in global drylands
  publication-title: Nature
– volume: 338
  start-page: 143
  year: 2011
  end-page: 158
  article-title: Deep soil organic matter – A key but poorly understood component of terrestrial C cycle
  publication-title: Plant and Soil
– volume: 61
  start-page: 51
  year: 2017
  end-page: 60
  article-title: Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest
  publication-title: Pedobiologia
– volume: 85
  start-page: 133
  year: 2015
  end-page: 155
  article-title: The application of ecological stoichiometry to plant‐microbial‐soil organic matter transformations
  publication-title: Ecological Monographs
– volume: 96
  start-page: 1139
  year: 2015
  end-page: 1149
  article-title: Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling
  publication-title: Ecology
– volume: 75
  start-page: 63
  year: 2014
  end-page: 70
  article-title: Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran
  publication-title: Applied Soil Ecology
– volume: 49
  start-page: 175
  year: 2000
  end-page: 190
  article-title: Regulation of soil phosphatase and chitinase activity by N and P availability
  publication-title: Biogeochemistry
– volume: 3
  start-page: 257
  year: 2012
  end-page: 259
  article-title: smatr 3 – An R package for estimation and inference about allometric lines
  publication-title: Methods in Ecology and Evolution
– volume: 365
  start-page: eaav0550
  year: 2019
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science
– volume: 10
  start-page: 1717
  year: 2013
  end-page: 1736
  article-title: Causes of variation in soil carbon simulations from CMIP5 earth system models and comparison with observations
  publication-title: Biogeosciences
– volume: 115
  start-page: 4015
  year: 2018
  end-page: 4020
  article-title: Climate change, human impacts, and carbon sequestration in China
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 174
  start-page: 381
  year: 2011
  end-page: 394
  article-title: Multivariate analysis of soils: Microbial biomass, metabolic activity, and bacterial‐community structure and their relationships with soil depth and type
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 117
  start-page: 87
  year: 2018
  end-page: 96
  article-title: Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest
  publication-title: Soil Biology & Biochemistry
– volume: 18
  start-page: 1173
  year: 2012
  end-page: 1184
  article-title: Temperature sensitivity of soil enzyme kinetics under N‐fertilization in two temperate forests
  publication-title: Global Change Biology
– volume: 43
  start-page: 1387
  year: 2011
  end-page: 1397
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biology & Biochemistry
– year: 2019
– volume: 122
  start-page: 175
  year: 2015
  end-page: 190
  article-title: Scaling microbial biomass, metabolism and resource supply
  publication-title: Biogeochemistry
– volume: 121
  start-page: 2410
  year: 2016
  end-page: 2421
  article-title: Dynamic patterns of nitrogen: Phosphorus ratios in forest soils of China under changing environment
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 53
  start-page: 133
  year: 2012
  end-page: 141
  article-title: A theoretical model of C‐ and N‐acquiring exoenzyme activities, which balances microbial demands during decomposition
  publication-title: Soil Biology & Biochemistry
– volume: 26
  start-page: 425
  year: 2018
  end-page: 439
  article-title: Microbial ecoenzyme stoichiometry, nutrient limitation, and organic matter decomposition in wetlands of the conterminous United States
  publication-title: Wetlands Ecology and Management
– volume: 35
  start-page: 955
  year: 2003
  end-page: 963
  article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techniques
  publication-title: Soil Biology & Biochemistry
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 75
  start-page: 237
  year: 2014
  end-page: 247
  article-title: Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory
  publication-title: Soil Biology & Biochemistry
– volume: 121
  start-page: 212
  year: 2018
  end-page: 220
  article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect
  publication-title: Soil Biology & Biochemistry
– year: 2007
– volume: 5
  year: 2014
  article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources
  publication-title: Frontiers in Microbiology
– volume: 41
  start-page: 1180
  year: 2009
  end-page: 1186
  article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB‐linked substrates and L‐DOPA
  publication-title: Soil Biology & Biochemistry
– volume: 607–608
  start-page: 806
  year: 2017
  end-page: 815
  article-title: Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests
  publication-title: Science of the Total Environment
– volume: 93
  start-page: 770
  year: 2012
  end-page: 782
  article-title: Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter
  publication-title: Ecology
– start-page: 229
  year: 2011
  end-page: 243
– volume: 2
  start-page: 17105
  year: 2017
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
– volume: 20
  start-page: 2687
  year: 2014
  end-page: 2696
  article-title: Increased topsoil carbon stock across China's forests
  publication-title: Global Change Biology
– year: 2016
– volume: 58
  start-page: 216
  year: 2013
  end-page: 234
  article-title: Soil enzymes in a changing environment: Current knowledge and future directions
  publication-title: Soil Biology & Biochemistry
– volume: 117
  start-page: 101
  year: 2014
  end-page: 113
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
– volume: 219
  start-page: 31
  year: 2017
  end-page: 44
  article-title: Factors influencing soil enzyme activity in China’s forest ecosystems
  publication-title: Plant Ecology
– volume: 8
  start-page: 780
  year: 2015
  end-page: 783
  article-title: Soil carbon storage controlled by interactions between geochemistry and climate
  publication-title: Nature Geoscience
– volume: 74
  start-page: 11
  year: 2014
  end-page: 20
  article-title: Induced N‐limitation of bacterial growth in soil: Effect of carbon loading and N status in soil
  publication-title: Soil Biology & Biochemistry
– volume: 20
  start-page: 5
  year: 2010
  end-page: 15
  article-title: Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen‐phosphorus interactions
  publication-title: Ecological Applications
– volume: 4
  start-page: aaq1689
  year: 2018
  article-title: A keystone microbial enzyme for nitrogen control of soil carbon storage
  publication-title: Science Advances
– volume: 88
  start-page: 4
  year: 2018
  end-page: 21
  article-title: Nutrient limitation of soil microbial processes in tropical forests
  publication-title: Ecological Monographs
– year: 2002
– volume: 23
  start-page: 979
  year: 2014
  end-page: 987
  article-title: Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 3
  start-page: 336
  year: 2010
  end-page: 340
  article-title: Soil‐carbon response to warming dependent on microbial physiology
  publication-title: Nature Geoscience
– year: 2017
– volume: 9
  start-page: 3951
  year: 2018
  article-title: Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency
  publication-title: Nature Communications
– volume: 104
  start-page: 152
  year: 2017
  end-page: 163
  article-title: Soil enzyme activity and stoichiometry in forest ecosystems along the North‐South Transect in eastern China (NSTEC)
  publication-title: Soil Biology and Biochemistry
– year: 2020
  article-title: Data from: Soil extracellular enzyme activity and stoichiometry in China’s forests
  publication-title: Dryad Digital Repository
– ident: e_1_2_8_2_1
  doi: 10.1038/ngeo846
– ident: e_1_2_8_45_1
– volume-title: vegan: Community ecology package. R package version 2.5‐4
  year: 2019
  ident: e_1_2_8_33_1
– ident: e_1_2_8_52_1
  doi: 10.1890/08-0127.1
– ident: e_1_2_8_66_1
  doi: 10.1007/s10533-018-0499-x
– ident: e_1_2_8_31_1
  doi: 10.1890/11-0721.1
– ident: e_1_2_8_41_1
  doi: 10.1007/s10533-014-0058-z
– ident: e_1_2_8_59_1
  doi: 10.1016/j.soilbio.2016.10.020
– ident: e_1_2_8_22_1
  doi: 10.1016/j.scitotenv.2017.07.060
– ident: e_1_2_8_64_1
  doi: 10.1007/s11258-017-0775-1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.soilbio.2016.04.008
– ident: e_1_2_8_39_1
  doi: 10.1016/S0038-0717(02)00074-3
– ident: e_1_2_8_17_1
  doi: 10.1073/pnas.1700304115
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aav0550
– ident: e_1_2_8_24_1
  doi: 10.1016/S0038-0717(01)00158-4
– ident: e_1_2_8_34_1
  doi: 10.1023/A:1006316117817
– ident: e_1_2_8_37_1
  doi: 10.1016/j.apsoil.2013.10.012
– year: 2020
  ident: e_1_2_8_65_1
  article-title: Data from: Soil extracellular enzyme activity and stoichiometry in China’s forests
  publication-title: Dryad Digital Repository
– volume-title: Ecological stoichiometry: The biology of elements from molecules to the biosphere
  year: 2002
  ident: e_1_2_8_46_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.soilbio.2014.02.015
– ident: e_1_2_8_61_1
  doi: 10.1111/gcb.12536
– start-page: 229
  volume-title: Soil enzymology
  year: 2011
  ident: e_1_2_8_3_1
– ident: e_1_2_8_40_1
  doi: 10.1007/s10533-010-9482-x
– ident: e_1_2_8_5_1
  doi: 10.1890/14-1327.1
– ident: e_1_2_8_60_1
  doi: 10.1016/j.pedobi.2017.03.001
– ident: e_1_2_8_49_1
  doi: 10.1016/j.soilbio.2018.02.022
– volume-title: R package ‘corrplot’: Visualization of a correlation matrix (Version 0.84)
  year: 2017
  ident: e_1_2_8_55_1
– ident: e_1_2_8_47_1
  doi: 10.1016/j.soilbio.2014.04.017
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1461-0248.2008.01245.x
– ident: e_1_2_8_30_1
  doi: 10.1016/j.soilbio.2012.05.011
– ident: e_1_2_8_28_1
  doi: 10.1016/j.soilbio.2017.11.014
– ident: e_1_2_8_27_1
  doi: 10.1016/j.geoderma.2019.04.029
– ident: e_1_2_8_10_1
  doi: 10.1002/2016JG003352
– ident: e_1_2_8_56_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_8_63_1
  doi: 10.1016/j.geoderma.2018.10.017
– ident: e_1_2_8_57_1
  doi: 10.1038/nclimate1951
– ident: e_1_2_8_7_1
  doi: 10.1002/ecm.1279
– ident: e_1_2_8_26_1
  doi: 10.1038/nmicrobiol.2017.105
– ident: e_1_2_8_50_1
  doi: 10.5194/bg-10-1717-2013
– ident: e_1_2_8_62_1
  doi: 10.1890/14-0777.1
– ident: e_1_2_8_44_1
  doi: 10.1890/15-2110.1
– ident: e_1_2_8_51_1
  doi: 10.1007/s00792-012-0465-9
– ident: e_1_2_8_19_1
  doi: 10.1016/j.soilbio.2011.03.017
– ident: e_1_2_8_16_1
  doi: 10.1038/ngeo2516
– ident: e_1_2_8_18_1
  doi: 10.1002/jpln.200900267
– ident: e_1_2_8_15_1
  doi: 10.1038/nature12670
– ident: e_1_2_8_9_1
  doi: 10.1126/sciadv.aaq1689
– ident: e_1_2_8_29_1
  doi: 10.1007/BF01007573
– ident: e_1_2_8_42_1
  doi: 10.1038/nature08632
– volume-title: Hmisc: Harrell miscellaneous. R package version 4.2‐0
  year: 2019
  ident: e_1_2_8_20_1
– ident: e_1_2_8_21_1
  doi: 10.1007/s11273-017-9584-5
– ident: e_1_2_8_32_1
  doi: 10.3389/fmicb.2014.00022
– ident: e_1_2_8_53_1
  doi: 10.1007/s10533-013-9849-x
– ident: e_1_2_8_54_1
  doi: 10.1111/j.2041-210X.2011.00153.x
– ident: e_1_2_8_13_1
  doi: 10.1016/j.soilbio.2009.02.029
– ident: e_1_2_8_25_1
  doi: 10.1111/geb.12190
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-018-06232-y
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_36_1
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1365-2486.2011.02545.x
– ident: e_1_2_8_6_1
  doi: 10.1016/j.soilbio.2012.11.009
– ident: e_1_2_8_8_1
  doi: 10.1201/9781420005271
– ident: e_1_2_8_58_1
  doi: 10.1111/geb.12029
– ident: e_1_2_8_4_1
  doi: 10.1016/S0038-0717(03)00154-8
– ident: e_1_2_8_38_1
  doi: 10.1007/s11104-010-0391-5
– ident: e_1_2_8_14_1
  doi: 10.1007/s10533-011-9619-6
SSID ssj0009522
Score 2.5857275
Snippet Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1461
SubjectTerms Acid phosphatase
biodegradation
carbon nitrogen ratio
China
deep soil
depth
Dynamic models
Environmental changes
Enzymatic activity
Enzyme activity
Enzymes
extracellular enzyme activity
forest ecosystem
Forest soils
forests
information
Latitude
microbe‐soil feedback
Microorganisms
Mineralization
Nutrient cycles
Nutrients
Soil depth
soil enzymes
Soil sampling
Soil temperature
Soils
Stoichiometry
temperature
Terrestrial ecosystems
Terrestrial environments
Topsoil
Xylosidase
Title Soil extracellular enzyme activity and stoichiometry in China's forests
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13555
https://www.proquest.com/docview/2420332009
https://www.proquest.com/docview/2511187627
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SELz4LlarRBD0smW7yT56lNJaBD2oBW9LnlisW-luD-2vd2YfbS2IiLewm9lNJpnMl2QehFyFQQdPN4yjPcscLlzhdLTLHRlZrrgvNbd4DvnwGAyG_P7Vr6wJ0RemiA-xPHBDycjXaxRwIdM1IS_ss0DbY-oGH93M8QnCoidvLexucY_gBR0HNC0rg_ugLc8G_Xe9tAKb65A11zn9PSKr1hamJu-tWSZbarERyPFf3dknuyUipbfFFDogWyY5JNtFjso5lHqqLNV7K6c4IChXhfSI3D1PRmMKq_xU4D0AGrZSkyzmH4ai2wRmp6Ai0RRw5ki9ob9_Np3TUULz5N3XKQXgDFxIj8mw33vpDpwyQYOjAOf4DtN4y2pD5fqwMWKAzdrWWq1DFpiAcelrwV3NIs6UFipQgbGRFBYWDW6Fa1xWJ7VkkpgTQgMuQxVFSir4qBBGak8Yq_x2qBRgLNkgrWp4YlVGL8ckGuO42sUgA2NkYJwzsEFulgSfReCOn6s2q_GOSwlO4bXnQo9gCjXI5fI1yB4yUiRmMoM6gFbbqE5CaF4-uL_9Ku73unnh9K8EZ2THw61-bincJLVsOjPngIcyeZFP-S-aN_4H
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RUNVeCn0gUh51pUrtZaPN2vvIEaGEQIFDCxK3lT221aiwqfI4hF_PjHcTAlJVVdws-bHrsWfmsz0PgC951uXbDRfZxMtI6VhHXRuryBReoUqNVZ7vIc8vssGVOr1Or1d8Yer4EMsLN-aMIK-ZwflCeoXLawMtUvecuyFNX8AG5_UOx6ofyUrg3folIcm6Eela2YT3YWueJwM81kwPcHMVtAat098EXPxvbWzyuz2bmjbePQnl-LwJbcGbBpSKw3oXvYU1V72Dl3WayjmVetiUtnsPfnHUoREMk_dw_HM0vBEk6MeanwLYtlW46m5-6wR7TnCCCqErKwhqDvEXu_xPx3MxrETI3_11Igg7ExkmH-Cq37s8GkRNjoYICeqkkbT80OpzjFM6G0mCZx3vvbW5zFwmlUmtVrGVhZJoNWaYOV8Y7UluKK9jF8ttWK9GldsBkSmTY1GgQRpUa2dsop3HtJMjEswyLWgv1qfEJoA559G4KRcHGSZgyQQsAwFb8G3Z4U8du-PvTfcWC142TDyh6iSmGdEeasHnZTWxHxNSV240ozYEWDusUXL6vbC6__pU2e8dhcLH_-3wCV4NLs_PyrOTi--78Drhk38wHN6D9el45vYJHk3NQdj_94qQAjE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZTxsxEB5RUKu-0HJEDdDiSkjwstFm7fVuHhEk5VZVQOrbyqeIgA3K8RB-PTN7hBQJVYg3Sz52PZ7xfLbnANhJZIduN1xgI88DoUIVdGwoAp16YUSsrfB0D3l-IY-uxcnfuLYmJF-YMj7E7MKNJKPYr0nAH6yfE_LSPgu1PaVuiOMPsCRkmBJjH_6J5uLulg8JkewEqGp5Fd2HjHleDPCvYnpGm_OYtVA6vS-g698tbU1uW5OxbpnHF5Ec3zWfr7BcQVK2X_LQCiy4fBU-lkkqp1jqmqrU6D57xWGHalsYrcGvy0H_juE2P1T0EECWrczlj9N7x8hvgtJTMJVbhkCzb27I4X88nLJ-zors3bsjhsgZqTBah-te9-rgKKgyNAQGgU4ccEvPrD4xYYwnI47grO29tzbh0kkudGyVCC1PBTdWGWmk86lWHncN4VXoQt6AxXyQu2_ApNCJSVOjDQ6qlNM2Us6buJ0YgyBLN6FVL09mqvDllEXjLquPMUTAjAiYFQRswt6sw0MZueP1plv1emeVCI-wOgpxRshCTfg5q0bhI0Kq3A0m2Abhapv0SYK_Vyzu_z6V9boHRWHjrR224dPvw152dnxxugmfIzr2F1bDW7A4Hk7cd8RGY_2j4P4njqoA6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+extracellular+enzyme+activity+and+stoichiometry+in+China%27s+forests&rft.jtitle=Functional+ecology&rft.au=Zhou%2C+Luhong&rft.au=Liu%2C+Shangshi&rft.au=Shen%2C+Haihua&rft.au=Zhao%2C+Mengying&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=34&rft.issue=7&rft.spage=1461&rft.epage=1471&rft_id=info:doi/10.1111%2F1365-2435.13555&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon