Relationships between above‐ground plant traits and carbon cycling in tundra plant communities

The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and whe...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 110; no. 3; pp. 700 - 716
Main Authors Happonen, Konsta, Virkkala, Anna‐Maria, Kemppinen, Julia, Niittynen, Pekka, Luoto, Miska
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.03.2022
Subjects
Online AccessGet full text
ISSN0022-0477
1365-2745
DOI10.1111/1365-2745.13832

Cover

Abstract The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change. To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO2 fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks. Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO2 fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC. Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra. Yhteenveto Kasviyhteisöjen toiminnallista koostumusta ja toiminnallista monimuotoisutta voidaan käyttää ennustamaan ekosysteemien toimintaa. Ei kuitenkaan tiedetä tarkasti, miten kasvien toiminnalliset ominaisuudet vaikuttavat hiilenkiertoon. Tarkempi tieto kasvien toiminnallisten ominaisuuksien ja hiilenkierron välisestä yhteydestä voisi auttaa ennustamaan meneillään olevan tundran kasvillisuusmuutoksen seurauksia. Tämä on tärkeää, sillä tundran maaperään on sitoutunut suuri hiilivarasto, joka on herkkä ympäristömuutoksille. Mallinsimme hiilenkiertoa (maanpäällistä hiilivarastoa, maaperän orgaanista hiilivarastoa, yhteyttämistä ja ekosysteemin hengitystä) abioottisten muuttujien (ilmanlämpötilan ja maaperän kosteuden) ja kasviyhteisön toiminnallisten ominaisuuksien keskiarvojen ja keskihajontojen funktiona. Käytimme kolmea toiminnallista ominaisuutta yhteisöjen toiminnallisten mittarien laskemiseen: kasvien korkeutta, lehtien massaspesifistä pinta‐alaa (SLA) ja lehtien kuiva‐ainepitoisuutta (LDMC). Yhteisöjen ominaisuuskeskiarvot ja ‐keskihajonnat laskettiin painottamalla kunkin lajin ominaisuutta sen runsaudella. Aineisto kerättiin Kilpisjärven paljakalta. Mallien selityskyky oli suhteellisen korkea, mutta suuri osa maaperän orgaanisen hiilen varastosta jäi selittämättä. Kasvillisuuden keskikorkeus oli kaikkien hiilenkiertomuuttujien paitsi maaperän orgaanisen hiilen varastojen vahvin selittäjä. Korkeampi kasvillisuus näytti johtavan suurempiin hiilidioksidivoihin ja suurempiin maanpäällisiin hiilivarastoihin. Yhteisöissä, joissa lajeilla oli ‘nopeat’ lehtiominaisuudet (korkea SLA ja matala LDMC) oli korkeat hiilidioksidivuot ja maaperän orgaanisen hiilen varastot. Yhteisöjen sisäinen ominaisuushajonta vaikutti ekosystemitoimintoihin eri tavalla riipuen siitä, oliko kyse kasvien korkeuden vai lehtien ominaisuuksien hajonnasta. Yhteisönsisäinen vaihtelu SLA:ssa ja LDMC:ssä kasvatti hiilidioksidivoita ja maaperän hiilivarastoa, kun taas vaihtelevuus kasvien korkeudessa kasvatti maanpäällistä hiilivarastoa. Kasviyhteisöjen toiminnallisten ominaisuuksien keskihajonta selitti tutkimusalueen ekosysteemitoimintojen vaihtelusta suunnilleen yhtä suuren osan kuin yhteisöjen lehtiominaisuuksien keskiarvot. Synteesi. Kasvien korkeudella, SLA:lla ja LDMC:llä on selvä merkitys tundran hiilenkierrolle. Toiminnallisten ominaisuuksien keskiarvojen lisäksi myös yhteisöjen sisäinen ominaisuusvaihtelu on tärkeä tundran hiilenkiertoa säätelevä tekijä. Kasviyhteisöjen juuristojen ominaisuudet ja hajottajayhteisöjen toiminta ovat tärkeitä jatkotutkimuskohteita maaperän hiilen kierron tarkemman ymmärtämisen kannalta. Average plant height, average leaf traits, and the within‐community variabilities of height and leaf traits affect CO2 fluxes and carbon stocks in tundra plant communities. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized.
AbstractList The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change. To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO₂ fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks. Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO₂ fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC. Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra.
The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change. To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO 2  fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks. Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO 2  fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC. Synthesis . Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra. Kasviyhteisöjen toiminnallista koostumusta ja toiminnallista monimuotoisutta voidaan käyttää ennustamaan ekosysteemien toimintaa. Ei kuitenkaan tiedetä tarkasti, miten kasvien toiminnalliset ominaisuudet vaikuttavat hiilenkiertoon. Tarkempi tieto kasvien toiminnallisten ominaisuuksien ja hiilenkierron välisestä yhteydestä voisi auttaa ennustamaan meneillään olevan tundran kasvillisuusmuutoksen seurauksia. Tämä on tärkeää, sillä tundran maaperään on sitoutunut suuri hiilivarasto, joka on herkkä ympäristömuutoksille. Mallinsimme hiilenkiertoa (maanpäällistä hiilivarastoa, maaperän orgaanista hiilivarastoa, yhteyttämistä ja ekosysteemin hengitystä) abioottisten muuttujien (ilmanlämpötilan ja maaperän kosteuden) ja kasviyhteisön toiminnallisten ominaisuuksien keskiarvojen ja keskihajontojen funktiona. Käytimme kolmea toiminnallista ominaisuutta yhteisöjen toiminnallisten mittarien laskemiseen: kasvien korkeutta, lehtien massaspesifistä pinta‐alaa (SLA) ja lehtien kuiva‐ainepitoisuutta (LDMC). Yhteisöjen ominaisuuskeskiarvot ja ‐keskihajonnat laskettiin painottamalla kunkin lajin ominaisuutta sen runsaudella. Aineisto kerättiin Kilpisjärven paljakalta. Mallien selityskyky oli suhteellisen korkea, mutta suuri osa maaperän orgaanisen hiilen varastosta jäi selittämättä. Kasvillisuuden keskikorkeus oli kaikkien hiilenkiertomuuttujien paitsi maaperän orgaanisen hiilen varastojen vahvin selittäjä. Korkeampi kasvillisuus näytti johtavan suurempiin hiilidioksidivoihin ja suurempiin maanpäällisiin hiilivarastoihin. Yhteisöissä, joissa lajeilla oli ‘nopeat’ lehtiominaisuudet (korkea SLA ja matala LDMC) oli korkeat hiilidioksidivuot ja maaperän orgaanisen hiilen varastot. Yhteisöjen sisäinen ominaisuushajonta vaikutti ekosystemitoimintoihin eri tavalla riipuen siitä, oliko kyse kasvien korkeuden vai lehtien ominaisuuksien hajonnasta. Yhteisönsisäinen vaihtelu SLA:ssa ja LDMC:ssä kasvatti hiilidioksidivoita ja maaperän hiilivarastoa, kun taas vaihtelevuus kasvien korkeudessa kasvatti maanpäällistä hiilivarastoa. Kasviyhteisöjen toiminnallisten ominaisuuksien keskihajonta selitti tutkimusalueen ekosysteemitoimintojen vaihtelusta suunnilleen yhtä suuren osan kuin yhteisöjen lehtiominaisuuksien keskiarvot. Synteesi . Kasvien korkeudella, SLA:lla ja LDMC:llä on selvä merkitys tundran hiilenkierrolle. Toiminnallisten ominaisuuksien keskiarvojen lisäksi myös yhteisöjen sisäinen ominaisuusvaihtelu on tärkeä tundran hiilenkiertoa säätelevä tekijä. Kasviyhteisöjen juuristojen ominaisuudet ja hajottajayhteisöjen toiminta ovat tärkeitä jatkotutkimuskohteita maaperän hiilen kierron tarkemman ymmärtämisen kannalta.
The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change.To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland.The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO2 fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks.Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO2 fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC.Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra.
The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change. To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO2 fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks. Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO2 fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC. Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra. Yhteenveto Kasviyhteisöjen toiminnallista koostumusta ja toiminnallista monimuotoisutta voidaan käyttää ennustamaan ekosysteemien toimintaa. Ei kuitenkaan tiedetä tarkasti, miten kasvien toiminnalliset ominaisuudet vaikuttavat hiilenkiertoon. Tarkempi tieto kasvien toiminnallisten ominaisuuksien ja hiilenkierron välisestä yhteydestä voisi auttaa ennustamaan meneillään olevan tundran kasvillisuusmuutoksen seurauksia. Tämä on tärkeää, sillä tundran maaperään on sitoutunut suuri hiilivarasto, joka on herkkä ympäristömuutoksille. Mallinsimme hiilenkiertoa (maanpäällistä hiilivarastoa, maaperän orgaanista hiilivarastoa, yhteyttämistä ja ekosysteemin hengitystä) abioottisten muuttujien (ilmanlämpötilan ja maaperän kosteuden) ja kasviyhteisön toiminnallisten ominaisuuksien keskiarvojen ja keskihajontojen funktiona. Käytimme kolmea toiminnallista ominaisuutta yhteisöjen toiminnallisten mittarien laskemiseen: kasvien korkeutta, lehtien massaspesifistä pinta‐alaa (SLA) ja lehtien kuiva‐ainepitoisuutta (LDMC). Yhteisöjen ominaisuuskeskiarvot ja ‐keskihajonnat laskettiin painottamalla kunkin lajin ominaisuutta sen runsaudella. Aineisto kerättiin Kilpisjärven paljakalta. Mallien selityskyky oli suhteellisen korkea, mutta suuri osa maaperän orgaanisen hiilen varastosta jäi selittämättä. Kasvillisuuden keskikorkeus oli kaikkien hiilenkiertomuuttujien paitsi maaperän orgaanisen hiilen varastojen vahvin selittäjä. Korkeampi kasvillisuus näytti johtavan suurempiin hiilidioksidivoihin ja suurempiin maanpäällisiin hiilivarastoihin. Yhteisöissä, joissa lajeilla oli ‘nopeat’ lehtiominaisuudet (korkea SLA ja matala LDMC) oli korkeat hiilidioksidivuot ja maaperän orgaanisen hiilen varastot. Yhteisöjen sisäinen ominaisuushajonta vaikutti ekosystemitoimintoihin eri tavalla riipuen siitä, oliko kyse kasvien korkeuden vai lehtien ominaisuuksien hajonnasta. Yhteisönsisäinen vaihtelu SLA:ssa ja LDMC:ssä kasvatti hiilidioksidivoita ja maaperän hiilivarastoa, kun taas vaihtelevuus kasvien korkeudessa kasvatti maanpäällistä hiilivarastoa. Kasviyhteisöjen toiminnallisten ominaisuuksien keskihajonta selitti tutkimusalueen ekosysteemitoimintojen vaihtelusta suunnilleen yhtä suuren osan kuin yhteisöjen lehtiominaisuuksien keskiarvot. Synteesi. Kasvien korkeudella, SLA:lla ja LDMC:llä on selvä merkitys tundran hiilenkierrolle. Toiminnallisten ominaisuuksien keskiarvojen lisäksi myös yhteisöjen sisäinen ominaisuusvaihtelu on tärkeä tundran hiilenkiertoa säätelevä tekijä. Kasviyhteisöjen juuristojen ominaisuudet ja hajottajayhteisöjen toiminta ovat tärkeitä jatkotutkimuskohteita maaperän hiilen kierron tarkemman ymmärtämisen kannalta. Average plant height, average leaf traits, and the within‐community variabilities of height and leaf traits affect CO2 fluxes and carbon stocks in tundra plant communities. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized.
Author Happonen, Konsta
Luoto, Miska
Kemppinen, Julia
Niittynen, Pekka
Virkkala, Anna‐Maria
Author_xml – sequence: 1
  givenname: Konsta
  orcidid: 0000-0002-3164-8868
  surname: Happonen
  fullname: Happonen, Konsta
  email: konsta.happonen@gmail.com
  organization: University of Helsinki
– sequence: 2
  givenname: Anna‐Maria
  orcidid: 0000-0003-4877-2918
  surname: Virkkala
  fullname: Virkkala, Anna‐Maria
  email: avirkkala@woodwellclimate.org
  organization: Woodwell Climate Research Center
– sequence: 3
  givenname: Julia
  orcidid: 0000-0001-7521-7229
  surname: Kemppinen
  fullname: Kemppinen, Julia
  organization: University of Helsinki
– sequence: 4
  givenname: Pekka
  orcidid: 0000-0002-7290-029X
  surname: Niittynen
  fullname: Niittynen, Pekka
  organization: University of Helsinki
– sequence: 5
  givenname: Miska
  orcidid: 0000-0001-6203-5143
  surname: Luoto
  fullname: Luoto, Miska
  organization: University of Helsinki
BookMark eNqFkMtKAzEUQIMoWB9rtwNu3IzmNTOZpZT6QhBE1zGTua0p06QmGUt3foLf6JeYPnDhptkELuckl3OE9q2zgNAZwZcknSvCyiKnFS8uCROM7qHB32QfDTCmNMe8qg7RUQhTjHFZFXiA3p6hU9E4G97NPGQNxAWAzVTjPuHn63viXW_bbN4pG7PolYkhU2mglW-czfRSd8ZOMmOzmDivtqR2s1lvTTQQTtDBWHUBTrf3MXq9Gb0M7_LHp9v74fVjrpmoac4qDYw2rGkrrDhTggKGuqoJVWPOODSl1qJWglctFwJKVTPOWwKqJU3NsWDH6GLz7ty7jx5ClDMTNHRpH3B9kLRMHisEwwk9_4dOXe9t2i5RTOCCi5ok6mpDae9C8DCWc29myi8lwXJVXK76ylVfuS6ejOKfoU1cx12V63Z7C9PBctc38mE03Hi_QoGWlg
CitedBy_id crossref_primary_10_1007_s11104_024_06655_1
crossref_primary_10_1016_j_scitotenv_2024_171412
crossref_primary_10_1016_j_scitotenv_2024_170681
crossref_primary_10_1016_j_scitotenv_2024_172276
crossref_primary_10_1111_oik_10091
crossref_primary_10_1016_j_scitotenv_2024_177960
crossref_primary_10_1016_j_polar_2023_100984
crossref_primary_10_1016_j_soilbio_2024_109539
crossref_primary_10_1029_2023JG007657
crossref_primary_10_3161_15052249PJE2020_70_4_002
crossref_primary_10_1002_jobm_202200657
crossref_primary_10_1007_s10661_023_12215_4
crossref_primary_10_3389_ffgc_2023_1150209
crossref_primary_10_1007_s10021_023_00829_1
crossref_primary_10_1016_j_scitotenv_2023_162166
crossref_primary_10_1038_s41598_024_84162_0
crossref_primary_10_1111_ecog_06397
crossref_primary_10_1016_j_catena_2023_107483
crossref_primary_10_1016_j_soilbio_2023_109041
crossref_primary_10_1038_s41597_024_03139_w
crossref_primary_10_1002_ecm_1555
crossref_primary_10_5194_bg_21_335_2024
crossref_primary_10_1007_s11252_024_01627_w
crossref_primary_10_1111_jipb_13572
Cites_doi 10.1111/1365-2745.12092
10.1126/sciadv.aaw9883
10.1007/s10021-005-0146-y
10.1201/9781315370279
10.5194/bg-11-6573-2014
10.1046/j.1365-2486.2000.06021.x
10.1007/s10021-016-9997-7
10.1007/s10021-008-9128-1
10.1080/15230430.2019.1592649
10.1111/j.1365-2435.2011.01913.x
10.1046/j.1365-2745.1998.00306.x
10.1111/nph.13003
10.1111/gcb.13563
10.1111/j.1365-2745.2009.01615.x
10.1111/j.1365-2745.2007.01259.x
10.5194/bg-15-1663-2018
10.1016/j.agrformet.2017.10.028
10.1038/s41467-020-15014-4
10.1038/nature13470
10.1007/s10533-014-0017-8
10.1007/s11430-018-9309-6
10.1002/esp.4301
10.1890/13-2221.1
10.1007/BF00203256
10.1111/j.1365-2745.2011.01903.x
10.1111/gcb.13261
10.1038/nature23886
10.1007/s11104-021-04919-8
10.1093/treephys/tpt040
10.1111/j.1365-2745.2006.01187.x
10.1177/0309133317745784
10.1111/j.1461-0248.2012.01865.x
10.1111/geb.12783
10.1038/nclimate2697
10.1073/pnas.1315179111
10.7717/peerj.6876
10.1038/s41558-019-0592-8
10.1890/05-1051
10.1111/j.1365-2486.2009.02104.x
10.18637/jss.v067.i01
10.1146/annurev-ecolsys-120213-091917
10.1029/2009JG000947
10.1111/gcb.13661
10.1080/00031305.2018.1549100
10.5194/bg-14-4467-2017
10.1038/s41467-020-18479-5
10.1111/j.1600-0706.2009.17711.x
10.1038/s41586-018-0005-6
10.1111/1365-2745.12012
10.1088/1748-9326/aab863
10.1111/j.1461-0248.2008.01164.x
10.1657/AAAR0014-027
10.1007/s10021-017-0158-4
10.1890/03-0799
10.32614/RJ-2018-017
10.1088/2515-7620/ab3cdd
10.1038/ncomms7707
10.1111/j.1461-0248.2008.01219.x
10.1890/ES13-00281.1
10.1657/1938-4246-43.2.189
10.1029/2003GL018268
10.1111/1365-2745.13081
10.1111/nph.17572
10.1038/nclimate3054
10.1111/ele.12164
10.1111/gcb.12793
10.1038/s41586-018-0563-7
10.18637/jss.v076.i01
10.1007/s10021-013-9728-2
10.1111/1365-2435.13029
10.1046/j.1365-2745.1998.00261.x
10.1088/1748-9326/6/4/045509
10.2307/2963492
10.1007/s00442-019-04508-8
10.1038/s41559-018-0699-8
10.1007/s10021-020-00589-2
10.1126/sciadv.aba3756
10.1023/A:1026034523499
10.1073/pnas.1700298114
10.1126/sciadv.aaz5236
10.32614/RJ-2016-014
10.5194/bg-10-437-2013
10.1073/pnas.2001254117
10.1126/science.1173113
10.1088/1748-9326/abc994
10.1038/nature02403
10.1111/j.1365-2664.2011.02048.x
10.1111/j.1365-2745.2011.01913.x
10.1111/j.1365-2745.2007.01345.x
10.1111/j.1365-3040.2008.01775.x
10.1111/j.1654-1103.2004.tb02266.x
10.1890/06-0649
10.1038/nature16489
10.1111/j.1365-2745.2010.01679.x
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.13832
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
Economics
EISSN 1365-2745
EndPage 716
ExternalDocumentID 10_1111_1365_2745_13832
JEC13832
Genre article
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GrantInformation_xml – fundername: Academy of Finland
  funderid: 286950
– fundername: Suomen Kulttuurirahasto
– fundername: Väisälä fund
– fundername: Nordenskiöld‐samfundet
– fundername: Societas Pro Fauna et Flora Fennica
– fundername: Tiina ja Antti Herlinin säätiö
– fundername: Otto Malm foundation
– fundername: Maa‐ ja vesitekniikan tuki ry
– fundername: Alfred Kordelinin Säätiö
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABTAH
ABTLG
ABXSQ
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFXHP
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABAWQ
ABSQW
ACHJO
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
7QG
7SN
7SS
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c3892-37ce32b3bd70a43a82e0e97912af434eb6cc89a847d488e6a9344d1ead1b94083
IEDL.DBID 24P
ISSN 0022-0477
IngestDate Fri Jul 11 18:27:44 EDT 2025
Fri Jul 25 19:34:58 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 03:13:53 EDT 2025
Wed Jan 22 16:25:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3892-37ce32b3bd70a43a82e0e97912af434eb6cc89a847d488e6a9344d1ead1b94083
Notes Handling Editor
Paul Kardol
Konsta Happonen and Anna‐Maria Virkkala contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7521-7229
0000-0002-7290-029X
0000-0002-3164-8868
0000-0001-6203-5143
0000-0003-4877-2918
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13832
PQID 2638054891
PQPubID 37508
PageCount 17
ParticipantIDs proquest_miscellaneous_2648835830
proquest_journals_2638054891
crossref_primary_10_1111_1365_2745_13832
crossref_citationtrail_10_1111_1365_2745_13832
wiley_primary_10_1111_1365_2745_13832_JEC13832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 562
2010; 98
2010; 16
2019; 51
2018; 249
2000; 6
2020; 16
2020; 11
2012; 15
2008; 31
2009; 118
2018; 43
2007; 77
1998; 86
2018; 42
2009; 114
2020; 6
2015; 47
2014; 5
2018; 2
2019; 62
2013; 16
2013; 10
2017; 76
2015; 373
2019; 28
2021; 232
2012; 26
2014; 17
2014; 121
2014; 95
2018; 32
1992; 1
2014; 11
2009; 325
1996; 66
2019; 7
2004; 85
2014; 512
2021; 7
2019; 9
2019; 191
2015; 6
2012; 100
2015; 5
2019; 73
2016; 19
2019; 5
2012
2019; 1
2018; 107
2006; 9
2016; 529
2017; 23
2013; 101
1995
2008; 11
2008; 96
2007; 95
2002
2015; 205
1991
2004; 428
2014; 111
2011; 6
2018; 21
2003; 30
2014; 45
2015; 67
2017; 549
2016; 6
2013; 33
2017; 14
2018; 556
2021
2006; 87
2004; 15
2018; 115
2015; 21
2020; 117
2011; 43
2017
2011; 48
2018; 10
2016; 8
2003; 65
2018; 15
2018; 13
2016; 22
e_1_2_10_21_1
e_1_2_10_40_1
Brown J. (e_1_2_10_10_1) 2002
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
Diaz S. (e_1_2_10_25_1) 2004; 15
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
Schlesinger W. H. (e_1_2_10_83_1) 1991
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_33_1
Holland M. M. (e_1_2_10_44_1) 2015; 373
e_1_2_10_60_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
Legendre P. (e_1_2_10_56_1) 2012
e_1_2_10_72_1
e_1_2_10_95_1
Pirinen P. (e_1_2_10_77_1) 2012
e_1_2_10_4_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
Kropp H. (e_1_2_10_53_1) 2020; 16
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
Livingston G. P. (e_1_2_10_57_1) 1995
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_66_1
e_1_2_10_100_1
Finnish Meteorological Institute (e_1_2_10_28_1) 2021
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 249
  start-page: 434
  year: 2018
  end-page: 443
  article-title: Comparing ecosystem and soil respiration: Review and key challenges of tower‐based and soil measurements
  publication-title: Agricultural and Forest Meteorology
– volume: 87
  start-page: 535
  issue: 3
  year: 2006
  end-page: 541
  article-title: Fundamental trade‐offs generating the worldwide leaf economics spectrum
  publication-title: Ecology
– volume: 65
  start-page: 15
  issue: 1
  year: 2003
  end-page: 29
  article-title: Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert
  publication-title: Biogeochemistry
– volume: 85
  start-page: 2630
  issue: 9
  year: 2004
  end-page: 2637
  article-title: Plant functional markers capture ecosystem properties during secondary succession
  publication-title: Ecology
– volume: 6
  start-page: 045509
  issue: 4
  year: 2011
  article-title: Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities
  publication-title: Environmental Research Letters
– volume: 205
  start-page: 34
  issue: 1
  year: 2015
  end-page: 58
  article-title: The unseen iceberg: Plant roots in Arctic tundra
  publication-title: The New Phytologist
– volume: 14
  start-page: 4467
  issue: 19
  year: 2017
  article-title: Exchange of CO in Arctic tundra: Impacts of meteorological variations and biological disturbance
  publication-title: Biogeosciences
– volume: 1
  issue: 9
  year: 2019
  article-title: The carbon sink due to shrub growth on arctic tundra: A case study in a carbon‐poor soil in Eastern Canada
  publication-title: Environmental Research Communications
– volume: 13
  issue: 5
  year: 2018
  article-title: Tundra shrub effects on growing season energy and carbon dioxide exchange
  publication-title: Environmental Research Letters
– volume: 2
  start-page: 1906
  issue: 12
  year: 2018
  end-page: 1917
  article-title: Global trait–environment relationships of plant communities
  publication-title: Nature Ecology & Evolution
– volume: 325
  start-page: 1355
  issue: 5946
  year: 2009
  end-page: 1358
  article-title: Ecological Dynamics Across the Arctic Associated with Recent Climate Change
  publication-title: Science
– volume: 11
  start-page: 516
  issue: 5
  year: 2008
  end-page: 531
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecology Letters
– volume: 114
  issue: G4
  year: 2009
  article-title: Soil carbon accumulation in the dry tundra: Important role played by precipitation
  publication-title: Journal of Geophysical Research
– volume: 67
  issue: 1
  year: 2015
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 23
  start-page: 3121
  issue: 8
  year: 2017
  end-page: 3138
  article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases – Carbon dioxide, methane, and nitrous oxide
  publication-title: Global Change Biology
– volume: 5
  start-page: 887
  issue: 9
  year: 2015
  end-page: 891
  article-title: Climate sensitivity of shrub growth across the tundra biome
  publication-title: Nature Climate Change
– volume: 22
  start-page: 2960
  issue: 9
  year: 2016
  end-page: 2962
  article-title: Arctic browning: Extreme events and trends reversing arctic greening
  publication-title: Global Change Biology
– volume: 31
  start-page: 473
  issue: 4
  year: 2008
  end-page: 483
  article-title: Foliar and ecosystem respiration in an old‐growth tropical rain forest
  publication-title: Plant, Cell & Environment
– volume: 115
  start-page: 4027
  issue: 16
  year: 2018
  end-page: 4032
  article-title: Plant diversity enhances productivity and soil carbon storage
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 2070
  issue: 5
  year: 2015
  end-page: 2081
  article-title: Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline
  publication-title: Global Change Biology
– volume: 118
  start-page: 1659
  issue: 11
  year: 2009
  end-page: 1668
  article-title: Differential effects of functional traits on aboveground biomass in semi‐natural grasslands
  publication-title: Oikos
– volume: 26
  start-page: 56
  issue: 1
  year: 2012
  end-page: 65
  article-title: A plant economics spectrum of litter decomposability
  publication-title: Functional Ecology
– volume: 42
  start-page: 162
  issue: 2
  year: 2018
  end-page: 184
  article-title: The current state of CO flux chamber studies in the Arctic tundra
  publication-title: Progress in Physical Geography: Earth and Environment
– volume: 96
  start-page: 314
  issue: 2
  year: 2008
  end-page: 322
  article-title: Plant functional composition influences rates of soil carbon and nitrogen accumulation
  publication-title: The Journal of Ecology
– volume: 51
  start-page: 128
  issue: 1
  year: 2019
  end-page: 147
  article-title: Drivers of C cycling in three arctic‐alpine plant communities
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 10
  start-page: 437
  issue: 1
  year: 2013
  end-page: 452
  article-title: Carbon dioxide balance of subarctic tundra from plot to regional scales
  publication-title: Biogeosciences
– volume: 95
  start-page: 1861
  issue: 7
  year: 2014
  end-page: 1875
  article-title: Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition
  publication-title: Ecology
– volume: 23
  start-page: 3646
  issue: 9
  year: 2017
  end-page: 3666
  article-title: Nonlinear CO flux response to 7 years of experimentally induced permafrost thaw
  publication-title: Global Change Biology
– volume: 11
  issue: 1
  year: 2020
  article-title: Global plant trait relationships extend to the climatic extremes of the tundra biome
  publication-title: Nature Communications
– volume: 1
  start-page: 93
  issue: 3
  year: 1992
  end-page: 104
  article-title: Mycorrhiza and root‐associated fungi in Spitsbergen
  publication-title: Mycorrhiza
– volume: 428
  start-page: 821
  issue: 6985
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– start-page: 14
  year: 1995
  end-page: 51
– volume: 66
  start-page: 503
  issue: 4
  year: 1996
  end-page: 522
  article-title: Temperature and plant species control over litter decomposition in Alaskan tundra
  publication-title: Ecological Monographs
– volume: 15
  start-page: 1415
  issue: 12
  year: 2012
  end-page: 1422
  article-title: Interactions among shrub cover and the soil microclimate may determine future arctic carbon budgets
  publication-title: Ecology Letters
– volume: 6
  start-page: eaba3756
  issue: 27
  year: 2020
  article-title: The fungal collaboration gradient dominates the root economics space in plants
  publication-title: Science Advances
– volume: 21
  start-page: 316
  issue: 2
  year: 2018
  end-page: 330
  article-title: Draining the pool? Carbon storage and fluxes in three alpine plant communities
  publication-title: Ecosystems
– volume: 47
  start-page: 71
  issue: 1
  year: 2015
  end-page: 88
  article-title: Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 5
  start-page: art72
  issue: 6
  year: 2014
  article-title: Long‐term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra
  publication-title: Ecosphere
– volume: 9
  start-page: 852
  issue: 11
  year: 2019
  end-page: 857
  article-title: Large loss of CO in winter observed across the northern permafrost region
  publication-title: Nature Climate Change
– year: 2002
– volume: 77
  start-page: 221
  issue: 2
  year: 2007
  end-page: 238
  article-title: Tundra CO fluxes in response to experimental warming across latitudinal and moisture gradients
  publication-title: Ecological Monographs
– volume: 100
  start-page: 441
  issue: 2
  year: 2012
  end-page: 451
  article-title: Photosynthesis and productivity in heterogeneous arctic tundra: Consequences for ecosystem function of mixing vegetation types at stand edges
  publication-title: Journal of Ecology
– volume: 512
  start-page: 39
  issue: 7512
  year: 2014
  end-page: 43
  article-title: Convergence of terrestrial plant production across global climate gradients
  publication-title: Nature
– volume: 549
  start-page: 261
  issue: 7671
  year: 2017
  end-page: 264
  article-title: Biodiversity effects in the wild are common and as strong as key drivers of productivity
  publication-title: Nature
– volume: 98
  start-page: 362
  issue: 2
  year: 2010
  end-page: 373
  article-title: Evidence of the ‘plant economics spectrum’ in a Subarctic Flora
  publication-title: Journal of Ecology
– volume: 5
  start-page: eaaw9883
  issue: 12
  year: 2019
  article-title: The polar regions in a 2°C warmer world
  publication-title: Science Advances
– volume: 19
  start-page: 1149
  issue: 7
  year: 2016
  end-page: 1163
  article-title: Greater abundance of betula nana and early onset of the growing season increase ecosystem CO uptake in West Greenland
  publication-title: Ecosystems
– volume: 529
  start-page: 167
  issue: 7585
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 11
  start-page: 6573
  issue: 23
  year: 2014
  end-page: 6593
  article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
  publication-title: Biogeosciences
– volume: 107
  start-page: 650
  issue: 2
  year: 2018
  end-page: 655
  article-title: Implications of evergreen shrub expansion in the Arctic
  publication-title: The Journal of Ecology
– year: 2021
– volume: 16
  start-page: 1307
  issue: 10
  year: 2013
  end-page: 1315
  article-title: Tundra ecosystems observed to be CO sources due to differential amplification of the carbon cycle
  publication-title: Ecology Letters
– volume: 101
  start-page: 18
  issue: 1
  year: 2013
  end-page: 28
  article-title: Plant functional diversity and carbon storage – An empirical test in semi‐arid forest ecosystems
  publication-title: Journal of Ecology
– volume: 11
  start-page: 377
  issue: 3
  year: 2008
  end-page: 396
  article-title: Landscape and ecosystem‐level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low Arctic tundra
  publication-title: Ecosystems
– year: 2021
  article-title: Dwarf shrubs impact tundra soils: Drier, colder, and less organic carbon
  publication-title: Ecosystems
– volume: 232
  start-page: 973
  issue: 3
  year: 2021
  end-page: 1122
  article-title: A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements
  publication-title: New Phytologist
– volume: 191
  start-page: 601
  issue: 3
  year: 2019
  end-page: 608
  article-title: Snow is an important control of plant community functional composition in oroarctic tundra
  publication-title: Oecologia
– volume: 101
  start-page: 943
  issue: 4
  year: 2013
  end-page: 952
  article-title: Linking litter decomposition of above‐ and below‐ground organs to plant–soil feedbacks worldwide
  publication-title: The Journal of Ecology
– volume: 6
  start-page: 6707
  year: 2015
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nature Communications
– volume: 11
  start-page: 1065
  issue: 10
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 43
  start-page: 189
  issue: 2
  year: 2011
  end-page: 197
  article-title: Vegetation community, foliar nitrogen, and temperature effects on tundra CO exchange across a soil moisture gradient
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 86
  start-page: 315
  issue: 2
  year: 1998
  end-page: 327
  article-title: Responses of a subarctic dwarf shrub heath community to simulated environmental change
  publication-title: The Journal of Ecology
– volume: 10
  start-page: 395
  issue: 1
  year: 2018
  article-title: Advanced Bayesian multilevel modeling with the R package brms
  publication-title: The R Journal
– volume: 562
  start-page: 57
  issue: 7725
  year: 2018
  end-page: 62
  article-title: Plant functional trait change across a warming tundra biome
  publication-title: Nature
– volume: 16
  start-page: 2436
  issue: 9
  year: 2010
  end-page: 2448
  article-title: Variability in exchange of CO across 12 northern peatland and tundra sites
  publication-title: Global Change Biology
– volume: 7
  year: 2019
  article-title: Hierarchical generalized additive models in ecology: An introduction with Mgcv
  publication-title: PeerJ
– volume: 121
  start-page: 489
  issue: 3
  year: 2014
  end-page: 503
  article-title: Identifying the sources and uncertainties of ecosystem respiration in Arctic tussock tundra
  publication-title: Biogeochemistry
– volume: 111
  start-page: 740
  issue: 2
  year: 2014
  end-page: 745
  article-title: Functional traits explain variation in plant life history strategies
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 73
  start-page: 307
  issue: 3
  year: 2019
  end-page: 309
  article-title: R‐squared for Bayesian regression models
  publication-title: The American Statistician
– volume: 8
  start-page: 204
  issue: 1
  year: 2016
  end-page: 218
  article-title: Spatio‐temporal interpolation using Gstat
  publication-title: The R Journal
– volume: 95
  start-page: 802
  issue: 4
  year: 2007
  end-page: 817
  article-title: Functional convergence in regulation of net CO flux in heterogeneous tundra landscapes in Alaska and Sweden
  publication-title: Journal of Ecology
– year: 2021
  article-title: Shrub expansion in the arctic may induce large‐scale carbon losses due to changes in plant–soil interactions
  publication-title: Plant and Soil
– volume: 11
  start-page: 4621
  issue: 1
  year: 2020
  article-title: Summer warming explains widespread but not uniform greening in the arctic tundra biome
  publication-title: Nature Communications
– volume: 16
  issue: 1
  year: 2020
  article-title: Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems
  publication-title: Environmental Research Letters: ERL [web Site]
– volume: 30
  issue: 20
  year: 2003
  article-title: Greening of Arctic Alaska, 1981–2001
  publication-title: Geophysical Research Letters
– volume: 117
  start-page: 21480
  issue: 35
  year: 2020
  end-page: 21487
  article-title: Decreasing snow cover alters functional composition and diversity of Arctic tundra
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 288
  issue: 2
  year: 2006
  end-page: 304
  article-title: Identifying differences in carbon exchange among Arctic ecosystem types
  publication-title: Ecosystems
– volume: 100
  start-page: 343
  issue: 2
  year: 2012
  end-page: 351
  article-title: Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities: Indirect effects on arbuscular mycorrhizal fungi
  publication-title: The Journal of Ecology
– volume: 33
  start-page: 579
  issue: 6
  year: 2013
  end-page: 589
  article-title: Relationships between root respiration rate and root morphology, chemistry and anatomy in and
  publication-title: Tree Physiology
– volume: 6
  start-page: 196
  issue: S1
  year: 2000
  end-page: 210
  article-title: Controls over carbon storage and turnover in high‐latitude soils
  publication-title: Global Change Biology
– volume: 43
  start-page: 1019
  issue: 5
  year: 2018
  end-page: 1031
  article-title: Modelling soil moisture in a high‐latitude landscape using LiDAR and soil data
  publication-title: Earth Surface Processes and Landforms
– volume: 17
  start-page: 377
  issue: 3
  year: 2014
  end-page: 393
  article-title: Environmental and vegetation drivers of seasonal CO fluxes in a sub‐arctic forest–mire ecotone
  publication-title: Ecosystems
– volume: 62
  start-page: 349
  issue: 2
  year: 2019
  end-page: 364
  article-title: Dissolved organic carbon in permafrost regions: A review
  publication-title: Science China Earth Sciences
– volume: 6
  start-page: 950
  issue: 10
  year: 2016
  end-page: 953
  article-title: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils
  publication-title: Nature Climate Change
– volume: 15
  start-page: 295
  issue: 3
  year: 2004
  end-page: 304
  article-title: The plant traits that drive ecosystems: Evidence from three continents
  publication-title: Journal of Vegetation Science: Official Organ of the International Association for Vegetation Science
– volume: 28
  start-page: 78
  issue: 2
  year: 2019
  end-page: 95
  article-title: Traditional plant functional groups explain variation in economic but not size‐related traits across the tundra biome
  publication-title: Global Ecology and Biogeography
– volume: 7
  issue: 9
  year: 2021
  article-title: Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks
  publication-title: Science Advances
– year: 2012
– volume: 98
  start-page: 1074
  issue: 5
  year: 2010
  end-page: 1083
  article-title: Linkages of plant traits to soil properties and the functioning of temperate grassland
  publication-title: Journal of Ecology
– volume: 32
  start-page: 1091
  issue: 4
  year: 2018
  end-page: 1102
  article-title: Consequences of grazer‐induced vegetation transitions on ecosystem carbon storage in the tundra
  publication-title: Functional Ecology
– volume: 15
  start-page: 1663
  issue: 6
  year: 2018
  end-page: 1682
  article-title: High‐resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub‐arctic peatland environment
  publication-title: Biogeosciences
– volume: 76
  start-page: 1
  issue: 1
  year: 2017
  end-page: 32
  article-title: Stan: A probabilistic programming language
  publication-title: Journal of Statistical Software
– volume: 373
  issue: 2045
  year: 2015
  article-title: Factors affecting projected arctic surface shortwave heating and albedo change in coupled climate models
  publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
– volume: 48
  start-page: 1079
  issue: 5
  year: 2011
  end-page: 1087
  article-title: Beyond species: Functional diversity and the maintenance of ecological processes and services
  publication-title: Journal of Applied Ecology
– volume: 45
  start-page: 471
  issue: 1
  year: 2014
  end-page: 493
  article-title: Biodiversity and ecosystem functioning
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 556
  start-page: 231
  issue: 7700
  year: 2018
  end-page: 234
  article-title: Accelerated increase in plant species richness on mountain summits is linked to warming
  publication-title: Nature
– year: 1991
– year: 2017
– volume: 95
  start-page: 139
  issue: 1
  year: 2007
  end-page: 150
  article-title: What is the relationship between changes in canopy leaf area and changes in photosynthetic CO flux in arctic ecosystems?
  publication-title: Journal of Ecology
– volume: 86
  start-page: 902
  issue: 6
  year: 1998
  end-page: 910
  article-title: Benefits of plant diversity to ecosystems: Immediate, filter and founder effects
  publication-title: The Journal of Ecology
– ident: e_1_2_10_33_1
  doi: 10.1111/1365-2745.12092
– ident: e_1_2_10_78_1
  doi: 10.1126/sciadv.aaw9883
– ident: e_1_2_10_100_1
  doi: 10.1007/s10021-005-0146-y
– ident: e_1_2_10_101_1
  doi: 10.1201/9781315370279
– ident: e_1_2_10_45_1
  doi: 10.5194/bg-11-6573-2014
– ident: e_1_2_10_43_1
  doi: 10.1046/j.1365-2486.2000.06021.x
– ident: e_1_2_10_14_1
  doi: 10.1007/s10021-016-9997-7
– ident: e_1_2_10_69_1
  doi: 10.1007/s10021-008-9128-1
– ident: e_1_2_10_89_1
  doi: 10.1080/15230430.2019.1592649
– ident: e_1_2_10_31_1
  doi: 10.1111/j.1365-2435.2011.01913.x
– ident: e_1_2_10_39_1
  doi: 10.1046/j.1365-2745.1998.00306.x
– ident: e_1_2_10_47_1
  doi: 10.1111/nph.13003
– ident: e_1_2_10_98_1
  doi: 10.1111/gcb.13563
– ident: e_1_2_10_32_1
  doi: 10.1111/j.1365-2745.2009.01615.x
– ident: e_1_2_10_86_1
  doi: 10.1111/j.1365-2745.2007.01259.x
– ident: e_1_2_10_88_1
  doi: 10.5194/bg-15-1663-2018
– ident: e_1_2_10_3_1
  doi: 10.1016/j.agrformet.2017.10.028
– ident: e_1_2_10_93_1
  doi: 10.1038/s41467-020-15014-4
– ident: e_1_2_10_63_1
  doi: 10.1038/nature13470
– ident: e_1_2_10_85_1
  doi: 10.1007/s10533-014-0017-8
– ident: e_1_2_10_60_1
  doi: 10.1007/s11430-018-9309-6
– ident: e_1_2_10_50_1
  doi: 10.1002/esp.4301
– ident: e_1_2_10_23_1
  doi: 10.1890/13-2221.1
– ident: e_1_2_10_96_1
  doi: 10.1007/BF00203256
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1365-2745.2011.01903.x
– volume: 373
  issue: 2045
  year: 2015
  ident: e_1_2_10_44_1
  article-title: Factors affecting projected arctic surface shortwave heating and albedo change in coupled climate models
  publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
– ident: e_1_2_10_76_1
  doi: 10.1111/gcb.13261
– ident: e_1_2_10_27_1
  doi: 10.1038/nature23886
– ident: e_1_2_10_74_1
  doi: 10.1007/s11104-021-04919-8
– ident: e_1_2_10_49_1
  doi: 10.1093/treephys/tpt040
– ident: e_1_2_10_92_1
  doi: 10.1111/j.1365-2745.2006.01187.x
– ident: e_1_2_10_97_1
  doi: 10.1177/0309133317745784
– ident: e_1_2_10_15_1
  doi: 10.1111/j.1461-0248.2012.01865.x
– ident: e_1_2_10_94_1
  doi: 10.1111/geb.12783
– ident: e_1_2_10_65_1
  doi: 10.1038/nclimate2697
– ident: e_1_2_10_2_1
  doi: 10.1073/pnas.1315179111
– volume-title: Circum‐Arctic map of permafrost and ground‐ice conditions
  year: 2002
  ident: e_1_2_10_10_1
– ident: e_1_2_10_75_1
  doi: 10.7717/peerj.6876
– ident: e_1_2_10_67_1
  doi: 10.1038/s41558-019-0592-8
– ident: e_1_2_10_87_1
  doi: 10.1890/05-1051
– ident: e_1_2_10_59_1
  doi: 10.1111/j.1365-2486.2009.02104.x
– ident: e_1_2_10_4_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_10_95_1
  doi: 10.1146/annurev-ecolsys-120213-091917
– volume-title: Developments in environmental modelling
  year: 2012
  ident: e_1_2_10_56_1
– ident: e_1_2_10_52_1
  doi: 10.1029/2009JG000947
– ident: e_1_2_10_62_1
  doi: 10.1111/gcb.13661
– ident: e_1_2_10_37_1
  doi: 10.1080/00031305.2018.1549100
– ident: e_1_2_10_58_1
  doi: 10.5194/bg-14-4467-2017
– ident: e_1_2_10_8_1
  doi: 10.1038/s41467-020-18479-5
– ident: e_1_2_10_84_1
  doi: 10.1111/j.1600-0706.2009.17711.x
– ident: e_1_2_10_91_1
  doi: 10.1038/s41586-018-0005-6
– ident: e_1_2_10_19_1
  doi: 10.1111/1365-2745.12012
– ident: e_1_2_10_54_1
  doi: 10.1088/1748-9326/aab863
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1461-0248.2008.01164.x
– ident: e_1_2_10_72_1
  doi: 10.1657/AAAR0014-027
– ident: e_1_2_10_90_1
  doi: 10.1007/s10021-017-0158-4
– ident: e_1_2_10_36_1
  doi: 10.1890/03-0799
– ident: e_1_2_10_12_1
  doi: 10.32614/RJ-2018-017
– ident: e_1_2_10_35_1
  doi: 10.1088/2515-7620/ab3cdd
– ident: e_1_2_10_55_1
  doi: 10.1038/ncomms7707
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_10_24_1
  doi: 10.1890/ES13-00281.1
– ident: e_1_2_10_21_1
  doi: 10.1657/1938-4246-43.2.189
– ident: e_1_2_10_48_1
  doi: 10.1029/2003GL018268
– ident: e_1_2_10_99_1
  doi: 10.1111/1365-2745.13081
– ident: e_1_2_10_34_1
  doi: 10.1111/nph.17572
– ident: e_1_2_10_82_1
  doi: 10.1038/nclimate3054
– start-page: 14
  volume-title: Biogenic trace gases: Measuring emissions from soil and water
  year: 1995
  ident: e_1_2_10_57_1
– ident: e_1_2_10_6_1
  doi: 10.1111/ele.12164
– ident: e_1_2_10_73_1
  doi: 10.1111/gcb.12793
– ident: e_1_2_10_9_1
  doi: 10.1038/s41586-018-0563-7
– ident: e_1_2_10_16_1
  doi: 10.18637/jss.v076.i01
– ident: e_1_2_10_80_1
  doi: 10.1007/s10021-013-9728-2
– ident: e_1_2_10_103_1
  doi: 10.1111/1365-2435.13029
– ident: e_1_2_10_81_1
  doi: 10.1046/j.1365-2745.1998.00261.x
– ident: e_1_2_10_66_1
  doi: 10.1088/1748-9326/6/4/045509
– ident: e_1_2_10_42_1
  doi: 10.2307/2963492
– ident: e_1_2_10_40_1
  doi: 10.1007/s00442-019-04508-8
– ident: e_1_2_10_41_1
– ident: e_1_2_10_11_1
  doi: 10.1038/s41559-018-0699-8
– ident: e_1_2_10_51_1
  doi: 10.1007/s10021-020-00589-2
– ident: e_1_2_10_7_1
  doi: 10.1126/sciadv.aba3756
– ident: e_1_2_10_46_1
  doi: 10.1023/A:1026034523499
– ident: e_1_2_10_18_1
  doi: 10.1073/pnas.1700298114
– ident: e_1_2_10_64_1
  doi: 10.1126/sciadv.aaz5236
– ident: e_1_2_10_38_1
  doi: 10.32614/RJ-2016-014
– ident: e_1_2_10_61_1
  doi: 10.5194/bg-10-437-2013
– volume-title: Daily values for weather observations: Enontekiö Kilpisjärvi Kyläkeskus
  year: 2021
  ident: e_1_2_10_28_1
– ident: e_1_2_10_68_1
  doi: 10.1073/pnas.2001254117
– ident: e_1_2_10_79_1
  doi: 10.1126/science.1173113
– volume: 16
  issue: 1
  year: 2020
  ident: e_1_2_10_53_1
  article-title: Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems
  publication-title: Environmental Research Letters: ERL [web Site]
  doi: 10.1088/1748-9326/abc994
– volume-title: Biogeochemistry: An analysis of global change
  year: 1991
  ident: e_1_2_10_83_1
– ident: e_1_2_10_102_1
  doi: 10.1038/nature02403
– ident: e_1_2_10_13_1
  doi: 10.1111/j.1365-2664.2011.02048.x
– ident: e_1_2_10_29_1
  doi: 10.1111/j.1365-2745.2011.01913.x
– ident: e_1_2_10_30_1
  doi: 10.1111/j.1365-2745.2007.01345.x
– ident: e_1_2_10_17_1
  doi: 10.1111/j.1365-3040.2008.01775.x
– volume-title: Tilastoja Suomen Ilmastosta 1981–2010 – Climatological Statistics of Finland 1981–2010
  year: 2012
  ident: e_1_2_10_77_1
– volume: 15
  start-page: 295
  issue: 3
  year: 2004
  ident: e_1_2_10_25_1
  article-title: The plant traits that drive ecosystems: Evidence from three continents
  publication-title: Journal of Vegetation Science: Official Organ of the International Association for Vegetation Science
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– ident: e_1_2_10_70_1
  doi: 10.1890/06-0649
– ident: e_1_2_10_26_1
  doi: 10.1038/nature16489
– ident: e_1_2_10_71_1
  doi: 10.1111/j.1365-2745.2010.01679.x
SSID ssj0006750
Score 2.5062296
Snippet The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 700
SubjectTerms Air temperature
Alpine
Arctic
biodiversity
Carbon
Carbon cycle
Carbon dioxide
carbon sinks
Decomposers
Dry matter
Dry matter content
Ecological function
Economics
ecosystem functions and services
ecosystem respiration
Ecosystems
Environmental changes
Finland
Fluxes
functional traits
Height
Herbivores
leaf dry matter content
Leaves
Observational studies
Organic carbon
Photosynthesis
Plant communities
Plant diversity
plant height
Soil
Soil moisture
soil organic carbon
Soil temperature
soil water
Stocks
Taiga & tundra
Tundra
Variability
Title Relationships between above‐ground plant traits and carbon cycling in tundra plant communities
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13832
https://www.proquest.com/docview/2638054891
https://www.proquest.com/docview/2648835830
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7iA7yIroqrq0Tw4KXSpkkfR113EUERUfBWJ2lWhaW77EPYmz_B3-gvcaYvV0HESwntpG1mMpNv2pkJY0e6Bz0du-AEVkh0UAw4kQDtpD6oQAL6Yy4lCl9dBxf38vJBVdGElAtT1IeoP7iRZuT2mhQc9HhOyctsKqlOPPSy0AovUYIt7d4g5E1tjBEPu1XBcFeGYVndh4J5ftzg-8L0hTbnMWu-6HTX2VqJFvlpId4NtmCzBlsp9o-cNdjy2QCxHTZWOnnx6dkme6yj255fhmNehmFxFPWr_Xh7pySOLOXDPjKU0_YQkzEHPGFgpAcZNzPKlHziLxmfIN0ISkpTpJFQ8dUtdt_t3LUvnHIXBccgGBFoQYz1hfZ1GrogfYiEdW0cxp6AnvSl1YExUQy4SqWozDaA2Jcy9XCGeTqWiNC22WI2yOwO42morTRpoJUSMrCh7imlQWuJfq4JlWmyk4qFiSlLjNNQ-knlahDPE-J5kvO8yY7rDsOiusbvpK1KJkmpZuNEoPVAzBnFXpMd1pdRQeivB2R2MCUaHJavIt_F18tl-dejkstOO2_s_rfDHlsV-UyjGLUWW5yMpnYfQctEH-TTEo_nt-IT2WriVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hFsGFHVFWI3Hgkipx7CxHKK3KekAgcQu240IFSqs2RSonPoFv5EsYZykFCSHELUrGibcZv3FmngH2ZUu0ZGgLy9OUoYOihBVQIa3YFdxjAv0x2yQKX1x6zRt2estvx3Jhcn6I0Yab0YzMXhsFNxvSY1pepFMxXnXQzUIzPMUQbhgH7Pjqk0IKAbFdMobbzPcLeh8TzfPtBV9Xpk-4OQ5as1WnsQCqrG8ebPJYHaSyql6-UTn-r0GLMF-AUnKYz6IlmNDJMszkx1QOl2H6qIMQEi9m6hnH9XAF7kZBdA_tbp8U0V4EZ9Szfn99M7kiSUy6TzhuxJxCkfaJwBtK9GQnIWpoEjLvSTshKcr1RCGp8mwVw_G6CjeN-nWtaRWHNVgKMQ9FQ6W0S6UrY98WzBUB1bYO_dChosVcpqWnVBAKXAxjtBnaE6HLWOzgRHZkyBAIrsFk0kn0OpDYl5qp2JOcU-ZpX7Y4l0JKhu608rmqQLUcqEgVTOamKU9R6dGYnoxMT0ZZT1bgYFSgm5N4_Cy6VY58VGhzP6JopBDaBqFTgb3RY9RD83NFJLozMDLYLJcHro3Vy4b5t09Fp_VadrHx1wK7MNu8vjiPzk8uzzZhjmZz24TFbcFk2hvobcRJqdzJFOEDfP0GOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7iCy_iE1dXjeDBS6VNkz6Ouu6i6wMPCt5qkqa6sHTLPoS9-RP8jf4SZ_ryASLeQjtpm5nM5JtmZkLIoUpkokJbWp5hHBwULa2ASWXFrhQel-CP2ZgofH3jnd_z7oOoogkxF6aoD1H_cEPNyO01KngWJ1-UvMym4uLYAS8LrPAcbvmhbjJ-WxtjwMN2VTDc5r5fVvfBYJ4fD_i-MH2iza-YNV90OitkuUSL9KQQ7yqZMekaWSjOj5yukfnTAWA7aCy08-LT03XyWEe3PfeyES3DsCiI-sW8v75hEkca06wPDKV4PMR4RCVc0HKoBinVU8yUfKK9lI6BbihLSl2kkWDx1Q1y32nftc6t8hQFSwMYYWBBtHGZclXs25K7MmDGNqEfOkwm3OVGeVoHoYRVKgZlNp4MXc5jB2aYo0IOCG2TzKaD1GwRGvvKcB17SgjGPeOrRAglleLg52pf6AY5rlgY6bLEOA6lH1WuBvI8Qp5HOc8b5KjukBXVNX4nbVYyiUo1G0UMrAdgziB0GuSgvg0KgrseMjWDCdLAsFwRuDZ8Xi7Lv14VddutvLH93w77ZPH2rBNdXdxc7pAllk86DFdrktnxcGJ2Ab-M1V4-Qz8AfsTkCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationships+between+above%E2%80%90ground+plant+traits+and+carbon+cycling+in+tundra+plant+communities&rft.jtitle=The+Journal+of+ecology&rft.au=Happonen%2C+Konsta&rft.au=Virkkala%2C+Anna%E2%80%90Maria&rft.au=Kemppinen%2C+Julia&rft.au=Niittynen%2C+Pekka&rft.date=2022-03-01&rft.issn=0022-0477&rft.volume=110&rft.issue=3+p.700-716&rft.spage=700&rft.epage=716&rft_id=info:doi/10.1111%2F1365-2745.13832&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon