Deconvolution algorithm based on automatic cutoff frequency selection for EPR imaging
The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from...
Saved in:
Published in | Magnetic resonance in medicine Vol. 50; no. 2; pp. 444 - 448 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2003
Williams & Wilkins |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 |
DOI | 10.1002/mrm.10533 |
Cover
Abstract | The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division‐by‐zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back‐projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm. Magn Reson Med 50:444–448, 2003. © 2003 Wiley‐Liss, Inc. |
---|---|
AbstractList | The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division-by-zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back-projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm.The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division-by-zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back-projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm. The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division-by-zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back-projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm. The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of spins from the measured projection data. The commonly used Fourier transform (FT) deconvolution algorithm is easy to implement but suffers from the division‐by‐zero problem. As a result, a couple of parameters are used to control the deconvolution performance. However, this is inconvenient and the deconvolution results are subject to the experience of the operators. In the present work we examined FT deconvolution for EPRI, and proposed an automatic algorithm to determine the cutoff frequency by calculating the piecewise variance of the division result of the Fourier amplitude spectra. The deconvolution algorithm and the filtered back‐projection image reconstruction algorithm were implemented and validated using 3D phantom and in vivo imaging data. It was clearly observed that the image resolution improved after deconvolution with the proposed algorithm. Magn Reson Med 50:444–448, 2003. © 2003 Wiley‐Liss, Inc. |
Author | Deng, Yuanmu Zweier, Jay L. He, Guanglong Kuppusamy, Periannan |
Author_xml | – sequence: 1 givenname: Yuanmu surname: Deng fullname: Deng, Yuanmu organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio – sequence: 2 givenname: Guanglong surname: He fullname: He, Guanglong organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio – sequence: 3 givenname: Periannan surname: Kuppusamy fullname: Kuppusamy, Periannan organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio – sequence: 4 givenname: Jay L. surname: Zweier fullname: Zweier, Jay L. email: zweier-01@medctr.osu.edu organization: Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15041119$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12876725$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi1URLeFA38A5QJSD6H-jOMjKqUgbQsqVEhcLMcZLwYnLnZS2H-Pt7stEoKTR_bzjMbzHqC9MY6A0FOCXxKM6fGQhlIIxh6gBRGU1lQovocWWHJcM6L4PjrI-RvGWCnJH6F9QlvZSCoW6Oo12DjexDBPPo6VCauY_PR1qDqToa82V_MUBzN5W9lSOVe5BD9mGO26yhDA3noupur0w2XlB7Py4-oxeuhMyPBkdx6iqzenn07e1sv3Z-9OXi1ry1rFaipVpxpHuTXcMU472zFgsm97AZz1EkCKnlvRqBbL8gTUNthJhUGUr_SSHaIX277XKZaZ8qQHny2EYEaIc9aS8bbFuCngsx04dwP0-jqVSdNa3y2iAM93gMnWBJfMaH3-wwnMCSGqcMdbzqaYcwKnrZ_MZgdTMj5ogvUmEl0i0beRFOPoL-O-6T_YXfefPsD6_6A-vzy_M-qt4fMEv-4Nk77rRjIp9OeLM82X7OJL0zD9kf0GXfypgQ |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1016_j_jmr_2020_106812 crossref_primary_10_1007_s00723_021_01443_x crossref_primary_10_1016_j_jmr_2008_12_014 crossref_primary_10_1016_j_jmr_2011_01_027 crossref_primary_10_1016_j_jmr_2005_01_019 crossref_primary_10_1016_j_jmr_2007_01_001 crossref_primary_10_3390_ijgi9120731 crossref_primary_10_1002_mrm_24250 crossref_primary_10_1007_s11042_015_2812_1 crossref_primary_10_1016_j_jmr_2007_09_021 crossref_primary_10_1016_j_jmr_2004_02_012 crossref_primary_10_1002_mrc_4330 crossref_primary_10_1002_mrm_20967 crossref_primary_10_1016_j_jmr_2005_04_007 crossref_primary_10_1063_1_2216894 |
Cites_doi | 10.1088/0022-3719/20/36/027 10.1006/jmrb.1995.1022 10.1002/mrm.1910020310 10.1016/0022-2364(82)90039-7 10.1006/jmre.1998.1617 10.1002/mrm.1910040410 10.1073/pnas.96.8.4586 10.1007/BF02353672 |
ContentType | Journal Article |
Copyright | Copyright © 2003 Wiley‐Liss, Inc. 2003 INIST-CNRS Copyright 2003 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2003 Wiley‐Liss, Inc. – notice: 2003 INIST-CNRS – notice: Copyright 2003 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mrm.10533 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 448 |
ExternalDocumentID | 12876725 15041119 10_1002_mrm_10533 MRM10533 ark_67375_WNG_4L3NZ663_S |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: NIH funderid: EB000306; EB00254 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3893-279b96f24ca4f342bcb3e37d8d5e43d7ee75d4c569807b3ee2c60f790e5009d73 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Thu Sep 04 21:19:56 EDT 2025 Wed Feb 19 01:33:31 EST 2025 Mon Jul 21 09:16:57 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Tue Jul 01 04:19:30 EDT 2025 Wed Jan 22 16:45:39 EST 2025 Tue Sep 09 05:31:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | cutoff frequency deconvolution Fourier transform EPRI image reconstruction |
Language | English |
License | CC BY 4.0 Copyright 2003 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3893-279b96f24ca4f342bcb3e37d8d5e43d7ee75d4c569807b3ee2c60f790e5009d73 |
Notes | istex:90FB006DB8A01DE2F0210FE472CA19D0435326CA NIH - No. EB000306; No. EB00254 ArticleID:MRM10533 ark:/67375/WNG-4L3NZ663-S ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 12876725 |
PQID | 73488006 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_73488006 pubmed_primary_12876725 pascalfrancis_primary_15041119 crossref_citationtrail_10_1002_mrm_10533 crossref_primary_10_1002_mrm_10533 wiley_primary_10_1002_mrm_10533_MRM10533 istex_primary_ark_67375_WNG_4L3NZ663_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2003 |
PublicationDateYYYYMMDD | 2003-08-01 |
PublicationDate_xml | – month: 08 year: 2003 text: August 2003 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Baltimore, MD – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2003 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Williams & Wilkins |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Williams & Wilkins |
References | Eaton SS, Eaton GR, Ohno K. EPR imaging and in vivo EPR. Boca Raton: CRC Press; 1991. Fujii H, Berliner LJ. One- and two-dimensional EPR imaging studies on phantoms and plant specimens. Magn Reson Med 1985; 2: 275-282. Goez M, Heun R. Reference deconvolution in the frequency domain. J Magn Reson 1999; 136: 69-75. Sotgiu A, Gazzillo D, Momo F. ESR imaging: spatial deconvolution in the presence of an asymmertic hyperfine structure. J Phys C: Solid State Phys 1987; 20: 1297-6304. Jain AK. Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 1989. Candy JV. Signal processing: the modern approach. New York: McGraw-Hill Book Company; 1988. He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 1999; 96: 4586-4591. Berliner LJ, Fujii H, Wan XM, Lukiewicz SJ. Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med 1987; 4: 380-384. Madden FN, Godfrey KR, Chappell MJ, Hovorka R, Bates RA. A comparison of six deconvolution techniques. J Pharmacokinet Biopharm 1996; 24: 283-299. Ohno K. ESR imaging: a deconvolution method for hyperfine patterns. J Magn Reson 1982; 50: 145-150. Momo F, Colacicchi S, Sotgiu A. Limits of deconvolution in enhancing the resolution in EPR imaging experiments. Meas Sci Technol 1992: 60-64. Fujii H, Berliner LJ. Application of the convolution difference method in reconstruction techniques in EPR imaging. J Magn Reson 1986; 68: 377-382. Kuppusamy P, Chzhan M, Zweier JL. Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues. J Magn Reson B 1995; 106: 122-130. 1987; 20 1982; 50 1985; 2 1987; 4 1986; 68 1995; 106 1985 1999; 136 1999; 96 1992 1991 1996; 24 1989 1988 Jain AK (e_1_2_6_10_2) 1989 Eaton SS (e_1_2_6_7_2) 1991 Candy JV (e_1_2_6_11_2) 1988 Ewert U (e_1_2_6_13_2) 1991 e_1_2_6_8_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 Fujii H (e_1_2_6_12_2) 1986; 68 e_1_2_6_2_2 e_1_2_6_16_2 Momo F (e_1_2_6_14_2) 1992 e_1_2_6_15_2 |
References_xml | – reference: Sotgiu A, Gazzillo D, Momo F. ESR imaging: spatial deconvolution in the presence of an asymmertic hyperfine structure. J Phys C: Solid State Phys 1987; 20: 1297-6304. – reference: Madden FN, Godfrey KR, Chappell MJ, Hovorka R, Bates RA. A comparison of six deconvolution techniques. J Pharmacokinet Biopharm 1996; 24: 283-299. – reference: Goez M, Heun R. Reference deconvolution in the frequency domain. J Magn Reson 1999; 136: 69-75. – reference: Fujii H, Berliner LJ. One- and two-dimensional EPR imaging studies on phantoms and plant specimens. Magn Reson Med 1985; 2: 275-282. – reference: Ohno K. ESR imaging: a deconvolution method for hyperfine patterns. J Magn Reson 1982; 50: 145-150. – reference: Eaton SS, Eaton GR, Ohno K. EPR imaging and in vivo EPR. Boca Raton: CRC Press; 1991. – reference: Jain AK. Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 1989. – reference: Momo F, Colacicchi S, Sotgiu A. Limits of deconvolution in enhancing the resolution in EPR imaging experiments. Meas Sci Technol 1992: 60-64. – reference: Candy JV. Signal processing: the modern approach. New York: McGraw-Hill Book Company; 1988. – reference: Fujii H, Berliner LJ. Application of the convolution difference method in reconstruction techniques in EPR imaging. J Magn Reson 1986; 68: 377-382. – reference: Kuppusamy P, Chzhan M, Zweier JL. Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues. J Magn Reson B 1995; 106: 122-130. – reference: Berliner LJ, Fujii H, Wan XM, Lukiewicz SJ. Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med 1987; 4: 380-384. – reference: He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 1999; 96: 4586-4591. – volume: 24 start-page: 283 year: 1996 end-page: 299 article-title: A comparison of six deconvolution techniques publication-title: J Pharmacokinet Biopharm – volume: 96 start-page: 4586 year: 1999 end-page: 4591 article-title: Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging publication-title: Proc Natl Acad Sci USA – start-page: 60 year: 1992 end-page: 64 article-title: Limits of deconvolution in enhancing the resolution in EPR imaging experiments publication-title: Meas Sci Technol – start-page: 34 year: 1985 end-page: 47 – volume: 136 start-page: 69 year: 1999 end-page: 75 article-title: Reference deconvolution in the frequency domain publication-title: J Magn Reson – year: 1988 – volume: 50 start-page: 145 year: 1982 end-page: 150 article-title: ESR imaging: a deconvolution method for hyperfine patterns publication-title: J Magn Reson – year: 1989 – volume: 4 start-page: 380 year: 1987 end-page: 384 article-title: Feasibility study of imaging a living murine tumor by electron paramagnetic resonance publication-title: Magn Reson Med – volume: 106 start-page: 122 year: 1995 end-page: 130 article-title: Development and optimization of three‐dimensional spatial EPR imaging for biological organs and tissues publication-title: J Magn Reson B – volume: 20 start-page: 1297 year: 1987 end-page: 6304 article-title: ESR imaging: spatial deconvolution in the presence of an asymmertic hyperfine structure publication-title: J Phys C: Solid State Phys – year: 1991 – volume: 68 start-page: 377 year: 1986 end-page: 382 article-title: Application of the convolution difference method in reconstruction techniques in EPR imaging publication-title: J Magn Reson – volume: 2 start-page: 275 year: 1985 end-page: 282 article-title: One‐ and two‐dimensional EPR imaging studies on phantoms and plant specimens publication-title: Magn Reson Med – start-page: 119 year: 1991 end-page: 126 – ident: e_1_2_6_6_2 doi: 10.1088/0022-3719/20/36/027 – ident: e_1_2_6_15_2 doi: 10.1006/jmrb.1995.1022 – ident: e_1_2_6_5_2 doi: 10.1002/mrm.1910020310 – start-page: 60 year: 1992 ident: e_1_2_6_14_2 article-title: Limits of deconvolution in enhancing the resolution in EPR imaging experiments publication-title: Meas Sci Technol – volume-title: Fundamentals of digital image processing year: 1989 ident: e_1_2_6_10_2 – ident: e_1_2_6_4_2 doi: 10.1016/0022-2364(82)90039-7 – volume-title: Signal processing: the modern approach year: 1988 ident: e_1_2_6_11_2 – ident: e_1_2_6_9_2 doi: 10.1006/jmre.1998.1617 – start-page: 119 volume-title: EPR imaging and in vivo EPR year: 1991 ident: e_1_2_6_13_2 – ident: e_1_2_6_2_2 doi: 10.1002/mrm.1910040410 – ident: e_1_2_6_3_2 – ident: e_1_2_6_16_2 doi: 10.1073/pnas.96.8.4586 – volume-title: EPR imaging and in vivo EPR year: 1991 ident: e_1_2_6_7_2 – volume: 68 start-page: 377 year: 1986 ident: e_1_2_6_12_2 article-title: Application of the convolution difference method in reconstruction techniques in EPR imaging publication-title: J Magn Reson – ident: e_1_2_6_8_2 doi: 10.1007/BF02353672 |
SSID | ssj0009974 |
Score | 1.8069292 |
Snippet | The large line‐width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of... The large line-width associated with electron paramagnetic resonance imaging (EPRI) requires effective algorithms to deconvolve the true spatial profiles of... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 444 |
SubjectTerms | Algorithms Animals Biological and medical sciences cutoff frequency deconvolution Digestive System - anatomy & histology Electron Spin Resonance Spectroscopy - methods EPRI Fourier transform image reconstruction Imaging, Three-Dimensional Medical sciences Mice Phantoms, Imaging |
Title | Deconvolution algorithm based on automatic cutoff frequency selection for EPR imaging |
URI | https://api.istex.fr/ark:/67375/WNG-4L3NZ663-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.10533 https://www.ncbi.nlm.nih.gov/pubmed/12876725 https://www.proquest.com/docview/73488006 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KRfFFa_2KH3UREV_S5vYjm8Unsa1FvENOD4sIS3az0dLenSS5Uv3rO7tJ7jipIL6FZDZkd2d2frM7-Q3AC6EsFY6rWAzSLOYFYri8xMDVcpvzQWIsNX5rYDhKjyb8_bE43oDX_b8wLT_EcsPNW0ZYr72B56beW5GGTqupL1LLPNPngKWeN39_vKKOUqplYJbcrzOK96xCCd1btlzzRdf8sF743Mi8xuEp27oWVwHPdRwbHNHhbfjWd6HNPzndXTRm1_7-g93xP_u4Bbc6gEretBp1BzbcbBtuDLsj-G24HnJGbX0XJvs-mD7vdJfkZ9_n1UnzY0q8ZyyIv7Vo5oESlli8KktSVm3m9i9Sh_o7vh2iZnLwcUxOpqFg0j2YHB58fnsUd1UaYuvBTkylMiotqZ_cknFqrGGOySIrUAdYIZ2TouBWpCpLJD5y1KZJKVXiBM5SIdl92JzNZ-4hEJOVKMuo5bngRrmcW4YRnMUor8CFJYvgVT9f2nYU5r6SxpluyZepxgHTYcAieL4U_dnydlwl9DJM-lIir059opsU-svoneYf2OgrIjL9KYKdNa1YvVIkHL2FiuBZryYa7dMfuuQzN1_U2rMHIShPI3jQas-qLQarqaQCexV04O_fqYfjYbh49O-ij-FmyDsMuYpPYLOpFu4p4qfG7ARDuQSkLRSw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTTy-8BgwwmOzEEJ8yZb5EccSXxDbKNBUqKxiQkJW4jhj2tqiNEXAX8_ZSVoVDQnxLUrOUWzf-X5nX34H8EwoQ4XlKhT7cRLyAjFcVmLgarjJ-H6UG5q7rYF0EPdG_N2JOFmDl92_MA0_xGLDzVmGX6-dgbsN6b0la-i4GrsqtYxdgQ2OQMOFXgfDJXmUUg0Hs-RupVG84xWK6N6i6Yo32nAD-8NlR2YzHKCyqWxxGfRcRbLeFR3dgi9dJ5oMlPPdeZ3vml9_8Dv-by9vw80Wo5JXjVLdgTU72YRraXsKvwlXfdqomd2F0YGLp7-36kuyi9NpdVZ_HRPnHAvibs3rqWeFJQavypKUVZO8_ZPMfAke1w6BMzn8MCRnY18z6R6Mjg6PX_fCtlBDaBzeCalUuYpL6ua3ZJzmJmeWySIpUA1YIa2VouBGxCqJJD6y1MRRKVVkBU5TIdl9WJ9MJ_YBkDwpUZZRwzPBc2UzbhgGcQYDvQLXliSAF92EadOymLtiGhe64V-mGgdM-wEL4OlC9FtD3XGZ0HM_6wuJrDp3uW5S6E-DN5r32eAzgjL9MYDtFbVYvlJEHB2GCmCn0xONJurOXbKJnc5n2hEIIS6PA9hq1GfZFuPVWFKBvfJK8Pfv1Okw9RcP_110B673jtO-7r8dvH8EN3waok9dfAzrdTW3TxBO1fm2t5rf6KUYzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTUx84TFe4bFZCCG-ZMv8iGvxCbGVAWs1FSqmCclKHHubtrZTmiLgr-fsJK2KhoT4FiXnKLbvfL-zL78DeCmUocJyFYvdtBPzAjFc5jBwNdxkfDfJDc391kCvnx4M-cdjcbwCb9p_YWp-iPmGm7eMsF57A78q3M6CNHRUjnyRWsZuwBpPEUl4RDRYcEcpVVMwS-4XGsVbWqGE7sybLjmjNT-uP3xyZDbF8XF1YYvrkOcykA2eqHsHvrV9qBNQLrZnVb5tfv1B7_ifnbwLtxuESt7WKnUPVux4A9Z7zRn8BtwMSaNmeh-Gez6a_t4oL8kuTyfleXU2It41FsTfmlWTwAlLDF45R1xZp27_JNNQgMe3Q9hM9o8G5HwUKiY9gGF3_8u7g7gp0xAbj3ZiKlWuUkf97DrGaW5yZpksOgUqASuktVIU3IhUdRKJjyw1aeKkSqzAWSokewir48nYPgaSdxzKMmp4JniubMYNwxDOYJhX4MrSieB1O1_aNBzmvpTGpa7Zl6nGAdNhwCJ4MRe9qok7rhN6FSZ9LpGVFz7TTQr9tf9e80PWP0FIpj9HsLmkFYtXioSju1ARbLVqotFA_alLNraT2VR7-iBE5WkEj2rtWbTFaDWVVGCvgg78_Tt1b9ALF0_-XXQL1o_2uvrwQ__TU7gVchBD3uIzWK3KmX2OWKrKN4PN_AaOVhd- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconvolution+algorithm+based+on+automatic+cutoff+frequency+selection+for+EPR+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=YUANMU+DENG&rft.au=GUANGLONG+HE&rft.au=KUPPUSAMY%2C+Periannan&rft.au=ZWEIER%2C+Jay+L&rft.date=2003-08-01&rft.pub=Williams+%26+Wilkins&rft.issn=0740-3194&rft.volume=50&rft.issue=2&rft.spage=444&rft.epage=448&rft_id=info:doi/10.1002%2Fmrm.10533&rft.externalDBID=n%2Fa&rft.externalDocID=15041119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |