n‐Type GaSe Thin Flake for Field Effect Transistor, Photodetector, and Optoelectronic Memory
The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type c...
Saved in:
Published in | Advanced electronic materials Vol. 10; no. 8 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class.
Gallium–Selenide (GaSe) thin‐flake shows n‐type conduction in a field‐effect transistor with Ni contacts. The transfer characteristic exhibits a hysteretic behavior and high photo response, which are exploited to demonstrate an optoelectronic memory device. |
---|---|
AbstractList | The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class.
Gallium–Selenide (GaSe) thin‐flake shows n‐type conduction in a field‐effect transistor with Ni contacts. The transfer characteristic exhibits a hysteretic behavior and high photo response, which are exploited to demonstrate an optoelectronic memory device. The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm 2 V −1 s −1 with I on / I off ratio over 10 3 . Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW −1 and detectivity of 4.6 × 10 12 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class. Abstract The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class. |
Author | Di Bartolomeo, Antonio Gity, Farzan Neill, Hazel Pelella, Aniello Patil, Vilas Viscardi, Loredana Intonti, Kimberly Giubileo, Filippo Romano, Paola Kumar, Arun Durante, Ofelia Ansari, Lida Hurley, Paul K. |
Author_xml | – sequence: 1 givenname: Arun orcidid: 0000-0002-6333-2198 surname: Kumar fullname: Kumar, Arun email: akumar@unisa.it organization: University of Salerno – sequence: 2 givenname: Aniello orcidid: 0000-0002-3831-0210 surname: Pelella fullname: Pelella, Aniello organization: University of Sannio – sequence: 3 givenname: Kimberly orcidid: 0000-0003-1755-183X surname: Intonti fullname: Intonti, Kimberly organization: University of Salerno – sequence: 4 givenname: Loredana orcidid: 0000-0002-9674-7752 surname: Viscardi fullname: Viscardi, Loredana organization: University of Salerno – sequence: 5 givenname: Ofelia orcidid: 0000-0002-3539-3858 surname: Durante fullname: Durante, Ofelia organization: University of Salerno – sequence: 6 givenname: Filippo orcidid: 0000-0003-2233-3810 surname: Giubileo fullname: Giubileo, Filippo organization: CNR‐SPIN Salerno – sequence: 7 givenname: Paola orcidid: 0000-0002-9392-6050 surname: Romano fullname: Romano, Paola organization: University of Sannio – sequence: 8 givenname: Hazel orcidid: 0000-0001-7260-9008 surname: Neill fullname: Neill, Hazel organization: University College Cork – sequence: 9 givenname: Vilas surname: Patil fullname: Patil, Vilas organization: University College Cork – sequence: 10 givenname: Lida orcidid: 0000-0002-9284-2832 surname: Ansari fullname: Ansari, Lida organization: University College Cork – sequence: 11 givenname: Paul K. surname: Hurley fullname: Hurley, Paul K. organization: School of Chemistry, University College Cork – sequence: 12 givenname: Farzan orcidid: 0000-0003-3128-1426 surname: Gity fullname: Gity, Farzan organization: University College Cork – sequence: 13 givenname: Antonio orcidid: 0000-0002-3629-726X surname: Di Bartolomeo fullname: Di Bartolomeo, Antonio email: adibartolomeo@unisa.it organization: University of Salerno |
BookMark | eNqFkN1KJDEQhYO44M9663UewBnz15nOpciMCiMu7Czs1YZKuqLRns6QDsjc-Qg-o09ijyMiguxVVR3qfAfOAdntUoeEHHM25oyJU8B2ORZMKMYYZztkX3BjRlyzv7uf9j1y1Pf3m5eJlqqS--Rf9_L0vFivkF7Ab6SLu9jRWQsPSEPKdBaxbeg0BPSFLjJ0fexLyif0110qqcEy6JsTuoberErCdhBy6qKn17hMef2T_AjQ9nj0Pg_Jn9l0cX45mt9cXJ2fzUde1kaMKsEdOM-YqSrhJjU0FXeSKRO019UkoKoNE6icRqm84grqKui6Ur52DoSUh-Rqy20S3NtVjkvIa5sg2jch5VsLuUTfohVGNzqAUM0Q4KUyLkiUYLQBYN41A2u8Zfmc-j5j-OBxZjdl203Z9qPswaC-GHwsUGLqSobYfm-TW9tjbHH9nxB7Np1fT5iQr2yllYs |
CitedBy_id | crossref_primary_10_1007_s00723_024_01715_2 |
Cites_doi | 10.1002/aelm.202300066 10.1103/PhysRevB.17.3221 10.1021/nn405529r 10.1038/srep11472 10.3390/mi14030691 10.1002/adom.202200332 10.1103/PhysRevB.90.085415 10.1007/s10853-023-08169-0 10.1088/2053-1583/ab4020 10.1002/pssa.2210310216 10.1002/admt.201600197 10.1016/j.mtnano.2023.100382 10.1016/j.cpc.2018.01.012 10.1002/admt.201901085 10.1002/adma.201201361 10.1021/acsanm.1c01141 10.1039/C5NR07336G 10.3390/nano10030579 10.1016/j.jpcs.2023.111653 10.1088/2053-1583/ac3f45 10.1039/C8CP03740J 10.1063/1.4804546 10.1002/adma.201705934 10.1088/1361-6463/abcc91 10.1039/C5CS00507H 10.1016/j.bios.2022.114674 10.1088/2632-959X/acbe11 10.1103/PhysRevB.13.5188 10.1063/1.4933034 10.3390/nano8110901 10.1021/acsami.3c12973 10.3390/nano12111886 10.1038/srep08130 10.1103/PhysRevB.84.085314 10.1021/acsanm.3c03685 10.1039/C8NR09068H 10.1088/1361-648X/aadbed 10.1038/srep15123 10.1038/s41467-018-05397-w 10.1016/0022-3697(76)90023-8 10.1021/acsanm.0c02058 10.1021/cr300263a 10.1002/aelm.202000979 10.1007/s11671-010-9727-6 10.1016/j.jpcs.2023.111406 10.1002/advs.202001655 10.1088/1361-6528/aa6d98 10.1088/1361-6528/aa96e6 10.1103/PhysRevB.93.155302 10.1002/smll.202002880 10.1088/2053-1583/aa91a7 10.1038/nphoton.2010.186 10.1039/C5TC03459K 10.1103/PhysRevApplied.13.044063 10.1088/2632-959X/ab7055 10.1021/acsaelm.2c01453 10.1088/1361-6528/aac6b0 10.1039/D1NA00659B 10.1002/adfm.202105722 10.1021/jz501188k 10.1103/PhysRevMaterials.3.124003 10.1364/OME.7.000587 10.1021/acsnano.6b05521 10.1021/acsami.1c12050 10.1021/acs.jpcc.0c00844 10.1002/adfm.201800657 10.1021/acs.nanolett.5b01058 10.1021/acsaelm.9b00770 10.1021/acsami.0c00348 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/aelm.202400010 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_296d6fa24d304c349bf3e3a969aa0cbd 10_1002_aelm_202400010 AELM702 |
Genre | article |
GrantInformation_xml | – fundername: Science Foundation Ireland AMBER Research Centre funderid: SFI‐12/RC/2278_P2 – fundername: European Union's REACT‐EU PON Research and Innovation 2014–2020 – fundername: Ministerial Decree 1062/2021 – fundername: SFI/HEA Irish Centre for High‐End Computing (ICHEC) |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN CITATION M~E AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3892-521babc009552b78ad51b3049f6c657fe48902e4b6e34c414a85f6854c8bba233 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:31:32 EDT 2025 Tue Jul 01 00:35:26 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Wed Jan 22 17:17:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3892-521babc009552b78ad51b3049f6c657fe48902e4b6e34c414a85f6854c8bba233 |
ORCID | 0000-0003-1755-183X 0000-0003-2233-3810 0000-0002-9674-7752 0000-0002-9392-6050 0000-0001-7260-9008 0000-0002-3831-0210 0000-0002-3539-3858 0000-0002-9284-2832 0000-0002-3629-726X 0000-0003-3128-1426 0000-0002-6333-2198 |
OpenAccessLink | https://doaj.org/article/296d6fa24d304c349bf3e3a969aa0cbd |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_296d6fa24d304c349bf3e3a969aa0cbd crossref_primary_10_1002_aelm_202400010 crossref_citationtrail_10_1002_aelm_202400010 wiley_primary_10_1002_aelm_202400010_AELM702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2024 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2017; 5 2017; 7 2019; 2019 2017; 2 2023; 4 2023; 5 2023; 6 2019; 11 2023; 183 2023; 9 2020; 16 2020; 13 2020; 12 2020; 124 2020; 10 2015; 107 2022; 216 2020; 7 2018; 9 2020; 5 2018; 8 2014; 5 2023; 24 2021; 31 2020; 3 2020; 2 2020; 1 2023; 179 2015; 44 2013; 113 2018; 30 2014; 8 2012; 24 2010; 5 2010; 4 1976; 37 2015; 15 2021; 7 2018; 29 2018; 28 2023; 14 2023; 58 2021; 4 2015; 5 2019; 3 2019; 6 2015; 4 2014; 90 2018; 226 2017; 28 2023; 15 2011; 84 2016; 10 2013; 102 1978; 17 1975; 31 2016; 93 2018; 20 2021; 13 2021; 54 1976; 13 2022; 4 2022; 9 2022; 12 2018 2022; 10 2016; 8 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 Di Bartolomeo A. (e_1_2_9_59_1) 2018 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Zhou F. (e_1_2_9_20_1) 2019; 2019 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 8 start-page: 1485 year: 2014 publication-title: ACS Nano – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 3049 year: 2016 publication-title: Nanoscale – volume: 113 start-page: 3766 year: 2013 publication-title: Chem. Rev. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 3571 year: 2015 publication-title: Nano Lett. – volume: 58 start-page: 2689 year: 2023 publication-title: J. Mater. Sci. – volume: 8 start-page: 901 year: 2018 publication-title: Nanomaterials – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 216 year: 2022 publication-title: Biosens. Bioelectron. – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 20 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 12 start-page: 1886 year: 2022 publication-title: Nanomaterials – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 16 year: 2020 publication-title: Small – volume: 31 start-page: 469 year: 1975 publication-title: physica status solidi (a) – volume: 4 start-page: 611 year: 2010 publication-title: Nature Photon – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 2019 year: 2019 publication-title: Research – volume: 24 year: 2023 publication-title: Materials Today Nano – volume: 183 year: 2023 publication-title: J. Phys. Chem. Solids – volume: 9 year: 2022 publication-title: 2D Mater – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 10 start-page: 9679 year: 2016 publication-title: ACS Nano – volume: 54 year: 2021 publication-title: J. Phys. D: Appl. Phys. – volume: 5 start-page: 451 year: 2023 publication-title: ACS Appl. Electron. Mater. – volume: 6 year: 2019 publication-title: 2D Mater – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1538 year: 2019 publication-title: Nanoscale – volume: 5 year: 2017 publication-title: 2D Mater – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 1852 year: 2010 publication-title: Nanoscale Res. Lett. – volume: 2 year: 2017 publication-title: Adv. Mater. Technol. – volume: 14 start-page: 691 year: 2023 publication-title: Micromachines – volume: 13 year: 2020 publication-title: Phys. Rev. Applied – volume: 10 start-page: 579 year: 2020 publication-title: Nanomaterials – volume: 1 year: 2020 publication-title: Nano Ex – volume: 24 start-page: 3549 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 2675 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 30 year: 2018 publication-title: J. Phys.: Condens. Matter – volume: 4 year: 2023 publication-title: Nano Ex – volume: 44 start-page: 8859 year: 2015 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 7820 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 5 year: 2015 publication-title: Sci Rep – volume: 9 year: 2023 publication-title: Ad. Electr. Mater. – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 17 start-page: 3221 year: 1978 publication-title: Phys. Rev. B – start-page: 1 year: 2018 end-page: 2 – volume: 5 start-page: 8130 year: 2015 publication-title: Sci Rep – volume: 4 start-page: 248 year: 2015 publication-title: J. Mater. Chem. C – volume: 4 start-page: 479 year: 2022 publication-title: Nanoscale Adv. – volume: 9 start-page: 2966 year: 2018 publication-title: Nat Commun – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2023 publication-title: ACS Appl. Nano Mater – volume: 3 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 37 start-page: 417 year: 1976 publication-title: J. Phys. Chem. Solids – volume: 7 start-page: 587 year: 2017 publication-title: Opt. Mater. Express, OME – volume: 179 year: 2023 publication-title: J. Phys. Chem. Solids – volume: 2 start-page: 670 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 226 start-page: 39 year: 2018 publication-title: Comput. Phys. Commun. – ident: e_1_2_9_16_1 doi: 10.1002/aelm.202300066 – ident: e_1_2_9_34_1 doi: 10.1103/PhysRevB.17.3221 – ident: e_1_2_9_36_1 doi: 10.1021/nn405529r – ident: e_1_2_9_58_1 doi: 10.1038/srep11472 – ident: e_1_2_9_5_1 doi: 10.3390/mi14030691 – ident: e_1_2_9_63_1 doi: 10.1002/adom.202200332 – ident: e_1_2_9_71_1 doi: 10.1103/PhysRevB.90.085415 – ident: e_1_2_9_12_1 doi: 10.1007/s10853-023-08169-0 – ident: e_1_2_9_49_1 doi: 10.1088/2053-1583/ab4020 – ident: e_1_2_9_32_1 doi: 10.1002/pssa.2210310216 – ident: e_1_2_9_37_1 doi: 10.1002/admt.201600197 – ident: e_1_2_9_61_1 doi: 10.1016/j.mtnano.2023.100382 – ident: e_1_2_9_69_1 doi: 10.1016/j.cpc.2018.01.012 – ident: e_1_2_9_38_1 doi: 10.1002/admt.201901085 – ident: e_1_2_9_54_1 doi: 10.1002/adma.201201361 – ident: e_1_2_9_30_1 doi: 10.1021/acsanm.1c01141 – ident: e_1_2_9_48_1 doi: 10.1039/C5NR07336G – ident: e_1_2_9_2_1 doi: 10.3390/nano10030579 – ident: e_1_2_9_17_1 doi: 10.1016/j.jpcs.2023.111653 – ident: e_1_2_9_65_1 doi: 10.1088/2053-1583/ac3f45 – ident: e_1_2_9_44_1 doi: 10.1039/C8CP03740J – ident: e_1_2_9_13_1 doi: 10.1063/1.4804546 – ident: e_1_2_9_24_1 doi: 10.1002/adma.201705934 – ident: e_1_2_9_26_1 doi: 10.1088/1361-6463/abcc91 – ident: e_1_2_9_6_1 doi: 10.1039/C5CS00507H – ident: e_1_2_9_4_1 doi: 10.1016/j.bios.2022.114674 – ident: e_1_2_9_21_1 doi: 10.1088/2632-959X/acbe11 – ident: e_1_2_9_70_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_9_51_1 doi: 10.1063/1.4933034 – ident: e_1_2_9_47_1 doi: 10.3390/nano8110901 – ident: e_1_2_9_60_1 doi: 10.1021/acsami.3c12973 – ident: e_1_2_9_68_1 – ident: e_1_2_9_22_1 doi: 10.3390/nano12111886 – ident: e_1_2_9_33_1 doi: 10.1038/srep08130 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevB.84.085314 – ident: e_1_2_9_11_1 doi: 10.1021/acsanm.3c03685 – ident: e_1_2_9_14_1 doi: 10.1039/C8NR09068H – ident: e_1_2_9_56_1 doi: 10.1088/1361-648X/aadbed – ident: e_1_2_9_67_1 doi: 10.1038/srep15123 – ident: e_1_2_9_19_1 doi: 10.1038/s41467-018-05397-w – ident: e_1_2_9_55_1 doi: 10.1016/0022-3697(76)90023-8 – ident: e_1_2_9_64_1 doi: 10.1021/acsanm.0c02058 – ident: e_1_2_9_1_1 doi: 10.1021/cr300263a – ident: e_1_2_9_43_1 doi: 10.1002/aelm.202000979 – ident: e_1_2_9_66_1 doi: 10.1007/s11671-010-9727-6 – ident: e_1_2_9_18_1 doi: 10.1016/j.jpcs.2023.111406 – ident: e_1_2_9_25_1 doi: 10.1002/advs.202001655 – ident: e_1_2_9_57_1 doi: 10.1088/1361-6528/aa6d98 – ident: e_1_2_9_7_1 doi: 10.1088/1361-6528/aa96e6 – ident: e_1_2_9_72_1 doi: 10.1103/PhysRevB.93.155302 – ident: e_1_2_9_10_1 doi: 10.1002/smll.202002880 – ident: e_1_2_9_46_1 doi: 10.1088/2053-1583/aa91a7 – ident: e_1_2_9_8_1 doi: 10.1038/nphoton.2010.186 – ident: e_1_2_9_53_1 doi: 10.1039/C5TC03459K – ident: e_1_2_9_27_1 doi: 10.1103/PhysRevApplied.13.044063 – ident: e_1_2_9_3_1 doi: 10.1088/2632-959X/ab7055 – ident: e_1_2_9_45_1 doi: 10.1021/acsaelm.2c01453 – ident: e_1_2_9_50_1 doi: 10.1088/1361-6528/aac6b0 – volume: 2019 year: 2019 ident: e_1_2_9_20_1 publication-title: Research – ident: e_1_2_9_29_1 doi: 10.1039/D1NA00659B – ident: e_1_2_9_15_1 doi: 10.1002/adfm.202105722 – ident: e_1_2_9_23_1 doi: 10.1021/jz501188k – ident: e_1_2_9_41_1 doi: 10.1103/PhysRevMaterials.3.124003 – ident: e_1_2_9_52_1 doi: 10.1364/OME.7.000587 – start-page: 1 volume-title: Proc. of the 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC) year: 2018 ident: e_1_2_9_59_1 – ident: e_1_2_9_39_1 doi: 10.1021/acsnano.6b05521 – ident: e_1_2_9_9_1 doi: 10.1021/acsami.1c12050 – ident: e_1_2_9_40_1 doi: 10.1021/acs.jpcc.0c00844 – ident: e_1_2_9_42_1 doi: 10.1002/adfm.201800657 – ident: e_1_2_9_35_1 doi: 10.1021/acs.nanolett.5b01058 – ident: e_1_2_9_62_1 doi: 10.1021/acsaelm.9b00770 – ident: e_1_2_9_28_1 doi: 10.1021/acsami.0c00348 |
SSID | ssj0001763453 |
Score | 2.322349 |
Snippet | The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional... Abstract The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | 2D materials density functional theory field effect transistor GaSe optoelectronic memory photodetector |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFy-iqLi-yEHwssU2SdPtcRWriKsLKuzJkklSBZd2WevBmz_B3-gvMZPuwz2I2GMYEjrJZB6Z-YaQI2GgUDw1AS-kDISJ4gDcFzCQCVehBm6xULh3Iy8fxNUgHvyo4m_wIWYBN5QMf1-jgCt4PZmDhio7xEpyzIH0NVYrWF-LSX1M9OdRFic-wkNROslMg0iGgylyY8hOFqdY0EwewH_RYPUaJ1snaxNTkXabvd0gS7bcJI_l18cnOo_0Qt1Zim03aTZUL5Y665NmmI9GG0Ri6tWQRwFp0_5zVVfG1j5G36aqNPR2VFfzJji0hym371vkITu_P7sMJj0SAu1MDfQjI1CgPZIcg6SjTBwBPp0VUss4KazAh0QrQFoutIiE6sSF7MRCdwAU43ybLJdVaXcI1aipkiKEyHkpoE2aKG3cFAkwxcKUt0gw5U-uJwDi2MdimDfQxyxHfuYzfrbI8Yx-1EBn_Ep5iuyeUSHktR-oxk_5RIJylkojC8WEcb-nuUih4JarVKYKz5RpkbbfrD_Wyrvn170kZLv_I98jqzjWpP7tk-V6_GYPnDlSw6E_cd8UtdhW priority: 102 providerName: Wiley-Blackwell |
Title | n‐Type GaSe Thin Flake for Field Effect Transistor, Photodetector, and Optoelectronic Memory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400010 https://doaj.org/article/296d6fa24d304c349bf3e3a969aa0cbd |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF60Jy-iqFh_yh4ELw1Ndjeb5lilsYjVghZ6MuwvgiUpEg_efASf0SdxZ5PWehAv5hiG2fBNkpnZnfkGoTOmpRU01QG1nAdMR3Eg3RUQyRMqQiWpgUbh8S0fTdn1LJ6tjfqCmrCaHrgGrkdSrrkVhGmXeCvKUmmpoSLlqQBVGv6-zuetJVN-d8V9NiymS5bGkPSEmUPjOZRMhtAuu-aFPFn_z-DUe5dsB203YSEe1I-zizZMsYcei8_3D0gU8ZW4NxhGbOJsLp4NdpEmzqD2DNfsw9i7HM_40cWTp7Iqtan8fnwXi0Lju0VVfg-8wWMor33bR9Ns-HA5Cpp5CIFyYQXkjJEUUnnWOCKTvtBxJOGYzHLF48QaBoeGhkluKFMsYqIfW96PmepLKQilB6hVlIU5RFiBV0psKCOXkUil00Qo7VQkkggHJ22jYIlPrhqycJhZMc9rmmOSA575Cs82Ol_JL2qajF8lLwDulRTQW_sbzuh5Y_T8L6O3Udcb64-18sHwZpyE5Og_1jxGW6C4Lv47Qa3q5dWcuoCkkh20Sdik49_AL0t-3mI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYQHOCyAgGiy8sHEJdGJLbjNIc9lEcp0AISFFUcNutXQKJKEBuEuPET9q_sX-KX4HHSVj0gxIEck1ESj2c8D4-_QWiLaZkKGmuPppx7TAehJ-3lEckjKnwlqYGDwt0z3u6xk37Yn0L_h2dhSnyIUcINNMOt16DgkJDeHaOGCjOAo-RQBGmDiqqu8tS8PNuo7e-v4wM7xduEtA6v9tte1VjAU9Y-Q_AVSCGVg18jMmoIHQYS9ptSrngYpYbB7pthkhvKFAuYaIQpb4RMNaQUBHKgdtWfAVfKKtJM87p30xsndqzGMod-aReD2Au43x-CRfpkd_KnJ4yh6xkw6SM7I9eaRz8q7xQ3S3FaQFMmW0S_s7fXfxCv4iNxaTB0-sStgbg32Dq8uAUlcLgEQcbO8jngkTq-uMuLXJvCbQvUscg0Pn8o8nHfHdyFKt-XJdT7Fu4to-ksz8wKwgqMY5T6MrCBkVQ6joTS9hWRJIL4Ma0hb8ifRFWY5dA6Y5CUaMskAX4mI37W0M6I_qFE6_iQcg_YPaIClG13I3-8TSqlTUjMNU8FYdoOT1EWy5QaKmIeCxBjXUN1N1mffCtpHna6kU9-fo18E822r7qdpHN8drqK5uB5WXm4hqaLxyezbr2hQm5U8ofRn-8W-XfsTBY4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqYS4IBCtGn73QMUlVu3d9To-cAhtTUubtlIJijhg9hckIjsqRqi3PgKPwjPxJOysnUQ5IMShPtoj2zs7s_Ozs98AvOBGOclyEzEnRMRNkkbKXxFVImMy1opZPCg8PhNHE_52mk434NfiLEyLD7FMuKFmhPUaFXxu3N4KNFTaGZ4kxxpIH1N0ZZUn9vqHD9q-vTo-8DO8S2lx-G7_KOr6CkTam2eMvRIllQ7oa1RlQ2nSROF2kxNapJmzHDffLFfCMq55wuUwdWKYcj1USlJMgfpFfzP1pjDuwebo_eTDZJXX8QrLA_ilXwvyKBHxdIEVGdO99Z9es4WhZcC6ixxsXHEf7nXOKRm10vQANmz1ED5Wv29-YrhK3shLS7DRJylm8qsl3t8lBVbAkRYDmQTDF3BHBuTiS93UxjZhV2BAZGXI-bypV213yBiLfK-3YHIr3NuGXlVXdgeIRtuYuVglPi5S2uSZ1Ma_IlNU0jhnfYgW_Cl1B1mOnTNmZQu2TEvkZ7nkZx9eLunnLVjHXylfI7uXVAiyHW7UV5_LTmdLmgsjnKTc-OFpxnPlmGUyF7lEKTZ9GITJ-se3ytHh6TiL6aP_I38Ody4OivL0-OzkMdzFx23d4RPoNVff7VPvCzXqWSd-BD7dtsT_AeK-FVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=n%E2%80%90Type+GaSe+Thin+Flake+for+Field+Effect+Transistor%2C+Photodetector%2C+and+Optoelectronic+Memory&rft.jtitle=Advanced+electronic+materials&rft.au=Arun+Kumar&rft.au=Aniello+Pelella&rft.au=Kimberly+Intonti&rft.au=Loredana+Viscardi&rft.date=2024-08-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=10&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_296d6fa24d304c349bf3e3a969aa0cbd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |