Deconvolution algorithm based on automatic cutoff frequency selection for EPR imaging

The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 50; no. 2; pp. 444 - 448
Main Authors Deng, Yuanmu, He, Guanglong, Kuppusamy, Periannan, Zweier, Jay L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2003
Williams & Wilkins
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
DOI10.1002/mrm.10533

Cover

Abstract The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division‐by‐zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back‐projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm. Magn Reson Med 50:444–448, 2003. © 2003 Wiley‐Liss, Inc.
AbstractList The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division-by-zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back-projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm.The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division-by-zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back-projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm.
The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division-by-zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back-projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm.
The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division‐by‐zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back‐projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm. Magn Reson Med 50:444–448, 2003. © 2003 Wiley‐Liss, Inc.
Author Deng, Yuanmu
Zweier, Jay L.
He, Guanglong
Kuppusamy, Periannan
Author_xml – sequence: 1
  givenname: Yuanmu
  surname: Deng
  fullname: Deng, Yuanmu
  organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio
– sequence: 2
  givenname: Guanglong
  surname: He
  fullname: He, Guanglong
  organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio
– sequence: 3
  givenname: Periannan
  surname: Kuppusamy
  fullname: Kuppusamy, Periannan
  organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio
– sequence: 4
  givenname: Jay L.
  surname: Zweier
  fullname: Zweier, Jay L.
  email: zweier-01@medctr.osu.edu
  organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15041119$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12876725$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URLeFA38A5QJSD6H-jOMjKqUgbQsqVEhcLMcZLwYnLnZS2H-Pt7stEoKTR_bzjMbzHqC9MY6A0FOCXxKM6fGQhlIIxh6gBRGU1lQovocWWHJcM6L4PjrI-RvGWCnJH6F9QlvZSCoW6Oo12DjexDBPPo6VCauY_PR1qDqToa82V_MUBzN5W9lSOVe5BD9mGO26yhDA3noupur0w2XlB7Py4-oxeuhMyPBkdx6iqzenn07e1sv3Z-9OXi1ry1rFaipVpxpHuTXcMU472zFgsm97AZz1EkCKnlvRqBbL8gTUNthJhUGUr_SSHaIX277XKZaZ8qQHny2EYEaIc9aS8bbFuCngsx04dwP0-jqVSdNa3y2iAM93gMnWBJfMaH3-wwnMCSGqcMdbzqaYcwKnrZ_MZgdTMj5ogvUmEl0i0beRFOPoL-O-6T_YXfefPsD6_6A-vzy_M-qt4fMEv-4Nk77rRjIp9OeLM82X7OJL0zD9kf0GXfypgQ
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_jmr_2020_106812
crossref_primary_10_1007_s00723_021_01443_x
crossref_primary_10_1016_j_jmr_2008_12_014
crossref_primary_10_1016_j_jmr_2011_01_027
crossref_primary_10_1016_j_jmr_2005_01_019
crossref_primary_10_1016_j_jmr_2007_01_001
crossref_primary_10_3390_ijgi9120731
crossref_primary_10_1002_mrm_24250
crossref_primary_10_1007_s11042_015_2812_1
crossref_primary_10_1016_j_jmr_2007_09_021
crossref_primary_10_1016_j_jmr_2004_02_012
crossref_primary_10_1002_mrc_4330
crossref_primary_10_1002_mrm_20967
crossref_primary_10_1016_j_jmr_2005_04_007
crossref_primary_10_1063_1_2216894
Cites_doi 10.1088/0022-3719/20/36/027
10.1006/jmrb.1995.1022
10.1002/mrm.1910020310
10.1016/0022-2364(82)90039-7
10.1006/jmre.1998.1617
10.1002/mrm.1910040410
10.1073/pnas.96.8.4586
10.1007/BF02353672
ContentType Journal Article
Copyright Copyright © 2003 Wiley‐Liss, Inc.
2003 INIST-CNRS
Copyright 2003 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2003 Wiley‐Liss, Inc.
– notice: 2003 INIST-CNRS
– notice: Copyright 2003 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mrm.10533
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 448
ExternalDocumentID 12876725
15041119
10_1002_mrm_10533
MRM10533
ark_67375_WNG_4L3NZ663_S
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: EB000306; EB00254
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3893-279b96f24ca4f342bcb3e37d8d5e43d7ee75d4c569807b3ee2c60f790e5009d73
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Thu Sep 04 21:19:56 EDT 2025
Wed Feb 19 01:33:31 EST 2025
Mon Jul 21 09:16:57 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Tue Jul 01 04:19:30 EDT 2025
Wed Jan 22 16:45:39 EST 2025
Tue Sep 09 05:31:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cutoff frequency
deconvolution
Fourier transform
EPRI
image reconstruction
Language English
License CC BY 4.0
Copyright 2003 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3893-279b96f24ca4f342bcb3e37d8d5e43d7ee75d4c569807b3ee2c60f790e5009d73
Notes istex:90FB006DB8A01DE2F0210FE472CA19D0435326CA
NIH - No. EB000306; No. EB00254
ArticleID:MRM10533
ark:/67375/WNG-4L3NZ663-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12876725
PQID 73488006
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_73488006
pubmed_primary_12876725
pascalfrancis_primary_15041119
crossref_citationtrail_10_1002_mrm_10533
crossref_primary_10_1002_mrm_10533
wiley_primary_10_1002_mrm_10533_MRM10533
istex_primary_ark_67375_WNG_4L3NZ663_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2003
PublicationDateYYYYMMDD 2003-08-01
PublicationDate_xml – month: 08
  year: 2003
  text: August 2003
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Baltimore, MD
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
Williams & Wilkins
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Williams & Wilkins
References Eaton SS, Eaton GR, Ohno K. EPR imaging and in vivo EPR. Boca Raton: CRC Press; 1991.
Fujii H, Berliner LJ. One- and two-dimensional EPR imaging studies on phantoms and plant specimens. Magn Reson Med 1985; 2: 275-282.
Goez M, Heun R. Reference deconvolution in the frequency domain. J Magn Reson 1999; 136: 69-75.
Sotgiu A, Gazzillo D, Momo F. ESR imaging: spatial deconvolution in the presence of an asymmertic hyperfine structure. J Phys C: Solid State Phys 1987; 20: 1297-6304.
Jain AK. Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 1989.
Candy JV. Signal processing: the modern approach. New York: McGraw-Hill Book Company; 1988.
He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 1999; 96: 4586-4591.
Berliner LJ, Fujii H, Wan XM, Lukiewicz SJ. Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med 1987; 4: 380-384.
Madden FN, Godfrey KR, Chappell MJ, Hovorka R, Bates RA. A comparison of six deconvolution techniques. J Pharmacokinet Biopharm 1996; 24: 283-299.
Ohno K. ESR imaging: a deconvolution method for hyperfine patterns. J Magn Reson 1982; 50: 145-150.
Momo F, Colacicchi S, Sotgiu A. Limits of deconvolution in enhancing the resolution in EPR imaging experiments. Meas Sci Technol 1992: 60-64.
Fujii H, Berliner LJ. Application of the convolution difference method in reconstruction techniques in EPR imaging. J Magn Reson 1986; 68: 377-382.
Kuppusamy P, Chzhan M, Zweier JL. Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues. J Magn Reson B 1995; 106: 122-130.
1987; 20
1982; 50
1985; 2
1987; 4
1986; 68
1995; 106
1985
1999; 136
1999; 96
1992
1991
1996; 24
1989
1988
Jain AK (e_1_2_6_10_2) 1989
Eaton SS (e_1_2_6_7_2) 1991
Candy JV (e_1_2_6_11_2) 1988
Ewert U (e_1_2_6_13_2) 1991
e_1_2_6_8_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
Fujii H (e_1_2_6_12_2) 1986; 68
e_1_2_6_2_2
e_1_2_6_16_2
Momo F (e_1_2_6_14_2) 1992
e_1_2_6_15_2
References_xml – reference: Sotgiu A, Gazzillo D, Momo F. ESR imaging: spatial deconvolution in the presence of an asymmertic hyperfine structure. J Phys C: Solid State Phys 1987; 20: 1297-6304.
– reference: Madden FN, Godfrey KR, Chappell MJ, Hovorka R, Bates RA. A comparison of six deconvolution techniques. J Pharmacokinet Biopharm 1996; 24: 283-299.
– reference: Goez M, Heun R. Reference deconvolution in the frequency domain. J Magn Reson 1999; 136: 69-75.
– reference: Fujii H, Berliner LJ. One- and two-dimensional EPR imaging studies on phantoms and plant specimens. Magn Reson Med 1985; 2: 275-282.
– reference: Ohno K. ESR imaging: a deconvolution method for hyperfine patterns. J Magn Reson 1982; 50: 145-150.
– reference: Eaton SS, Eaton GR, Ohno K. EPR imaging and in vivo EPR. Boca Raton: CRC Press; 1991.
– reference: Jain AK. Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 1989.
– reference: Momo F, Colacicchi S, Sotgiu A. Limits of deconvolution in enhancing the resolution in EPR imaging experiments. Meas Sci Technol 1992: 60-64.
– reference: Candy JV. Signal processing: the modern approach. New York: McGraw-Hill Book Company; 1988.
– reference: Fujii H, Berliner LJ. Application of the convolution difference method in reconstruction techniques in EPR imaging. J Magn Reson 1986; 68: 377-382.
– reference: Kuppusamy P, Chzhan M, Zweier JL. Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues. J Magn Reson B 1995; 106: 122-130.
– reference: Berliner LJ, Fujii H, Wan XM, Lukiewicz SJ. Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med 1987; 4: 380-384.
– reference: He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 1999; 96: 4586-4591.
– volume: 24
  start-page: 283
  year: 1996
  end-page: 299
  article-title: A comparison of six deconvolution techniques
  publication-title: J Pharmacokinet Biopharm
– volume: 96
  start-page: 4586
  year: 1999
  end-page: 4591
  article-title: Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging
  publication-title: Proc Natl Acad Sci USA
– start-page: 60
  year: 1992
  end-page: 64
  article-title: Limits of deconvolution in enhancing the resolution in EPR imaging experiments
  publication-title: Meas Sci Technol
– start-page: 34
  year: 1985
  end-page: 47
– volume: 136
  start-page: 69
  year: 1999
  end-page: 75
  article-title: Reference deconvolution in the frequency domain
  publication-title: J Magn Reson
– year: 1988
– volume: 50
  start-page: 145
  year: 1982
  end-page: 150
  article-title: ESR imaging: a deconvolution method for hyperfine patterns
  publication-title: J Magn Reson
– year: 1989
– volume: 4
  start-page: 380
  year: 1987
  end-page: 384
  article-title: Feasibility study of imaging a living murine tumor by electron paramagnetic resonance
  publication-title: Magn Reson Med
– volume: 106
  start-page: 122
  year: 1995
  end-page: 130
  article-title: Development and optimization of three‐dimensional spatial EPR imaging for biological organs and tissues
  publication-title: J Magn Reson B
– volume: 20
  start-page: 1297
  year: 1987
  end-page: 6304
  article-title: ESR imaging: spatial deconvolution in the presence of an asymmertic hyperfine structure
  publication-title: J Phys C: Solid State Phys
– year: 1991
– volume: 68
  start-page: 377
  year: 1986
  end-page: 382
  article-title: Application of the convolution difference method in reconstruction techniques in EPR imaging
  publication-title: J Magn Reson
– volume: 2
  start-page: 275
  year: 1985
  end-page: 282
  article-title: One‐ and two‐dimensional EPR imaging studies on phantoms and plant specimens
  publication-title: Magn Reson Med
– start-page: 119
  year: 1991
  end-page: 126
– ident: e_1_2_6_6_2
  doi: 10.1088/0022-3719/20/36/027
– ident: e_1_2_6_15_2
  doi: 10.1006/jmrb.1995.1022
– ident: e_1_2_6_5_2
  doi: 10.1002/mrm.1910020310
– start-page: 60
  year: 1992
  ident: e_1_2_6_14_2
  article-title: Limits of deconvolution in enhancing the resolution in EPR imaging experiments
  publication-title: Meas Sci Technol
– volume-title: Fundamentals of digital image processing
  year: 1989
  ident: e_1_2_6_10_2
– ident: e_1_2_6_4_2
  doi: 10.1016/0022-2364(82)90039-7
– volume-title: Signal processing: the modern approach
  year: 1988
  ident: e_1_2_6_11_2
– ident: e_1_2_6_9_2
  doi: 10.1006/jmre.1998.1617
– start-page: 119
  volume-title: EPR imaging and in vivo EPR
  year: 1991
  ident: e_1_2_6_13_2
– ident: e_1_2_6_2_2
  doi: 10.1002/mrm.1910040410
– ident: e_1_2_6_3_2
– ident: e_1_2_6_16_2
  doi: 10.1073/pnas.96.8.4586
– volume-title: EPR imaging and in vivo EPR
  year: 1991
  ident: e_1_2_6_7_2
– volume: 68
  start-page: 377
  year: 1986
  ident: e_1_2_6_12_2
  article-title: Application of the convolution difference method in reconstruction techniques in EPR imaging
  publication-title: J Magn Reson
– ident: e_1_2_6_8_2
  doi: 10.1007/BF02353672
SSID ssj0009974
Score 1.8069292
Snippet The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of...
The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 444
SubjectTerms Algorithms
Animals
Biological and medical sciences
cutoff frequency
deconvolution
Digestive System - anatomy & histology
Electron Spin Resonance Spectroscopy - methods
EPRI
Fourier transform
image reconstruction
Imaging, Three-Dimensional
Medical sciences
Mice
Phantoms, Imaging
Title Deconvolution algorithm based on automatic cutoff frequency selection for EPR imaging
URI https://api.istex.fr/ark:/67375/WNG-4L3NZ663-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.10533
https://www.ncbi.nlm.nih.gov/pubmed/12876725
https://www.proquest.com/docview/73488006
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KRfFFa_2KH3UREV_S5vYjm8Unsa1FvENOD4sIS3az0dLenSS5Uv3rO7tJ7jipIL6FZDZkd2d2frM7-Q3AC6EsFY6rWAzSLOYFYri8xMDVcpvzQWIsNX5rYDhKjyb8_bE43oDX_b8wLT_EcsPNW0ZYr72B56beW5GGTqupL1LLPNPngKWeN39_vKKOUqplYJbcrzOK96xCCd1btlzzRdf8sF743Mi8xuEp27oWVwHPdRwbHNHhbfjWd6HNPzndXTRm1_7-g93xP_u4Bbc6gEretBp1BzbcbBtuDLsj-G24HnJGbX0XJvs-mD7vdJfkZ9_n1UnzY0q8ZyyIv7Vo5oESlli8KktSVm3m9i9Sh_o7vh2iZnLwcUxOpqFg0j2YHB58fnsUd1UaYuvBTkylMiotqZ_cknFqrGGOySIrUAdYIZ2TouBWpCpLJD5y1KZJKVXiBM5SIdl92JzNZ-4hEJOVKMuo5bngRrmcW4YRnMUor8CFJYvgVT9f2nYU5r6SxpluyZepxgHTYcAieL4U_dnydlwl9DJM-lIir059opsU-svoneYf2OgrIjL9KYKdNa1YvVIkHL2FiuBZryYa7dMfuuQzN1_U2rMHIShPI3jQas-qLQarqaQCexV04O_fqYfjYbh49O-ij-FmyDsMuYpPYLOpFu4p4qfG7ARDuQSkLRSw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTTy-8BgwwmOzEEJ8yZb5EccSXxDbKNBUqKxiQkJW4jhj2tqiNEXAX8_ZSVoVDQnxLUrOUWzf-X5nX34H8EwoQ4XlKhT7cRLyAjFcVmLgarjJ-H6UG5q7rYF0EPdG_N2JOFmDl92_MA0_xGLDzVmGX6-dgbsN6b0la-i4GrsqtYxdgQ2OQMOFXgfDJXmUUg0Hs-RupVG84xWK6N6i6Yo32nAD-8NlR2YzHKCyqWxxGfRcRbLeFR3dgi9dJ5oMlPPdeZ3vml9_8Dv-by9vw80Wo5JXjVLdgTU72YRraXsKvwlXfdqomd2F0YGLp7-36kuyi9NpdVZ_HRPnHAvibs3rqWeFJQavypKUVZO8_ZPMfAke1w6BMzn8MCRnY18z6R6Mjg6PX_fCtlBDaBzeCalUuYpL6ua3ZJzmJmeWySIpUA1YIa2VouBGxCqJJD6y1MRRKVVkBU5TIdl9WJ9MJ_YBkDwpUZZRwzPBc2UzbhgGcQYDvQLXliSAF92EadOymLtiGhe64V-mGgdM-wEL4OlC9FtD3XGZ0HM_6wuJrDp3uW5S6E-DN5r32eAzgjL9MYDtFbVYvlJEHB2GCmCn0xONJurOXbKJnc5n2hEIIS6PA9hq1GfZFuPVWFKBvfJK8Pfv1Okw9RcP_110B673jtO-7r8dvH8EN3waok9dfAzrdTW3TxBO1fm2t5rf6KUYzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTUx84TFe4bFZCCG-ZMv8iGvxCbGVAWs1FSqmCclKHHubtrZTmiLgr-fsJK2KhoT4FiXnKLbvfL-zL78DeCmUocJyFYvdtBPzAjFc5jBwNdxkfDfJDc391kCvnx4M-cdjcbwCb9p_YWp-iPmGm7eMsF57A78q3M6CNHRUjnyRWsZuwBpPEUl4RDRYcEcpVVMwS-4XGsVbWqGE7sybLjmjNT-uP3xyZDbF8XF1YYvrkOcykA2eqHsHvrV9qBNQLrZnVb5tfv1B7_ifnbwLtxuESt7WKnUPVux4A9Z7zRn8BtwMSaNmeh-Gez6a_t4oL8kuTyfleXU2It41FsTfmlWTwAlLDF45R1xZp27_JNNQgMe3Q9hM9o8G5HwUKiY9gGF3_8u7g7gp0xAbj3ZiKlWuUkf97DrGaW5yZpksOgUqASuktVIU3IhUdRKJjyw1aeKkSqzAWSokewir48nYPgaSdxzKMmp4JniubMYNwxDOYJhX4MrSieB1O1_aNBzmvpTGpa7Zl6nGAdNhwCJ4MRe9qok7rhN6FSZ9LpGVFz7TTQr9tf9e80PWP0FIpj9HsLmkFYtXioSju1ARbLVqotFA_alLNraT2VR7-iBE5WkEj2rtWbTFaDWVVGCvgg78_Tt1b9ALF0_-XXQL1o_2uvrwQ__TU7gVchBD3uIzWK3KmX2OWKrKN4PN_AaOVhd-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconvolution+algorithm+based+on+automatic+cutoff+frequency+selection+for+EPR+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=YUANMU+DENG&rft.au=GUANGLONG+HE&rft.au=KUPPUSAMY%2C+Periannan&rft.au=ZWEIER%2C+Jay+L&rft.date=2003-08-01&rft.pub=Williams+%26+Wilkins&rft.issn=0740-3194&rft.volume=50&rft.issue=2&rft.spage=444&rft.epage=448&rft_id=info:doi/10.1002%2Fmrm.10533&rft.externalDBID=n%2Fa&rft.externalDocID=15041119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon