Foliar herbivory‐enhanced mycorrhization is associated with increased levels of lipids in root and root exudates
Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood. Here we explored the impacts of foliar herbivory and mechan...
Saved in:
Published in | The Journal of ecology Vol. 112; no. 4; pp. 701 - 716 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-0477 1365-2745 |
DOI | 10.1111/1365-2745.14272 |
Cover
Loading…
Abstract | Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood.
Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed (Ambrosia artemisiifolia) and the role of root metabolites in mediating these effects.
Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates.
Synthesis. We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses.
摘要
植食性昆虫通过改变根系碳库影响植物‐菌根真菌互作,然而对其背后的具体代谢变化所知甚少。
本研究探讨了昆虫取食与机械损伤对豚草菌根真菌定殖及群落组成的影响,解析了根系代谢物在其中的作用。
昆虫取食增加豚草菌根定殖率,然而机械损伤仅在与昆虫唾液结合时增加菌根真菌定殖率。同时,昆虫取食后豚草根内、根表和根际球囊霉属(Glomus)相对丰度增加。昆虫取食增加根系脂肪酸含量,但减少酚类物质含量,这两类物质与菌根定殖率显著相关。添加昆虫取食后的豚草根系分泌物能增加菌根定殖率。而且,广靶代谢组结果表明昆虫取食增加根系分泌物中脂类物质的相对丰度,降低酚类物质的相对丰度。
本研究发现植物遭受昆虫危害后能够增强它们与菌根真菌的联系,这可能与根系脂类物质的增加有关。我们的发现强调脂类物质在地上‐地下生物互作中的作用,为植物‐菌根真菌对生物胁迫的协同响应提供新视角。
The authors show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. These findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. |
---|---|
AbstractList | Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood.Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed (Ambrosia artemisiifolia) and the role of root metabolites in mediating these effects.Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates.Synthesis. We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood. Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed ( Ambrosia artemisiifolia ) and the role of root metabolites in mediating these effects. Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates. Synthesis . We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. 植食性昆虫通过改变根系碳库影响植物‐菌根真菌互作,然而对其背后的具体代谢变化所知甚少。 本研究探讨了昆虫取食与机械损伤对豚草菌根真菌定殖及群落组成的影响,解析了根系代谢物在其中的作用。 昆虫取食增加豚草菌根定殖率,然而机械损伤仅在与昆虫唾液结合时增加菌根真菌定殖率。同时,昆虫取食后豚草根内、根表和根际球囊霉属( Glomus )相对丰度增加。昆虫取食增加根系脂肪酸含量,但减少酚类物质含量,这两类物质与菌根定殖率显著相关。添加昆虫取食后的豚草根系分泌物能增加菌根定殖率。而且,广靶代谢组结果表明昆虫取食增加根系分泌物中脂类物质的相对丰度,降低酚类物质的相对丰度。 本研究发现植物遭受昆虫危害后能够增强它们与菌根真菌的联系,这可能与根系脂类物质的增加有关。我们的发现强调脂类物质在地上‐地下生物互作中的作用,为植物‐菌根真菌对生物胁迫的协同响应提供新视角。 Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood. Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed (Ambrosia artemisiifolia) and the role of root metabolites in mediating these effects. Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates. Synthesis. We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. 摘要 植食性昆虫通过改变根系碳库影响植物‐菌根真菌互作,然而对其背后的具体代谢变化所知甚少。 本研究探讨了昆虫取食与机械损伤对豚草菌根真菌定殖及群落组成的影响,解析了根系代谢物在其中的作用。 昆虫取食增加豚草菌根定殖率,然而机械损伤仅在与昆虫唾液结合时增加菌根真菌定殖率。同时,昆虫取食后豚草根内、根表和根际球囊霉属(Glomus)相对丰度增加。昆虫取食增加根系脂肪酸含量,但减少酚类物质含量,这两类物质与菌根定殖率显著相关。添加昆虫取食后的豚草根系分泌物能增加菌根定殖率。而且,广靶代谢组结果表明昆虫取食增加根系分泌物中脂类物质的相对丰度,降低酚类物质的相对丰度。 本研究发现植物遭受昆虫危害后能够增强它们与菌根真菌的联系,这可能与根系脂类物质的增加有关。我们的发现强调脂类物质在地上‐地下生物互作中的作用,为植物‐菌根真菌对生物胁迫的协同响应提供新视角。 The authors show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. These findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. |
Author | Ding, Jianqing Biere, Arjen Zhao, Yige Xing, Zhenlong Zhang, Zhongyue Liu, Siqiao Shi, Yu |
Author_xml | – sequence: 1 givenname: Zhenlong orcidid: 0000-0001-5567-1264 surname: Xing fullname: Xing, Zhenlong organization: Henan University – sequence: 2 givenname: Zhongyue surname: Zhang fullname: Zhang, Zhongyue organization: Henan University – sequence: 3 givenname: Yige surname: Zhao fullname: Zhao, Yige organization: Henan University – sequence: 4 givenname: Arjen surname: Biere fullname: Biere, Arjen organization: Netherlands Institute of Ecology (NIOO‐KNAW) – sequence: 5 givenname: Siqiao surname: Liu fullname: Liu, Siqiao organization: University of Tartu – sequence: 6 givenname: Yu surname: Shi fullname: Shi, Yu email: yshi@henu.edu.cn organization: Henan University – sequence: 7 givenname: Jianqing surname: Ding fullname: Ding, Jianqing email: jding@henu.edu.cn organization: Henan University |
BookMark | eNqFkc9OGzEQxq0KpCaUc6-WeuGyYfyPXR-riNBWSL20Z8vxzipGjp3aGyCceASesU9Sh6AeOIAvY898v_Homyk5iikiIZ8ZzFg950xcqIa3Us2Y5C3_QCb_M0dkAsB5A7JtP5JpKTcAcNEqmJC8SMHbTFeYl_425d3fxyeMKxsd9nS9cynnlX-wo0-R-kJtKcl5O9binR9X1EeX0Zb6DHiLodA00OA3vi-1RHNKI7WxP1zwfttXsnwix4MNBU9f4gn5vbj8Nf_WXP-8-j7_et040Wne9Fy6Jere9iAZKq6ZY6JlHevcUotBW1TLlknQmkk1dAKc1r3spJCgnKrxhJwd-m5y-rPFMpq1Lw5DsBHTthjBAYRohVBV-uWV9CZtc6zTGQECtNAC9g3VQeVyKiXjYJwfn60Zs_XBMDD7TZi972bvu3neROXOX3Gb7Nc2794gXn668wF378nNj8v5gfsHeQGcRg |
CitedBy_id | crossref_primary_10_1007_s12038_024_00482_3 crossref_primary_10_1111_1365_2745_14272 crossref_primary_10_1038_s44358_025_00030_3 |
Cites_doi | 10.1038/ncomms1046 10.1007/s00442‐011‐1968‐2 10.1016/j.rhisph.2019.100167 10.1146/annurev.ecolsys.38.091206.095822 10.1111/j.1462‐2920.2009.02099.x 10.1038/nmeth.f.303 10.1016/j.tplants.2020.07.008 10.1021/ac202450g 10.1016/j.pbi.2022.102227 10.1111/ele.14000 10.1021/acs.jafc.2c01748 10.1126/science.aan0081 10.1016/j.rhisph.2018.06.004 10.1016/j.tplants.2016.01.008 10.1007/978-3-319-57849-1_1 10.3390/12071290 10.1111/j.1469‐8137.1990.tb00476.x 10.3389/fpls.2019.00157 10.1046/j.0028‐646X.2001.00312.x 10.1111/1365‐2745.13019 10.1111/nph.16890 10.1039/C5AN01816A 10.1603/022.038.0111 10.1128/AEM.64.12.5004‐5007.1998 10.1111/1365‐2435.14006 10.1146/annurev‐phyto‐080615‐100245 10.3390/metabo11060357 10.1007/978-3-540-38364-2_12 10.1016/j.tplants.2010.05.007 10.1016/j.soilbio.2022.108723 10.1111/j.1365‐2435.2005.01037.x 10.1111/j.1469‐8137.1967.tb06016.x 10.1111/nph.18289 10.1104/pp.107.112490 10.1016/j.mib.2019.10.003 10.5504/BBEQ.2011.0020 10.1111/j.1365‐3040.2012.02495.x 10.1126/science.aam9970 10.1016/j.tplants.2013.05.001 10.1111/nph.13337 10.1126/science.1146487 10.1146/annurev‐phyto‐082712‐102340 10.1016/0169‐5347(94)90290‐9 10.1016/j.jtusci.2014.01.003 10.1038/s41467‐018‐05122‐7 10.2307/1941120 10.1038/s41467‐020‐15586‐1 10.1016/j.cub.2023.05.033 10.1016/j.tplants.2009.08.006 10.1111/j.1365‐2745.2010.01658.x 10.1093/aobpla/plaa002 10.1111/nph.18435 10.1007/s11104‐011‐0985‐6 10.1016/j.envexpbot.2019.103807 10.1016/j.tree.2020.08.007 10.1073/pnas.2006948117 10.7554/eLife.29107 10.1038/s41477‐022‐01201‐2 10.1093/bioinformatics/btq461 10.1093/aobpla/plz003 10.1111/1365‐2435.14461 10.1093/jpe/rtab087 10.1016/B978-012370526-6.50006-4 10.1146/annurev‐arplant‐102820‐124504 10.1016/j.tplants.2022.04.009 10.1111/1365-2745.14272 10.1016/j.agee.2017.04.003 10.1016/j.cub.2020.04.016 10.1021/ac051437y 10.1093/pcp/pcac113 10.1016/j.tplants.2021.08.004 10.1111/nph.17746 10.1146/annurev.arplant.57.032905.105159 10.1016/j.cub.2020.02.087 10.1039/c7cs00343a 10.1007/s00572‐006‐0078‐1 10.1111/1744‐7917.12004 10.1038/s41396‐021‐00894‐1 10.1016/j.pbi.2015.06.008 10.1146/annurev.arplant.59.032607.092825 10.1016/j.rama.2019.02.007 10.1007/s00572‐003‐0286‐x 10.1104/pp.15.01405 10.1007/BF00582238 10.1146/annurev.ento.54.110807.090614 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Journal of Ecology © 2024 British Ecological Society. Journal of Ecology © 2024 British Ecological Society |
Copyright_xml | – notice: 2024 The Authors. Journal of Ecology © 2024 British Ecological Society. – notice: Journal of Ecology © 2024 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.14272 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 716 |
ExternalDocumentID | 10_1111_1365_2745_14272 JEC14272 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Estonian Research Council grants funderid: PRG1836 – fundername: Natural Science Foundation of Henan funderid: 222300420035 – fundername: National Key Research and Development Program of China funderid: 2021YFD1900100; 2021YFD1500300 – fundername: National Natural Science Foundation of China funderid: 32301323; U21A20190 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABTAH ABTLG ABXSQ ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFXHP AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABAWQ ABSQW ACHJO AEYWJ AGHNM AGUYK AGYGG CITATION 7QG 7SN 7SS 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3892-d24cbe9dad041e5291c1371818cb93f9ae5b714099145f830c99d4843405c5843 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:39:42 EDT 2025 Fri Jul 25 09:14:55 EDT 2025 Tue Jul 01 00:44:28 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Mon Feb 10 09:20:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3892-d24cbe9dad041e5291c1371818cb93f9ae5b714099145f830c99d4843405c5843 |
Notes | Zhenlong Xing and Zhongyue Zhang contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5567-1264 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.14272 |
PQID | 3030939304 |
PQPubID | 37508 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3200337335 proquest_journals_3030939304 crossref_citationtrail_10_1111_1365_2745_14272 crossref_primary_10_1111_1365_2745_14272 wiley_primary_10_1111_1365_2745_14272_JEC14272 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 12 2015; 140 2017; 6 2010; 98 2010; 15 2023; 33 2022; 171 2002; 153 2022; 70 2006; 78 1967; 66 2019; 11 2022; 73 2019; 10 2013; 20 2022; 67 2022; 25 2022; 63 2020; 12 2020; 11 2008; 146 2024 2024; 38 2017; 356 2019; 166 2022; 27 1996; 107 2018; 47 2007; 38 2013; 18 2018; 6 2009; 14 2018; 9 2010; 26 2010; 1 2009; 54 2022; 36 2021; 232 2011; 25 2014; 52 2017; 243 2014; 8 2010; 7 2011; 167 2019; 72 2006; 57 2015; 169 2006; 17 1991; 72 2021; 229 2016; 54 2008; 59 2008 2020; 35 2015; 207 2002 2019; 107 2012; 35 2007; 12 1998; 64 2022; 236 1994; 9 2015; 26 2021; 15 2012; 352 2005; 19 1990; 115 2021; 11 2020; 30 2020 2004; 14 2022; 8 2016; 21 2019; 49 2020; 117 2020; 25 2022; 15 2017 2007; 318 2009; 38 2012; 84 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Burnham K. P. (e_1_2_10_9_1) 2002 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 352 start-page: 143 year: 2012 end-page: 156 article-title: The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe publication-title: Plant and Soil – volume: 20 start-page: 286 year: 2013 end-page: 296 article-title: Emerging role of roots in plant responses to aboveground insect herbivory publication-title: Insect Science – volume: 243 start-page: 27 year: 2017 end-page: 33 article-title: Longterm effects of grazing on arbuscular mycorrhizal fungi publication-title: Agriculture Ecosystems & Environment – volume: 54 start-page: 323 year: 2009 end-page: 342 article-title: Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context publication-title: Annual Review of Entomology – volume: 107 start-page: 87 year: 1996 end-page: 94 article-title: Herbivore‐induced changes in plant carbon allocation: Assessment of below‐ground C fluxes using carbon‐14 publication-title: Oecologia – volume: 19 start-page: 886 year: 2005 end-page: 896 article-title: Defoliation‐induced changes in carbon allocation and root soluble carbon concentration in field‐grown plants: Do they affect carbon availability, microbes and animal trophic groups in soil? publication-title: Functional Ecology – volume: 15 start-page: 581 year: 2022 end-page: 595 article-title: Arbuscular mycorrhizal fungi enhance the growth of the exotic species publication-title: Journal of Plant Ecology – volume: 67 year: 2022 article-title: Plant secondary metabolites altering root microbiome composition and function publication-title: Current Opinion in Plant Biology – volume: 356 start-page: 1175 year: 2017 end-page: 1178 article-title: Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant publication-title: Science – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 12 start-page: 2165 year: 2010 end-page: 2179 article-title: Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land‐use gradient using a pyrosequencing approach publication-title: Environmental Microbiology – volume: 98 start-page: 745 year: 2010 end-page: 753 article-title: Does herbivory really suppress mycorrhiza? A meta‐analysis publication-title: Journal of Ecology – volume: 78 start-page: 779 year: 2006 end-page: 787 article-title: XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification publication-title: Analytical Chemistry – volume: 38 start-page: 259 year: 2024 end-page: 271 article-title: Foliar herbivory modifies arbuscular mycorrhizal fungal colonization likely through altering root flavonoids publication-title: Functional Ecology – volume: 64 start-page: 5004 year: 1998 end-page: 5007 article-title: Ink and vinegar, a simple staining technique for arbuscular‐mycorrhizal fungi publication-title: Applied and Environmental Microbiology – year: 2024 – volume: 35 start-page: 1110 year: 2020 end-page: 1118 article-title: Surplus carbon drives allocation and plant‐soil interactions publication-title: Trends in Ecology & Evolution – volume: 8 start-page: 216 year: 2014 end-page: 224 article-title: Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant publication-title: Journal of Taibah University for Science – volume: 38 start-page: 541 year: 2007 end-page: 566 article-title: The evolution of resistance and tolerance to herbivores publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 12 start-page: 1290 year: 2007 end-page: 1306 article-title: Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant‐fungus interactions publication-title: Molecules – volume: 8 start-page: 887 year: 2022 end-page: 896 article-title: Root‐secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness publication-title: Nature Plants – volume: 38 start-page: 93 year: 2009 end-page: 102 article-title: Mycorrhizal fungal‐plant‐insect interactions: The importance of a community approach publication-title: Environmental Entomology – volume: 356 start-page: 1172 year: 2017 end-page: 1175 article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi publication-title: Science – volume: 25 start-page: 2222 year: 2011 end-page: 2227 article-title: Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from L. var. , F. (L.) Reichenb publication-title: Biotechnology & Biotechnological Equipment – volume: 14 start-page: 653 year: 2009 end-page: 659 article-title: The underestimated role of roots in defense against leaf attackers publication-title: Trends in Plant Science – volume: 140 start-page: 7955 year: 2015 end-page: 7964 article-title: Multiscale peak detection in wavelet space publication-title: Analyst – volume: 72 start-page: 1472 year: 1991 end-page: 1483 article-title: Source‐sink carbon relations in two ecotypes in response to herbivory publication-title: Ecology – volume: 15 start-page: 1919 year: 2021 end-page: 1930 article-title: Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant publication-title: ISME Journal – volume: 14 start-page: 363 year: 2004 end-page: 373 article-title: Defoliation effects on the community structure of arbuscular mycorrhizal fungi based on 18S rDNA sequences publication-title: Mycorrhiza – volume: 70 start-page: 6658 year: 2022 end-page: 6669 article-title: Chemo‐ecological insights into the use of the non‐host plant vegetable black‐jack to protect two susceptible solanaceous crops from root‐knot nematode parasitism publication-title: Journal of Agricultural and Food Chemistry – volume: 26 start-page: 100 year: 2015 end-page: 105 article-title: Plant‐mediated ‘apparent effects’ between mycorrhiza and insect herbivores publication-title: Current Opinion in Plant Biology – volume: 146 start-page: 845 year: 2008 end-page: 851 article-title: Why does herbivore attack reconfigure primary metabolism? publication-title: Plant Physiology – volume: 25 start-page: 1215 year: 2020 end-page: 1226 article-title: Ménage à trois: Unraveling the mechanisms regulating plant–microbe–arthropod interactions publication-title: Trends in Plant Science – volume: 1 start-page: 48 year: 2010 article-title: Mechanisms underlying beneficial plant‐fungus interactions in mycorrhizal symbiosis publication-title: Nature Communications – volume: 27 start-page: 180 year: 2022 end-page: 190 article-title: Modulators or facilitators? Roles of lipids in plant root‐microbe interactions publication-title: Trends in Plant Science – start-page: 117 year: 2008 end-page: 144 – volume: 6 year: 2017 article-title: Lipid transfer from plants to arbuscular mycorrhiza fungi publication-title: eLife – volume: 15 start-page: 507 year: 2010 end-page: 514 article-title: Helping plants to deal with insects: The role of beneficial soil‐borne microbes publication-title: Trends in Plant Science – volume: 232 start-page: 2475 year: 2021 end-page: 2490 article-title: Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage‐insect interactions through plant‐soil feedback publication-title: New Phytologist – volume: 9 year: 2018 article-title: Root exudate metabolites drive plant‐soil feedbacks on growth and defense by shaping the rhizosphere microbiota publication-title: Nature Communications – volume: 66 start-page: 371 year: 1967 end-page: 378 article-title: Carbohydrate translocation in orchid mycorrhizal fungi publication-title: New Phytologist – volume: 318 start-page: 265 year: 2007 end-page: 268 article-title: Lyso‐phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis publication-title: Science – start-page: 1 year: 2017 end-page: 21 – volume: 11 year: 2019 article-title: Herbivore‐specific induction of indirect and direct defensive responses in leaves and roots publication-title: AoB Plants – volume: 21 start-page: 256 year: 2016 end-page: 265 article-title: Metabolomics in the rhizosphere: Tapping into belowground chemical communication publication-title: Trends in Plant Science – volume: 63 start-page: 1356 year: 2022 end-page: 1365 article-title: Functions of lipids in development and reproduction of arbuscular mycorrhiza fungi publication-title: Plant and Cell Physiology – volume: 236 start-page: 1487 year: 2022 end-page: 1496 article-title: Stronger mutualistic interactions with arbuscular mycorrhizal fungi help invaders outcompete the phylogenetically related natives publication-title: New Phytologist – volume: 166 year: 2019 article-title: The MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis publication-title: Environmental and Experimental Botany – volume: 59 start-page: 41 year: 2008 end-page: 66 article-title: Plant immunity to insect herbivores publication-title: Annual Review of Plant Biology – volume: 107 start-page: 361 year: 2019 end-page: 371 article-title: Reassociation of an invasive plant with its specialist herbivore provides a test of the shifting defence hypothesis publication-title: Journal of Ecology – volume: 236 start-page: 1140 year: 2022 end-page: 1153 article-title: Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives publication-title: New Phytologist – start-page: 295 year: 2002 end-page: 320 – volume: 10 year: 2019 article-title: Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli publication-title: Frontiers in Plant Science – volume: 27 start-page: 749 year: 2022 end-page: 757 article-title: Soil carbon sequestration by root exudates publication-title: Trends in Plant Science – volume: 54 start-page: 499 year: 2016 end-page: 527 article-title: Plant‐mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above‐ and belowground publication-title: Annual Review of Phytopathology – volume: 84 start-page: 283 year: 2012 end-page: 289 article-title: CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets publication-title: Analytical Chemistry – volume: 207 start-page: 91 year: 2015 end-page: 105 article-title: Jasmonate‐dependent depletion of soluble sugars compromises plant resistance to publication-title: New Phytologist – volume: 11 year: 2020 article-title: Biological weed control to relieve millions from in Europe publication-title: Nature Communications – volume: 36 start-page: 1047 year: 2022 end-page: 1062 article-title: Foliar herbivory on plants creates soil legacy effects that impact future insect herbivore growth via changes in plant community biomass allocation publication-title: Functional Ecology – volume: 25 start-page: 1387 year: 2022 end-page: 1400 article-title: Climate warming can reduce biocontrol efficacy and promote plant invasion due to both genetic and transient metabolomic changes publication-title: Ecology Letters – volume: 169 start-page: 1488 year: 2015 end-page: 1498 article-title: Alteration of plant primary metabolism in response to insect herbivory publication-title: Plant Physiology – volume: 18 start-page: 484 year: 2013 end-page: 491 article-title: A trait‐based framework to understand life history of mycorrhizal fungi publication-title: Trends in Plant Science – volume: 30 start-page: 1801 year: 2020 end-page: 1808 article-title: Aphid herbivory drives asymmetry in carbon for nutrient exchange between plants and an arbuscular mycorrhizal fungus publication-title: Current Biology – volume: 11 year: 2021 article-title: The chemistry of stress: Understanding the ‘cry for help’ of plant roots publication-title: Metabolites – volume: 11 year: 2019 article-title: Reconciling disparate responses to grazing in the arbuscular mycorrhizal symbiosis publication-title: Rhizosphere – volume: 12 year: 2020 article-title: Root flavonoids are related to enhanced AMF colonization of an invasive tree publication-title: AoB Plants – volume: 167 start-page: 1 year: 2011 end-page: 9 article-title: Herbivore‐induced resource sequestration in plants: Why bother? publication-title: Oecologia – volume: 52 start-page: 347 year: 2014 end-page: 375 article-title: Induced systemic resistance by beneficial microbes publication-title: Annual Review of Phytopathology – volume: 72 start-page: 692 year: 2019 end-page: 699 article-title: Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in patagonian semiarid steppes publication-title: Rangeland Ecology & Management – volume: 229 start-page: 1091 year: 2021 end-page: 1104 article-title: Host selection shapes crop microbiome assembly and network complexity publication-title: New Phytologist – volume: 73 start-page: 649 year: 2022 end-page: 672 article-title: The costs and benefits of plant–arbuscular mycorrhizal fungal interactions publication-title: Annual Review of Plant Biology – volume: 30 start-page: R437 year: 2020 end-page: R439 article-title: Symbiosis: Herbivory alters mycorrhizal nutrient exchange publication-title: Current Biology – year: 2002 – volume: 115 start-page: 495 year: 1990 end-page: 501 article-title: A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 57 start-page: 233 year: 2006 end-page: 266 article-title: The role of root exudates in rhizosphere interations with plants and other organisms publication-title: Annual Review of Plant Biology – year: 2020 – volume: 17 start-page: 25 year: 2006 end-page: 35 article-title: Which role can arbuscular mycorrhizal fungi play in the facilitation of L. invasion in France? publication-title: Mycorrhiza – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nature Methods – volume: 9 start-page: 251 year: 1994 end-page: 255 article-title: Interactions between aboveground herbivores and the mycorrhizal mutualists of plants publication-title: Trends in Ecology & Evolution – volume: 49 start-page: 73 year: 2019 end-page: 82 article-title: Crying out for help with root exudates: Adaptive mechanisms by which stressed plants assemble health‐promoting soil microbiomes publication-title: Current Opinion in Microbiology – volume: 47 start-page: 1652 year: 2018 end-page: 1704 article-title: Chemical signaling involved in plant‐microbe interactions publication-title: Chemical Society Reviews – volume: 171 year: 2022 article-title: Root herbivory reduces species richness and alters community structure of root‐colonising arbuscular mycorrhizal fungi publication-title: Soil Biology & Biochemistry – volume: 6 start-page: 116 year: 2018 end-page: 133 article-title: Sampling root exudates—Mission impossible? publication-title: Rhizosphere – volume: 153 start-page: 335 year: 2002 end-page: 344 article-title: Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 35 start-page: 1344 year: 2012 end-page: 1357 article-title: Repeated leaf wounding alters the colonization of roots by beneficial and pathogenic microorganisms publication-title: Plant, Cell and Environment – volume: 33 start-page: 2566 year: 2023 end-page: 2573 article-title: Herbivore‐driven disruption of arbuscular mycorrhizal carbon‐for‐nutrient exchange is ameliorated by neighboring plants publication-title: Current Biology – volume: 117 start-page: 25779 year: 2020 end-page: 25788 article-title: Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi publication-title: Proceedings of the National Academy of Sciences of the United States of America – ident: e_1_2_10_8_1 doi: 10.1038/ncomms1046 – ident: e_1_2_10_55_1 doi: 10.1007/s00442‐011‐1968‐2 – ident: e_1_2_10_77_1 doi: 10.1016/j.rhisph.2019.100167 – ident: e_1_2_10_52_1 doi: 10.1146/annurev.ecolsys.38.091206.095822 – ident: e_1_2_10_45_1 doi: 10.1111/j.1462‐2920.2009.02099.x – ident: e_1_2_10_11_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_10_28_1 doi: 10.1016/j.tplants.2020.07.008 – ident: e_1_2_10_41_1 doi: 10.1021/ac202450g – ident: e_1_2_10_40_1 doi: 10.1016/j.pbi.2022.102227 – ident: e_1_2_10_74_1 doi: 10.1111/ele.14000 – ident: e_1_2_10_38_1 doi: 10.1021/acs.jafc.2c01748 – ident: e_1_2_10_44_1 doi: 10.1126/science.aan0081 – ident: e_1_2_10_53_1 doi: 10.1016/j.rhisph.2018.06.004 – ident: e_1_2_10_76_1 doi: 10.1016/j.tplants.2016.01.008 – ident: e_1_2_10_61_1 doi: 10.1007/978-3-319-57849-1_1 – ident: e_1_2_10_71_1 doi: 10.3390/12071290 – ident: e_1_2_10_48_1 doi: 10.1111/j.1469‐8137.1990.tb00476.x – ident: e_1_2_10_10_1 doi: 10.3389/fpls.2019.00157 – ident: e_1_2_10_29_1 doi: 10.1046/j.0028‐646X.2001.00312.x – ident: e_1_2_10_80_1 doi: 10.1111/1365‐2745.13019 – ident: e_1_2_10_84_1 doi: 10.1111/nph.16890 – ident: e_1_2_10_86_1 doi: 10.1039/C5AN01816A – ident: e_1_2_10_24_1 doi: 10.1603/022.038.0111 – ident: e_1_2_10_79_1 doi: 10.1128/AEM.64.12.5004‐5007.1998 – ident: e_1_2_10_31_1 doi: 10.1111/1365‐2435.14006 – ident: e_1_2_10_7_1 doi: 10.1146/annurev‐phyto‐080615‐100245 – ident: e_1_2_10_62_1 doi: 10.3390/metabo11060357 – ident: e_1_2_10_26_1 doi: 10.1007/978-3-540-38364-2_12 – ident: e_1_2_10_59_1 doi: 10.1016/j.tplants.2010.05.007 – ident: e_1_2_10_21_1 doi: 10.1016/j.soilbio.2022.108723 – ident: e_1_2_10_5_1 doi: 10.1111/j.1365‐2435.2005.01037.x – ident: e_1_2_10_68_1 doi: 10.1111/j.1469‐8137.1967.tb06016.x – ident: e_1_2_10_85_1 doi: 10.1111/nph.18289 – ident: e_1_2_10_66_1 doi: 10.1104/pp.107.112490 – ident: e_1_2_10_63_1 doi: 10.1016/j.mib.2019.10.003 – ident: e_1_2_10_70_1 doi: 10.5504/BBEQ.2011.0020 – ident: e_1_2_10_42_1 doi: 10.1111/j.1365‐3040.2012.02495.x – ident: e_1_2_10_35_1 doi: 10.1126/science.aam9970 – ident: e_1_2_10_13_1 doi: 10.1016/j.tplants.2013.05.001 – ident: e_1_2_10_47_1 doi: 10.1111/nph.13337 – ident: e_1_2_10_15_1 doi: 10.1126/science.1146487 – ident: e_1_2_10_58_1 doi: 10.1146/annurev‐phyto‐082712‐102340 – ident: e_1_2_10_25_1 doi: 10.1016/0169‐5347(94)90290‐9 – ident: e_1_2_10_49_1 doi: 10.1016/j.jtusci.2014.01.003 – ident: e_1_2_10_34_1 doi: 10.1038/s41467‐018‐05122‐7 – ident: e_1_2_10_18_1 doi: 10.2307/1941120 – ident: e_1_2_10_65_1 doi: 10.1038/s41467‐020‐15586‐1 – ident: e_1_2_10_17_1 doi: 10.1016/j.cub.2023.05.033 – ident: e_1_2_10_20_1 doi: 10.1016/j.tplants.2009.08.006 – ident: e_1_2_10_4_1 doi: 10.1111/j.1365‐2745.2010.01658.x – ident: e_1_2_10_57_1 doi: 10.1093/aobpla/plaa002 – ident: e_1_2_10_73_1 doi: 10.1111/nph.18435 – ident: e_1_2_10_2_1 doi: 10.1007/s11104‐011‐0985‐6 – volume-title: Model selection and multimodel inference: A practical information‐theoretic approach year: 2002 ident: e_1_2_10_9_1 – ident: e_1_2_10_43_1 doi: 10.1016/j.envexpbot.2019.103807 – ident: e_1_2_10_60_1 doi: 10.1016/j.tree.2020.08.007 – ident: e_1_2_10_72_1 doi: 10.1073/pnas.2006948117 – ident: e_1_2_10_37_1 doi: 10.7554/eLife.29107 – ident: e_1_2_10_87_1 doi: 10.1038/s41477‐022‐01201‐2 – ident: e_1_2_10_19_1 doi: 10.1093/bioinformatics/btq461 – ident: e_1_2_10_81_1 doi: 10.1093/aobpla/plz003 – ident: e_1_2_10_82_1 doi: 10.1111/1365‐2435.14461 – ident: e_1_2_10_39_1 doi: 10.1093/jpe/rtab087 – ident: e_1_2_10_69_1 doi: 10.1016/B978-012370526-6.50006-4 – ident: e_1_2_10_6_1 doi: 10.1146/annurev‐arplant‐102820‐124504 – ident: e_1_2_10_56_1 doi: 10.1016/j.tplants.2022.04.009 – ident: e_1_2_10_83_1 doi: 10.1111/1365-2745.14272 – ident: e_1_2_10_78_1 doi: 10.1016/j.agee.2017.04.003 – ident: e_1_2_10_50_1 doi: 10.1016/j.cub.2020.04.016 – ident: e_1_2_10_67_1 doi: 10.1021/ac051437y – ident: e_1_2_10_36_1 doi: 10.1093/pcp/pcac113 – ident: e_1_2_10_46_1 doi: 10.1016/j.tplants.2021.08.004 – ident: e_1_2_10_54_1 – ident: e_1_2_10_22_1 doi: 10.1111/nph.17746 – ident: e_1_2_10_3_1 doi: 10.1146/annurev.arplant.57.032905.105159 – ident: e_1_2_10_14_1 doi: 10.1016/j.cub.2020.02.087 – ident: e_1_2_10_12_1 doi: 10.1039/c7cs00343a – ident: e_1_2_10_23_1 doi: 10.1007/s00572‐006‐0078‐1 – ident: e_1_2_10_51_1 doi: 10.1111/1744‐7917.12004 – ident: e_1_2_10_75_1 doi: 10.1038/s41396‐021‐00894‐1 – ident: e_1_2_10_27_1 doi: 10.1016/j.pbi.2015.06.008 – ident: e_1_2_10_33_1 doi: 10.1146/annurev.arplant.59.032607.092825 – ident: e_1_2_10_16_1 doi: 10.1016/j.rama.2019.02.007 – ident: e_1_2_10_64_1 doi: 10.1007/s00572‐003‐0286‐x – ident: e_1_2_10_88_1 doi: 10.1104/pp.15.01405 – ident: e_1_2_10_32_1 doi: 10.1007/BF00582238 – ident: e_1_2_10_30_1 doi: 10.1146/annurev.ento.54.110807.090614 |
SSID | ssj0006750 |
Score | 2.4662528 |
Snippet | Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 701 |
SubjectTerms | above‐below‐ground interaction Abundance Ambrosia artemisiifolia arbuscular mycorrhizal fungi Arbuscular mycorrhizas carbon Colonization Community composition community structure Exudates Exudation Fatty acids foliar‐herbivory Fungi Glomus Herbivores Herbivory Insects Lipids Metabolites Metabolomics phenolic compounds Phenols Plants Relative abundance Rhizoplane Rhizosphere root exudates Roots Secretions Soil ecology species vesicular arbuscular mycorrhizae Wounding |
Title | Foliar herbivory‐enhanced mycorrhization is associated with increased levels of lipids in root and root exudates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.14272 https://www.proquest.com/docview/3030939304 https://www.proquest.com/docview/3200337335 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA4iCr7orhccL0sEH3zp0DbpJY_uMIMI64Mo-FaSNMXi2Eo7I45P_gR_o7_Ec9J2xhUWWXxLm6RJk5ycL8k5Xwg5FnEIoEMKhzEmHR6p0BFcpU4MukAGggWR9ZD7cxGeXfPzm6CzJkRfmIYfYr7hhpJh52sUcKnqD0LeelPxAITdj3AWxjcIiy4XBFIAh92OL9zlUdSS-6Atz6f8f-ulBdj8CFmtzhltENXVtjE1uetPJ6qvnz8ROX7rd36Q9RaR0tNmCP0kS6bYJKvNHZWzTbLyuwT8CIHVoSW4nm2RalSOc1lR6G6VP5bV7O3l1RS31paA3s9gPVvdtu6dNK-pbEcAROKuL80LRKo1PI7RYqmmZUbH-UOe1hBFAclPqCzSJmCeprglUW-T69HwanDmtHc3OBogkO-kPtfKiFSmLvdM4AtPewz0oBdrJVgmpAkUcgUCPOVBFjNXC5HymDMAkBpAEdshy0VZmF1CM6UkVzpkRmXcaBlrzw9jaUIl4dtR1CP9rucS3RKb4_0a46Rb4GDbJti2iW3bHjmZZ3hoOD3-nfSgGwpJK9x1wuzxsWAu75GjeTSIJZ61yMKUU0iDRn8sYiyA6tl-_6qo5Hw4sIG9_82wT9Z8gFqNPdEBWZ5UU3MIUGmifllpeAdx4Aaj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hHmovlNJWXaDUSD30klUSOw8fC9rV8jwgkLhFtuOIqNsEJbsVy4mfwG_kl3TsJMuCVFWoN0d-xLE98efxzDcA33gcIugQ3KGUCodFMnQ4k6kT414gAk6DyHrInZ6Fo0t2dBVcLfjCNPwQc4WbkQz7vzYCbhTSC1LeulOxAKXdj_A3vGLiettj1fkThRQCYrdjDHdZFLX0Psaa50UDz3emJ7i5CFrtrjN8B6rrb2Ns8rM_nci-untB5fh_H7QB6y0oJT-aVfQelnSxCWtNmMrZJqzulwghMbE2sBzXsw9QDctxLiqCMy7z32U1e7x_0MW1NScgv2Z4pK2uWw9PktdEtIsAM43il-SFAas1Po6N0VJNyoyM85s8rTGLIJifEFGkTULfTo1Wov4Il8PBxcHIacM3OApRkO-kPlNS81SkLvN04HNPeRS3Qi9WktOMCx1IQxeICJUFWUxdxXnKYkYRQyrERfQTLBdloT8DyaQUTKqQapkxrUSsPD-MhQ6lwLajqAf9buoS1XKbmxAb46Q745ixTczYJnZse_B9XuGmofX4e9Gdbi0krXzXCbU3yJy6rAd782yUTHPdIgpdTrGMsfujEaUBds9O_L9elRwNDmxi67UVvsKb0cXpSXJyeHa8DW99RF6NedEOLE-qqf6CyGkid61o_AHl9gq- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hQlEvFApVFwo1Ug-9ZJXEzo-PtLursoWqqroSt8h2HDViSVbJLmI58Qg8Y5-kYyfZLZUqhLg58k8ceybz2Z75DHDI4xBBh-AOpVQ4LJKhw5lMnRhtgQg4DSIbIff5PDydsPGXoPMmNLEwDT_EasPNaIb9XxsFn6XZHSVvo6lYgMruR_gXfsxCNzaCPbhcM0ghHnY7wnCXRVHL7mOcee418KdhWqPNu5jVGp3RNsiuu42vydf-Yi776uc9Jsf_-p7n8KyFpORDI0Mv4JEudmCzuaRyuQNPjksEkJjYHFqG6-VLqEblNBcVwfmW-feyWt78-q2La-tMQL4tcUFbXbfxnSSviWhFADPNti_JCwNVa3ycGpelmpQZmeazPK0xiyCUnxNRpE1C_1iYPYn6FUxGw6uTU6e9vMFRiIF8J_WZkpqnInWZpwOfe8qjaAi9WElOMy50IA1ZIOJTFmQxdRXnKYsZRQSpEBXRXdgoykLvAcmkFEyqkGqZMa1ErDw_jIUOpcC2o6gH_W7mEtUym5sLNqZJt8IxY5uYsU3s2PbgaFVh1pB6PFx0vxOFpNXuOqH2_JhTl_Xg_Sob9dIctohClwssY7z-aERpgN2z8_63VyXj4YlNvP7XCgfw9GIwSj59PD97A1s-wq7Gt2gfNubVQr9F2DSX76xi3ALKpAl2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foliar+herbivory%E2%80%90enhanced+mycorrhization+is+associated+with+increased+levels+of+lipids+in+root+and+root+exudates&rft.jtitle=The+Journal+of+ecology&rft.au=Xing%2C+Zhenlong&rft.au=Zhang%2C+Zhongyue&rft.au=Zhao%2C+Yige&rft.au=Biere%2C+Arjen&rft.date=2024-04-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=112&rft.issue=4&rft.spage=701&rft.epage=716&rft_id=info:doi/10.1111%2F1365-2745.14272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2745_14272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |