n‐Type GaSe Thin Flake for Field Effect Transistor, Photodetector, and Optoelectronic Memory

The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type c...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 10; no. 8
Main Authors Kumar, Arun, Pelella, Aniello, Intonti, Kimberly, Viscardi, Loredana, Durante, Ofelia, Giubileo, Filippo, Romano, Paola, Neill, Hazel, Patil, Vilas, Ansari, Lida, Hurley, Paul K., Gity, Farzan, Di Bartolomeo, Antonio
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class. Gallium–Selenide (GaSe) thin‐flake shows n‐type conduction in a field‐effect transistor with Ni contacts. The transfer characteristic exhibits a hysteretic behavior and high photo response, which are exploited to demonstrate an optoelectronic memory device.
AbstractList The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class. Gallium–Selenide (GaSe) thin‐flake shows n‐type conduction in a field‐effect transistor with Ni contacts. The transfer characteristic exhibits a hysteretic behavior and high photo response, which are exploited to demonstrate an optoelectronic memory device.
The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm 2 V −1 s −1 with I on / I off ratio over 10 3 . Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW −1 and detectivity of 4.6 × 10 12  Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class.
Abstract The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n‐type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left‐shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe‐based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class.
Author Di Bartolomeo, Antonio
Gity, Farzan
Neill, Hazel
Pelella, Aniello
Patil, Vilas
Viscardi, Loredana
Intonti, Kimberly
Giubileo, Filippo
Romano, Paola
Kumar, Arun
Durante, Ofelia
Ansari, Lida
Hurley, Paul K.
Author_xml – sequence: 1
  givenname: Arun
  orcidid: 0000-0002-6333-2198
  surname: Kumar
  fullname: Kumar, Arun
  email: akumar@unisa.it
  organization: University of Salerno
– sequence: 2
  givenname: Aniello
  orcidid: 0000-0002-3831-0210
  surname: Pelella
  fullname: Pelella, Aniello
  organization: University of Sannio
– sequence: 3
  givenname: Kimberly
  orcidid: 0000-0003-1755-183X
  surname: Intonti
  fullname: Intonti, Kimberly
  organization: University of Salerno
– sequence: 4
  givenname: Loredana
  orcidid: 0000-0002-9674-7752
  surname: Viscardi
  fullname: Viscardi, Loredana
  organization: University of Salerno
– sequence: 5
  givenname: Ofelia
  orcidid: 0000-0002-3539-3858
  surname: Durante
  fullname: Durante, Ofelia
  organization: University of Salerno
– sequence: 6
  givenname: Filippo
  orcidid: 0000-0003-2233-3810
  surname: Giubileo
  fullname: Giubileo, Filippo
  organization: CNR‐SPIN Salerno
– sequence: 7
  givenname: Paola
  orcidid: 0000-0002-9392-6050
  surname: Romano
  fullname: Romano, Paola
  organization: University of Sannio
– sequence: 8
  givenname: Hazel
  orcidid: 0000-0001-7260-9008
  surname: Neill
  fullname: Neill, Hazel
  organization: University College Cork
– sequence: 9
  givenname: Vilas
  surname: Patil
  fullname: Patil, Vilas
  organization: University College Cork
– sequence: 10
  givenname: Lida
  orcidid: 0000-0002-9284-2832
  surname: Ansari
  fullname: Ansari, Lida
  organization: University College Cork
– sequence: 11
  givenname: Paul K.
  surname: Hurley
  fullname: Hurley, Paul K.
  organization: School of Chemistry, University College Cork
– sequence: 12
  givenname: Farzan
  orcidid: 0000-0003-3128-1426
  surname: Gity
  fullname: Gity, Farzan
  organization: University College Cork
– sequence: 13
  givenname: Antonio
  orcidid: 0000-0002-3629-726X
  surname: Di Bartolomeo
  fullname: Di Bartolomeo, Antonio
  email: adibartolomeo@unisa.it
  organization: University of Salerno
BookMark eNqFkN1KJDEQhYO44M9663UewBnz15nOpciMCiMu7Czs1YZKuqLRns6QDsjc-Qg-o09ijyMiguxVVR3qfAfOAdntUoeEHHM25oyJU8B2ORZMKMYYZztkX3BjRlyzv7uf9j1y1Pf3m5eJlqqS--Rf9_L0vFivkF7Ab6SLu9jRWQsPSEPKdBaxbeg0BPSFLjJ0fexLyif0110qqcEy6JsTuoberErCdhBy6qKn17hMef2T_AjQ9nj0Pg_Jn9l0cX45mt9cXJ2fzUde1kaMKsEdOM-YqSrhJjU0FXeSKRO019UkoKoNE6icRqm84grqKui6Ur52DoSUh-Rqy20S3NtVjkvIa5sg2jch5VsLuUTfohVGNzqAUM0Q4KUyLkiUYLQBYN41A2u8Zfmc-j5j-OBxZjdl203Z9qPswaC-GHwsUGLqSobYfm-TW9tjbHH9nxB7Np1fT5iQr2yllYs
CitedBy_id crossref_primary_10_1007_s00723_024_01715_2
Cites_doi 10.1002/aelm.202300066
10.1103/PhysRevB.17.3221
10.1021/nn405529r
10.1038/srep11472
10.3390/mi14030691
10.1002/adom.202200332
10.1103/PhysRevB.90.085415
10.1007/s10853-023-08169-0
10.1088/2053-1583/ab4020
10.1002/pssa.2210310216
10.1002/admt.201600197
10.1016/j.mtnano.2023.100382
10.1016/j.cpc.2018.01.012
10.1002/admt.201901085
10.1002/adma.201201361
10.1021/acsanm.1c01141
10.1039/C5NR07336G
10.3390/nano10030579
10.1016/j.jpcs.2023.111653
10.1088/2053-1583/ac3f45
10.1039/C8CP03740J
10.1063/1.4804546
10.1002/adma.201705934
10.1088/1361-6463/abcc91
10.1039/C5CS00507H
10.1016/j.bios.2022.114674
10.1088/2632-959X/acbe11
10.1103/PhysRevB.13.5188
10.1063/1.4933034
10.3390/nano8110901
10.1021/acsami.3c12973
10.3390/nano12111886
10.1038/srep08130
10.1103/PhysRevB.84.085314
10.1021/acsanm.3c03685
10.1039/C8NR09068H
10.1088/1361-648X/aadbed
10.1038/srep15123
10.1038/s41467-018-05397-w
10.1016/0022-3697(76)90023-8
10.1021/acsanm.0c02058
10.1021/cr300263a
10.1002/aelm.202000979
10.1007/s11671-010-9727-6
10.1016/j.jpcs.2023.111406
10.1002/advs.202001655
10.1088/1361-6528/aa6d98
10.1088/1361-6528/aa96e6
10.1103/PhysRevB.93.155302
10.1002/smll.202002880
10.1088/2053-1583/aa91a7
10.1038/nphoton.2010.186
10.1039/C5TC03459K
10.1103/PhysRevApplied.13.044063
10.1088/2632-959X/ab7055
10.1021/acsaelm.2c01453
10.1088/1361-6528/aac6b0
10.1039/D1NA00659B
10.1002/adfm.202105722
10.1021/jz501188k
10.1103/PhysRevMaterials.3.124003
10.1364/OME.7.000587
10.1021/acsnano.6b05521
10.1021/acsami.1c12050
10.1021/acs.jpcc.0c00844
10.1002/adfm.201800657
10.1021/acs.nanolett.5b01058
10.1021/acsaelm.9b00770
10.1021/acsami.0c00348
ContentType Journal Article
Copyright 2024 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2024 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/aelm.202400010
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_296d6fa24d304c349bf3e3a969aa0cbd
10_1002_aelm_202400010
AELM702
Genre article
GrantInformation_xml – fundername: Science Foundation Ireland AMBER Research Centre
  funderid: SFI‐12/RC/2278_P2
– fundername: European Union's REACT‐EU PON Research and Innovation 2014–2020
– fundername: Ministerial Decree 1062/2021
– fundername: SFI/HEA Irish Centre for High‐End Computing (ICHEC)
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
CITATION
M~E
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3892-521babc009552b78ad51b3049f6c657fe48902e4b6e34c414a85f6854c8bba233
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:31:32 EDT 2025
Tue Jul 01 00:35:26 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Wed Jan 22 17:17:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3892-521babc009552b78ad51b3049f6c657fe48902e4b6e34c414a85f6854c8bba233
ORCID 0000-0003-1755-183X
0000-0003-2233-3810
0000-0002-9674-7752
0000-0002-9392-6050
0000-0001-7260-9008
0000-0002-3831-0210
0000-0002-3539-3858
0000-0002-9284-2832
0000-0002-3629-726X
0000-0003-3128-1426
0000-0002-6333-2198
OpenAccessLink https://doaj.org/article/296d6fa24d304c349bf3e3a969aa0cbd
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_296d6fa24d304c349bf3e3a969aa0cbd
crossref_primary_10_1002_aelm_202400010
crossref_citationtrail_10_1002_aelm_202400010
wiley_primary_10_1002_aelm_202400010_AELM702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2024
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2017; 5
2017; 7
2019; 2019
2017; 2
2023; 4
2023; 5
2023; 6
2019; 11
2023; 183
2023; 9
2020; 16
2020; 13
2020; 12
2020; 124
2020; 10
2015; 107
2022; 216
2020; 7
2018; 9
2020; 5
2018; 8
2014; 5
2023; 24
2021; 31
2020; 3
2020; 2
2020; 1
2023; 179
2015; 44
2013; 113
2018; 30
2014; 8
2012; 24
2010; 5
2010; 4
1976; 37
2015; 15
2021; 7
2018; 29
2018; 28
2023; 14
2023; 58
2021; 4
2015; 5
2019; 3
2019; 6
2015; 4
2014; 90
2018; 226
2017; 28
2023; 15
2011; 84
2016; 10
2013; 102
1978; 17
1975; 31
2016; 93
2018; 20
2021; 13
2021; 54
1976; 13
2022; 4
2022; 9
2022; 12
2018
2022; 10
2016; 8
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
Di Bartolomeo A. (e_1_2_9_59_1) 2018
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Zhou F. (e_1_2_9_20_1) 2019; 2019
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 8
  start-page: 1485
  year: 2014
  publication-title: ACS Nano
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 3049
  year: 2016
  publication-title: Nanoscale
– volume: 113
  start-page: 3766
  year: 2013
  publication-title: Chem. Rev.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 3571
  year: 2015
  publication-title: Nano Lett.
– volume: 58
  start-page: 2689
  year: 2023
  publication-title: J. Mater. Sci.
– volume: 8
  start-page: 901
  year: 2018
  publication-title: Nanomaterials
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 216
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 12
  start-page: 1886
  year: 2022
  publication-title: Nanomaterials
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 16
  year: 2020
  publication-title: Small
– volume: 31
  start-page: 469
  year: 1975
  publication-title: physica status solidi (a)
– volume: 4
  start-page: 611
  year: 2010
  publication-title: Nature Photon
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 24
  year: 2023
  publication-title: Materials Today Nano
– volume: 183
  year: 2023
  publication-title: J. Phys. Chem. Solids
– volume: 9
  year: 2022
  publication-title: 2D Mater
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 10
  start-page: 9679
  year: 2016
  publication-title: ACS Nano
– volume: 54
  year: 2021
  publication-title: J. Phys. D: Appl. Phys.
– volume: 5
  start-page: 451
  year: 2023
  publication-title: ACS Appl. Electron. Mater.
– volume: 6
  year: 2019
  publication-title: 2D Mater
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1538
  year: 2019
  publication-title: Nanoscale
– volume: 5
  year: 2017
  publication-title: 2D Mater
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 1852
  year: 2010
  publication-title: Nanoscale Res. Lett.
– volume: 2
  year: 2017
  publication-title: Adv. Mater. Technol.
– volume: 14
  start-page: 691
  year: 2023
  publication-title: Micromachines
– volume: 13
  year: 2020
  publication-title: Phys. Rev. Applied
– volume: 10
  start-page: 579
  year: 2020
  publication-title: Nanomaterials
– volume: 1
  year: 2020
  publication-title: Nano Ex
– volume: 24
  start-page: 3549
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2675
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  year: 2018
  publication-title: J. Phys.: Condens. Matter
– volume: 4
  year: 2023
  publication-title: Nano Ex
– volume: 44
  start-page: 8859
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 7820
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 5
  year: 2015
  publication-title: Sci Rep
– volume: 9
  year: 2023
  publication-title: Ad. Electr. Mater.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 3221
  year: 1978
  publication-title: Phys. Rev. B
– start-page: 1
  year: 2018
  end-page: 2
– volume: 5
  start-page: 8130
  year: 2015
  publication-title: Sci Rep
– volume: 4
  start-page: 248
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 479
  year: 2022
  publication-title: Nanoscale Adv.
– volume: 9
  start-page: 2966
  year: 2018
  publication-title: Nat Commun
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Nano Mater
– volume: 3
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 102
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 37
  start-page: 417
  year: 1976
  publication-title: J. Phys. Chem. Solids
– volume: 7
  start-page: 587
  year: 2017
  publication-title: Opt. Mater. Express, OME
– volume: 179
  year: 2023
  publication-title: J. Phys. Chem. Solids
– volume: 2
  start-page: 670
  year: 2020
  publication-title: ACS Appl. Electron. Mater.
– volume: 226
  start-page: 39
  year: 2018
  publication-title: Comput. Phys. Commun.
– ident: e_1_2_9_16_1
  doi: 10.1002/aelm.202300066
– ident: e_1_2_9_34_1
  doi: 10.1103/PhysRevB.17.3221
– ident: e_1_2_9_36_1
  doi: 10.1021/nn405529r
– ident: e_1_2_9_58_1
  doi: 10.1038/srep11472
– ident: e_1_2_9_5_1
  doi: 10.3390/mi14030691
– ident: e_1_2_9_63_1
  doi: 10.1002/adom.202200332
– ident: e_1_2_9_71_1
  doi: 10.1103/PhysRevB.90.085415
– ident: e_1_2_9_12_1
  doi: 10.1007/s10853-023-08169-0
– ident: e_1_2_9_49_1
  doi: 10.1088/2053-1583/ab4020
– ident: e_1_2_9_32_1
  doi: 10.1002/pssa.2210310216
– ident: e_1_2_9_37_1
  doi: 10.1002/admt.201600197
– ident: e_1_2_9_61_1
  doi: 10.1016/j.mtnano.2023.100382
– ident: e_1_2_9_69_1
  doi: 10.1016/j.cpc.2018.01.012
– ident: e_1_2_9_38_1
  doi: 10.1002/admt.201901085
– ident: e_1_2_9_54_1
  doi: 10.1002/adma.201201361
– ident: e_1_2_9_30_1
  doi: 10.1021/acsanm.1c01141
– ident: e_1_2_9_48_1
  doi: 10.1039/C5NR07336G
– ident: e_1_2_9_2_1
  doi: 10.3390/nano10030579
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jpcs.2023.111653
– ident: e_1_2_9_65_1
  doi: 10.1088/2053-1583/ac3f45
– ident: e_1_2_9_44_1
  doi: 10.1039/C8CP03740J
– ident: e_1_2_9_13_1
  doi: 10.1063/1.4804546
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.201705934
– ident: e_1_2_9_26_1
  doi: 10.1088/1361-6463/abcc91
– ident: e_1_2_9_6_1
  doi: 10.1039/C5CS00507H
– ident: e_1_2_9_4_1
  doi: 10.1016/j.bios.2022.114674
– ident: e_1_2_9_21_1
  doi: 10.1088/2632-959X/acbe11
– ident: e_1_2_9_70_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_9_51_1
  doi: 10.1063/1.4933034
– ident: e_1_2_9_47_1
  doi: 10.3390/nano8110901
– ident: e_1_2_9_60_1
  doi: 10.1021/acsami.3c12973
– ident: e_1_2_9_68_1
– ident: e_1_2_9_22_1
  doi: 10.3390/nano12111886
– ident: e_1_2_9_33_1
  doi: 10.1038/srep08130
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevB.84.085314
– ident: e_1_2_9_11_1
  doi: 10.1021/acsanm.3c03685
– ident: e_1_2_9_14_1
  doi: 10.1039/C8NR09068H
– ident: e_1_2_9_56_1
  doi: 10.1088/1361-648X/aadbed
– ident: e_1_2_9_67_1
  doi: 10.1038/srep15123
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467-018-05397-w
– ident: e_1_2_9_55_1
  doi: 10.1016/0022-3697(76)90023-8
– ident: e_1_2_9_64_1
  doi: 10.1021/acsanm.0c02058
– ident: e_1_2_9_1_1
  doi: 10.1021/cr300263a
– ident: e_1_2_9_43_1
  doi: 10.1002/aelm.202000979
– ident: e_1_2_9_66_1
  doi: 10.1007/s11671-010-9727-6
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jpcs.2023.111406
– ident: e_1_2_9_25_1
  doi: 10.1002/advs.202001655
– ident: e_1_2_9_57_1
  doi: 10.1088/1361-6528/aa6d98
– ident: e_1_2_9_7_1
  doi: 10.1088/1361-6528/aa96e6
– ident: e_1_2_9_72_1
  doi: 10.1103/PhysRevB.93.155302
– ident: e_1_2_9_10_1
  doi: 10.1002/smll.202002880
– ident: e_1_2_9_46_1
  doi: 10.1088/2053-1583/aa91a7
– ident: e_1_2_9_8_1
  doi: 10.1038/nphoton.2010.186
– ident: e_1_2_9_53_1
  doi: 10.1039/C5TC03459K
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevApplied.13.044063
– ident: e_1_2_9_3_1
  doi: 10.1088/2632-959X/ab7055
– ident: e_1_2_9_45_1
  doi: 10.1021/acsaelm.2c01453
– ident: e_1_2_9_50_1
  doi: 10.1088/1361-6528/aac6b0
– volume: 2019
  year: 2019
  ident: e_1_2_9_20_1
  publication-title: Research
– ident: e_1_2_9_29_1
  doi: 10.1039/D1NA00659B
– ident: e_1_2_9_15_1
  doi: 10.1002/adfm.202105722
– ident: e_1_2_9_23_1
  doi: 10.1021/jz501188k
– ident: e_1_2_9_41_1
  doi: 10.1103/PhysRevMaterials.3.124003
– ident: e_1_2_9_52_1
  doi: 10.1364/OME.7.000587
– start-page: 1
  volume-title: Proc. of the 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC)
  year: 2018
  ident: e_1_2_9_59_1
– ident: e_1_2_9_39_1
  doi: 10.1021/acsnano.6b05521
– ident: e_1_2_9_9_1
  doi: 10.1021/acsami.1c12050
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.jpcc.0c00844
– ident: e_1_2_9_42_1
  doi: 10.1002/adfm.201800657
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.nanolett.5b01058
– ident: e_1_2_9_62_1
  doi: 10.1021/acsaelm.9b00770
– ident: e_1_2_9_28_1
  doi: 10.1021/acsami.0c00348
SSID ssj0001763453
Score 2.322349
Snippet The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional...
Abstract The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms 2D materials
density functional theory
field effect transistor
GaSe
optoelectronic memory
photodetector
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFy-iqLi-yEHwssU2SdPtcRWriKsLKuzJkklSBZd2WevBmz_B3-gvMZPuwz2I2GMYEjrJZB6Z-YaQI2GgUDw1AS-kDISJ4gDcFzCQCVehBm6xULh3Iy8fxNUgHvyo4m_wIWYBN5QMf1-jgCt4PZmDhio7xEpyzIH0NVYrWF-LSX1M9OdRFic-wkNROslMg0iGgylyY8hOFqdY0EwewH_RYPUaJ1snaxNTkXabvd0gS7bcJI_l18cnOo_0Qt1Zim03aTZUL5Y665NmmI9GG0Ri6tWQRwFp0_5zVVfG1j5G36aqNPR2VFfzJji0hym371vkITu_P7sMJj0SAu1MDfQjI1CgPZIcg6SjTBwBPp0VUss4KazAh0QrQFoutIiE6sSF7MRCdwAU43ybLJdVaXcI1aipkiKEyHkpoE2aKG3cFAkwxcKUt0gw5U-uJwDi2MdimDfQxyxHfuYzfrbI8Yx-1EBn_Ep5iuyeUSHktR-oxk_5RIJylkojC8WEcb-nuUih4JarVKYKz5RpkbbfrD_Wyrvn170kZLv_I98jqzjWpP7tk-V6_GYPnDlSw6E_cd8UtdhW
  priority: 102
  providerName: Wiley-Blackwell
Title n‐Type GaSe Thin Flake for Field Effect Transistor, Photodetector, and Optoelectronic Memory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400010
https://doaj.org/article/296d6fa24d304c349bf3e3a969aa0cbd
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF60Jy-iqFh_yh4ELw1Ndjeb5lilsYjVghZ6MuwvgiUpEg_efASf0SdxZ5PWehAv5hiG2fBNkpnZnfkGoTOmpRU01QG1nAdMR3Eg3RUQyRMqQiWpgUbh8S0fTdn1LJ6tjfqCmrCaHrgGrkdSrrkVhGmXeCvKUmmpoSLlqQBVGv6-zuetJVN-d8V9NiymS5bGkPSEmUPjOZRMhtAuu-aFPFn_z-DUe5dsB203YSEe1I-zizZMsYcei8_3D0gU8ZW4NxhGbOJsLp4NdpEmzqD2DNfsw9i7HM_40cWTp7Iqtan8fnwXi0Lju0VVfg-8wWMor33bR9Ns-HA5Cpp5CIFyYQXkjJEUUnnWOCKTvtBxJOGYzHLF48QaBoeGhkluKFMsYqIfW96PmepLKQilB6hVlIU5RFiBV0psKCOXkUil00Qo7VQkkggHJ22jYIlPrhqycJhZMc9rmmOSA575Cs82Ol_JL2qajF8lLwDulRTQW_sbzuh5Y_T8L6O3Udcb64-18sHwZpyE5Og_1jxGW6C4Lv47Qa3q5dWcuoCkkh20Sdik49_AL0t-3mI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYQHOCyAgGiy8sHEJdGJLbjNIc9lEcp0AISFFUcNutXQKJKEBuEuPET9q_sX-KX4HHSVj0gxIEck1ESj2c8D4-_QWiLaZkKGmuPppx7TAehJ-3lEckjKnwlqYGDwt0z3u6xk37Yn0L_h2dhSnyIUcINNMOt16DgkJDeHaOGCjOAo-RQBGmDiqqu8tS8PNuo7e-v4wM7xduEtA6v9tte1VjAU9Y-Q_AVSCGVg18jMmoIHQYS9ptSrngYpYbB7pthkhvKFAuYaIQpb4RMNaQUBHKgdtWfAVfKKtJM87p30xsndqzGMod-aReD2Au43x-CRfpkd_KnJ4yh6xkw6SM7I9eaRz8q7xQ3S3FaQFMmW0S_s7fXfxCv4iNxaTB0-sStgbg32Dq8uAUlcLgEQcbO8jngkTq-uMuLXJvCbQvUscg0Pn8o8nHfHdyFKt-XJdT7Fu4to-ksz8wKwgqMY5T6MrCBkVQ6joTS9hWRJIL4Ma0hb8ifRFWY5dA6Y5CUaMskAX4mI37W0M6I_qFE6_iQcg_YPaIClG13I3-8TSqlTUjMNU8FYdoOT1EWy5QaKmIeCxBjXUN1N1mffCtpHna6kU9-fo18E822r7qdpHN8drqK5uB5WXm4hqaLxyezbr2hQm5U8ofRn-8W-XfsTBY4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqYS4IBCtGn73QMUlVu3d9To-cAhtTUubtlIJijhg9hckIjsqRqi3PgKPwjPxJOysnUQ5IMShPtoj2zs7s_Ozs98AvOBGOclyEzEnRMRNkkbKXxFVImMy1opZPCg8PhNHE_52mk434NfiLEyLD7FMuKFmhPUaFXxu3N4KNFTaGZ4kxxpIH1N0ZZUn9vqHD9q-vTo-8DO8S2lx-G7_KOr6CkTam2eMvRIllQ7oa1RlQ2nSROF2kxNapJmzHDffLFfCMq55wuUwdWKYcj1USlJMgfpFfzP1pjDuwebo_eTDZJXX8QrLA_ilXwvyKBHxdIEVGdO99Z9es4WhZcC6ixxsXHEf7nXOKRm10vQANmz1ED5Wv29-YrhK3shLS7DRJylm8qsl3t8lBVbAkRYDmQTDF3BHBuTiS93UxjZhV2BAZGXI-bypV213yBiLfK-3YHIr3NuGXlVXdgeIRtuYuVglPi5S2uSZ1Ma_IlNU0jhnfYgW_Cl1B1mOnTNmZQu2TEvkZ7nkZx9eLunnLVjHXylfI7uXVAiyHW7UV5_LTmdLmgsjnKTc-OFpxnPlmGUyF7lEKTZ9GITJ-se3ytHh6TiL6aP_I38Ody4OivL0-OzkMdzFx23d4RPoNVff7VPvCzXqWSd-BD7dtsT_AeK-FVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=n%E2%80%90Type+GaSe+Thin+Flake+for+Field+Effect+Transistor%2C+Photodetector%2C+and+Optoelectronic+Memory&rft.jtitle=Advanced+electronic+materials&rft.au=Arun+Kumar&rft.au=Aniello+Pelella&rft.au=Kimberly+Intonti&rft.au=Loredana+Viscardi&rft.date=2024-08-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=10&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_296d6fa24d304c349bf3e3a969aa0cbd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon