Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China
Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display...
Saved in:
Published in | Functional ecology Vol. 35; no. 3; pp. 566 - 577 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution.
For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution.
We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency.
Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article. |
---|---|
AbstractList | Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution. We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency. Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes. A free Plain Language Summary can be found within the Supporting Information of this article. Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution. We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency. Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution. We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency. Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes. A free Plain Language Summary can be found within the Supporting Information of this article. |
Author | Jansen, Steven Zhang, Qi‐Wei Zhu, Shi‐Dan McCulloh, Katherine Cao, Kun‐Fang |
Author_xml | – sequence: 1 givenname: Qi‐Wei orcidid: 0000-0003-0672-3982 surname: Zhang fullname: Zhang, Qi‐Wei organization: Guangxi University – sequence: 2 givenname: Shi‐Dan orcidid: 0000-0002-9228-368X surname: Zhu fullname: Zhu, Shi‐Dan organization: Guangxi University – sequence: 3 givenname: Steven orcidid: 0000-0002-4476-5334 surname: Jansen fullname: Jansen, Steven organization: Ulm University – sequence: 4 givenname: Kun‐Fang orcidid: 0000-0002-2253-7189 surname: Cao fullname: Cao, Kun‐Fang email: kunfangcao@gxu.edu.cn organization: Guangxi University – sequence: 5 givenname: Katherine surname: McCulloh fullname: McCulloh, Katherine |
BookMark | eNqFkUtPxCAUhYnRxPGxdkvixk0VSuljaSa-EhMX6prcUjqDtlCBZuzKvy51jAsXyoZw-M69F84B2jXWKIROKDmncV1QlvMkzRg_p6xgdActfpRdtCBpXiVllrN9dOD9CyGk4mm6QB9PdrArB8N6wj44a1bdhKFtlQweN86Oq3WYL5T3GEyD36dO9Vj1te2073HUtQ9gpMLa4I21zYSHDkw0t872GPArOB9wayMZZubRjmG9mQ_LtTZwhPZa6Lw6_t4P0fP11dPyNrl_uLlbXt4nkpUVTSrCoQRVSirzKABjVQl101R1BapoeF4zUscn1rxueVEQxikvVZnzFFQua8kO0dm27uDs2xjbi157qbo4q7KjFymPH8UIL9KInv5CX-zoTJxOpFlV0izLaBEpvqWks9471QqpAwRtTXCgO0GJmGMRcwhiDkF8xRJ9F798g9M9uOkPx3enje7U9B8urq-WW98n0I6haA |
CitedBy_id | crossref_primary_10_1111_nph_20213 crossref_primary_10_1093_treephys_tpae017 crossref_primary_10_1088_1748_9326_ad0064 crossref_primary_10_3389_fevo_2023_1175031 crossref_primary_10_3389_fpls_2022_851781 crossref_primary_10_1002_ldr_4643 crossref_primary_10_1007_s11104_025_07365_y crossref_primary_10_1111_ele_14270 crossref_primary_10_1007_s00468_022_02303_2 crossref_primary_10_1093_plphys_kiac403 crossref_primary_10_3390_agronomy14030438 crossref_primary_10_1016_j_catena_2024_108542 crossref_primary_10_3390_plants10122604 crossref_primary_10_1111_ppl_70075 crossref_primary_10_7717_peerj_16331 crossref_primary_10_1111_plb_13384 crossref_primary_10_1007_s11676_023_01616_3 crossref_primary_10_3390_agronomy12081891 crossref_primary_10_1038_s41598_022_10988_1 crossref_primary_10_1093_treephys_tpad050 crossref_primary_10_1111_pce_14467 crossref_primary_10_1007_s11104_025_07217_9 crossref_primary_10_1111_1365_2745_14421 crossref_primary_10_3390_su141811348 crossref_primary_10_3897_natureconservation_50_86490 crossref_primary_10_1186_s12870_023_04164_4 |
Cites_doi | 10.5038/1827‐806X.37.1.1 10.1002/eco.1344 10.1111/1365‐2435.13519 10.1104/pp.16.01191 10.1007/s00425‐009‐0959‐6 10.1016/j.tree.2004.09.003 10.1104/pp.103.023879 10.1111/j.1469‐8137.2007.02137.x 10.1111/nph.13846 10.1093/treephys/23.4.237 10.5061/dryad.wh70rxwmb 10.1016/j.jhydrol.2016.01.033 10.2307/2656722 10.1111/j.1365‐3040.2007.01765.x 10.1111/j.1469‐8137.1991.tb00035.x 10.1093/aobpla/plt046 10.1111/pce.12139 10.1038/s41586‐018‐0240‐x 10.1002/2013RG000443 10.1111/j.1469‐8137.2010.03518.x 10.1093/jxb/23.1.267 10.1007/s00442‐011‐2064‐3 10.1002/eco.42 10.1007/s004420100628 10.1146/annurev.pp.40.060189.000315 10.1093/jpe/rtw057 10.1111/j.1654‐1103.2003.tb02228.x 10.1111/j.1365‐2435.2012.01962.x 10.1104/pp.16.01643 10.1093/treephys/tpw031 10.1111/nph.13646 10.1111/btp.12696 10.1111/j.1365‐2435.2009.01577.x 10.1002/j.1537‐2197.1952.tb13070.x 10.1111/nph.13737 10.1002/ecy.2441 10.1111/1365‐2435.12656 10.1111/j.1469‐8137.2004.01060.x 10.1111/1365‐2435.12518 10.1111/pce.12862 10.1104/pp.113.221424 10.1046/j.1365‐3040.2001.00660.x 10.1038/s41586‐018‐0539‐7 10.1111/pce.13367 10.1002/hyp.10938 10.1146/annurev.arplant.56.032604.144141 10.1111/1365‐2745.13261 10.1007/s13595‐020‐00944‐2 10.1046/j.1365‐3040.2000.00533.x 10.1146/annurev.es.03.110172.000543 10.1093/treephys/tpx094 10.1111/j.1469‐8137.2010.03439.x 10.1104/pp.18.00103 10.1007/978-3-662-04931-0 |
ContentType | Journal Article |
Copyright | 2020 British Ecological Society 2021 British Ecological Society |
Copyright_xml | – notice: 2020 British Ecological Society – notice: 2021 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.13731 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 577 |
ExternalDocumentID | 10_1111_1365_2435_13731 FEC13731 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 410768178 – fundername: Bagui scholarship of Guangxi Zhuang Autonomous Region funderid: C33600992001 – fundername: National Natural Science Foundation of China funderid: 31861133008; 32060330 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c3891-905a8ae8c1c6389a3398abdd9b9ae7d56b30b269b5bf577035158e8652ae6cbc3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:30:48 EDT 2025 Sun Jul 13 05:02:33 EDT 2025 Tue Jul 01 01:15:51 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Wed Jan 22 16:31:40 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3891-905a8ae8c1c6389a3398abdd9b9ae7d56b30b269b5bf577035158e8652ae6cbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9228-368X 0000-0002-4476-5334 0000-0003-0672-3982 0000-0002-2253-7189 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13731 |
PQID | 2498144417 |
PQPubID | 1066355 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2524330572 proquest_journals_2498144417 crossref_citationtrail_10_1111_1365_2435_13731 crossref_primary_10_1111_1365_2435_13731 wiley_primary_10_1111_1365_2435_13731_FEC13731 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 1989; 40 2018; 561 2019; 51 2012; 168 2000; 87 2004; 162 2010; 188 2003; 14 2008; 37 2016; 30 2018; 41 2011; 190 2009; 230 2008; 31 1952; 39 2013; 5 2016; 36 1991; 119 2018; 177 2017; 37 2007; 175 2014; 59 2012; 26 2014; 52 2014; 7 2014; 164 2009; 23 2016; 209 2006; 57 2000; 23 2016; 10 2009 2015; 209 2017; 173 2020; 34 1992 2020; 77 2002 2001; 24 1972; 23 2001; 126 2020; 108 2003; 132 1972; 3 2013; 36 2004; 19 2018; 558 2020 2016; 535 2016 2009; 2 2018; 99 2003; 23 2016; 172 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 Liu C. Q. (e_1_2_9_28_1) 2009 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 Wang B. (e_1_2_9_51_1) 2016 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Wang B. (e_1_2_9_52_1) 2014; 59 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Fu L. G. (e_1_2_9_16_1) 1992 |
References_xml | – volume: 36 start-page: 983 year: 2016 end-page: 993 article-title: A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species publication-title: Tree Physiology – year: 2009 – volume: 561 start-page: 538 year: 2018 end-page: 541 article-title: Hydraulic diversity of forests regulates ecosystem resilience during drought publication-title: Nature – volume: 162 start-page: 663 year: 2004 end-page: 670 article-title: Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms publication-title: New Phytologist – volume: 2 start-page: 81 year: 2009 end-page: 87 article-title: Biogeography of woody encroachment: Why is mesquite excluded from shallow soils? publication-title: Ecohydrology – volume: 173 start-page: 1197 year: 2017 end-page: 1210 article-title: Outside‐xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration publication-title: Plant Physiology – year: 2020 article-title: Data from: Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China publication-title: Dryad Digital Repository – volume: 14 start-page: 927 year: 2003 end-page: 930 article-title: VEGAN, a package of R functions for community ecology publication-title: Journal of Vegetation Science – volume: 37 start-page: 1 year: 2008 end-page: 10 article-title: The role of the epikarst in karst and cave hydrogeology: A review publication-title: International Journal of Speleology – volume: 30 start-page: 1740 year: 2016 end-page: 1744 article-title: Are leaves more vulnerable to cavitation than branches? publication-title: Functional Ecology – volume: 41 start-page: 2617 year: 2018 end-page: 2626 article-title: Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions publication-title: Plant Cell and Environment – volume: 188 start-page: 1113 year: 2010 end-page: 1123 article-title: Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms publication-title: New Phytologist – volume: 168 start-page: 1 year: 2012 end-page: 10 article-title: Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms publication-title: Oecologia – volume: 172 start-page: 2261 year: 2016 end-page: 2274 article-title: Reversible leaf xylem collapse: A potential, ‘circuit breaker’ against cavitation publication-title: Plant Physiology – volume: 230 start-page: 459 year: 2009 end-page: 468 article-title: Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology publication-title: Planta – volume: 24 start-page: 113 year: 2001 end-page: 121 article-title: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine publication-title: Plant Cell and Environment – volume: 119 start-page: 345 year: 1991 end-page: 360 article-title: The hydraulic architecture of trees and other woody plants publication-title: New Phytologist – volume: 57 start-page: 361 year: 2006 end-page: 381 article-title: Leaf hydraulics publication-title: Annual Review of Plant Biology – volume: 23 start-page: 237 year: 2003 end-page: 245 article-title: Reliance on stored water increases with tree size in three species in the Pacific Northwest publication-title: Tree Physiology – volume: 59 start-page: 3479 year: 2014 article-title: Spatial distribution of standing dead trees abundance and its impact factors in the karst seasonal rain forest, Nonggang, southern China publication-title: Chinese Science Bulletin – volume: 535 start-page: 173 year: 2016 end-page: 180 article-title: Karst catchments exhibited higher degradation stress from climate change than the non‐karst catchments in southwest China: An ecohydrological perspective publication-title: Journal of Hydrology – volume: 558 start-page: 531 year: 2018 end-page: 539 article-title: Triggers of tree mortality under drought publication-title: Nature – volume: 209 start-page: 1553 year: 2016 end-page: 1565 article-title: A global analysis of parenchyma tissue fractions in secondary xylem of seed plants publication-title: New Phytologist – volume: 36 start-page: 1938 year: 2013 end-page: 1949 article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism publication-title: Plant Cell and Environment – volume: 3 start-page: 107 year: 1972 end-page: 132 article-title: Niche theory publication-title: Annual Review of Ecology and Systematics – volume: 209 start-page: 123 year: 2015 end-page: 136 article-title: Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world's woody plant species publication-title: New Phytologist – volume: 126 start-page: 457 year: 2001 end-page: 461 article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure publication-title: Oecologia – volume: 164 start-page: 1772 year: 2014 end-page: 1788 article-title: Leaf shrinkage with dehydration: Coordination with hydraulic vulnerability and drought tolerance publication-title: Plant Physiology – volume: 31 start-page: 632 year: 2008 end-page: 645 article-title: Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees publication-title: Plant Cell and Environment – volume: 99 start-page: 2272 year: 2018 end-page: 2283 article-title: Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest publication-title: Ecology – volume: 26 start-page: 343 year: 2012 end-page: 352 article-title: Stem xylem conductivity is key to plant water balance across Australian angiosperm species publication-title: Functional Ecology – volume: 177 start-page: 1066 year: 2018 end-page: 1077 article-title: Low vulnerability to xylem embolism in leaves and stems of North American oaks publication-title: Plant Physiology – volume: 5 start-page: plt046 year: 2013 article-title: Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms publication-title: Aob Plants – volume: 23 start-page: 922 year: 2009 end-page: 930 article-title: Xylem hydraulic safety margins inwoody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance publication-title: Functional Ecology – volume: 40 start-page: 897 year: 2017 end-page: 913 article-title: Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics publication-title: Plant Cell and Environment – volume: 77 start-page: 37 year: 2020 article-title: Lack of vulnerability segmentation in four angiosperm tree species: Evidence from direct X‐ray microtomography observation publication-title: Annals of Forest Science – volume: 23 start-page: 99 year: 2000 end-page: 106 article-title: Stem water storage capacity and efficiency of water transport: Their functional significance in a Hawaiian dry forest publication-title: Plant Cell and Environment – volume: 40 start-page: 19 year: 1989 end-page: 36 article-title: Vulnerability of xylem to cavitation and embolism publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 108 start-page: 145 year: 2020 end-page: 159 article-title: Effects of topography on tropical forest structure depend on climate context publication-title: Journal of Ecology – volume: 87 start-page: 1287 year: 2000 end-page: 1299 article-title: Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation publication-title: American Journal of Botany – volume: 52 start-page: 218 year: 2014 end-page: 242 article-title: Karst water resources in a changing world: Review of hydrological modeling approaches publication-title: Reviews of Geophysics – year: 2016 – year: 1992 – volume: 34 start-page: 777 issue: 4 year: 2020 end-page: 787 article-title: Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community publication-title: Functional Ecology – volume: 30 start-page: 517 year: 2016 end-page: 526 article-title: Multiple strategies for drought survival among woody plant species publication-title: Functional Ecology – volume: 23 start-page: 267 year: 1972 end-page: 282 article-title: The measurement of the turgor pressure and the water relations of plants by the pressure‐bomb technique publication-title: Journal of Experimental Botany – volume: 132 start-page: 2166 year: 2003 end-page: 2173 article-title: Stomatal closure during leaf dehydration, correlation with other leaf physiological traits publication-title: Plant Physiology – volume: 37 start-page: 1469 year: 2017 end-page: 1477 article-title: Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability publication-title: Tree Physiology – volume: 190 start-page: 709 year: 2011 end-page: 723 article-title: Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus publication-title: New Phytologist – volume: 39 start-page: 570 year: 1952 end-page: 574 article-title: An approach to the study of vessel length in hardwood species publication-title: American Journal of Botany – volume: 7 start-page: 278 year: 2014 end-page: 290 article-title: Species‐specific water use by woody plants on the Edwards Plateau, Texas publication-title: Ecohydrology – year: 2002 – volume: 175 start-page: 686 year: 2007 end-page: 698 article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation publication-title: New Phytologist – volume: 10 start-page: 450 year: 2016 end-page: 460 article-title: Topographic species–habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China publication-title: Journal of Plant Ecology – volume: 30 start-page: 4568 year: 2016 end-page: 4581 article-title: Effects of juniper removal and rainfall variation on tree transpiration in a semi‐arid karst: Evidence of complex water storage dynamics publication-title: Hydrological Processes – volume: 209 start-page: 1403 year: 2016 end-page: 1409 article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure publication-title: New Phytologist – volume: 19 start-page: 605 year: 2004 end-page: 611 article-title: Plant coexistence and the niche publication-title: Trends in Ecology & Evolution – volume: 51 start-page: 626 year: 2019 end-page: 640 article-title: Plant ecology of tropical and subtropical karst ecosystems publication-title: Biotropica – ident: e_1_2_9_54_1 doi: 10.5038/1827‐806X.37.1.1 – ident: e_1_2_9_14_1 doi: 10.1002/eco.1344 – ident: e_1_2_9_43_1 doi: 10.1111/1365‐2435.13519 – ident: e_1_2_9_56_1 doi: 10.1104/pp.16.01191 – volume-title: Biogeochemical processes and cycling of nutrients in the earth's surface: Cycling of nutrients in soil‐plant systems of karstic environments year: 2009 ident: e_1_2_9_28_1 – ident: e_1_2_9_8_1 doi: 10.1007/s00425‐009‐0959‐6 – ident: e_1_2_9_41_1 doi: 10.1016/j.tree.2004.09.003 – ident: e_1_2_9_5_1 doi: 10.1104/pp.103.023879 – ident: e_1_2_9_10_1 doi: 10.1111/j.1469‐8137.2007.02137.x – ident: e_1_2_9_7_1 doi: 10.1111/nph.13846 – ident: e_1_2_9_33_1 doi: 10.1093/treephys/23.4.237 – ident: e_1_2_9_55_1 doi: 10.5061/dryad.wh70rxwmb – ident: e_1_2_9_29_1 doi: 10.1016/j.jhydrol.2016.01.033 – ident: e_1_2_9_36_1 doi: 10.2307/2656722 – ident: e_1_2_9_44_1 doi: 10.1111/j.1365‐3040.2007.01765.x – ident: e_1_2_9_46_1 doi: 10.1111/j.1469‐8137.1991.tb00035.x – ident: e_1_2_9_59_1 doi: 10.1093/aobpla/plt046 – ident: e_1_2_9_53_1 doi: 10.1111/pce.12139 – ident: e_1_2_9_9_1 doi: 10.1038/s41586‐018‐0240‐x – ident: e_1_2_9_23_1 doi: 10.1002/2013RG000443 – ident: e_1_2_9_26_1 doi: 10.1111/j.1469‐8137.2010.03518.x – volume: 59 start-page: 3479 year: 2014 ident: e_1_2_9_52_1 article-title: Spatial distribution of standing dead trees abundance and its impact factors in the karst seasonal rain forest, Nonggang, southern China publication-title: Chinese Science Bulletin – ident: e_1_2_9_47_1 doi: 10.1093/jxb/23.1.267 – ident: e_1_2_9_4_1 doi: 10.1007/s00442‐011‐2064‐3 – ident: e_1_2_9_13_1 doi: 10.1002/eco.42 – ident: e_1_2_9_22_1 doi: 10.1007/s004420100628 – ident: e_1_2_9_48_1 doi: 10.1146/annurev.pp.40.060189.000315 – ident: e_1_2_9_21_1 doi: 10.1093/jpe/rtw057 – ident: e_1_2_9_12_1 doi: 10.1111/j.1654‐1103.2003.tb02228.x – ident: e_1_2_9_18_1 doi: 10.1111/j.1365‐2435.2012.01962.x – ident: e_1_2_9_39_1 doi: 10.1104/pp.16.01643 – ident: e_1_2_9_25_1 doi: 10.1093/treephys/tpw031 – ident: e_1_2_9_19_1 doi: 10.1111/nph.13646 – ident: e_1_2_9_17_1 doi: 10.1111/btp.12696 – ident: e_1_2_9_30_1 doi: 10.1111/j.1365‐2435.2009.01577.x – volume-title: China plant red data book – The rare and endangered plant year: 1992 ident: e_1_2_9_16_1 – ident: e_1_2_9_20_1 doi: 10.1002/j.1537‐2197.1952.tb13070.x – ident: e_1_2_9_31_1 doi: 10.1111/nph.13737 – ident: e_1_2_9_15_1 doi: 10.1002/ecy.2441 – ident: e_1_2_9_58_1 doi: 10.1111/1365‐2435.12656 – ident: e_1_2_9_6_1 doi: 10.1111/j.1469‐8137.2004.01060.x – ident: e_1_2_9_35_1 doi: 10.1111/1365‐2435.12518 – ident: e_1_2_9_37_1 doi: 10.1111/pce.12862 – ident: e_1_2_9_40_1 doi: 10.1104/pp.113.221424 – ident: e_1_2_9_24_1 doi: 10.1046/j.1365‐3040.2001.00660.x – ident: e_1_2_9_2_1 doi: 10.1038/s41586‐018‐0539‐7 – ident: e_1_2_9_34_1 doi: 10.1111/pce.13367 – ident: e_1_2_9_11_1 doi: 10.1002/hyp.10938 – ident: e_1_2_9_38_1 doi: 10.1146/annurev.arplant.56.032604.144141 – ident: e_1_2_9_32_1 doi: 10.1111/1365‐2745.13261 – ident: e_1_2_9_27_1 doi: 10.1007/s13595‐020‐00944‐2 – ident: e_1_2_9_45_1 doi: 10.1046/j.1365‐3040.2000.00533.x – ident: e_1_2_9_50_1 doi: 10.1146/annurev.es.03.110172.000543 – volume-title: Guangxi Nonggang Karst Seasonal Rain Forest: Tree species and their distribution patterns year: 2016 ident: e_1_2_9_51_1 – ident: e_1_2_9_57_1 doi: 10.1093/treephys/tpx094 – ident: e_1_2_9_3_1 doi: 10.1111/j.1469‐8137.2010.03439.x – ident: e_1_2_9_42_1 doi: 10.1104/pp.18.00103 – ident: e_1_2_9_49_1 doi: 10.1007/978-3-662-04931-0 |
SSID | ssj0009522 |
Score | 2.4753895 |
Snippet | Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 566 |
SubjectTerms | Altitude China Drought drought tolerance Dry season ecological differentiation Embolism evergreen trees Feet forests Geographical distribution Hills hydraulic conductivity hydraulic dysfunction Hydraulics Karst karst forest karsts Leaves Plant species Plant water potential population distribution Safety safety margin Safety margins Soil depth Soil water Spatial distribution Species Stems topography Water availability Water depth Water potential water stress Woody plants Xylem xylem water potential |
Title | Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13731 https://www.proquest.com/docview/2498144417 https://www.proquest.com/docview/2524330572 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelUOjL1q0rS9uNG_ShLw6RHNnW4ygJZbA9jBb6ZvSVUeo4oXag6Uv_9d1JdpoWxhh7E5JOlk866ST97o6xM6mEtE6YhM_o6iZTAkVq5JKZ5s7njjsbojV8_5FdXo-_3cgeTUi2MNE_xObCjSQjrNck4No0W0Ie8Vm42w95mgdLasohtein2HK7G98RRKYS3GnTzrkPYXle0b_cl56VzW2VNew507fM9L2NUJO74ao1Q_v4ypHjf_3OAXvTaaTwNU6hd2zH1-_ZXoxRucbUxHapo8mzURwSdKtCc8ierhbLzvM1NHS1_qtag45AEXAhDlAL0SgFdO3gYV35Ofi5WVS3zRwwn5RYbAtuayAM0BqWFeFzgIxfQMMdnr5bQPUaeUV1Qtw_8vEAIfz3B3Y9nVxdXCZdYIfE0rNookZSF9oXlltSmHSaqkIb55RRGieIzEw6MjhkRpqZzHN67JSFLzIptM-ssekR260Xtf_IAGsVfKxHY6v4WHBTOO6VmZlMWY7N2AEb9sNa2s7rOQXfqMr-9EOML4nxZWD8gJ1vCJbR4cefq57286TsJL_BYuoQBXYbsC-bYpRZeojRtV-ssI7ERnChzQV2L0yKv32qnE4uQuL4XwlO2L4gGE6AzZ2y3fZ-5T-hHtWaz0FUfgPonhHq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemoQlegAHTCoPdJB54SVU7dRI_oqlV2dfD1El7i_xVNC1NK5pKlBf-de7stCuTEEK8Wcn54tg-39m-ux9jH6US0jphEj6ho5tMCRSpnksmmjufO-5sQGu4vMpGN_2zW3m7FQsT80NsDtxIMsJ6TQJOB9JbUh4dtFDdd3maUyj1E8L1Dtuqa7GVeDfeJIhMJahr0za9D3nzPGLwu2Z6MDe3jdagdYYvmF23Nzqb3HeXjenaH49SOf7fD71kz1ujFD7HWbTPdnz9iu1FmMoVlga2LR0MHuLisEK7MCxes5_j2bxNfg0LOl3_Wq1AR18RcAEKqIEYlwK6dvB9Vfkp-KmZVXeLKeBzsmORF9zVQG5AK5hX5KIDFP8CGu5xA94AWtjYWUQToP8ozQMEBPA37GY4GJ-OkhbbIbF0M5qontSF9oXllmwmnaaq0MY5ZZTGOSIzk_YMjpmRZiLznO47ZeGLTArtM2tsesB261ntDxkgVcH7ute3ivcFN4XjXpmJyZTlyMZ2WHc9rqVtE58T_kZVrjdA1PEldXwZOr7DPm0qzGPOjz-THq0nStkK_wJfU4MI263DTjavUWzpLkbXfrZEGolMcK3NBTYvzIq_faocDk5D4e2_VjhmT0fjy4vy4svV-Tv2TJBXTvCiO2K7zbelf49mVWM-BLn5BQnbFgU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKxCXllfVhQKDxIFLVrETJ_ERtbsqrwqhVuIW-ZWqaja7YrMSy4W_zoyTbJdKCCFuVmJPnPGMPba_mWHstVRCWidMxCs6usmUQJWKXVRp7nzuuLMhW8Ons-z0In3_VQ5oQvKF6eJDbA7cSDPCfE0KvnDVlpJ3-Cxc7cc8ycmTejfN4oIE--SL2Iq7210kiExFuNQmfXQfAvPcIvD7wnRjbW7brGHRme4zM3S3w5pcj1etGdsftyI5_tf_PGB7vUkKbzsZesju-OYRu9slqVxjaWL70sHkxisOG_TTwvIx-3k-X_Shr2FJZ-uX9Rp0hxQBFxIBtdB5pYBuHHxf134Gfmbm9dVyBvicrFikBVcNEAhoDYuaADpA3i-g4Rq33y2gfY28ojoh8R8FeYCQ__sJu5hOzo9Poz6zQ2TpXjRSsdSF9oXlliwmnSSq0MY5ZZRGCZGZSWKDQ2akqWSe022nLHyRSaF9Zo1NDthOM2_8IQOsVfBUx6lVPBXcFI57ZSqTKcuRjB2x8TCspe3DnlP2jboctj_E-JIYXwbGj9ibTYNFF_Hjz1WPBjkpe9Vf4mvqEGV2G7FXm9eotHQToxs_X2EdiURwps0Fdi8Ixd8-VU4nx6Hw9F8bvGT3Pp9My4_vzj48Y_cFQXIChO6I7bTfVv452lSteRG05hfGcxS9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topography+strongly+affects+drought+stress+and+xylem+embolism+resistance+in+woody+plants+from+a+karst+forest+in+Southwest+China&rft.jtitle=Functional+ecology&rft.au=Qi%E2%80%90Wei+Zhang&rft.au=Shi%E2%80%90Dan+Zhu&rft.au=Jansen%2C+Steven&rft.au=Kun%E2%80%90Fang+Cao&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=35&rft.issue=3&rft.spage=566&rft.epage=577&rft_id=info:doi/10.1111%2F1365-2435.13731&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |