Foliar herbivory‐enhanced mycorrhization is associated with increased levels of lipids in root and root exudates

Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood. Here we explored the impacts of foliar herbivory and mechan...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 112; no. 4; pp. 701 - 716
Main Authors Xing, Zhenlong, Zhang, Zhongyue, Zhao, Yige, Biere, Arjen, Liu, Siqiao, Shi, Yu, Ding, Jianqing
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.04.2024
Subjects
Online AccessGet full text
ISSN0022-0477
1365-2745
DOI10.1111/1365-2745.14272

Cover

Loading…
Abstract Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood. Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed (Ambrosia artemisiifolia) and the role of root metabolites in mediating these effects. Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates. Synthesis. We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. 摘要 植食性昆虫通过改变根系碳库影响植物‐菌根真菌互作,然而对其背后的具体代谢变化所知甚少。 本研究探讨了昆虫取食与机械损伤对豚草菌根真菌定殖及群落组成的影响,解析了根系代谢物在其中的作用。 昆虫取食增加豚草菌根定殖率,然而机械损伤仅在与昆虫唾液结合时增加菌根真菌定殖率。同时,昆虫取食后豚草根内、根表和根际球囊霉属(Glomus)相对丰度增加。昆虫取食增加根系脂肪酸含量,但减少酚类物质含量,这两类物质与菌根定殖率显著相关。添加昆虫取食后的豚草根系分泌物能增加菌根定殖率。而且,广靶代谢组结果表明昆虫取食增加根系分泌物中脂类物质的相对丰度,降低酚类物质的相对丰度。 本研究发现植物遭受昆虫危害后能够增强它们与菌根真菌的联系,这可能与根系脂类物质的增加有关。我们的发现强调脂类物质在地上‐地下生物互作中的作用,为植物‐菌根真菌对生物胁迫的协同响应提供新视角。 The authors show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. These findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses.
AbstractList Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood.Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed (Ambrosia artemisiifolia) and the role of root metabolites in mediating these effects.Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates.Synthesis. We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses.
Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood. Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed ( Ambrosia artemisiifolia ) and the role of root metabolites in mediating these effects. Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates. Synthesis . We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. 植食性昆虫通过改变根系碳库影响植物‐菌根真菌互作,然而对其背后的具体代谢变化所知甚少。 本研究探讨了昆虫取食与机械损伤对豚草菌根真菌定殖及群落组成的影响,解析了根系代谢物在其中的作用。 昆虫取食增加豚草菌根定殖率,然而机械损伤仅在与昆虫唾液结合时增加菌根真菌定殖率。同时,昆虫取食后豚草根内、根表和根际球囊霉属( Glomus )相对丰度增加。昆虫取食增加根系脂肪酸含量,但减少酚类物质含量,这两类物质与菌根定殖率显著相关。添加昆虫取食后的豚草根系分泌物能增加菌根定殖率。而且,广靶代谢组结果表明昆虫取食增加根系分泌物中脂类物质的相对丰度,降低酚类物质的相对丰度。 本研究发现植物遭受昆虫危害后能够增强它们与菌根真菌的联系,这可能与根系脂类物质的增加有关。我们的发现强调脂类物质在地上‐地下生物互作中的作用,为植物‐菌根真菌对生物胁迫的协同响应提供新视角。
Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific metabolic changes underlying fungal responses to herbivory are poorly understood. Here we explored the impacts of foliar herbivory and mechanical wounding on AM colonisation and AM community composition of common ragweed (Ambrosia artemisiifolia) and the role of root metabolites in mediating these effects. Foliar insect herbivory enhanced AM colonisation, whereas mechanical wounding only enhanced AM colonisation in combination with application of caterpillar oral secretions. Meanwhile, the relative abundance of Glomus species was increased in root endosphere, rhizoplane and rhizosphere soils after foliar herbivory. Foliar herbivory also increased the concentrations of fatty acids in roots but decreased phenolics, and their concentrations were significantly correlated with AM colonisation. Addition of exudates from plants exposed to herbivory resulted in increases in AM colonisation of plants without herbivory. Moreover, widely targeted metabolomic analyses revealed that foliar herbivory enhanced the relative abundance of lipids and decreased phenols in root exudates. Synthesis. We show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. Our findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses. 摘要 植食性昆虫通过改变根系碳库影响植物‐菌根真菌互作,然而对其背后的具体代谢变化所知甚少。 本研究探讨了昆虫取食与机械损伤对豚草菌根真菌定殖及群落组成的影响,解析了根系代谢物在其中的作用。 昆虫取食增加豚草菌根定殖率,然而机械损伤仅在与昆虫唾液结合时增加菌根真菌定殖率。同时,昆虫取食后豚草根内、根表和根际球囊霉属(Glomus)相对丰度增加。昆虫取食增加根系脂肪酸含量,但减少酚类物质含量,这两类物质与菌根定殖率显著相关。添加昆虫取食后的豚草根系分泌物能增加菌根定殖率。而且,广靶代谢组结果表明昆虫取食增加根系分泌物中脂类物质的相对丰度,降低酚类物质的相对丰度。 本研究发现植物遭受昆虫危害后能够增强它们与菌根真菌的联系,这可能与根系脂类物质的增加有关。我们的发现强调脂类物质在地上‐地下生物互作中的作用,为植物‐菌根真菌对生物胁迫的协同响应提供新视角。 The authors show that plants can enhance their associations with arbuscular mycorrhizal (AM) fungi when subject to above‐ground herbivory, possibly mediated by herbivore‐induced increases in the levels of root lipids. These findings highlight the role of root lipids in above‐below‐ground biological interactions, providing novel insights into plant‐AM fungi integrative responses to biotic stresses.
Author Ding, Jianqing
Biere, Arjen
Zhao, Yige
Xing, Zhenlong
Zhang, Zhongyue
Liu, Siqiao
Shi, Yu
Author_xml – sequence: 1
  givenname: Zhenlong
  orcidid: 0000-0001-5567-1264
  surname: Xing
  fullname: Xing, Zhenlong
  organization: Henan University
– sequence: 2
  givenname: Zhongyue
  surname: Zhang
  fullname: Zhang, Zhongyue
  organization: Henan University
– sequence: 3
  givenname: Yige
  surname: Zhao
  fullname: Zhao, Yige
  organization: Henan University
– sequence: 4
  givenname: Arjen
  surname: Biere
  fullname: Biere, Arjen
  organization: Netherlands Institute of Ecology (NIOO‐KNAW)
– sequence: 5
  givenname: Siqiao
  surname: Liu
  fullname: Liu, Siqiao
  organization: University of Tartu
– sequence: 6
  givenname: Yu
  surname: Shi
  fullname: Shi, Yu
  email: yshi@henu.edu.cn
  organization: Henan University
– sequence: 7
  givenname: Jianqing
  surname: Ding
  fullname: Ding, Jianqing
  email: jding@henu.edu.cn
  organization: Henan University
BookMark eNqFkc9OGzEQxq0KpCaUc6-WeuGyYfyPXR-riNBWSL20Z8vxzipGjp3aGyCceASesU9Sh6AeOIAvY898v_Homyk5iikiIZ8ZzFg950xcqIa3Us2Y5C3_QCb_M0dkAsB5A7JtP5JpKTcAcNEqmJC8SMHbTFeYl_425d3fxyeMKxsd9nS9cynnlX-wo0-R-kJtKcl5O9binR9X1EeX0Zb6DHiLodA00OA3vi-1RHNKI7WxP1zwfttXsnwix4MNBU9f4gn5vbj8Nf_WXP-8-j7_et040Wne9Fy6Jere9iAZKq6ZY6JlHevcUotBW1TLlknQmkk1dAKc1r3spJCgnKrxhJwd-m5y-rPFMpq1Lw5DsBHTthjBAYRohVBV-uWV9CZtc6zTGQECtNAC9g3VQeVyKiXjYJwfn60Zs_XBMDD7TZi972bvu3neROXOX3Gb7Nc2794gXn668wF378nNj8v5gfsHeQGcRg
CitedBy_id crossref_primary_10_1007_s12038_024_00482_3
crossref_primary_10_1111_1365_2745_14272
crossref_primary_10_1038_s44358_025_00030_3
Cites_doi 10.1038/ncomms1046
10.1007/s00442‐011‐1968‐2
10.1016/j.rhisph.2019.100167
10.1146/annurev.ecolsys.38.091206.095822
10.1111/j.1462‐2920.2009.02099.x
10.1038/nmeth.f.303
10.1016/j.tplants.2020.07.008
10.1021/ac202450g
10.1016/j.pbi.2022.102227
10.1111/ele.14000
10.1021/acs.jafc.2c01748
10.1126/science.aan0081
10.1016/j.rhisph.2018.06.004
10.1016/j.tplants.2016.01.008
10.1007/978-3-319-57849-1_1
10.3390/12071290
10.1111/j.1469‐8137.1990.tb00476.x
10.3389/fpls.2019.00157
10.1046/j.0028‐646X.2001.00312.x
10.1111/1365‐2745.13019
10.1111/nph.16890
10.1039/C5AN01816A
10.1603/022.038.0111
10.1128/AEM.64.12.5004‐5007.1998
10.1111/1365‐2435.14006
10.1146/annurev‐phyto‐080615‐100245
10.3390/metabo11060357
10.1007/978-3-540-38364-2_12
10.1016/j.tplants.2010.05.007
10.1016/j.soilbio.2022.108723
10.1111/j.1365‐2435.2005.01037.x
10.1111/j.1469‐8137.1967.tb06016.x
10.1111/nph.18289
10.1104/pp.107.112490
10.1016/j.mib.2019.10.003
10.5504/BBEQ.2011.0020
10.1111/j.1365‐3040.2012.02495.x
10.1126/science.aam9970
10.1016/j.tplants.2013.05.001
10.1111/nph.13337
10.1126/science.1146487
10.1146/annurev‐phyto‐082712‐102340
10.1016/0169‐5347(94)90290‐9
10.1016/j.jtusci.2014.01.003
10.1038/s41467‐018‐05122‐7
10.2307/1941120
10.1038/s41467‐020‐15586‐1
10.1016/j.cub.2023.05.033
10.1016/j.tplants.2009.08.006
10.1111/j.1365‐2745.2010.01658.x
10.1093/aobpla/plaa002
10.1111/nph.18435
10.1007/s11104‐011‐0985‐6
10.1016/j.envexpbot.2019.103807
10.1016/j.tree.2020.08.007
10.1073/pnas.2006948117
10.7554/eLife.29107
10.1038/s41477‐022‐01201‐2
10.1093/bioinformatics/btq461
10.1093/aobpla/plz003
10.1111/1365‐2435.14461
10.1093/jpe/rtab087
10.1016/B978-012370526-6.50006-4
10.1146/annurev‐arplant‐102820‐124504
10.1016/j.tplants.2022.04.009
10.1111/1365-2745.14272
10.1016/j.agee.2017.04.003
10.1016/j.cub.2020.04.016
10.1021/ac051437y
10.1093/pcp/pcac113
10.1016/j.tplants.2021.08.004
10.1111/nph.17746
10.1146/annurev.arplant.57.032905.105159
10.1016/j.cub.2020.02.087
10.1039/c7cs00343a
10.1007/s00572‐006‐0078‐1
10.1111/1744‐7917.12004
10.1038/s41396‐021‐00894‐1
10.1016/j.pbi.2015.06.008
10.1146/annurev.arplant.59.032607.092825
10.1016/j.rama.2019.02.007
10.1007/s00572‐003‐0286‐x
10.1104/pp.15.01405
10.1007/BF00582238
10.1146/annurev.ento.54.110807.090614
ContentType Journal Article
Copyright 2024 The Authors. Journal of Ecology © 2024 British Ecological Society.
Journal of Ecology © 2024 British Ecological Society
Copyright_xml – notice: 2024 The Authors. Journal of Ecology © 2024 British Ecological Society.
– notice: Journal of Ecology © 2024 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.14272
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 716
ExternalDocumentID 10_1111_1365_2745_14272
JEC14272
Genre researchArticle
GrantInformation_xml – fundername: Estonian Research Council grants
  funderid: PRG1836
– fundername: Natural Science Foundation of Henan
  funderid: 222300420035
– fundername: National Key Research and Development Program of China
  funderid: 2021YFD1900100; 2021YFD1500300
– fundername: National Natural Science Foundation of China
  funderid: 32301323; U21A20190
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABTAH
ABTLG
ABXSQ
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFXHP
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABAWQ
ABSQW
ACHJO
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
7QG
7SN
7SS
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c3892-d24cbe9dad041e5291c1371818cb93f9ae5b714099145f830c99d4843405c5843
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Jul 11 18:39:42 EDT 2025
Fri Jul 25 09:14:55 EDT 2025
Tue Jul 01 00:44:28 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Mon Feb 10 09:20:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3892-d24cbe9dad041e5291c1371818cb93f9ae5b714099145f830c99d4843405c5843
Notes Zhenlong Xing and Zhongyue Zhang contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5567-1264
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.14272
PQID 3030939304
PQPubID 37508
PageCount 16
ParticipantIDs proquest_miscellaneous_3200337335
proquest_journals_3030939304
crossref_citationtrail_10_1111_1365_2745_14272
crossref_primary_10_1111_1365_2745_14272
wiley_primary_10_1111_1365_2745_14272_JEC14272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 12
2015; 140
2017; 6
2010; 98
2010; 15
2023; 33
2022; 171
2002; 153
2022; 70
2006; 78
1967; 66
2019; 11
2022; 73
2019; 10
2013; 20
2022; 67
2022; 25
2022; 63
2020; 12
2020; 11
2008; 146
2024
2024; 38
2017; 356
2019; 166
2022; 27
1996; 107
2018; 47
2007; 38
2013; 18
2018; 6
2009; 14
2018; 9
2010; 26
2010; 1
2009; 54
2022; 36
2021; 232
2011; 25
2014; 52
2017; 243
2014; 8
2010; 7
2011; 167
2019; 72
2006; 57
2015; 169
2006; 17
1991; 72
2021; 229
2016; 54
2008; 59
2008
2020; 35
2015; 207
2002
2019; 107
2012; 35
2007; 12
1998; 64
2022; 236
1994; 9
2015; 26
2021; 15
2012; 352
2005; 19
1990; 115
2021; 11
2020; 30
2020
2004; 14
2022; 8
2016; 21
2019; 49
2020; 117
2020; 25
2022; 15
2017
2007; 318
2009; 38
2012; 84
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Burnham K. P. (e_1_2_10_9_1) 2002
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 352
  start-page: 143
  year: 2012
  end-page: 156
  article-title: The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe
  publication-title: Plant and Soil
– volume: 20
  start-page: 286
  year: 2013
  end-page: 296
  article-title: Emerging role of roots in plant responses to aboveground insect herbivory
  publication-title: Insect Science
– volume: 243
  start-page: 27
  year: 2017
  end-page: 33
  article-title: Longterm effects of grazing on arbuscular mycorrhizal fungi
  publication-title: Agriculture Ecosystems & Environment
– volume: 54
  start-page: 323
  year: 2009
  end-page: 342
  article-title: Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context
  publication-title: Annual Review of Entomology
– volume: 107
  start-page: 87
  year: 1996
  end-page: 94
  article-title: Herbivore‐induced changes in plant carbon allocation: Assessment of below‐ground C fluxes using carbon‐14
  publication-title: Oecologia
– volume: 19
  start-page: 886
  year: 2005
  end-page: 896
  article-title: Defoliation‐induced changes in carbon allocation and root soluble carbon concentration in field‐grown plants: Do they affect carbon availability, microbes and animal trophic groups in soil?
  publication-title: Functional Ecology
– volume: 15
  start-page: 581
  year: 2022
  end-page: 595
  article-title: Arbuscular mycorrhizal fungi enhance the growth of the exotic species
  publication-title: Journal of Plant Ecology
– volume: 67
  year: 2022
  article-title: Plant secondary metabolites altering root microbiome composition and function
  publication-title: Current Opinion in Plant Biology
– volume: 356
  start-page: 1175
  year: 2017
  end-page: 1178
  article-title: Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant
  publication-title: Science
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 12
  start-page: 2165
  year: 2010
  end-page: 2179
  article-title: Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land‐use gradient using a pyrosequencing approach
  publication-title: Environmental Microbiology
– volume: 98
  start-page: 745
  year: 2010
  end-page: 753
  article-title: Does herbivory really suppress mycorrhiza? A meta‐analysis
  publication-title: Journal of Ecology
– volume: 78
  start-page: 779
  year: 2006
  end-page: 787
  article-title: XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
  publication-title: Analytical Chemistry
– volume: 38
  start-page: 259
  year: 2024
  end-page: 271
  article-title: Foliar herbivory modifies arbuscular mycorrhizal fungal colonization likely through altering root flavonoids
  publication-title: Functional Ecology
– volume: 64
  start-page: 5004
  year: 1998
  end-page: 5007
  article-title: Ink and vinegar, a simple staining technique for arbuscular‐mycorrhizal fungi
  publication-title: Applied and Environmental Microbiology
– year: 2024
– volume: 35
  start-page: 1110
  year: 2020
  end-page: 1118
  article-title: Surplus carbon drives allocation and plant‐soil interactions
  publication-title: Trends in Ecology & Evolution
– volume: 8
  start-page: 216
  year: 2014
  end-page: 224
  article-title: Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant
  publication-title: Journal of Taibah University for Science
– volume: 38
  start-page: 541
  year: 2007
  end-page: 566
  article-title: The evolution of resistance and tolerance to herbivores
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 12
  start-page: 1290
  year: 2007
  end-page: 1306
  article-title: Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant‐fungus interactions
  publication-title: Molecules
– volume: 8
  start-page: 887
  year: 2022
  end-page: 896
  article-title: Root‐secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness
  publication-title: Nature Plants
– volume: 38
  start-page: 93
  year: 2009
  end-page: 102
  article-title: Mycorrhizal fungal‐plant‐insect interactions: The importance of a community approach
  publication-title: Environmental Entomology
– volume: 356
  start-page: 1172
  year: 2017
  end-page: 1175
  article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi
  publication-title: Science
– volume: 25
  start-page: 2222
  year: 2011
  end-page: 2227
  article-title: Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from L. var. , F. (L.) Reichenb
  publication-title: Biotechnology & Biotechnological Equipment
– volume: 14
  start-page: 653
  year: 2009
  end-page: 659
  article-title: The underestimated role of roots in defense against leaf attackers
  publication-title: Trends in Plant Science
– volume: 140
  start-page: 7955
  year: 2015
  end-page: 7964
  article-title: Multiscale peak detection in wavelet space
  publication-title: Analyst
– volume: 72
  start-page: 1472
  year: 1991
  end-page: 1483
  article-title: Source‐sink carbon relations in two ecotypes in response to herbivory
  publication-title: Ecology
– volume: 15
  start-page: 1919
  year: 2021
  end-page: 1930
  article-title: Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant
  publication-title: ISME Journal
– volume: 14
  start-page: 363
  year: 2004
  end-page: 373
  article-title: Defoliation effects on the community structure of arbuscular mycorrhizal fungi based on 18S rDNA sequences
  publication-title: Mycorrhiza
– volume: 70
  start-page: 6658
  year: 2022
  end-page: 6669
  article-title: Chemo‐ecological insights into the use of the non‐host plant vegetable black‐jack to protect two susceptible solanaceous crops from root‐knot nematode parasitism
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 26
  start-page: 100
  year: 2015
  end-page: 105
  article-title: Plant‐mediated ‘apparent effects’ between mycorrhiza and insect herbivores
  publication-title: Current Opinion in Plant Biology
– volume: 146
  start-page: 845
  year: 2008
  end-page: 851
  article-title: Why does herbivore attack reconfigure primary metabolism?
  publication-title: Plant Physiology
– volume: 25
  start-page: 1215
  year: 2020
  end-page: 1226
  article-title: Ménage à trois: Unraveling the mechanisms regulating plant–microbe–arthropod interactions
  publication-title: Trends in Plant Science
– volume: 1
  start-page: 48
  year: 2010
  article-title: Mechanisms underlying beneficial plant‐fungus interactions in mycorrhizal symbiosis
  publication-title: Nature Communications
– volume: 27
  start-page: 180
  year: 2022
  end-page: 190
  article-title: Modulators or facilitators? Roles of lipids in plant root‐microbe interactions
  publication-title: Trends in Plant Science
– start-page: 117
  year: 2008
  end-page: 144
– volume: 6
  year: 2017
  article-title: Lipid transfer from plants to arbuscular mycorrhiza fungi
  publication-title: eLife
– volume: 15
  start-page: 507
  year: 2010
  end-page: 514
  article-title: Helping plants to deal with insects: The role of beneficial soil‐borne microbes
  publication-title: Trends in Plant Science
– volume: 232
  start-page: 2475
  year: 2021
  end-page: 2490
  article-title: Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage‐insect interactions through plant‐soil feedback
  publication-title: New Phytologist
– volume: 9
  year: 2018
  article-title: Root exudate metabolites drive plant‐soil feedbacks on growth and defense by shaping the rhizosphere microbiota
  publication-title: Nature Communications
– volume: 66
  start-page: 371
  year: 1967
  end-page: 378
  article-title: Carbohydrate translocation in orchid mycorrhizal fungi
  publication-title: New Phytologist
– volume: 318
  start-page: 265
  year: 2007
  end-page: 268
  article-title: Lyso‐phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis
  publication-title: Science
– start-page: 1
  year: 2017
  end-page: 21
– volume: 11
  year: 2019
  article-title: Herbivore‐specific induction of indirect and direct defensive responses in leaves and roots
  publication-title: AoB Plants
– volume: 21
  start-page: 256
  year: 2016
  end-page: 265
  article-title: Metabolomics in the rhizosphere: Tapping into belowground chemical communication
  publication-title: Trends in Plant Science
– volume: 63
  start-page: 1356
  year: 2022
  end-page: 1365
  article-title: Functions of lipids in development and reproduction of arbuscular mycorrhiza fungi
  publication-title: Plant and Cell Physiology
– volume: 236
  start-page: 1487
  year: 2022
  end-page: 1496
  article-title: Stronger mutualistic interactions with arbuscular mycorrhizal fungi help invaders outcompete the phylogenetically related natives
  publication-title: New Phytologist
– volume: 166
  year: 2019
  article-title: The MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis
  publication-title: Environmental and Experimental Botany
– volume: 59
  start-page: 41
  year: 2008
  end-page: 66
  article-title: Plant immunity to insect herbivores
  publication-title: Annual Review of Plant Biology
– volume: 107
  start-page: 361
  year: 2019
  end-page: 371
  article-title: Reassociation of an invasive plant with its specialist herbivore provides a test of the shifting defence hypothesis
  publication-title: Journal of Ecology
– volume: 236
  start-page: 1140
  year: 2022
  end-page: 1153
  article-title: Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives
  publication-title: New Phytologist
– start-page: 295
  year: 2002
  end-page: 320
– volume: 10
  year: 2019
  article-title: Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli
  publication-title: Frontiers in Plant Science
– volume: 27
  start-page: 749
  year: 2022
  end-page: 757
  article-title: Soil carbon sequestration by root exudates
  publication-title: Trends in Plant Science
– volume: 54
  start-page: 499
  year: 2016
  end-page: 527
  article-title: Plant‐mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above‐ and belowground
  publication-title: Annual Review of Phytopathology
– volume: 84
  start-page: 283
  year: 2012
  end-page: 289
  article-title: CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets
  publication-title: Analytical Chemistry
– volume: 207
  start-page: 91
  year: 2015
  end-page: 105
  article-title: Jasmonate‐dependent depletion of soluble sugars compromises plant resistance to
  publication-title: New Phytologist
– volume: 11
  year: 2020
  article-title: Biological weed control to relieve millions from in Europe
  publication-title: Nature Communications
– volume: 36
  start-page: 1047
  year: 2022
  end-page: 1062
  article-title: Foliar herbivory on plants creates soil legacy effects that impact future insect herbivore growth via changes in plant community biomass allocation
  publication-title: Functional Ecology
– volume: 25
  start-page: 1387
  year: 2022
  end-page: 1400
  article-title: Climate warming can reduce biocontrol efficacy and promote plant invasion due to both genetic and transient metabolomic changes
  publication-title: Ecology Letters
– volume: 169
  start-page: 1488
  year: 2015
  end-page: 1498
  article-title: Alteration of plant primary metabolism in response to insect herbivory
  publication-title: Plant Physiology
– volume: 18
  start-page: 484
  year: 2013
  end-page: 491
  article-title: A trait‐based framework to understand life history of mycorrhizal fungi
  publication-title: Trends in Plant Science
– volume: 30
  start-page: 1801
  year: 2020
  end-page: 1808
  article-title: Aphid herbivory drives asymmetry in carbon for nutrient exchange between plants and an arbuscular mycorrhizal fungus
  publication-title: Current Biology
– volume: 11
  year: 2021
  article-title: The chemistry of stress: Understanding the ‘cry for help’ of plant roots
  publication-title: Metabolites
– volume: 11
  year: 2019
  article-title: Reconciling disparate responses to grazing in the arbuscular mycorrhizal symbiosis
  publication-title: Rhizosphere
– volume: 12
  year: 2020
  article-title: Root flavonoids are related to enhanced AMF colonization of an invasive tree
  publication-title: AoB Plants
– volume: 167
  start-page: 1
  year: 2011
  end-page: 9
  article-title: Herbivore‐induced resource sequestration in plants: Why bother?
  publication-title: Oecologia
– volume: 52
  start-page: 347
  year: 2014
  end-page: 375
  article-title: Induced systemic resistance by beneficial microbes
  publication-title: Annual Review of Phytopathology
– volume: 72
  start-page: 692
  year: 2019
  end-page: 699
  article-title: Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in patagonian semiarid steppes
  publication-title: Rangeland Ecology & Management
– volume: 229
  start-page: 1091
  year: 2021
  end-page: 1104
  article-title: Host selection shapes crop microbiome assembly and network complexity
  publication-title: New Phytologist
– volume: 73
  start-page: 649
  year: 2022
  end-page: 672
  article-title: The costs and benefits of plant–arbuscular mycorrhizal fungal interactions
  publication-title: Annual Review of Plant Biology
– volume: 30
  start-page: R437
  year: 2020
  end-page: R439
  article-title: Symbiosis: Herbivory alters mycorrhizal nutrient exchange
  publication-title: Current Biology
– year: 2002
– volume: 115
  start-page: 495
  year: 1990
  end-page: 501
  article-title: A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 57
  start-page: 233
  year: 2006
  end-page: 266
  article-title: The role of root exudates in rhizosphere interations with plants and other organisms
  publication-title: Annual Review of Plant Biology
– year: 2020
– volume: 17
  start-page: 25
  year: 2006
  end-page: 35
  article-title: Which role can arbuscular mycorrhizal fungi play in the facilitation of L. invasion in France?
  publication-title: Mycorrhiza
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nature Methods
– volume: 9
  start-page: 251
  year: 1994
  end-page: 255
  article-title: Interactions between aboveground herbivores and the mycorrhizal mutualists of plants
  publication-title: Trends in Ecology & Evolution
– volume: 49
  start-page: 73
  year: 2019
  end-page: 82
  article-title: Crying out for help with root exudates: Adaptive mechanisms by which stressed plants assemble health‐promoting soil microbiomes
  publication-title: Current Opinion in Microbiology
– volume: 47
  start-page: 1652
  year: 2018
  end-page: 1704
  article-title: Chemical signaling involved in plant‐microbe interactions
  publication-title: Chemical Society Reviews
– volume: 171
  year: 2022
  article-title: Root herbivory reduces species richness and alters community structure of root‐colonising arbuscular mycorrhizal fungi
  publication-title: Soil Biology & Biochemistry
– volume: 6
  start-page: 116
  year: 2018
  end-page: 133
  article-title: Sampling root exudates—Mission impossible?
  publication-title: Rhizosphere
– volume: 153
  start-page: 335
  year: 2002
  end-page: 344
  article-title: Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 35
  start-page: 1344
  year: 2012
  end-page: 1357
  article-title: Repeated leaf wounding alters the colonization of roots by beneficial and pathogenic microorganisms
  publication-title: Plant, Cell and Environment
– volume: 33
  start-page: 2566
  year: 2023
  end-page: 2573
  article-title: Herbivore‐driven disruption of arbuscular mycorrhizal carbon‐for‐nutrient exchange is ameliorated by neighboring plants
  publication-title: Current Biology
– volume: 117
  start-page: 25779
  year: 2020
  end-page: 25788
  article-title: Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– ident: e_1_2_10_8_1
  doi: 10.1038/ncomms1046
– ident: e_1_2_10_55_1
  doi: 10.1007/s00442‐011‐1968‐2
– ident: e_1_2_10_77_1
  doi: 10.1016/j.rhisph.2019.100167
– ident: e_1_2_10_52_1
  doi: 10.1146/annurev.ecolsys.38.091206.095822
– ident: e_1_2_10_45_1
  doi: 10.1111/j.1462‐2920.2009.02099.x
– ident: e_1_2_10_11_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_10_28_1
  doi: 10.1016/j.tplants.2020.07.008
– ident: e_1_2_10_41_1
  doi: 10.1021/ac202450g
– ident: e_1_2_10_40_1
  doi: 10.1016/j.pbi.2022.102227
– ident: e_1_2_10_74_1
  doi: 10.1111/ele.14000
– ident: e_1_2_10_38_1
  doi: 10.1021/acs.jafc.2c01748
– ident: e_1_2_10_44_1
  doi: 10.1126/science.aan0081
– ident: e_1_2_10_53_1
  doi: 10.1016/j.rhisph.2018.06.004
– ident: e_1_2_10_76_1
  doi: 10.1016/j.tplants.2016.01.008
– ident: e_1_2_10_61_1
  doi: 10.1007/978-3-319-57849-1_1
– ident: e_1_2_10_71_1
  doi: 10.3390/12071290
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1469‐8137.1990.tb00476.x
– ident: e_1_2_10_10_1
  doi: 10.3389/fpls.2019.00157
– ident: e_1_2_10_29_1
  doi: 10.1046/j.0028‐646X.2001.00312.x
– ident: e_1_2_10_80_1
  doi: 10.1111/1365‐2745.13019
– ident: e_1_2_10_84_1
  doi: 10.1111/nph.16890
– ident: e_1_2_10_86_1
  doi: 10.1039/C5AN01816A
– ident: e_1_2_10_24_1
  doi: 10.1603/022.038.0111
– ident: e_1_2_10_79_1
  doi: 10.1128/AEM.64.12.5004‐5007.1998
– ident: e_1_2_10_31_1
  doi: 10.1111/1365‐2435.14006
– ident: e_1_2_10_7_1
  doi: 10.1146/annurev‐phyto‐080615‐100245
– ident: e_1_2_10_62_1
  doi: 10.3390/metabo11060357
– ident: e_1_2_10_26_1
  doi: 10.1007/978-3-540-38364-2_12
– ident: e_1_2_10_59_1
  doi: 10.1016/j.tplants.2010.05.007
– ident: e_1_2_10_21_1
  doi: 10.1016/j.soilbio.2022.108723
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1365‐2435.2005.01037.x
– ident: e_1_2_10_68_1
  doi: 10.1111/j.1469‐8137.1967.tb06016.x
– ident: e_1_2_10_85_1
  doi: 10.1111/nph.18289
– ident: e_1_2_10_66_1
  doi: 10.1104/pp.107.112490
– ident: e_1_2_10_63_1
  doi: 10.1016/j.mib.2019.10.003
– ident: e_1_2_10_70_1
  doi: 10.5504/BBEQ.2011.0020
– ident: e_1_2_10_42_1
  doi: 10.1111/j.1365‐3040.2012.02495.x
– ident: e_1_2_10_35_1
  doi: 10.1126/science.aam9970
– ident: e_1_2_10_13_1
  doi: 10.1016/j.tplants.2013.05.001
– ident: e_1_2_10_47_1
  doi: 10.1111/nph.13337
– ident: e_1_2_10_15_1
  doi: 10.1126/science.1146487
– ident: e_1_2_10_58_1
  doi: 10.1146/annurev‐phyto‐082712‐102340
– ident: e_1_2_10_25_1
  doi: 10.1016/0169‐5347(94)90290‐9
– ident: e_1_2_10_49_1
  doi: 10.1016/j.jtusci.2014.01.003
– ident: e_1_2_10_34_1
  doi: 10.1038/s41467‐018‐05122‐7
– ident: e_1_2_10_18_1
  doi: 10.2307/1941120
– ident: e_1_2_10_65_1
  doi: 10.1038/s41467‐020‐15586‐1
– ident: e_1_2_10_17_1
  doi: 10.1016/j.cub.2023.05.033
– ident: e_1_2_10_20_1
  doi: 10.1016/j.tplants.2009.08.006
– ident: e_1_2_10_4_1
  doi: 10.1111/j.1365‐2745.2010.01658.x
– ident: e_1_2_10_57_1
  doi: 10.1093/aobpla/plaa002
– ident: e_1_2_10_73_1
  doi: 10.1111/nph.18435
– ident: e_1_2_10_2_1
  doi: 10.1007/s11104‐011‐0985‐6
– volume-title: Model selection and multimodel inference: A practical information‐theoretic approach
  year: 2002
  ident: e_1_2_10_9_1
– ident: e_1_2_10_43_1
  doi: 10.1016/j.envexpbot.2019.103807
– ident: e_1_2_10_60_1
  doi: 10.1016/j.tree.2020.08.007
– ident: e_1_2_10_72_1
  doi: 10.1073/pnas.2006948117
– ident: e_1_2_10_37_1
  doi: 10.7554/eLife.29107
– ident: e_1_2_10_87_1
  doi: 10.1038/s41477‐022‐01201‐2
– ident: e_1_2_10_19_1
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_2_10_81_1
  doi: 10.1093/aobpla/plz003
– ident: e_1_2_10_82_1
  doi: 10.1111/1365‐2435.14461
– ident: e_1_2_10_39_1
  doi: 10.1093/jpe/rtab087
– ident: e_1_2_10_69_1
  doi: 10.1016/B978-012370526-6.50006-4
– ident: e_1_2_10_6_1
  doi: 10.1146/annurev‐arplant‐102820‐124504
– ident: e_1_2_10_56_1
  doi: 10.1016/j.tplants.2022.04.009
– ident: e_1_2_10_83_1
  doi: 10.1111/1365-2745.14272
– ident: e_1_2_10_78_1
  doi: 10.1016/j.agee.2017.04.003
– ident: e_1_2_10_50_1
  doi: 10.1016/j.cub.2020.04.016
– ident: e_1_2_10_67_1
  doi: 10.1021/ac051437y
– ident: e_1_2_10_36_1
  doi: 10.1093/pcp/pcac113
– ident: e_1_2_10_46_1
  doi: 10.1016/j.tplants.2021.08.004
– ident: e_1_2_10_54_1
– ident: e_1_2_10_22_1
  doi: 10.1111/nph.17746
– ident: e_1_2_10_3_1
  doi: 10.1146/annurev.arplant.57.032905.105159
– ident: e_1_2_10_14_1
  doi: 10.1016/j.cub.2020.02.087
– ident: e_1_2_10_12_1
  doi: 10.1039/c7cs00343a
– ident: e_1_2_10_23_1
  doi: 10.1007/s00572‐006‐0078‐1
– ident: e_1_2_10_51_1
  doi: 10.1111/1744‐7917.12004
– ident: e_1_2_10_75_1
  doi: 10.1038/s41396‐021‐00894‐1
– ident: e_1_2_10_27_1
  doi: 10.1016/j.pbi.2015.06.008
– ident: e_1_2_10_33_1
  doi: 10.1146/annurev.arplant.59.032607.092825
– ident: e_1_2_10_16_1
  doi: 10.1016/j.rama.2019.02.007
– ident: e_1_2_10_64_1
  doi: 10.1007/s00572‐003‐0286‐x
– ident: e_1_2_10_88_1
  doi: 10.1104/pp.15.01405
– ident: e_1_2_10_32_1
  doi: 10.1007/BF00582238
– ident: e_1_2_10_30_1
  doi: 10.1146/annurev.ento.54.110807.090614
SSID ssj0006750
Score 2.4662528
Snippet Insect herbivory can affect interactions between plants and arbuscular mycorrhizal (AM) fungi through herbivore‐modified root carbon pools, while the specific...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 701
SubjectTerms above‐below‐ground interaction
Abundance
Ambrosia artemisiifolia
arbuscular mycorrhizal fungi
Arbuscular mycorrhizas
carbon
Colonization
Community composition
community structure
Exudates
Exudation
Fatty acids
foliar‐herbivory
Fungi
Glomus
Herbivores
Herbivory
Insects
Lipids
Metabolites
Metabolomics
phenolic compounds
Phenols
Plants
Relative abundance
Rhizoplane
Rhizosphere
root exudates
Roots
Secretions
Soil ecology
species
vesicular arbuscular mycorrhizae
Wounding
Title Foliar herbivory‐enhanced mycorrhization is associated with increased levels of lipids in root and root exudates
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.14272
https://www.proquest.com/docview/3030939304
https://www.proquest.com/docview/3200337335
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA4iCr7orhccL0sEH3zp0DbpJY_uMIMI64Mo-FaSNMXi2Eo7I45P_gR_o7_Ec9J2xhUWWXxLm6RJk5ycL8k5Xwg5FnEIoEMKhzEmHR6p0BFcpU4MukAGggWR9ZD7cxGeXfPzm6CzJkRfmIYfYr7hhpJh52sUcKnqD0LeelPxAITdj3AWxjcIiy4XBFIAh92OL9zlUdSS-6Atz6f8f-ulBdj8CFmtzhltENXVtjE1uetPJ6qvnz8ROX7rd36Q9RaR0tNmCP0kS6bYJKvNHZWzTbLyuwT8CIHVoSW4nm2RalSOc1lR6G6VP5bV7O3l1RS31paA3s9gPVvdtu6dNK-pbEcAROKuL80LRKo1PI7RYqmmZUbH-UOe1hBFAclPqCzSJmCeprglUW-T69HwanDmtHc3OBogkO-kPtfKiFSmLvdM4AtPewz0oBdrJVgmpAkUcgUCPOVBFjNXC5HymDMAkBpAEdshy0VZmF1CM6UkVzpkRmXcaBlrzw9jaUIl4dtR1CP9rucS3RKb4_0a46Rb4GDbJti2iW3bHjmZZ3hoOD3-nfSgGwpJK9x1wuzxsWAu75GjeTSIJZ61yMKUU0iDRn8sYiyA6tl-_6qo5Hw4sIG9_82wT9Z8gFqNPdEBWZ5UU3MIUGmifllpeAdx4Aaj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hHmovlNJWXaDUSD30klUSOw8fC9rV8jwgkLhFtuOIqNsEJbsVy4mfwG_kl3TsJMuCVFWoN0d-xLE98efxzDcA33gcIugQ3KGUCodFMnQ4k6kT414gAk6DyHrInZ6Fo0t2dBVcLfjCNPwQc4WbkQz7vzYCbhTSC1LeulOxAKXdj_A3vGLiettj1fkThRQCYrdjDHdZFLX0Psaa50UDz3emJ7i5CFrtrjN8B6rrb2Ns8rM_nci-untB5fh_H7QB6y0oJT-aVfQelnSxCWtNmMrZJqzulwghMbE2sBzXsw9QDctxLiqCMy7z32U1e7x_0MW1NScgv2Z4pK2uWw9PktdEtIsAM43il-SFAas1Po6N0VJNyoyM85s8rTGLIJifEFGkTULfTo1Wov4Il8PBxcHIacM3OApRkO-kPlNS81SkLvN04HNPeRS3Qi9WktOMCx1IQxeICJUFWUxdxXnKYkYRQyrERfQTLBdloT8DyaQUTKqQapkxrUSsPD-MhQ6lwLajqAf9buoS1XKbmxAb46Q745ixTczYJnZse_B9XuGmofX4e9Gdbi0krXzXCbU3yJy6rAd782yUTHPdIgpdTrGMsfujEaUBds9O_L9elRwNDmxi67UVvsKb0cXpSXJyeHa8DW99RF6NedEOLE-qqf6CyGkid61o_AHl9gq-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hQlEvFApVFwo1Ug-9ZJXEzo-PtLursoWqqroSt8h2HDViSVbJLmI58Qg8Y5-kYyfZLZUqhLg58k8ceybz2Z75DHDI4xBBh-AOpVQ4LJKhw5lMnRhtgQg4DSIbIff5PDydsPGXoPMmNLEwDT_EasPNaIb9XxsFn6XZHSVvo6lYgMruR_gXfsxCNzaCPbhcM0ghHnY7wnCXRVHL7mOcee418KdhWqPNu5jVGp3RNsiuu42vydf-Yi776uc9Jsf_-p7n8KyFpORDI0Mv4JEudmCzuaRyuQNPjksEkJjYHFqG6-VLqEblNBcVwfmW-feyWt78-q2La-tMQL4tcUFbXbfxnSSviWhFADPNti_JCwNVa3ycGpelmpQZmeazPK0xiyCUnxNRpE1C_1iYPYn6FUxGw6uTU6e9vMFRiIF8J_WZkpqnInWZpwOfe8qjaAi9WElOMy50IA1ZIOJTFmQxdRXnKYsZRQSpEBXRXdgoykLvAcmkFEyqkGqZMa1ErDw_jIUOpcC2o6gH_W7mEtUym5sLNqZJt8IxY5uYsU3s2PbgaFVh1pB6PFx0vxOFpNXuOqH2_JhTl_Xg_Sob9dIctohClwssY7z-aERpgN2z8_63VyXj4YlNvP7XCgfw9GIwSj59PD97A1s-wq7Gt2gfNubVQr9F2DSX76xi3ALKpAl2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foliar+herbivory%E2%80%90enhanced+mycorrhization+is+associated+with+increased+levels+of+lipids+in+root+and+root+exudates&rft.jtitle=The+Journal+of+ecology&rft.au=Xing%2C+Zhenlong&rft.au=Zhang%2C+Zhongyue&rft.au=Zhao%2C+Yige&rft.au=Biere%2C+Arjen&rft.date=2024-04-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=112&rft.issue=4&rft.spage=701&rft.epage=716&rft_id=info:doi/10.1111%2F1365-2745.14272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2745_14272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon