Relationships between above‐ground plant traits and carbon cycling in tundra plant communities
The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and whe...
Saved in:
Published in | The Journal of ecology Vol. 110; no. 3; pp. 700 - 716 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-0477 1365-2745 |
DOI | 10.1111/1365-2745.13832 |
Cover
Abstract | The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change.
To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland.
The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO2 fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks.
Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO2 fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC.
Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra.
Yhteenveto
Kasviyhteisöjen toiminnallista koostumusta ja toiminnallista monimuotoisutta voidaan käyttää ennustamaan ekosysteemien toimintaa. Ei kuitenkaan tiedetä tarkasti, miten kasvien toiminnalliset ominaisuudet vaikuttavat hiilenkiertoon. Tarkempi tieto kasvien toiminnallisten ominaisuuksien ja hiilenkierron välisestä yhteydestä voisi auttaa ennustamaan meneillään olevan tundran kasvillisuusmuutoksen seurauksia. Tämä on tärkeää, sillä tundran maaperään on sitoutunut suuri hiilivarasto, joka on herkkä ympäristömuutoksille.
Mallinsimme hiilenkiertoa (maanpäällistä hiilivarastoa, maaperän orgaanista hiilivarastoa, yhteyttämistä ja ekosysteemin hengitystä) abioottisten muuttujien (ilmanlämpötilan ja maaperän kosteuden) ja kasviyhteisön toiminnallisten ominaisuuksien keskiarvojen ja keskihajontojen funktiona. Käytimme kolmea toiminnallista ominaisuutta yhteisöjen toiminnallisten mittarien laskemiseen: kasvien korkeutta, lehtien massaspesifistä pinta‐alaa (SLA) ja lehtien kuiva‐ainepitoisuutta (LDMC). Yhteisöjen ominaisuuskeskiarvot ja ‐keskihajonnat laskettiin painottamalla kunkin lajin ominaisuutta sen runsaudella. Aineisto kerättiin Kilpisjärven paljakalta.
Mallien selityskyky oli suhteellisen korkea, mutta suuri osa maaperän orgaanisen hiilen varastosta jäi selittämättä. Kasvillisuuden keskikorkeus oli kaikkien hiilenkiertomuuttujien paitsi maaperän orgaanisen hiilen varastojen vahvin selittäjä. Korkeampi kasvillisuus näytti johtavan suurempiin hiilidioksidivoihin ja suurempiin maanpäällisiin hiilivarastoihin. Yhteisöissä, joissa lajeilla oli ‘nopeat’ lehtiominaisuudet (korkea SLA ja matala LDMC) oli korkeat hiilidioksidivuot ja maaperän orgaanisen hiilen varastot.
Yhteisöjen sisäinen ominaisuushajonta vaikutti ekosystemitoimintoihin eri tavalla riipuen siitä, oliko kyse kasvien korkeuden vai lehtien ominaisuuksien hajonnasta. Yhteisönsisäinen vaihtelu SLA:ssa ja LDMC:ssä kasvatti hiilidioksidivoita ja maaperän hiilivarastoa, kun taas vaihtelevuus kasvien korkeudessa kasvatti maanpäällistä hiilivarastoa. Kasviyhteisöjen toiminnallisten ominaisuuksien keskihajonta selitti tutkimusalueen ekosysteemitoimintojen vaihtelusta suunnilleen yhtä suuren osan kuin yhteisöjen lehtiominaisuuksien keskiarvot.
Synteesi. Kasvien korkeudella, SLA:lla ja LDMC:llä on selvä merkitys tundran hiilenkierrolle. Toiminnallisten ominaisuuksien keskiarvojen lisäksi myös yhteisöjen sisäinen ominaisuusvaihtelu on tärkeä tundran hiilenkiertoa säätelevä tekijä. Kasviyhteisöjen juuristojen ominaisuudet ja hajottajayhteisöjen toiminta ovat tärkeitä jatkotutkimuskohteita maaperän hiilen kierron tarkemman ymmärtämisen kannalta.
Average plant height, average leaf traits, and the within‐community variabilities of height and leaf traits affect CO2 fluxes and carbon stocks in tundra plant communities. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. |
---|---|
AbstractList | The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change. To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO₂ fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks. Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO₂ fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC. Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra. The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change. To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO 2 fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks. Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO 2 fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC. Synthesis . Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra. Kasviyhteisöjen toiminnallista koostumusta ja toiminnallista monimuotoisutta voidaan käyttää ennustamaan ekosysteemien toimintaa. Ei kuitenkaan tiedetä tarkasti, miten kasvien toiminnalliset ominaisuudet vaikuttavat hiilenkiertoon. Tarkempi tieto kasvien toiminnallisten ominaisuuksien ja hiilenkierron välisestä yhteydestä voisi auttaa ennustamaan meneillään olevan tundran kasvillisuusmuutoksen seurauksia. Tämä on tärkeää, sillä tundran maaperään on sitoutunut suuri hiilivarasto, joka on herkkä ympäristömuutoksille. Mallinsimme hiilenkiertoa (maanpäällistä hiilivarastoa, maaperän orgaanista hiilivarastoa, yhteyttämistä ja ekosysteemin hengitystä) abioottisten muuttujien (ilmanlämpötilan ja maaperän kosteuden) ja kasviyhteisön toiminnallisten ominaisuuksien keskiarvojen ja keskihajontojen funktiona. Käytimme kolmea toiminnallista ominaisuutta yhteisöjen toiminnallisten mittarien laskemiseen: kasvien korkeutta, lehtien massaspesifistä pinta‐alaa (SLA) ja lehtien kuiva‐ainepitoisuutta (LDMC). Yhteisöjen ominaisuuskeskiarvot ja ‐keskihajonnat laskettiin painottamalla kunkin lajin ominaisuutta sen runsaudella. Aineisto kerättiin Kilpisjärven paljakalta. Mallien selityskyky oli suhteellisen korkea, mutta suuri osa maaperän orgaanisen hiilen varastosta jäi selittämättä. Kasvillisuuden keskikorkeus oli kaikkien hiilenkiertomuuttujien paitsi maaperän orgaanisen hiilen varastojen vahvin selittäjä. Korkeampi kasvillisuus näytti johtavan suurempiin hiilidioksidivoihin ja suurempiin maanpäällisiin hiilivarastoihin. Yhteisöissä, joissa lajeilla oli ‘nopeat’ lehtiominaisuudet (korkea SLA ja matala LDMC) oli korkeat hiilidioksidivuot ja maaperän orgaanisen hiilen varastot. Yhteisöjen sisäinen ominaisuushajonta vaikutti ekosystemitoimintoihin eri tavalla riipuen siitä, oliko kyse kasvien korkeuden vai lehtien ominaisuuksien hajonnasta. Yhteisönsisäinen vaihtelu SLA:ssa ja LDMC:ssä kasvatti hiilidioksidivoita ja maaperän hiilivarastoa, kun taas vaihtelevuus kasvien korkeudessa kasvatti maanpäällistä hiilivarastoa. Kasviyhteisöjen toiminnallisten ominaisuuksien keskihajonta selitti tutkimusalueen ekosysteemitoimintojen vaihtelusta suunnilleen yhtä suuren osan kuin yhteisöjen lehtiominaisuuksien keskiarvot. Synteesi . Kasvien korkeudella, SLA:lla ja LDMC:llä on selvä merkitys tundran hiilenkierrolle. Toiminnallisten ominaisuuksien keskiarvojen lisäksi myös yhteisöjen sisäinen ominaisuusvaihtelu on tärkeä tundran hiilenkiertoa säätelevä tekijä. Kasviyhteisöjen juuristojen ominaisuudet ja hajottajayhteisöjen toiminta ovat tärkeitä jatkotutkimuskohteita maaperän hiilen kierron tarkemman ymmärtämisen kannalta. The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change.To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland.The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO2 fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks.Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO2 fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC.Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra. The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change. To study how plant traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above‐ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), and the averages and within‐community variabilities of three above‐ground traits: plant height, leaf dry matter content (LDMC) and SLA. These functional parameters were represented by abundance‐weighted means and standard deviations of species traits. The data were collected from an observational study setting from northern Finland. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Average plant height was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO2 fluxes and above‐ground carbon stocks. Communities with fast leaf economics (i.e. high SLA and low LDMC) had higher photosynthesis, ecosystem respiration and soil organic carbon stocks. Within‐community variability in plant height, SLA and LDMC affected ecosystem functions differently. Variability in SLA and LDMC increased CO2 fluxes and soil organic carbon stocks, while variability in height increased the above‐ground carbon stock. The contributions of within‐community trait variability metrics to ecosystem functioning within the study area were about as important as those of average SLA and LDMC. Synthesis. Plant height, SLA and LDMC have clear effects on tundra carbon cycling. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below‐ground mechanisms regulating carbon cycling in the tundra. Yhteenveto Kasviyhteisöjen toiminnallista koostumusta ja toiminnallista monimuotoisutta voidaan käyttää ennustamaan ekosysteemien toimintaa. Ei kuitenkaan tiedetä tarkasti, miten kasvien toiminnalliset ominaisuudet vaikuttavat hiilenkiertoon. Tarkempi tieto kasvien toiminnallisten ominaisuuksien ja hiilenkierron välisestä yhteydestä voisi auttaa ennustamaan meneillään olevan tundran kasvillisuusmuutoksen seurauksia. Tämä on tärkeää, sillä tundran maaperään on sitoutunut suuri hiilivarasto, joka on herkkä ympäristömuutoksille. Mallinsimme hiilenkiertoa (maanpäällistä hiilivarastoa, maaperän orgaanista hiilivarastoa, yhteyttämistä ja ekosysteemin hengitystä) abioottisten muuttujien (ilmanlämpötilan ja maaperän kosteuden) ja kasviyhteisön toiminnallisten ominaisuuksien keskiarvojen ja keskihajontojen funktiona. Käytimme kolmea toiminnallista ominaisuutta yhteisöjen toiminnallisten mittarien laskemiseen: kasvien korkeutta, lehtien massaspesifistä pinta‐alaa (SLA) ja lehtien kuiva‐ainepitoisuutta (LDMC). Yhteisöjen ominaisuuskeskiarvot ja ‐keskihajonnat laskettiin painottamalla kunkin lajin ominaisuutta sen runsaudella. Aineisto kerättiin Kilpisjärven paljakalta. Mallien selityskyky oli suhteellisen korkea, mutta suuri osa maaperän orgaanisen hiilen varastosta jäi selittämättä. Kasvillisuuden keskikorkeus oli kaikkien hiilenkiertomuuttujien paitsi maaperän orgaanisen hiilen varastojen vahvin selittäjä. Korkeampi kasvillisuus näytti johtavan suurempiin hiilidioksidivoihin ja suurempiin maanpäällisiin hiilivarastoihin. Yhteisöissä, joissa lajeilla oli ‘nopeat’ lehtiominaisuudet (korkea SLA ja matala LDMC) oli korkeat hiilidioksidivuot ja maaperän orgaanisen hiilen varastot. Yhteisöjen sisäinen ominaisuushajonta vaikutti ekosystemitoimintoihin eri tavalla riipuen siitä, oliko kyse kasvien korkeuden vai lehtien ominaisuuksien hajonnasta. Yhteisönsisäinen vaihtelu SLA:ssa ja LDMC:ssä kasvatti hiilidioksidivoita ja maaperän hiilivarastoa, kun taas vaihtelevuus kasvien korkeudessa kasvatti maanpäällistä hiilivarastoa. Kasviyhteisöjen toiminnallisten ominaisuuksien keskihajonta selitti tutkimusalueen ekosysteemitoimintojen vaihtelusta suunnilleen yhtä suuren osan kuin yhteisöjen lehtiominaisuuksien keskiarvot. Synteesi. Kasvien korkeudella, SLA:lla ja LDMC:llä on selvä merkitys tundran hiilenkierrolle. Toiminnallisten ominaisuuksien keskiarvojen lisäksi myös yhteisöjen sisäinen ominaisuusvaihtelu on tärkeä tundran hiilenkiertoa säätelevä tekijä. Kasviyhteisöjen juuristojen ominaisuudet ja hajottajayhteisöjen toiminta ovat tärkeitä jatkotutkimuskohteita maaperän hiilen kierron tarkemman ymmärtämisen kannalta. Average plant height, average leaf traits, and the within‐community variabilities of height and leaf traits affect CO2 fluxes and carbon stocks in tundra plant communities. The importance of within‐community trait variability highlights a potentially important mechanism controlling the vast tundra carbon pools that should be better recognized. |
Author | Happonen, Konsta Luoto, Miska Kemppinen, Julia Niittynen, Pekka Virkkala, Anna‐Maria |
Author_xml | – sequence: 1 givenname: Konsta orcidid: 0000-0002-3164-8868 surname: Happonen fullname: Happonen, Konsta email: konsta.happonen@gmail.com organization: University of Helsinki – sequence: 2 givenname: Anna‐Maria orcidid: 0000-0003-4877-2918 surname: Virkkala fullname: Virkkala, Anna‐Maria email: avirkkala@woodwellclimate.org organization: Woodwell Climate Research Center – sequence: 3 givenname: Julia orcidid: 0000-0001-7521-7229 surname: Kemppinen fullname: Kemppinen, Julia organization: University of Helsinki – sequence: 4 givenname: Pekka orcidid: 0000-0002-7290-029X surname: Niittynen fullname: Niittynen, Pekka organization: University of Helsinki – sequence: 5 givenname: Miska orcidid: 0000-0001-6203-5143 surname: Luoto fullname: Luoto, Miska organization: University of Helsinki |
BookMark | eNqFkMtKAzEUQIMoWB9rtwNu3IzmNTOZpZT6QhBE1zGTua0p06QmGUt3foLf6JeYPnDhptkELuckl3OE9q2zgNAZwZcknSvCyiKnFS8uCROM7qHB32QfDTCmNMe8qg7RUQhTjHFZFXiA3p6hU9E4G97NPGQNxAWAzVTjPuHn63viXW_bbN4pG7PolYkhU2mglW-czfRSd8ZOMmOzmDivtqR2s1lvTTQQTtDBWHUBTrf3MXq9Gb0M7_LHp9v74fVjrpmoac4qDYw2rGkrrDhTggKGuqoJVWPOODSl1qJWglctFwJKVTPOWwKqJU3NsWDH6GLz7ty7jx5ClDMTNHRpH3B9kLRMHisEwwk9_4dOXe9t2i5RTOCCi5ok6mpDae9C8DCWc29myi8lwXJVXK76ylVfuS6ejOKfoU1cx12V63Z7C9PBctc38mE03Hi_QoGWlg |
CitedBy_id | crossref_primary_10_1007_s11104_024_06655_1 crossref_primary_10_1016_j_scitotenv_2024_171412 crossref_primary_10_1016_j_scitotenv_2024_170681 crossref_primary_10_1016_j_scitotenv_2024_172276 crossref_primary_10_1111_oik_10091 crossref_primary_10_1016_j_scitotenv_2024_177960 crossref_primary_10_1016_j_polar_2023_100984 crossref_primary_10_1016_j_soilbio_2024_109539 crossref_primary_10_1029_2023JG007657 crossref_primary_10_3161_15052249PJE2020_70_4_002 crossref_primary_10_1002_jobm_202200657 crossref_primary_10_1007_s10661_023_12215_4 crossref_primary_10_3389_ffgc_2023_1150209 crossref_primary_10_1007_s10021_023_00829_1 crossref_primary_10_1016_j_scitotenv_2023_162166 crossref_primary_10_1038_s41598_024_84162_0 crossref_primary_10_1111_ecog_06397 crossref_primary_10_1016_j_catena_2023_107483 crossref_primary_10_1016_j_soilbio_2023_109041 crossref_primary_10_1038_s41597_024_03139_w crossref_primary_10_1002_ecm_1555 crossref_primary_10_5194_bg_21_335_2024 crossref_primary_10_1007_s11252_024_01627_w crossref_primary_10_1111_jipb_13572 |
Cites_doi | 10.1111/1365-2745.12092 10.1126/sciadv.aaw9883 10.1007/s10021-005-0146-y 10.1201/9781315370279 10.5194/bg-11-6573-2014 10.1046/j.1365-2486.2000.06021.x 10.1007/s10021-016-9997-7 10.1007/s10021-008-9128-1 10.1080/15230430.2019.1592649 10.1111/j.1365-2435.2011.01913.x 10.1046/j.1365-2745.1998.00306.x 10.1111/nph.13003 10.1111/gcb.13563 10.1111/j.1365-2745.2009.01615.x 10.1111/j.1365-2745.2007.01259.x 10.5194/bg-15-1663-2018 10.1016/j.agrformet.2017.10.028 10.1038/s41467-020-15014-4 10.1038/nature13470 10.1007/s10533-014-0017-8 10.1007/s11430-018-9309-6 10.1002/esp.4301 10.1890/13-2221.1 10.1007/BF00203256 10.1111/j.1365-2745.2011.01903.x 10.1111/gcb.13261 10.1038/nature23886 10.1007/s11104-021-04919-8 10.1093/treephys/tpt040 10.1111/j.1365-2745.2006.01187.x 10.1177/0309133317745784 10.1111/j.1461-0248.2012.01865.x 10.1111/geb.12783 10.1038/nclimate2697 10.1073/pnas.1315179111 10.7717/peerj.6876 10.1038/s41558-019-0592-8 10.1890/05-1051 10.1111/j.1365-2486.2009.02104.x 10.18637/jss.v067.i01 10.1146/annurev-ecolsys-120213-091917 10.1029/2009JG000947 10.1111/gcb.13661 10.1080/00031305.2018.1549100 10.5194/bg-14-4467-2017 10.1038/s41467-020-18479-5 10.1111/j.1600-0706.2009.17711.x 10.1038/s41586-018-0005-6 10.1111/1365-2745.12012 10.1088/1748-9326/aab863 10.1111/j.1461-0248.2008.01164.x 10.1657/AAAR0014-027 10.1007/s10021-017-0158-4 10.1890/03-0799 10.32614/RJ-2018-017 10.1088/2515-7620/ab3cdd 10.1038/ncomms7707 10.1111/j.1461-0248.2008.01219.x 10.1890/ES13-00281.1 10.1657/1938-4246-43.2.189 10.1029/2003GL018268 10.1111/1365-2745.13081 10.1111/nph.17572 10.1038/nclimate3054 10.1111/ele.12164 10.1111/gcb.12793 10.1038/s41586-018-0563-7 10.18637/jss.v076.i01 10.1007/s10021-013-9728-2 10.1111/1365-2435.13029 10.1046/j.1365-2745.1998.00261.x 10.1088/1748-9326/6/4/045509 10.2307/2963492 10.1007/s00442-019-04508-8 10.1038/s41559-018-0699-8 10.1007/s10021-020-00589-2 10.1126/sciadv.aba3756 10.1023/A:1026034523499 10.1073/pnas.1700298114 10.1126/sciadv.aaz5236 10.32614/RJ-2016-014 10.5194/bg-10-437-2013 10.1073/pnas.2001254117 10.1126/science.1173113 10.1088/1748-9326/abc994 10.1038/nature02403 10.1111/j.1365-2664.2011.02048.x 10.1111/j.1365-2745.2011.01913.x 10.1111/j.1365-2745.2007.01345.x 10.1111/j.1365-3040.2008.01775.x 10.1111/j.1654-1103.2004.tb02266.x 10.1890/06-0649 10.1038/nature16489 10.1111/j.1365-2745.2010.01679.x |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.13832 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany Economics |
EISSN | 1365-2745 |
EndPage | 716 |
ExternalDocumentID | 10_1111_1365_2745_13832 JEC13832 |
Genre | article |
GeographicLocations | Finland |
GeographicLocations_xml | – name: Finland |
GrantInformation_xml | – fundername: Academy of Finland funderid: 286950 – fundername: Suomen Kulttuurirahasto – fundername: Väisälä fund – fundername: Nordenskiöld‐samfundet – fundername: Societas Pro Fauna et Flora Fennica – fundername: Tiina ja Antti Herlinin säätiö – fundername: Otto Malm foundation – fundername: Maa‐ ja vesitekniikan tuki ry – fundername: Alfred Kordelinin Säätiö |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABTAH ABTLG ABXSQ ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFXHP AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABAWQ ABSQW ACHJO AEYWJ AGHNM AGUYK AGYGG CITATION 7QG 7SN 7SS 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3892-37ce32b3bd70a43a82e0e97912af434eb6cc89a847d488e6a9344d1ead1b94083 |
IEDL.DBID | 24P |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:27:44 EDT 2025 Fri Jul 25 19:34:58 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 03:13:53 EDT 2025 Wed Jan 22 16:25:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3892-37ce32b3bd70a43a82e0e97912af434eb6cc89a847d488e6a9344d1ead1b94083 |
Notes | Handling Editor Paul Kardol Konsta Happonen and Anna‐Maria Virkkala contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7521-7229 0000-0002-7290-029X 0000-0002-3164-8868 0000-0001-6203-5143 0000-0003-4877-2918 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13832 |
PQID | 2638054891 |
PQPubID | 37508 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2648835830 proquest_journals_2638054891 crossref_primary_10_1111_1365_2745_13832 crossref_citationtrail_10_1111_1365_2745_13832 wiley_primary_10_1111_1365_2745_13832_JEC13832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2018; 562 2010; 98 2010; 16 2019; 51 2018; 249 2000; 6 2020; 16 2020; 11 2012; 15 2008; 31 2009; 118 2018; 43 2007; 77 1998; 86 2018; 42 2009; 114 2020; 6 2015; 47 2014; 5 2018; 2 2019; 62 2013; 16 2013; 10 2017; 76 2015; 373 2019; 28 2021; 232 2012; 26 2014; 17 2014; 121 2014; 95 2018; 32 1992; 1 2014; 11 2009; 325 1996; 66 2019; 7 2004; 85 2014; 512 2021; 7 2019; 9 2019; 191 2015; 6 2012; 100 2015; 5 2019; 73 2016; 19 2019; 5 2012 2019; 1 2018; 107 2006; 9 2016; 529 2017; 23 2013; 101 1995 2008; 11 2008; 96 2007; 95 2002 2015; 205 1991 2004; 428 2014; 111 2011; 6 2018; 21 2003; 30 2014; 45 2015; 67 2017; 549 2016; 6 2013; 33 2017; 14 2018; 556 2021 2006; 87 2004; 15 2018; 115 2015; 21 2020; 117 2011; 43 2017 2011; 48 2018; 10 2016; 8 2003; 65 2018; 15 2018; 13 2016; 22 e_1_2_10_21_1 e_1_2_10_40_1 Brown J. (e_1_2_10_10_1) 2002 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 Diaz S. (e_1_2_10_25_1) 2004; 15 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 Schlesinger W. H. (e_1_2_10_83_1) 1991 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_33_1 Holland M. M. (e_1_2_10_44_1) 2015; 373 e_1_2_10_60_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 Legendre P. (e_1_2_10_56_1) 2012 e_1_2_10_72_1 e_1_2_10_95_1 Pirinen P. (e_1_2_10_77_1) 2012 e_1_2_10_4_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 Kropp H. (e_1_2_10_53_1) 2020; 16 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 Livingston G. P. (e_1_2_10_57_1) 1995 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_66_1 e_1_2_10_100_1 Finnish Meteorological Institute (e_1_2_10_28_1) 2021 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 249 start-page: 434 year: 2018 end-page: 443 article-title: Comparing ecosystem and soil respiration: Review and key challenges of tower‐based and soil measurements publication-title: Agricultural and Forest Meteorology – volume: 87 start-page: 535 issue: 3 year: 2006 end-page: 541 article-title: Fundamental trade‐offs generating the worldwide leaf economics spectrum publication-title: Ecology – volume: 65 start-page: 15 issue: 1 year: 2003 end-page: 29 article-title: Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert publication-title: Biogeochemistry – volume: 85 start-page: 2630 issue: 9 year: 2004 end-page: 2637 article-title: Plant functional markers capture ecosystem properties during secondary succession publication-title: Ecology – volume: 6 start-page: 045509 issue: 4 year: 2011 article-title: Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities publication-title: Environmental Research Letters – volume: 205 start-page: 34 issue: 1 year: 2015 end-page: 58 article-title: The unseen iceberg: Plant roots in Arctic tundra publication-title: The New Phytologist – volume: 14 start-page: 4467 issue: 19 year: 2017 article-title: Exchange of CO in Arctic tundra: Impacts of meteorological variations and biological disturbance publication-title: Biogeosciences – volume: 1 issue: 9 year: 2019 article-title: The carbon sink due to shrub growth on arctic tundra: A case study in a carbon‐poor soil in Eastern Canada publication-title: Environmental Research Communications – volume: 13 issue: 5 year: 2018 article-title: Tundra shrub effects on growing season energy and carbon dioxide exchange publication-title: Environmental Research Letters – volume: 2 start-page: 1906 issue: 12 year: 2018 end-page: 1917 article-title: Global trait–environment relationships of plant communities publication-title: Nature Ecology & Evolution – volume: 325 start-page: 1355 issue: 5946 year: 2009 end-page: 1358 article-title: Ecological Dynamics Across the Arctic Associated with Recent Climate Change publication-title: Science – volume: 11 start-page: 516 issue: 5 year: 2008 end-page: 531 article-title: Plant functional traits and soil carbon sequestration in contrasting biomes publication-title: Ecology Letters – volume: 114 issue: G4 year: 2009 article-title: Soil carbon accumulation in the dry tundra: Important role played by precipitation publication-title: Journal of Geophysical Research – volume: 67 issue: 1 year: 2015 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – volume: 23 start-page: 3121 issue: 8 year: 2017 end-page: 3138 article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases – Carbon dioxide, methane, and nitrous oxide publication-title: Global Change Biology – volume: 5 start-page: 887 issue: 9 year: 2015 end-page: 891 article-title: Climate sensitivity of shrub growth across the tundra biome publication-title: Nature Climate Change – volume: 22 start-page: 2960 issue: 9 year: 2016 end-page: 2962 article-title: Arctic browning: Extreme events and trends reversing arctic greening publication-title: Global Change Biology – volume: 31 start-page: 473 issue: 4 year: 2008 end-page: 483 article-title: Foliar and ecosystem respiration in an old‐growth tropical rain forest publication-title: Plant, Cell & Environment – volume: 115 start-page: 4027 issue: 16 year: 2018 end-page: 4032 article-title: Plant diversity enhances productivity and soil carbon storage publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 2070 issue: 5 year: 2015 end-page: 2081 article-title: Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline publication-title: Global Change Biology – volume: 118 start-page: 1659 issue: 11 year: 2009 end-page: 1668 article-title: Differential effects of functional traits on aboveground biomass in semi‐natural grasslands publication-title: Oikos – volume: 26 start-page: 56 issue: 1 year: 2012 end-page: 65 article-title: A plant economics spectrum of litter decomposability publication-title: Functional Ecology – volume: 42 start-page: 162 issue: 2 year: 2018 end-page: 184 article-title: The current state of CO flux chamber studies in the Arctic tundra publication-title: Progress in Physical Geography: Earth and Environment – volume: 96 start-page: 314 issue: 2 year: 2008 end-page: 322 article-title: Plant functional composition influences rates of soil carbon and nitrogen accumulation publication-title: The Journal of Ecology – volume: 51 start-page: 128 issue: 1 year: 2019 end-page: 147 article-title: Drivers of C cycling in three arctic‐alpine plant communities publication-title: Arctic, Antarctic, and Alpine Research – volume: 10 start-page: 437 issue: 1 year: 2013 end-page: 452 article-title: Carbon dioxide balance of subarctic tundra from plot to regional scales publication-title: Biogeosciences – volume: 95 start-page: 1861 issue: 7 year: 2014 end-page: 1875 article-title: Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition publication-title: Ecology – volume: 23 start-page: 3646 issue: 9 year: 2017 end-page: 3666 article-title: Nonlinear CO flux response to 7 years of experimentally induced permafrost thaw publication-title: Global Change Biology – volume: 11 issue: 1 year: 2020 article-title: Global plant trait relationships extend to the climatic extremes of the tundra biome publication-title: Nature Communications – volume: 1 start-page: 93 issue: 3 year: 1992 end-page: 104 article-title: Mycorrhiza and root‐associated fungi in Spitsbergen publication-title: Mycorrhiza – volume: 428 start-page: 821 issue: 6985 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – start-page: 14 year: 1995 end-page: 51 – volume: 66 start-page: 503 issue: 4 year: 1996 end-page: 522 article-title: Temperature and plant species control over litter decomposition in Alaskan tundra publication-title: Ecological Monographs – volume: 15 start-page: 1415 issue: 12 year: 2012 end-page: 1422 article-title: Interactions among shrub cover and the soil microclimate may determine future arctic carbon budgets publication-title: Ecology Letters – volume: 6 start-page: eaba3756 issue: 27 year: 2020 article-title: The fungal collaboration gradient dominates the root economics space in plants publication-title: Science Advances – volume: 21 start-page: 316 issue: 2 year: 2018 end-page: 330 article-title: Draining the pool? Carbon storage and fluxes in three alpine plant communities publication-title: Ecosystems – volume: 47 start-page: 71 issue: 1 year: 2015 end-page: 88 article-title: Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost publication-title: Arctic, Antarctic, and Alpine Research – volume: 5 start-page: art72 issue: 6 year: 2014 article-title: Long‐term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra publication-title: Ecosphere – volume: 9 start-page: 852 issue: 11 year: 2019 end-page: 857 article-title: Large loss of CO in winter observed across the northern permafrost region publication-title: Nature Climate Change – year: 2002 – volume: 77 start-page: 221 issue: 2 year: 2007 end-page: 238 article-title: Tundra CO fluxes in response to experimental warming across latitudinal and moisture gradients publication-title: Ecological Monographs – volume: 100 start-page: 441 issue: 2 year: 2012 end-page: 451 article-title: Photosynthesis and productivity in heterogeneous arctic tundra: Consequences for ecosystem function of mixing vegetation types at stand edges publication-title: Journal of Ecology – volume: 512 start-page: 39 issue: 7512 year: 2014 end-page: 43 article-title: Convergence of terrestrial plant production across global climate gradients publication-title: Nature – volume: 549 start-page: 261 issue: 7671 year: 2017 end-page: 264 article-title: Biodiversity effects in the wild are common and as strong as key drivers of productivity publication-title: Nature – volume: 98 start-page: 362 issue: 2 year: 2010 end-page: 373 article-title: Evidence of the ‘plant economics spectrum’ in a Subarctic Flora publication-title: Journal of Ecology – volume: 5 start-page: eaaw9883 issue: 12 year: 2019 article-title: The polar regions in a 2°C warmer world publication-title: Science Advances – volume: 19 start-page: 1149 issue: 7 year: 2016 end-page: 1163 article-title: Greater abundance of betula nana and early onset of the growing season increase ecosystem CO uptake in West Greenland publication-title: Ecosystems – volume: 529 start-page: 167 issue: 7585 year: 2016 end-page: 171 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 11 start-page: 6573 issue: 23 year: 2014 end-page: 6593 article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps publication-title: Biogeosciences – volume: 107 start-page: 650 issue: 2 year: 2018 end-page: 655 article-title: Implications of evergreen shrub expansion in the Arctic publication-title: The Journal of Ecology – year: 2021 – volume: 16 start-page: 1307 issue: 10 year: 2013 end-page: 1315 article-title: Tundra ecosystems observed to be CO sources due to differential amplification of the carbon cycle publication-title: Ecology Letters – volume: 101 start-page: 18 issue: 1 year: 2013 end-page: 28 article-title: Plant functional diversity and carbon storage – An empirical test in semi‐arid forest ecosystems publication-title: Journal of Ecology – volume: 11 start-page: 377 issue: 3 year: 2008 end-page: 396 article-title: Landscape and ecosystem‐level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low Arctic tundra publication-title: Ecosystems – year: 2021 article-title: Dwarf shrubs impact tundra soils: Drier, colder, and less organic carbon publication-title: Ecosystems – volume: 232 start-page: 973 issue: 3 year: 2021 end-page: 1122 article-title: A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements publication-title: New Phytologist – volume: 191 start-page: 601 issue: 3 year: 2019 end-page: 608 article-title: Snow is an important control of plant community functional composition in oroarctic tundra publication-title: Oecologia – volume: 101 start-page: 943 issue: 4 year: 2013 end-page: 952 article-title: Linking litter decomposition of above‐ and below‐ground organs to plant–soil feedbacks worldwide publication-title: The Journal of Ecology – volume: 6 start-page: 6707 year: 2015 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nature Communications – volume: 11 start-page: 1065 issue: 10 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecology Letters – volume: 43 start-page: 189 issue: 2 year: 2011 end-page: 197 article-title: Vegetation community, foliar nitrogen, and temperature effects on tundra CO exchange across a soil moisture gradient publication-title: Arctic, Antarctic, and Alpine Research – volume: 86 start-page: 315 issue: 2 year: 1998 end-page: 327 article-title: Responses of a subarctic dwarf shrub heath community to simulated environmental change publication-title: The Journal of Ecology – volume: 10 start-page: 395 issue: 1 year: 2018 article-title: Advanced Bayesian multilevel modeling with the R package brms publication-title: The R Journal – volume: 562 start-page: 57 issue: 7725 year: 2018 end-page: 62 article-title: Plant functional trait change across a warming tundra biome publication-title: Nature – volume: 16 start-page: 2436 issue: 9 year: 2010 end-page: 2448 article-title: Variability in exchange of CO across 12 northern peatland and tundra sites publication-title: Global Change Biology – volume: 7 year: 2019 article-title: Hierarchical generalized additive models in ecology: An introduction with Mgcv publication-title: PeerJ – volume: 121 start-page: 489 issue: 3 year: 2014 end-page: 503 article-title: Identifying the sources and uncertainties of ecosystem respiration in Arctic tussock tundra publication-title: Biogeochemistry – volume: 111 start-page: 740 issue: 2 year: 2014 end-page: 745 article-title: Functional traits explain variation in plant life history strategies publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 73 start-page: 307 issue: 3 year: 2019 end-page: 309 article-title: R‐squared for Bayesian regression models publication-title: The American Statistician – volume: 8 start-page: 204 issue: 1 year: 2016 end-page: 218 article-title: Spatio‐temporal interpolation using Gstat publication-title: The R Journal – volume: 95 start-page: 802 issue: 4 year: 2007 end-page: 817 article-title: Functional convergence in regulation of net CO flux in heterogeneous tundra landscapes in Alaska and Sweden publication-title: Journal of Ecology – year: 2021 article-title: Shrub expansion in the arctic may induce large‐scale carbon losses due to changes in plant–soil interactions publication-title: Plant and Soil – volume: 11 start-page: 4621 issue: 1 year: 2020 article-title: Summer warming explains widespread but not uniform greening in the arctic tundra biome publication-title: Nature Communications – volume: 16 issue: 1 year: 2020 article-title: Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems publication-title: Environmental Research Letters: ERL [web Site] – volume: 30 issue: 20 year: 2003 article-title: Greening of Arctic Alaska, 1981–2001 publication-title: Geophysical Research Letters – volume: 117 start-page: 21480 issue: 35 year: 2020 end-page: 21487 article-title: Decreasing snow cover alters functional composition and diversity of Arctic tundra publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 288 issue: 2 year: 2006 end-page: 304 article-title: Identifying differences in carbon exchange among Arctic ecosystem types publication-title: Ecosystems – volume: 100 start-page: 343 issue: 2 year: 2012 end-page: 351 article-title: Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities: Indirect effects on arbuscular mycorrhizal fungi publication-title: The Journal of Ecology – volume: 33 start-page: 579 issue: 6 year: 2013 end-page: 589 article-title: Relationships between root respiration rate and root morphology, chemistry and anatomy in and publication-title: Tree Physiology – volume: 6 start-page: 196 issue: S1 year: 2000 end-page: 210 article-title: Controls over carbon storage and turnover in high‐latitude soils publication-title: Global Change Biology – volume: 43 start-page: 1019 issue: 5 year: 2018 end-page: 1031 article-title: Modelling soil moisture in a high‐latitude landscape using LiDAR and soil data publication-title: Earth Surface Processes and Landforms – volume: 17 start-page: 377 issue: 3 year: 2014 end-page: 393 article-title: Environmental and vegetation drivers of seasonal CO fluxes in a sub‐arctic forest–mire ecotone publication-title: Ecosystems – volume: 62 start-page: 349 issue: 2 year: 2019 end-page: 364 article-title: Dissolved organic carbon in permafrost regions: A review publication-title: Science China Earth Sciences – volume: 6 start-page: 950 issue: 10 year: 2016 end-page: 953 article-title: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils publication-title: Nature Climate Change – volume: 15 start-page: 295 issue: 3 year: 2004 end-page: 304 article-title: The plant traits that drive ecosystems: Evidence from three continents publication-title: Journal of Vegetation Science: Official Organ of the International Association for Vegetation Science – volume: 28 start-page: 78 issue: 2 year: 2019 end-page: 95 article-title: Traditional plant functional groups explain variation in economic but not size‐related traits across the tundra biome publication-title: Global Ecology and Biogeography – volume: 7 issue: 9 year: 2021 article-title: Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks publication-title: Science Advances – year: 2012 – volume: 98 start-page: 1074 issue: 5 year: 2010 end-page: 1083 article-title: Linkages of plant traits to soil properties and the functioning of temperate grassland publication-title: Journal of Ecology – volume: 32 start-page: 1091 issue: 4 year: 2018 end-page: 1102 article-title: Consequences of grazer‐induced vegetation transitions on ecosystem carbon storage in the tundra publication-title: Functional Ecology – volume: 15 start-page: 1663 issue: 6 year: 2018 end-page: 1682 article-title: High‐resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub‐arctic peatland environment publication-title: Biogeosciences – volume: 76 start-page: 1 issue: 1 year: 2017 end-page: 32 article-title: Stan: A probabilistic programming language publication-title: Journal of Statistical Software – volume: 373 issue: 2045 year: 2015 article-title: Factors affecting projected arctic surface shortwave heating and albedo change in coupled climate models publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences – volume: 48 start-page: 1079 issue: 5 year: 2011 end-page: 1087 article-title: Beyond species: Functional diversity and the maintenance of ecological processes and services publication-title: Journal of Applied Ecology – volume: 45 start-page: 471 issue: 1 year: 2014 end-page: 493 article-title: Biodiversity and ecosystem functioning publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 556 start-page: 231 issue: 7700 year: 2018 end-page: 234 article-title: Accelerated increase in plant species richness on mountain summits is linked to warming publication-title: Nature – year: 1991 – year: 2017 – volume: 95 start-page: 139 issue: 1 year: 2007 end-page: 150 article-title: What is the relationship between changes in canopy leaf area and changes in photosynthetic CO flux in arctic ecosystems? publication-title: Journal of Ecology – volume: 86 start-page: 902 issue: 6 year: 1998 end-page: 910 article-title: Benefits of plant diversity to ecosystems: Immediate, filter and founder effects publication-title: The Journal of Ecology – ident: e_1_2_10_33_1 doi: 10.1111/1365-2745.12092 – ident: e_1_2_10_78_1 doi: 10.1126/sciadv.aaw9883 – ident: e_1_2_10_100_1 doi: 10.1007/s10021-005-0146-y – ident: e_1_2_10_101_1 doi: 10.1201/9781315370279 – ident: e_1_2_10_45_1 doi: 10.5194/bg-11-6573-2014 – ident: e_1_2_10_43_1 doi: 10.1046/j.1365-2486.2000.06021.x – ident: e_1_2_10_14_1 doi: 10.1007/s10021-016-9997-7 – ident: e_1_2_10_69_1 doi: 10.1007/s10021-008-9128-1 – ident: e_1_2_10_89_1 doi: 10.1080/15230430.2019.1592649 – ident: e_1_2_10_31_1 doi: 10.1111/j.1365-2435.2011.01913.x – ident: e_1_2_10_39_1 doi: 10.1046/j.1365-2745.1998.00306.x – ident: e_1_2_10_47_1 doi: 10.1111/nph.13003 – ident: e_1_2_10_98_1 doi: 10.1111/gcb.13563 – ident: e_1_2_10_32_1 doi: 10.1111/j.1365-2745.2009.01615.x – ident: e_1_2_10_86_1 doi: 10.1111/j.1365-2745.2007.01259.x – ident: e_1_2_10_88_1 doi: 10.5194/bg-15-1663-2018 – ident: e_1_2_10_3_1 doi: 10.1016/j.agrformet.2017.10.028 – ident: e_1_2_10_93_1 doi: 10.1038/s41467-020-15014-4 – ident: e_1_2_10_63_1 doi: 10.1038/nature13470 – ident: e_1_2_10_85_1 doi: 10.1007/s10533-014-0017-8 – ident: e_1_2_10_60_1 doi: 10.1007/s11430-018-9309-6 – ident: e_1_2_10_50_1 doi: 10.1002/esp.4301 – ident: e_1_2_10_23_1 doi: 10.1890/13-2221.1 – ident: e_1_2_10_96_1 doi: 10.1007/BF00203256 – ident: e_1_2_10_5_1 doi: 10.1111/j.1365-2745.2011.01903.x – volume: 373 issue: 2045 year: 2015 ident: e_1_2_10_44_1 article-title: Factors affecting projected arctic surface shortwave heating and albedo change in coupled climate models publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences – ident: e_1_2_10_76_1 doi: 10.1111/gcb.13261 – ident: e_1_2_10_27_1 doi: 10.1038/nature23886 – ident: e_1_2_10_74_1 doi: 10.1007/s11104-021-04919-8 – ident: e_1_2_10_49_1 doi: 10.1093/treephys/tpt040 – ident: e_1_2_10_92_1 doi: 10.1111/j.1365-2745.2006.01187.x – ident: e_1_2_10_97_1 doi: 10.1177/0309133317745784 – ident: e_1_2_10_15_1 doi: 10.1111/j.1461-0248.2012.01865.x – ident: e_1_2_10_94_1 doi: 10.1111/geb.12783 – ident: e_1_2_10_65_1 doi: 10.1038/nclimate2697 – ident: e_1_2_10_2_1 doi: 10.1073/pnas.1315179111 – volume-title: Circum‐Arctic map of permafrost and ground‐ice conditions year: 2002 ident: e_1_2_10_10_1 – ident: e_1_2_10_75_1 doi: 10.7717/peerj.6876 – ident: e_1_2_10_67_1 doi: 10.1038/s41558-019-0592-8 – ident: e_1_2_10_87_1 doi: 10.1890/05-1051 – ident: e_1_2_10_59_1 doi: 10.1111/j.1365-2486.2009.02104.x – ident: e_1_2_10_4_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_10_95_1 doi: 10.1146/annurev-ecolsys-120213-091917 – volume-title: Developments in environmental modelling year: 2012 ident: e_1_2_10_56_1 – ident: e_1_2_10_52_1 doi: 10.1029/2009JG000947 – ident: e_1_2_10_62_1 doi: 10.1111/gcb.13661 – ident: e_1_2_10_37_1 doi: 10.1080/00031305.2018.1549100 – ident: e_1_2_10_58_1 doi: 10.5194/bg-14-4467-2017 – ident: e_1_2_10_8_1 doi: 10.1038/s41467-020-18479-5 – ident: e_1_2_10_84_1 doi: 10.1111/j.1600-0706.2009.17711.x – ident: e_1_2_10_91_1 doi: 10.1038/s41586-018-0005-6 – ident: e_1_2_10_19_1 doi: 10.1111/1365-2745.12012 – ident: e_1_2_10_54_1 doi: 10.1088/1748-9326/aab863 – ident: e_1_2_10_22_1 doi: 10.1111/j.1461-0248.2008.01164.x – ident: e_1_2_10_72_1 doi: 10.1657/AAAR0014-027 – ident: e_1_2_10_90_1 doi: 10.1007/s10021-017-0158-4 – ident: e_1_2_10_36_1 doi: 10.1890/03-0799 – ident: e_1_2_10_12_1 doi: 10.32614/RJ-2018-017 – ident: e_1_2_10_35_1 doi: 10.1088/2515-7620/ab3cdd – ident: e_1_2_10_55_1 doi: 10.1038/ncomms7707 – ident: e_1_2_10_20_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_10_24_1 doi: 10.1890/ES13-00281.1 – ident: e_1_2_10_21_1 doi: 10.1657/1938-4246-43.2.189 – ident: e_1_2_10_48_1 doi: 10.1029/2003GL018268 – ident: e_1_2_10_99_1 doi: 10.1111/1365-2745.13081 – ident: e_1_2_10_34_1 doi: 10.1111/nph.17572 – ident: e_1_2_10_82_1 doi: 10.1038/nclimate3054 – start-page: 14 volume-title: Biogenic trace gases: Measuring emissions from soil and water year: 1995 ident: e_1_2_10_57_1 – ident: e_1_2_10_6_1 doi: 10.1111/ele.12164 – ident: e_1_2_10_73_1 doi: 10.1111/gcb.12793 – ident: e_1_2_10_9_1 doi: 10.1038/s41586-018-0563-7 – ident: e_1_2_10_16_1 doi: 10.18637/jss.v076.i01 – ident: e_1_2_10_80_1 doi: 10.1007/s10021-013-9728-2 – ident: e_1_2_10_103_1 doi: 10.1111/1365-2435.13029 – ident: e_1_2_10_81_1 doi: 10.1046/j.1365-2745.1998.00261.x – ident: e_1_2_10_66_1 doi: 10.1088/1748-9326/6/4/045509 – ident: e_1_2_10_42_1 doi: 10.2307/2963492 – ident: e_1_2_10_40_1 doi: 10.1007/s00442-019-04508-8 – ident: e_1_2_10_41_1 – ident: e_1_2_10_11_1 doi: 10.1038/s41559-018-0699-8 – ident: e_1_2_10_51_1 doi: 10.1007/s10021-020-00589-2 – ident: e_1_2_10_7_1 doi: 10.1126/sciadv.aba3756 – ident: e_1_2_10_46_1 doi: 10.1023/A:1026034523499 – ident: e_1_2_10_18_1 doi: 10.1073/pnas.1700298114 – ident: e_1_2_10_64_1 doi: 10.1126/sciadv.aaz5236 – ident: e_1_2_10_38_1 doi: 10.32614/RJ-2016-014 – ident: e_1_2_10_61_1 doi: 10.5194/bg-10-437-2013 – volume-title: Daily values for weather observations: Enontekiö Kilpisjärvi Kyläkeskus year: 2021 ident: e_1_2_10_28_1 – ident: e_1_2_10_68_1 doi: 10.1073/pnas.2001254117 – ident: e_1_2_10_79_1 doi: 10.1126/science.1173113 – volume: 16 issue: 1 year: 2020 ident: e_1_2_10_53_1 article-title: Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems publication-title: Environmental Research Letters: ERL [web Site] doi: 10.1088/1748-9326/abc994 – volume-title: Biogeochemistry: An analysis of global change year: 1991 ident: e_1_2_10_83_1 – ident: e_1_2_10_102_1 doi: 10.1038/nature02403 – ident: e_1_2_10_13_1 doi: 10.1111/j.1365-2664.2011.02048.x – ident: e_1_2_10_29_1 doi: 10.1111/j.1365-2745.2011.01913.x – ident: e_1_2_10_30_1 doi: 10.1111/j.1365-2745.2007.01345.x – ident: e_1_2_10_17_1 doi: 10.1111/j.1365-3040.2008.01775.x – volume-title: Tilastoja Suomen Ilmastosta 1981–2010 – Climatological Statistics of Finland 1981–2010 year: 2012 ident: e_1_2_10_77_1 – volume: 15 start-page: 295 issue: 3 year: 2004 ident: e_1_2_10_25_1 article-title: The plant traits that drive ecosystems: Evidence from three continents publication-title: Journal of Vegetation Science: Official Organ of the International Association for Vegetation Science doi: 10.1111/j.1654-1103.2004.tb02266.x – ident: e_1_2_10_70_1 doi: 10.1890/06-0649 – ident: e_1_2_10_26_1 doi: 10.1038/nature16489 – ident: e_1_2_10_71_1 doi: 10.1111/j.1365-2745.2010.01679.x |
SSID | ssj0006750 |
Score | 2.5062296 |
Snippet | The trait composition and trait diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how plant traits... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 700 |
SubjectTerms | Air temperature Alpine Arctic biodiversity Carbon Carbon cycle Carbon dioxide carbon sinks Decomposers Dry matter Dry matter content Ecological function Economics ecosystem functions and services ecosystem respiration Ecosystems Environmental changes Finland Fluxes functional traits Height Herbivores leaf dry matter content Leaves Observational studies Organic carbon Photosynthesis Plant communities Plant diversity plant height Soil Soil moisture soil organic carbon Soil temperature soil water Stocks Taiga & tundra Tundra Variability |
Title | Relationships between above‐ground plant traits and carbon cycling in tundra plant communities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13832 https://www.proquest.com/docview/2638054891 https://www.proquest.com/docview/2648835830 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7iA7yIroqrq0Tw4KXSpkkfR113EUERUfBWJ2lWhaW77EPYmz_B3-gvcaYvV0HESwntpG1mMpNv2pkJY0e6Bz0du-AEVkh0UAw4kQDtpD6oQAL6Yy4lCl9dBxf38vJBVdGElAtT1IeoP7iRZuT2mhQc9HhOyctsKqlOPPSy0AovUYIt7d4g5E1tjBEPu1XBcFeGYVndh4J5ftzg-8L0hTbnMWu-6HTX2VqJFvlpId4NtmCzBlsp9o-cNdjy2QCxHTZWOnnx6dkme6yj255fhmNehmFxFPWr_Xh7pySOLOXDPjKU0_YQkzEHPGFgpAcZNzPKlHziLxmfIN0ISkpTpJFQ8dUtdt_t3LUvnHIXBccgGBFoQYz1hfZ1GrogfYiEdW0cxp6AnvSl1YExUQy4SqWozDaA2Jcy9XCGeTqWiNC22WI2yOwO42morTRpoJUSMrCh7imlQWuJfq4JlWmyk4qFiSlLjNNQ-knlahDPE-J5kvO8yY7rDsOiusbvpK1KJkmpZuNEoPVAzBnFXpMd1pdRQeivB2R2MCUaHJavIt_F18tl-dejkstOO2_s_rfDHlsV-UyjGLUWW5yMpnYfQctEH-TTEo_nt-IT2WriVQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hFsGFHVFWI3Hgkipx7CxHKK3KekAgcQu240IFSqs2RSonPoFv5EsYZykFCSHELUrGibcZv3FmngH2ZUu0ZGgLy9OUoYOihBVQIa3YFdxjAv0x2yQKX1x6zRt2estvx3Jhcn6I0Yab0YzMXhsFNxvSY1pepFMxXnXQzUIzPMUQbhgH7Pjqk0IKAbFdMobbzPcLeh8TzfPtBV9Xpk-4OQ5as1WnsQCqrG8ebPJYHaSyql6-UTn-r0GLMF-AUnKYz6IlmNDJMszkx1QOl2H6qIMQEi9m6hnH9XAF7kZBdA_tbp8U0V4EZ9Szfn99M7kiSUy6TzhuxJxCkfaJwBtK9GQnIWpoEjLvSTshKcr1RCGp8mwVw_G6CjeN-nWtaRWHNVgKMQ9FQ6W0S6UrY98WzBUB1bYO_dChosVcpqWnVBAKXAxjtBnaE6HLWOzgRHZkyBAIrsFk0kn0OpDYl5qp2JOcU-ZpX7Y4l0JKhu608rmqQLUcqEgVTOamKU9R6dGYnoxMT0ZZT1bgYFSgm5N4_Cy6VY58VGhzP6JopBDaBqFTgb3RY9RD83NFJLozMDLYLJcHro3Vy4b5t09Fp_VadrHx1wK7MNu8vjiPzk8uzzZhjmZz24TFbcFk2hvobcRJqdzJFOEDfP0GOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7iCy_iE1dXjeDBS6VNkz6Ouu6i6wMPCt5qkqa6sHTLPoS9-RP8jf4SZ_ryASLeQjtpm5nM5JtmZkLIoUpkokJbWp5hHBwULa2ASWXFrhQel-CP2ZgofH3jnd_z7oOoogkxF6aoD1H_cEPNyO01KngWJ1-UvMym4uLYAS8LrPAcbvmhbjJ-WxtjwMN2VTDc5r5fVvfBYJ4fD_i-MH2iza-YNV90OitkuUSL9KQQ7yqZMekaWSjOj5yukfnTAWA7aCy08-LT03XyWEe3PfeyES3DsCiI-sW8v75hEkca06wPDKV4PMR4RCVc0HKoBinVU8yUfKK9lI6BbihLSl2kkWDx1Q1y32nftc6t8hQFSwMYYWBBtHGZclXs25K7MmDGNqEfOkwm3OVGeVoHoYRVKgZlNp4MXc5jB2aYo0IOCG2TzKaD1GwRGvvKcB17SgjGPeOrRAglleLg52pf6AY5rlgY6bLEOA6lH1WuBvI8Qp5HOc8b5KjukBXVNX4nbVYyiUo1G0UMrAdgziB0GuSgvg0KgrseMjWDCdLAsFwRuDZ8Xi7Lv14VddutvLH93w77ZPH2rBNdXdxc7pAllk86DFdrktnxcGJ2Ab-M1V4-Qz8AfsTkCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationships+between+above%E2%80%90ground+plant+traits+and+carbon+cycling+in+tundra+plant+communities&rft.jtitle=The+Journal+of+ecology&rft.au=Happonen%2C+Konsta&rft.au=Virkkala%2C+Anna%E2%80%90Maria&rft.au=Kemppinen%2C+Julia&rft.au=Niittynen%2C+Pekka&rft.date=2022-03-01&rft.issn=0022-0477&rft.volume=110&rft.issue=3+p.700-716&rft.spage=700&rft.epage=716&rft_id=info:doi/10.1111%2F1365-2745.13832&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |