Soil extracellular enzyme activity and stoichiometry in China's forests
Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial a...
Saved in:
Published in | Functional ecology Vol. 34; no. 7; pp. 1461 - 1471 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown.
Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry.
We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively.
Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article. |
---|---|
AbstractList | Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown. Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry. We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively. Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models. A free Plain Language Summary can be found within the Supporting Information of this article. Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown. Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry. We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively. Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial ecosystems. Microbial C:N:P acquisition in the topsoil converged at a ratio of 1:1:1 in global ecosystems. However, whether the ratio of microbial acquisition is stable in forest soils, and is applicable among different soil depths remain unknown. Based on large‐scale soil sampling in China's forests, we examined the patterns and environmental drivers of the eight most‐widely measured enzyme activities and the relevant stoichiometry. We found that the ratio of C:N:P acquisition significantly deviated from 1:1:1. The specific enzyme activities (normalized by SOC) did not change significantly with latitude except those for xylosidase and acid phosphatase. Similarly, only the C:P acquisition ratio increased with latitude. Vertically, the specific activities of C‐acquiring enzymes mainly increased, N‐acquiring enzymes decreased and P‐acquiring enzymes did not change with soil depth. Moreover, all ratios of microbial acquisition decreased, and the percentage of recalcitrant C increased significantly with increasing depth. Our study also showed that temperature and soil C:N ratio were the important factors in explaining the variations in specific enzyme activities and microbial nutrient acquisition, respectively. Our results indicated that no constant microbial C:N:P acquisition ratio can be widely recognized, and that SOC quality changed from labile to recalcitrant with depth. We highlight that depth‐dependent enzymatic processes should be considered in future SOC dynamic models. A free Plain Language Summary can be found within the Supporting Information of this article. |
Author | Sayer, Emma Shen, Haihua Fang, Jingyun Zhou, Luhong Zhao, Mengying Xing, Aijun Liu, Shangshi Xu, Longchao |
Author_xml | – sequence: 1 givenname: Luhong orcidid: 0000-0003-0697-2532 surname: Zhou fullname: Zhou, Luhong organization: Peking University – sequence: 2 givenname: Shangshi surname: Liu fullname: Liu, Shangshi organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Haihua surname: Shen fullname: Shen, Haihua email: shen.haihua@ibcas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Mengying orcidid: 0000-0002-8622-5352 surname: Zhao fullname: Zhao, Mengying organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Longchao surname: Xu fullname: Xu, Longchao organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Aijun surname: Xing fullname: Xing, Aijun organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Jingyun surname: Fang fullname: Fang, Jingyun email: jyfang@urban.pku.edu.cn organization: Chinese Academy of Sciences – sequence: 8 givenname: Emma surname: Sayer fullname: Sayer, Emma |
BookMark | eNqFkM9LwzAYhoNMcE7PXgse9NItza92RynbFAYe1HPI0oRltMlMWrX-9aZOPOyyXD4I7_O9H88lGFlnFQA3GZxm8c0yzGiKCKbTDFNKz8D4_2cExhCxeVoQhi_AZQg7COGcIjQGqxdn6kR9tV5IVdddLXyi7HffqETI1nyYtk-ErZLQOiO3xjWq9X1ibFJujRV3IdHOq9CGK3CuRR3U9d-cgLfl4rV8TNfPq6fyYZ1KXMxpiitCC6JzCWnBEMaIZFrrqsoxUwyTDa0EgRUuCJaVkEwypYuN0JBESEAF8QTcH_buvXvvYjNvTBguF1a5LnBEo4siZyiP0duj6M513sbrOCIIxvIoIaZmh5T0LgSvNN970wjf8wzyQSwfNPJBI_8VGwl6REjTitY4GyWa-jT3aWrVn6rhy0V54H4AdyGMPA |
CitedBy_id | crossref_primary_10_1016_j_foreco_2023_121360 crossref_primary_10_3390_su16020480 crossref_primary_10_1016_j_still_2024_106241 crossref_primary_10_1007_s11104_024_06978_z crossref_primary_10_2139_ssrn_3967013 crossref_primary_10_1111_ejss_70000 crossref_primary_10_1007_s11104_024_07171_y crossref_primary_10_1016_j_apsoil_2021_104269 crossref_primary_10_1021_acs_est_3c08104 crossref_primary_10_1007_s11104_023_05878_y crossref_primary_10_1088_1748_9326_ad5b75 crossref_primary_10_1016_j_soilbio_2022_108929 crossref_primary_10_3390_f13111943 crossref_primary_10_3390_f13111944 crossref_primary_10_1016_j_soilbio_2021_108429 crossref_primary_10_3390_agronomy15010143 crossref_primary_10_1016_j_compag_2024_108831 crossref_primary_10_1016_j_apsoil_2021_104290 crossref_primary_10_1016_j_apsoil_2022_104691 crossref_primary_10_1016_j_scitotenv_2024_171269 crossref_primary_10_2139_ssrn_4016956 crossref_primary_10_1016_j_still_2022_105494 crossref_primary_10_3390_f15030568 crossref_primary_10_3389_fpls_2022_1090954 crossref_primary_10_3390_agronomy13051368 crossref_primary_10_1007_s11104_023_05971_2 crossref_primary_10_1016_j_scitotenv_2024_177082 crossref_primary_10_1093_jpe_rtae065 crossref_primary_10_1007_s00248_024_02412_0 crossref_primary_10_1016_j_scitotenv_2024_170688 crossref_primary_10_1016_j_agee_2024_109322 crossref_primary_10_3390_agriculture13050938 crossref_primary_10_1016_j_jenvman_2024_120574 crossref_primary_10_1111_rec_13909 crossref_primary_10_1016_j_scitotenv_2021_151583 crossref_primary_10_1038_s43247_022_00523_5 crossref_primary_10_1016_j_foreco_2020_118880 crossref_primary_10_1016_j_pedsph_2023_04_003 crossref_primary_10_1016_j_soilbio_2023_109210 crossref_primary_10_1111_1365_2435_14361 crossref_primary_10_1016_j_geoderma_2023_116329 crossref_primary_10_1016_j_ejsobi_2023_103539 crossref_primary_10_1016_j_scitotenv_2024_172731 crossref_primary_10_1016_j_soilbio_2020_107928 crossref_primary_10_3389_fpls_2023_1124139 crossref_primary_10_1016_j_apsoil_2022_104594 crossref_primary_10_3390_f14071447 crossref_primary_10_1016_j_scitotenv_2024_176891 crossref_primary_10_1016_j_foreco_2021_119358 crossref_primary_10_1007_s10533_023_01022_1 crossref_primary_10_1016_j_catena_2022_106243 crossref_primary_10_1016_j_ecolind_2022_109729 crossref_primary_10_1016_j_soilbio_2022_108853 crossref_primary_10_3389_fmicb_2023_974316 crossref_primary_10_3389_fpls_2022_975169 crossref_primary_10_3390_f13122075 crossref_primary_10_1007_s42729_022_00840_w crossref_primary_10_3390_f15061040 crossref_primary_10_1016_j_catena_2022_106901 crossref_primary_10_1016_j_apsoil_2023_104862 crossref_primary_10_1016_j_jes_2025_03_005 crossref_primary_10_3390_f14081514 crossref_primary_10_1016_j_scitotenv_2023_168349 crossref_primary_10_18307_2022_0316 crossref_primary_10_3390_f13060845 crossref_primary_10_1016_j_apsoil_2022_104529 crossref_primary_10_1016_j_catena_2024_107961 crossref_primary_10_3390_f13122102 crossref_primary_10_1016_j_catena_2024_108535 crossref_primary_10_1007_s11104_024_06511_2 crossref_primary_10_1007_s11104_022_05521_2 crossref_primary_10_1016_j_catena_2024_108015 crossref_primary_10_2139_ssrn_3998977 crossref_primary_10_1111_gcb_16765 crossref_primary_10_1016_j_catena_2021_105849 crossref_primary_10_1016_j_soilbio_2021_108513 crossref_primary_10_1016_j_agee_2022_108006 crossref_primary_10_3389_fenvs_2023_1298027 crossref_primary_10_1016_j_scitotenv_2023_162504 crossref_primary_10_3390_f14010034 crossref_primary_10_3389_fpls_2022_1053009 crossref_primary_10_1016_j_apsoil_2025_105908 crossref_primary_10_1016_j_jenvman_2021_114215 crossref_primary_10_3390_f15040724 crossref_primary_10_3390_microorganisms12112314 crossref_primary_10_1016_j_chemosphere_2023_139045 crossref_primary_10_1016_j_geoderma_2024_116819 crossref_primary_10_1016_j_jclepro_2024_140731 crossref_primary_10_1002_saj2_20655 crossref_primary_10_1016_j_foreco_2025_122543 crossref_primary_10_1016_j_catena_2021_105613 crossref_primary_10_1016_j_apsoil_2024_105555 crossref_primary_10_3389_fevo_2023_1137172 crossref_primary_10_1016_j_soilbio_2023_108967 crossref_primary_10_1016_j_apsoil_2024_105319 crossref_primary_10_1002_ldr_4034 crossref_primary_10_1021_acs_est_2c09634 crossref_primary_10_3389_fmicb_2024_1403338 crossref_primary_10_1016_j_ejsobi_2024_103639 |
Cites_doi | 10.1038/ngeo846 10.1890/08-0127.1 10.1007/s10533-018-0499-x 10.1890/11-0721.1 10.1007/s10533-014-0058-z 10.1016/j.soilbio.2016.10.020 10.1016/j.scitotenv.2017.07.060 10.1007/s11258-017-0775-1 10.1016/j.soilbio.2016.04.008 10.1016/S0038-0717(02)00074-3 10.1073/pnas.1700304115 10.1126/science.aav0550 10.1016/S0038-0717(01)00158-4 10.1023/A:1006316117817 10.1016/j.apsoil.2013.10.012 10.1016/j.soilbio.2014.02.015 10.1111/gcb.12536 10.1007/s10533-010-9482-x 10.1890/14-1327.1 10.1016/j.pedobi.2017.03.001 10.1016/j.soilbio.2018.02.022 10.1016/j.soilbio.2014.04.017 10.1111/j.1461-0248.2008.01245.x 10.1016/j.soilbio.2012.05.011 10.1016/j.soilbio.2017.11.014 10.1016/j.geoderma.2019.04.029 10.1002/2016JG003352 10.1007/978-3-319-24277-4 10.1016/j.geoderma.2018.10.017 10.1038/nclimate1951 10.1002/ecm.1279 10.1038/nmicrobiol.2017.105 10.5194/bg-10-1717-2013 10.1890/14-0777.1 10.1890/15-2110.1 10.1007/s00792-012-0465-9 10.1016/j.soilbio.2011.03.017 10.1038/ngeo2516 10.1002/jpln.200900267 10.1038/nature12670 10.1126/sciadv.aaq1689 10.1007/BF01007573 10.1038/nature08632 10.1007/s11273-017-9584-5 10.3389/fmicb.2014.00022 10.1007/s10533-013-9849-x 10.1111/j.2041-210X.2011.00153.x 10.1016/j.soilbio.2009.02.029 10.1111/geb.12190 10.1038/s41467-018-06232-y 10.1111/j.1365-2486.2011.02545.x 10.1016/j.soilbio.2012.11.009 10.1201/9781420005271 10.1111/geb.12029 10.1016/S0038-0717(03)00154-8 10.1007/s11104-010-0391-5 10.1007/s10533-011-9619-6 |
ContentType | Journal Article |
Copyright | 2020 British Ecological Society Functional Ecology © 2020 British Ecological Society |
Copyright_xml | – notice: 2020 British Ecological Society – notice: Functional Ecology © 2020 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.13555 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1471 |
ExternalDocumentID | 10_1111_1365_2435_13555 FEC13555 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31330012 – fundername: China Postdoctoral Science Foundation funderid: 2018M641074 – fundername: National Key Research and Development Program funderid: 2017YFC0503901 – fundername: Key Research Program of Frontier Sciences, CAS funderid: QYZDY‐SSW‐SMC011 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c3895-3d4584f7c0586233241fffdd736e634b5da40d3843cdac6c6ef8baf0484fa0e03 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:28:03 EDT 2025 Fri Jul 25 06:38:08 EDT 2025 Thu Apr 24 22:50:11 EDT 2025 Tue Jul 01 01:15:50 EDT 2025 Wed Jan 22 16:34:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3895-3d4584f7c0586233241fffdd736e634b5da40d3843cdac6c6ef8baf0484fa0e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8622-5352 0000-0003-0697-2532 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13555 |
PQID | 2420332009 |
PQPubID | 1066355 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2511187627 proquest_journals_2420332009 crossref_primary_10_1111_1365_2435_13555 crossref_citationtrail_10_1111_1365_2435_13555 wiley_primary_10_1111_1365_2435_13555_FEC13555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 121 2009; 41 2013; 3 2017; 2 2000; 49 2013; 22 1999; 46 2012; 18 2012; 16 2018; 88 2014; 23 2019; 365 2012; 53 2014; 20 2018; 9 2010; 20 2014; 5 2013; 58 2018; 4 2013; 10 2015; 85 2016; 86 2010; 3 2017; 61 2017; 219 2018; 141 2014; 117 2011; 338 2011 2017; 607–608 2002; 34 2015; 122 2015; 96 2013; 502 2003; 35 2016; 98 2007 2016; 121 2008; 11 2019; 348 2002 2011; 174 2015; 8 2018; 26 2012; 109 2012; 93 2011; 102 2012; 3 2018; 117 2020 2018; 115 2009; 462 2019 2018 2011; 43 2017 2016 2019; 337 2014; 74 2017; 104 2014; 75 e_1_2_8_28_1 Oksanen J. (e_1_2_8_33_1) 2019 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_5_1 e_1_2_8_7_1 Wei T. (e_1_2_8_55_1) 2017 e_1_2_8_9_1 R Development Core Team. (e_1_2_8_36_1) 2019 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 Harrell F. E. (e_1_2_8_20_1) 2019 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Sterner R. W. (e_1_2_8_46_1) 2002 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 Allison S. D. (e_1_2_8_3_1) 2011 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Zhou L. (e_1_2_8_65_1) 2020 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 34 start-page: 1309 year: 2002 end-page: 1315 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil publication-title: Soil Biology & Biochemistry – volume: 22 start-page: 737 year: 2013 end-page: 749 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Global Ecology and Biogeography – volume: 16 start-page: 669 year: 2012 end-page: 679 article-title: Biogeography of bacterial communities in hot springs: A focus on the actinobacteria publication-title: Extremophiles – volume: 3 start-page: 909 year: 2013 end-page: 912 article-title: Global soil carbon projections are improved by modelling microbial processes publication-title: Nature Climate Change – volume: 109 start-page: 189 year: 2012 end-page: 202 article-title: Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests publication-title: Biogeochemistry – volume: 141 start-page: 23 year: 2018 end-page: 39 article-title: Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts publication-title: Biogeochemistry – volume: 34 start-page: 139 year: 2002 end-page: 162 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biology & Biochemistry – volume: 86 start-page: 172 year: 2016 end-page: 189 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecological Monographs – volume: 102 start-page: 31 year: 2011 end-page: 43 article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse publication-title: Biogeochemistry – year: 2018 – volume: 46 start-page: 45 year: 1999 end-page: 65 article-title: Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests publication-title: Biogeochemistry – volume: 11 start-page: 1252 year: 2008 end-page: 1264 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecology Letters – volume: 348 start-page: 107 year: 2019 end-page: 114 article-title: Estimation of plot‐level soil carbon stocks in China's forests using intensive soil sampling publication-title: Geoderma – volume: 98 start-page: 74 year: 2016 end-page: 84 article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China publication-title: Soil Biology & Biochemistry – volume: 337 start-page: 630 year: 2019 end-page: 640 article-title: How microbes cope with short‐term N addition in a forest‐ecological stoichiometry publication-title: Geoderma – volume: 502 start-page: 672 year: 2013 end-page: 676 article-title: Decoupling of soil nutrient cycles as a function of aridity in global drylands publication-title: Nature – volume: 338 start-page: 143 year: 2011 end-page: 158 article-title: Deep soil organic matter – A key but poorly understood component of terrestrial C cycle publication-title: Plant and Soil – volume: 61 start-page: 51 year: 2017 end-page: 60 article-title: Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest publication-title: Pedobiologia – volume: 85 start-page: 133 year: 2015 end-page: 155 article-title: The application of ecological stoichiometry to plant‐microbial‐soil organic matter transformations publication-title: Ecological Monographs – volume: 96 start-page: 1139 year: 2015 end-page: 1149 article-title: Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling publication-title: Ecology – volume: 75 start-page: 63 year: 2014 end-page: 70 article-title: Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran publication-title: Applied Soil Ecology – volume: 49 start-page: 175 year: 2000 end-page: 190 article-title: Regulation of soil phosphatase and chitinase activity by N and P availability publication-title: Biogeochemistry – volume: 3 start-page: 257 year: 2012 end-page: 259 article-title: smatr 3 – An R package for estimation and inference about allometric lines publication-title: Methods in Ecology and Evolution – volume: 365 start-page: eaav0550 year: 2019 article-title: The global soil community and its influence on biogeochemistry publication-title: Science – volume: 10 start-page: 1717 year: 2013 end-page: 1736 article-title: Causes of variation in soil carbon simulations from CMIP5 earth system models and comparison with observations publication-title: Biogeosciences – volume: 115 start-page: 4015 year: 2018 end-page: 4020 article-title: Climate change, human impacts, and carbon sequestration in China publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 174 start-page: 381 year: 2011 end-page: 394 article-title: Multivariate analysis of soils: Microbial biomass, metabolic activity, and bacterial‐community structure and their relationships with soil depth and type publication-title: Journal of Plant Nutrition and Soil Science – volume: 117 start-page: 87 year: 2018 end-page: 96 article-title: Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest publication-title: Soil Biology & Biochemistry – volume: 18 start-page: 1173 year: 2012 end-page: 1184 article-title: Temperature sensitivity of soil enzyme kinetics under N‐fertilization in two temperate forests publication-title: Global Change Biology – volume: 43 start-page: 1387 year: 2011 end-page: 1397 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biology & Biochemistry – year: 2019 – volume: 122 start-page: 175 year: 2015 end-page: 190 article-title: Scaling microbial biomass, metabolism and resource supply publication-title: Biogeochemistry – volume: 121 start-page: 2410 year: 2016 end-page: 2421 article-title: Dynamic patterns of nitrogen: Phosphorus ratios in forest soils of China under changing environment publication-title: Journal of Geophysical Research: Biogeosciences – volume: 53 start-page: 133 year: 2012 end-page: 141 article-title: A theoretical model of C‐ and N‐acquiring exoenzyme activities, which balances microbial demands during decomposition publication-title: Soil Biology & Biochemistry – volume: 26 start-page: 425 year: 2018 end-page: 439 article-title: Microbial ecoenzyme stoichiometry, nutrient limitation, and organic matter decomposition in wetlands of the conterminous United States publication-title: Wetlands Ecology and Management – volume: 35 start-page: 955 year: 2003 end-page: 963 article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techniques publication-title: Soil Biology & Biochemistry – volume: 462 start-page: 795 year: 2009 end-page: 798 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature – volume: 75 start-page: 237 year: 2014 end-page: 247 article-title: Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory publication-title: Soil Biology & Biochemistry – volume: 121 start-page: 212 year: 2018 end-page: 220 article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect publication-title: Soil Biology & Biochemistry – year: 2007 – volume: 5 year: 2014 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources publication-title: Frontiers in Microbiology – volume: 41 start-page: 1180 year: 2009 end-page: 1186 article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB‐linked substrates and L‐DOPA publication-title: Soil Biology & Biochemistry – volume: 607–608 start-page: 806 year: 2017 end-page: 815 article-title: Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests publication-title: Science of the Total Environment – volume: 93 start-page: 770 year: 2012 end-page: 782 article-title: Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter publication-title: Ecology – start-page: 229 year: 2011 end-page: 243 – volume: 2 start-page: 17105 year: 2017 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nature Microbiology – volume: 20 start-page: 2687 year: 2014 end-page: 2696 article-title: Increased topsoil carbon stock across China's forests publication-title: Global Change Biology – year: 2016 – volume: 58 start-page: 216 year: 2013 end-page: 234 article-title: Soil enzymes in a changing environment: Current knowledge and future directions publication-title: Soil Biology & Biochemistry – volume: 117 start-page: 101 year: 2014 end-page: 113 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry – volume: 219 start-page: 31 year: 2017 end-page: 44 article-title: Factors influencing soil enzyme activity in China’s forest ecosystems publication-title: Plant Ecology – volume: 8 start-page: 780 year: 2015 end-page: 783 article-title: Soil carbon storage controlled by interactions between geochemistry and climate publication-title: Nature Geoscience – volume: 74 start-page: 11 year: 2014 end-page: 20 article-title: Induced N‐limitation of bacterial growth in soil: Effect of carbon loading and N status in soil publication-title: Soil Biology & Biochemistry – volume: 20 start-page: 5 year: 2010 end-page: 15 article-title: Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen‐phosphorus interactions publication-title: Ecological Applications – volume: 4 start-page: aaq1689 year: 2018 article-title: A keystone microbial enzyme for nitrogen control of soil carbon storage publication-title: Science Advances – volume: 88 start-page: 4 year: 2018 end-page: 21 article-title: Nutrient limitation of soil microbial processes in tropical forests publication-title: Ecological Monographs – year: 2002 – volume: 23 start-page: 979 year: 2014 end-page: 987 article-title: Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems publication-title: Global Ecology and Biogeography – volume: 3 start-page: 336 year: 2010 end-page: 340 article-title: Soil‐carbon response to warming dependent on microbial physiology publication-title: Nature Geoscience – year: 2017 – volume: 9 start-page: 3951 year: 2018 article-title: Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency publication-title: Nature Communications – volume: 104 start-page: 152 year: 2017 end-page: 163 article-title: Soil enzyme activity and stoichiometry in forest ecosystems along the North‐South Transect in eastern China (NSTEC) publication-title: Soil Biology and Biochemistry – year: 2020 article-title: Data from: Soil extracellular enzyme activity and stoichiometry in China’s forests publication-title: Dryad Digital Repository – ident: e_1_2_8_2_1 doi: 10.1038/ngeo846 – ident: e_1_2_8_45_1 – volume-title: vegan: Community ecology package. R package version 2.5‐4 year: 2019 ident: e_1_2_8_33_1 – ident: e_1_2_8_52_1 doi: 10.1890/08-0127.1 – ident: e_1_2_8_66_1 doi: 10.1007/s10533-018-0499-x – ident: e_1_2_8_31_1 doi: 10.1890/11-0721.1 – ident: e_1_2_8_41_1 doi: 10.1007/s10533-014-0058-z – ident: e_1_2_8_59_1 doi: 10.1016/j.soilbio.2016.10.020 – ident: e_1_2_8_22_1 doi: 10.1016/j.scitotenv.2017.07.060 – ident: e_1_2_8_64_1 doi: 10.1007/s11258-017-0775-1 – ident: e_1_2_8_35_1 doi: 10.1016/j.soilbio.2016.04.008 – ident: e_1_2_8_39_1 doi: 10.1016/S0038-0717(02)00074-3 – ident: e_1_2_8_17_1 doi: 10.1073/pnas.1700304115 – ident: e_1_2_8_12_1 doi: 10.1126/science.aav0550 – ident: e_1_2_8_24_1 doi: 10.1016/S0038-0717(01)00158-4 – ident: e_1_2_8_34_1 doi: 10.1023/A:1006316117817 – ident: e_1_2_8_37_1 doi: 10.1016/j.apsoil.2013.10.012 – year: 2020 ident: e_1_2_8_65_1 article-title: Data from: Soil extracellular enzyme activity and stoichiometry in China’s forests publication-title: Dryad Digital Repository – volume-title: Ecological stoichiometry: The biology of elements from molecules to the biosphere year: 2002 ident: e_1_2_8_46_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.soilbio.2014.02.015 – ident: e_1_2_8_61_1 doi: 10.1111/gcb.12536 – start-page: 229 volume-title: Soil enzymology year: 2011 ident: e_1_2_8_3_1 – ident: e_1_2_8_40_1 doi: 10.1007/s10533-010-9482-x – ident: e_1_2_8_5_1 doi: 10.1890/14-1327.1 – ident: e_1_2_8_60_1 doi: 10.1016/j.pedobi.2017.03.001 – ident: e_1_2_8_49_1 doi: 10.1016/j.soilbio.2018.02.022 – volume-title: R package ‘corrplot’: Visualization of a correlation matrix (Version 0.84) year: 2017 ident: e_1_2_8_55_1 – ident: e_1_2_8_47_1 doi: 10.1016/j.soilbio.2014.04.017 – ident: e_1_2_8_43_1 doi: 10.1111/j.1461-0248.2008.01245.x – ident: e_1_2_8_30_1 doi: 10.1016/j.soilbio.2012.05.011 – ident: e_1_2_8_28_1 doi: 10.1016/j.soilbio.2017.11.014 – ident: e_1_2_8_27_1 doi: 10.1016/j.geoderma.2019.04.029 – ident: e_1_2_8_10_1 doi: 10.1002/2016JG003352 – ident: e_1_2_8_56_1 doi: 10.1007/978-3-319-24277-4 – ident: e_1_2_8_63_1 doi: 10.1016/j.geoderma.2018.10.017 – ident: e_1_2_8_57_1 doi: 10.1038/nclimate1951 – ident: e_1_2_8_7_1 doi: 10.1002/ecm.1279 – ident: e_1_2_8_26_1 doi: 10.1038/nmicrobiol.2017.105 – ident: e_1_2_8_50_1 doi: 10.5194/bg-10-1717-2013 – ident: e_1_2_8_62_1 doi: 10.1890/14-0777.1 – ident: e_1_2_8_44_1 doi: 10.1890/15-2110.1 – ident: e_1_2_8_51_1 doi: 10.1007/s00792-012-0465-9 – ident: e_1_2_8_19_1 doi: 10.1016/j.soilbio.2011.03.017 – ident: e_1_2_8_16_1 doi: 10.1038/ngeo2516 – ident: e_1_2_8_18_1 doi: 10.1002/jpln.200900267 – ident: e_1_2_8_15_1 doi: 10.1038/nature12670 – ident: e_1_2_8_9_1 doi: 10.1126/sciadv.aaq1689 – ident: e_1_2_8_29_1 doi: 10.1007/BF01007573 – ident: e_1_2_8_42_1 doi: 10.1038/nature08632 – volume-title: Hmisc: Harrell miscellaneous. R package version 4.2‐0 year: 2019 ident: e_1_2_8_20_1 – ident: e_1_2_8_21_1 doi: 10.1007/s11273-017-9584-5 – ident: e_1_2_8_32_1 doi: 10.3389/fmicb.2014.00022 – ident: e_1_2_8_53_1 doi: 10.1007/s10533-013-9849-x – ident: e_1_2_8_54_1 doi: 10.1111/j.2041-210X.2011.00153.x – ident: e_1_2_8_13_1 doi: 10.1016/j.soilbio.2009.02.029 – ident: e_1_2_8_25_1 doi: 10.1111/geb.12190 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-018-06232-y – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_8_36_1 – ident: e_1_2_8_48_1 doi: 10.1111/j.1365-2486.2011.02545.x – ident: e_1_2_8_6_1 doi: 10.1016/j.soilbio.2012.11.009 – ident: e_1_2_8_8_1 doi: 10.1201/9781420005271 – ident: e_1_2_8_58_1 doi: 10.1111/geb.12029 – ident: e_1_2_8_4_1 doi: 10.1016/S0038-0717(03)00154-8 – ident: e_1_2_8_38_1 doi: 10.1007/s11104-010-0391-5 – ident: e_1_2_8_14_1 doi: 10.1007/s10533-011-9619-6 |
SSID | ssj0009522 |
Score | 2.5857275 |
Snippet | Ecoenzymatic stoichiometry links microbial decomposition with nutrient mineralization and improves our understanding of nutrient cycling in terrestrial... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1461 |
SubjectTerms | Acid phosphatase biodegradation carbon nitrogen ratio China deep soil depth Dynamic models Environmental changes Enzymatic activity Enzyme activity Enzymes extracellular enzyme activity forest ecosystem Forest soils forests information Latitude microbe‐soil feedback Microorganisms Mineralization Nutrient cycles Nutrients Soil depth soil enzymes Soil sampling Soil temperature Soils Stoichiometry temperature Terrestrial ecosystems Terrestrial environments Topsoil Xylosidase |
Title | Soil extracellular enzyme activity and stoichiometry in China's forests |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13555 https://www.proquest.com/docview/2420332009 https://www.proquest.com/docview/2511187627 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SELz4LlarRBD0smW7yT56lNJaBD2oBW9LnlisW-luD-2vd2YfbS2IiLewm9lNJpnMl2QehFyFQQdPN4yjPcscLlzhdLTLHRlZrrgvNbd4DvnwGAyG_P7Vr6wJ0RemiA-xPHBDycjXaxRwIdM1IS_ss0DbY-oGH93M8QnCoidvLexucY_gBR0HNC0rg_ugLc8G_Xe9tAKb65A11zn9PSKr1hamJu-tWSZbarERyPFf3dknuyUipbfFFDogWyY5JNtFjso5lHqqLNV7K6c4IChXhfSI3D1PRmMKq_xU4D0AGrZSkyzmH4ai2wRmp6Ai0RRw5ki9ob9_Np3TUULz5N3XKQXgDFxIj8mw33vpDpwyQYOjAOf4DtN4y2pD5fqwMWKAzdrWWq1DFpiAcelrwV3NIs6UFipQgbGRFBYWDW6Fa1xWJ7VkkpgTQgMuQxVFSir4qBBGak8Yq_x2qBRgLNkgrWp4YlVGL8ckGuO42sUgA2NkYJwzsEFulgSfReCOn6s2q_GOSwlO4bXnQo9gCjXI5fI1yB4yUiRmMoM6gFbbqE5CaF4-uL_9Ku73unnh9K8EZ2THw61-bincJLVsOjPngIcyeZFP-S-aN_4H |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RUNVeCn0gUh51pUrtZaPN2vvIEaGEQIFDCxK3lT221aiwqfI4hF_PjHcTAlJVVdws-bHrsWfmsz0PgC951uXbDRfZxMtI6VhHXRuryBReoUqNVZ7vIc8vssGVOr1Or1d8Yer4EMsLN-aMIK-ZwflCeoXLawMtUvecuyFNX8AG5_UOx6ofyUrg3folIcm6Eela2YT3YWueJwM81kwPcHMVtAat098EXPxvbWzyuz2bmjbePQnl-LwJbcGbBpSKw3oXvYU1V72Dl3WayjmVetiUtnsPfnHUoREMk_dw_HM0vBEk6MeanwLYtlW46m5-6wR7TnCCCqErKwhqDvEXu_xPx3MxrETI3_11Igg7ExkmH-Cq37s8GkRNjoYICeqkkbT80OpzjFM6G0mCZx3vvbW5zFwmlUmtVrGVhZJoNWaYOV8Y7UluKK9jF8ttWK9GldsBkSmTY1GgQRpUa2dsop3HtJMjEswyLWgv1qfEJoA559G4KRcHGSZgyQQsAwFb8G3Z4U8du-PvTfcWC142TDyh6iSmGdEeasHnZTWxHxNSV240ozYEWDusUXL6vbC6__pU2e8dhcLH_-3wCV4NLs_PyrOTi--78Drhk38wHN6D9el45vYJHk3NQdj_94qQAjE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZTxsxEB5RUKu-0HJEDdDiSkjwstFm7fVuHhEk5VZVQOrbyqeIgA3K8RB-PTN7hBQJVYg3Sz52PZ7xfLbnANhJZIduN1xgI88DoUIVdGwoAp16YUSsrfB0D3l-IY-uxcnfuLYmJF-YMj7E7MKNJKPYr0nAH6yfE_LSPgu1PaVuiOMPsCRkmBJjH_6J5uLulg8JkewEqGp5Fd2HjHleDPCvYnpGm_OYtVA6vS-g698tbU1uW5OxbpnHF5Ec3zWfr7BcQVK2X_LQCiy4fBU-lkkqp1jqmqrU6D57xWGHalsYrcGvy0H_juE2P1T0EECWrczlj9N7x8hvgtJTMJVbhkCzb27I4X88nLJ-zors3bsjhsgZqTBah-te9-rgKKgyNAQGgU4ccEvPrD4xYYwnI47grO29tzbh0kkudGyVCC1PBTdWGWmk86lWHncN4VXoQt6AxXyQu2_ApNCJSVOjDQ6qlNM2Us6buJ0YgyBLN6FVL09mqvDllEXjLquPMUTAjAiYFQRswt6sw0MZueP1plv1emeVCI-wOgpxRshCTfg5q0bhI0Kq3A0m2Abhapv0SYK_Vyzu_z6V9boHRWHjrR224dPvw152dnxxugmfIzr2F1bDW7A4Hk7cd8RGY_2j4P4njqoA6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+extracellular+enzyme+activity+and+stoichiometry+in+China%27s+forests&rft.jtitle=Functional+ecology&rft.au=Zhou%2C+Luhong&rft.au=Liu%2C+Shangshi&rft.au=Shen%2C+Haihua&rft.au=Zhao%2C+Mengying&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=34&rft.issue=7&rft.spage=1461&rft.epage=1471&rft_id=info:doi/10.1111%2F1365-2435.13555&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |