Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China

Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 35; no. 3; pp. 566 - 577
Main Authors Zhang, Qi‐Wei, Zhu, Shi‐Dan, Jansen, Steven, Cao, Kun‐Fang, McCulloh, Katherine
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution. We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency. Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
AbstractList Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution. We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency. Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes. A free Plain Language Summary can be found within the Supporting Information of this article.
Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution. We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency. Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. For testing the hypothesis that embolism resistance of leaf and stem xylem reflects the spatial distribution across species along a topographical gradient of the karst hills, we measured the xylem water potential in the dry season, vulnerability to drought‐induced embolism in stems and leaves, and relevant anatomical traits in 17 evergreen species with a different topographical distribution. We found that from the foot towards the hill top, plant water potential sharply decreased, and both stem and leaf xylem showed increasing resistance to hydraulic dysfunction and drought‐resistant anatomical characteristics, but non‐significant variation in specific hydraulic conductivity. Also, hydraulic safety margins increased with relative altitude and thus increasing hydraulic safety. Hydraulic safety underlies the local distribution of the species, but does not come at the cost of hydraulic efficiency. Our results demonstrate that plant hydraulic safety largely shape the niche differentiation and hence community assembly in highly heterogeneous and water‐limited landscapes. A free Plain Language Summary can be found within the Supporting Information of this article.
Author Jansen, Steven
Zhang, Qi‐Wei
Zhu, Shi‐Dan
McCulloh, Katherine
Cao, Kun‐Fang
Author_xml – sequence: 1
  givenname: Qi‐Wei
  orcidid: 0000-0003-0672-3982
  surname: Zhang
  fullname: Zhang, Qi‐Wei
  organization: Guangxi University
– sequence: 2
  givenname: Shi‐Dan
  orcidid: 0000-0002-9228-368X
  surname: Zhu
  fullname: Zhu, Shi‐Dan
  organization: Guangxi University
– sequence: 3
  givenname: Steven
  orcidid: 0000-0002-4476-5334
  surname: Jansen
  fullname: Jansen, Steven
  organization: Ulm University
– sequence: 4
  givenname: Kun‐Fang
  orcidid: 0000-0002-2253-7189
  surname: Cao
  fullname: Cao, Kun‐Fang
  email: kunfangcao@gxu.edu.cn
  organization: Guangxi University
– sequence: 5
  givenname: Katherine
  surname: McCulloh
  fullname: McCulloh, Katherine
BookMark eNqFkUtPxCAUhYnRxPGxdkvixk0VSuljaSa-EhMX6prcUjqDtlCBZuzKvy51jAsXyoZw-M69F84B2jXWKIROKDmncV1QlvMkzRg_p6xgdActfpRdtCBpXiVllrN9dOD9CyGk4mm6QB9PdrArB8N6wj44a1bdhKFtlQweN86Oq3WYL5T3GEyD36dO9Vj1te2073HUtQ9gpMLa4I21zYSHDkw0t872GPArOB9wayMZZubRjmG9mQ_LtTZwhPZa6Lw6_t4P0fP11dPyNrl_uLlbXt4nkpUVTSrCoQRVSirzKABjVQl101R1BapoeF4zUscn1rxueVEQxikvVZnzFFQua8kO0dm27uDs2xjbi157qbo4q7KjFymPH8UIL9KInv5CX-zoTJxOpFlV0izLaBEpvqWks9471QqpAwRtTXCgO0GJmGMRcwhiDkF8xRJ9F798g9M9uOkPx3enje7U9B8urq-WW98n0I6haA
CitedBy_id crossref_primary_10_1111_nph_20213
crossref_primary_10_1093_treephys_tpae017
crossref_primary_10_1088_1748_9326_ad0064
crossref_primary_10_3389_fevo_2023_1175031
crossref_primary_10_3389_fpls_2022_851781
crossref_primary_10_1002_ldr_4643
crossref_primary_10_1007_s11104_025_07365_y
crossref_primary_10_1111_ele_14270
crossref_primary_10_1007_s00468_022_02303_2
crossref_primary_10_1093_plphys_kiac403
crossref_primary_10_3390_agronomy14030438
crossref_primary_10_1016_j_catena_2024_108542
crossref_primary_10_3390_plants10122604
crossref_primary_10_1111_ppl_70075
crossref_primary_10_7717_peerj_16331
crossref_primary_10_1111_plb_13384
crossref_primary_10_1007_s11676_023_01616_3
crossref_primary_10_3390_agronomy12081891
crossref_primary_10_1038_s41598_022_10988_1
crossref_primary_10_1093_treephys_tpad050
crossref_primary_10_1111_pce_14467
crossref_primary_10_1007_s11104_025_07217_9
crossref_primary_10_1111_1365_2745_14421
crossref_primary_10_3390_su141811348
crossref_primary_10_3897_natureconservation_50_86490
crossref_primary_10_1186_s12870_023_04164_4
Cites_doi 10.5038/1827‐806X.37.1.1
10.1002/eco.1344
10.1111/1365‐2435.13519
10.1104/pp.16.01191
10.1007/s00425‐009‐0959‐6
10.1016/j.tree.2004.09.003
10.1104/pp.103.023879
10.1111/j.1469‐8137.2007.02137.x
10.1111/nph.13846
10.1093/treephys/23.4.237
10.5061/dryad.wh70rxwmb
10.1016/j.jhydrol.2016.01.033
10.2307/2656722
10.1111/j.1365‐3040.2007.01765.x
10.1111/j.1469‐8137.1991.tb00035.x
10.1093/aobpla/plt046
10.1111/pce.12139
10.1038/s41586‐018‐0240‐x
10.1002/2013RG000443
10.1111/j.1469‐8137.2010.03518.x
10.1093/jxb/23.1.267
10.1007/s00442‐011‐2064‐3
10.1002/eco.42
10.1007/s004420100628
10.1146/annurev.pp.40.060189.000315
10.1093/jpe/rtw057
10.1111/j.1654‐1103.2003.tb02228.x
10.1111/j.1365‐2435.2012.01962.x
10.1104/pp.16.01643
10.1093/treephys/tpw031
10.1111/nph.13646
10.1111/btp.12696
10.1111/j.1365‐2435.2009.01577.x
10.1002/j.1537‐2197.1952.tb13070.x
10.1111/nph.13737
10.1002/ecy.2441
10.1111/1365‐2435.12656
10.1111/j.1469‐8137.2004.01060.x
10.1111/1365‐2435.12518
10.1111/pce.12862
10.1104/pp.113.221424
10.1046/j.1365‐3040.2001.00660.x
10.1038/s41586‐018‐0539‐7
10.1111/pce.13367
10.1002/hyp.10938
10.1146/annurev.arplant.56.032604.144141
10.1111/1365‐2745.13261
10.1007/s13595‐020‐00944‐2
10.1046/j.1365‐3040.2000.00533.x
10.1146/annurev.es.03.110172.000543
10.1093/treephys/tpx094
10.1111/j.1469‐8137.2010.03439.x
10.1104/pp.18.00103
10.1007/978-3-662-04931-0
ContentType Journal Article
Copyright 2020 British Ecological Society
2021 British Ecological Society
Copyright_xml – notice: 2020 British Ecological Society
– notice: 2021 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.13731
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Entomology Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 577
ExternalDocumentID 10_1111_1365_2435_13731
FEC13731
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 410768178
– fundername: Bagui scholarship of Guangxi Zhuang Autonomous Region
  funderid: C33600992001
– fundername: National Natural Science Foundation of China
  funderid: 31861133008; 32060330
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c3891-905a8ae8c1c6389a3398abdd9b9ae7d56b30b269b5bf577035158e8652ae6cbc3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:30:48 EDT 2025
Sun Jul 13 05:02:33 EDT 2025
Tue Jul 01 01:15:51 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Wed Jan 22 16:31:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3891-905a8ae8c1c6389a3398abdd9b9ae7d56b30b269b5bf577035158e8652ae6cbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9228-368X
0000-0002-4476-5334
0000-0003-0672-3982
0000-0002-2253-7189
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13731
PQID 2498144417
PQPubID 1066355
PageCount 12
ParticipantIDs proquest_miscellaneous_2524330572
proquest_journals_2498144417
crossref_citationtrail_10_1111_1365_2435_13731
crossref_primary_10_1111_1365_2435_13731
wiley_primary_10_1111_1365_2435_13731_FEC13731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
1989; 40
2018; 561
2019; 51
2012; 168
2000; 87
2004; 162
2010; 188
2003; 14
2008; 37
2016; 30
2018; 41
2011; 190
2009; 230
2008; 31
1952; 39
2013; 5
2016; 36
1991; 119
2018; 177
2017; 37
2007; 175
2014; 59
2012; 26
2014; 52
2014; 7
2014; 164
2009; 23
2016; 209
2006; 57
2000; 23
2016; 10
2009
2015; 209
2017; 173
2020; 34
1992
2020; 77
2002
2001; 24
1972; 23
2001; 126
2020; 108
2003; 132
1972; 3
2013; 36
2004; 19
2018; 558
2020
2016; 535
2016
2009; 2
2018; 99
2003; 23
2016; 172
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
Liu C. Q. (e_1_2_9_28_1) 2009
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
Wang B. (e_1_2_9_51_1) 2016
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Wang B. (e_1_2_9_52_1) 2014; 59
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Fu L. G. (e_1_2_9_16_1) 1992
References_xml – volume: 36
  start-page: 983
  year: 2016
  end-page: 993
  article-title: A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species
  publication-title: Tree Physiology
– year: 2009
– volume: 561
  start-page: 538
  year: 2018
  end-page: 541
  article-title: Hydraulic diversity of forests regulates ecosystem resilience during drought
  publication-title: Nature
– volume: 162
  start-page: 663
  year: 2004
  end-page: 670
  article-title: Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms
  publication-title: New Phytologist
– volume: 2
  start-page: 81
  year: 2009
  end-page: 87
  article-title: Biogeography of woody encroachment: Why is mesquite excluded from shallow soils?
  publication-title: Ecohydrology
– volume: 173
  start-page: 1197
  year: 2017
  end-page: 1210
  article-title: Outside‐xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration
  publication-title: Plant Physiology
– year: 2020
  article-title: Data from: Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China
  publication-title: Dryad Digital Repository
– volume: 14
  start-page: 927
  year: 2003
  end-page: 930
  article-title: VEGAN, a package of R functions for community ecology
  publication-title: Journal of Vegetation Science
– volume: 37
  start-page: 1
  year: 2008
  end-page: 10
  article-title: The role of the epikarst in karst and cave hydrogeology: A review
  publication-title: International Journal of Speleology
– volume: 30
  start-page: 1740
  year: 2016
  end-page: 1744
  article-title: Are leaves more vulnerable to cavitation than branches?
  publication-title: Functional Ecology
– volume: 41
  start-page: 2617
  year: 2018
  end-page: 2626
  article-title: Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions
  publication-title: Plant Cell and Environment
– volume: 188
  start-page: 1113
  year: 2010
  end-page: 1123
  article-title: Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms
  publication-title: New Phytologist
– volume: 168
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms
  publication-title: Oecologia
– volume: 172
  start-page: 2261
  year: 2016
  end-page: 2274
  article-title: Reversible leaf xylem collapse: A potential, ‘circuit breaker’ against cavitation
  publication-title: Plant Physiology
– volume: 230
  start-page: 459
  year: 2009
  end-page: 468
  article-title: Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology
  publication-title: Planta
– volume: 24
  start-page: 113
  year: 2001
  end-page: 121
  article-title: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine
  publication-title: Plant Cell and Environment
– volume: 119
  start-page: 345
  year: 1991
  end-page: 360
  article-title: The hydraulic architecture of trees and other woody plants
  publication-title: New Phytologist
– volume: 57
  start-page: 361
  year: 2006
  end-page: 381
  article-title: Leaf hydraulics
  publication-title: Annual Review of Plant Biology
– volume: 23
  start-page: 237
  year: 2003
  end-page: 245
  article-title: Reliance on stored water increases with tree size in three species in the Pacific Northwest
  publication-title: Tree Physiology
– volume: 59
  start-page: 3479
  year: 2014
  article-title: Spatial distribution of standing dead trees abundance and its impact factors in the karst seasonal rain forest, Nonggang, southern China
  publication-title: Chinese Science Bulletin
– volume: 535
  start-page: 173
  year: 2016
  end-page: 180
  article-title: Karst catchments exhibited higher degradation stress from climate change than the non‐karst catchments in southwest China: An ecohydrological perspective
  publication-title: Journal of Hydrology
– volume: 558
  start-page: 531
  year: 2018
  end-page: 539
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– volume: 209
  start-page: 1553
  year: 2016
  end-page: 1565
  article-title: A global analysis of parenchyma tissue fractions in secondary xylem of seed plants
  publication-title: New Phytologist
– volume: 36
  start-page: 1938
  year: 2013
  end-page: 1949
  article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism
  publication-title: Plant Cell and Environment
– volume: 3
  start-page: 107
  year: 1972
  end-page: 132
  article-title: Niche theory
  publication-title: Annual Review of Ecology and Systematics
– volume: 209
  start-page: 123
  year: 2015
  end-page: 136
  article-title: Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world's woody plant species
  publication-title: New Phytologist
– volume: 126
  start-page: 457
  year: 2001
  end-page: 461
  article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure
  publication-title: Oecologia
– volume: 164
  start-page: 1772
  year: 2014
  end-page: 1788
  article-title: Leaf shrinkage with dehydration: Coordination with hydraulic vulnerability and drought tolerance
  publication-title: Plant Physiology
– volume: 31
  start-page: 632
  year: 2008
  end-page: 645
  article-title: Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees
  publication-title: Plant Cell and Environment
– volume: 99
  start-page: 2272
  year: 2018
  end-page: 2283
  article-title: Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest
  publication-title: Ecology
– volume: 26
  start-page: 343
  year: 2012
  end-page: 352
  article-title: Stem xylem conductivity is key to plant water balance across Australian angiosperm species
  publication-title: Functional Ecology
– volume: 177
  start-page: 1066
  year: 2018
  end-page: 1077
  article-title: Low vulnerability to xylem embolism in leaves and stems of North American oaks
  publication-title: Plant Physiology
– volume: 5
  start-page: plt046
  year: 2013
  article-title: Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms
  publication-title: Aob Plants
– volume: 23
  start-page: 922
  year: 2009
  end-page: 930
  article-title: Xylem hydraulic safety margins inwoody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance
  publication-title: Functional Ecology
– volume: 40
  start-page: 897
  year: 2017
  end-page: 913
  article-title: Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics
  publication-title: Plant Cell and Environment
– volume: 77
  start-page: 37
  year: 2020
  article-title: Lack of vulnerability segmentation in four angiosperm tree species: Evidence from direct X‐ray microtomography observation
  publication-title: Annals of Forest Science
– volume: 23
  start-page: 99
  year: 2000
  end-page: 106
  article-title: Stem water storage capacity and efficiency of water transport: Their functional significance in a Hawaiian dry forest
  publication-title: Plant Cell and Environment
– volume: 40
  start-page: 19
  year: 1989
  end-page: 36
  article-title: Vulnerability of xylem to cavitation and embolism
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 108
  start-page: 145
  year: 2020
  end-page: 159
  article-title: Effects of topography on tropical forest structure depend on climate context
  publication-title: Journal of Ecology
– volume: 87
  start-page: 1287
  year: 2000
  end-page: 1299
  article-title: Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation
  publication-title: American Journal of Botany
– volume: 52
  start-page: 218
  year: 2014
  end-page: 242
  article-title: Karst water resources in a changing world: Review of hydrological modeling approaches
  publication-title: Reviews of Geophysics
– year: 2016
– year: 1992
– volume: 34
  start-page: 777
  issue: 4
  year: 2020
  end-page: 787
  article-title: Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community
  publication-title: Functional Ecology
– volume: 30
  start-page: 517
  year: 2016
  end-page: 526
  article-title: Multiple strategies for drought survival among woody plant species
  publication-title: Functional Ecology
– volume: 23
  start-page: 267
  year: 1972
  end-page: 282
  article-title: The measurement of the turgor pressure and the water relations of plants by the pressure‐bomb technique
  publication-title: Journal of Experimental Botany
– volume: 132
  start-page: 2166
  year: 2003
  end-page: 2173
  article-title: Stomatal closure during leaf dehydration, correlation with other leaf physiological traits
  publication-title: Plant Physiology
– volume: 37
  start-page: 1469
  year: 2017
  end-page: 1477
  article-title: Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability
  publication-title: Tree Physiology
– volume: 190
  start-page: 709
  year: 2011
  end-page: 723
  article-title: Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus
  publication-title: New Phytologist
– volume: 39
  start-page: 570
  year: 1952
  end-page: 574
  article-title: An approach to the study of vessel length in hardwood species
  publication-title: American Journal of Botany
– volume: 7
  start-page: 278
  year: 2014
  end-page: 290
  article-title: Species‐specific water use by woody plants on the Edwards Plateau, Texas
  publication-title: Ecohydrology
– year: 2002
– volume: 175
  start-page: 686
  year: 2007
  end-page: 698
  article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation
  publication-title: New Phytologist
– volume: 10
  start-page: 450
  year: 2016
  end-page: 460
  article-title: Topographic species–habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China
  publication-title: Journal of Plant Ecology
– volume: 30
  start-page: 4568
  year: 2016
  end-page: 4581
  article-title: Effects of juniper removal and rainfall variation on tree transpiration in a semi‐arid karst: Evidence of complex water storage dynamics
  publication-title: Hydrological Processes
– volume: 209
  start-page: 1403
  year: 2016
  end-page: 1409
  article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure
  publication-title: New Phytologist
– volume: 19
  start-page: 605
  year: 2004
  end-page: 611
  article-title: Plant coexistence and the niche
  publication-title: Trends in Ecology & Evolution
– volume: 51
  start-page: 626
  year: 2019
  end-page: 640
  article-title: Plant ecology of tropical and subtropical karst ecosystems
  publication-title: Biotropica
– ident: e_1_2_9_54_1
  doi: 10.5038/1827‐806X.37.1.1
– ident: e_1_2_9_14_1
  doi: 10.1002/eco.1344
– ident: e_1_2_9_43_1
  doi: 10.1111/1365‐2435.13519
– ident: e_1_2_9_56_1
  doi: 10.1104/pp.16.01191
– volume-title: Biogeochemical processes and cycling of nutrients in the earth's surface: Cycling of nutrients in soil‐plant systems of karstic environments
  year: 2009
  ident: e_1_2_9_28_1
– ident: e_1_2_9_8_1
  doi: 10.1007/s00425‐009‐0959‐6
– ident: e_1_2_9_41_1
  doi: 10.1016/j.tree.2004.09.003
– ident: e_1_2_9_5_1
  doi: 10.1104/pp.103.023879
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1469‐8137.2007.02137.x
– ident: e_1_2_9_7_1
  doi: 10.1111/nph.13846
– ident: e_1_2_9_33_1
  doi: 10.1093/treephys/23.4.237
– ident: e_1_2_9_55_1
  doi: 10.5061/dryad.wh70rxwmb
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jhydrol.2016.01.033
– ident: e_1_2_9_36_1
  doi: 10.2307/2656722
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1365‐3040.2007.01765.x
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1469‐8137.1991.tb00035.x
– ident: e_1_2_9_59_1
  doi: 10.1093/aobpla/plt046
– ident: e_1_2_9_53_1
  doi: 10.1111/pce.12139
– ident: e_1_2_9_9_1
  doi: 10.1038/s41586‐018‐0240‐x
– ident: e_1_2_9_23_1
  doi: 10.1002/2013RG000443
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1469‐8137.2010.03518.x
– volume: 59
  start-page: 3479
  year: 2014
  ident: e_1_2_9_52_1
  article-title: Spatial distribution of standing dead trees abundance and its impact factors in the karst seasonal rain forest, Nonggang, southern China
  publication-title: Chinese Science Bulletin
– ident: e_1_2_9_47_1
  doi: 10.1093/jxb/23.1.267
– ident: e_1_2_9_4_1
  doi: 10.1007/s00442‐011‐2064‐3
– ident: e_1_2_9_13_1
  doi: 10.1002/eco.42
– ident: e_1_2_9_22_1
  doi: 10.1007/s004420100628
– ident: e_1_2_9_48_1
  doi: 10.1146/annurev.pp.40.060189.000315
– ident: e_1_2_9_21_1
  doi: 10.1093/jpe/rtw057
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1654‐1103.2003.tb02228.x
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1365‐2435.2012.01962.x
– ident: e_1_2_9_39_1
  doi: 10.1104/pp.16.01643
– ident: e_1_2_9_25_1
  doi: 10.1093/treephys/tpw031
– ident: e_1_2_9_19_1
  doi: 10.1111/nph.13646
– ident: e_1_2_9_17_1
  doi: 10.1111/btp.12696
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1365‐2435.2009.01577.x
– volume-title: China plant red data book – The rare and endangered plant
  year: 1992
  ident: e_1_2_9_16_1
– ident: e_1_2_9_20_1
  doi: 10.1002/j.1537‐2197.1952.tb13070.x
– ident: e_1_2_9_31_1
  doi: 10.1111/nph.13737
– ident: e_1_2_9_15_1
  doi: 10.1002/ecy.2441
– ident: e_1_2_9_58_1
  doi: 10.1111/1365‐2435.12656
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1469‐8137.2004.01060.x
– ident: e_1_2_9_35_1
  doi: 10.1111/1365‐2435.12518
– ident: e_1_2_9_37_1
  doi: 10.1111/pce.12862
– ident: e_1_2_9_40_1
  doi: 10.1104/pp.113.221424
– ident: e_1_2_9_24_1
  doi: 10.1046/j.1365‐3040.2001.00660.x
– ident: e_1_2_9_2_1
  doi: 10.1038/s41586‐018‐0539‐7
– ident: e_1_2_9_34_1
  doi: 10.1111/pce.13367
– ident: e_1_2_9_11_1
  doi: 10.1002/hyp.10938
– ident: e_1_2_9_38_1
  doi: 10.1146/annurev.arplant.56.032604.144141
– ident: e_1_2_9_32_1
  doi: 10.1111/1365‐2745.13261
– ident: e_1_2_9_27_1
  doi: 10.1007/s13595‐020‐00944‐2
– ident: e_1_2_9_45_1
  doi: 10.1046/j.1365‐3040.2000.00533.x
– ident: e_1_2_9_50_1
  doi: 10.1146/annurev.es.03.110172.000543
– volume-title: Guangxi Nonggang Karst Seasonal Rain Forest: Tree species and their distribution patterns
  year: 2016
  ident: e_1_2_9_51_1
– ident: e_1_2_9_57_1
  doi: 10.1093/treephys/tpx094
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1469‐8137.2010.03439.x
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.18.00103
– ident: e_1_2_9_49_1
  doi: 10.1007/978-3-662-04931-0
SSID ssj0009522
Score 2.4753895
Snippet Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 566
SubjectTerms Altitude
China
Drought
drought tolerance
Dry season
ecological differentiation
Embolism
evergreen trees
Feet
forests
Geographical distribution
Hills
hydraulic conductivity
hydraulic dysfunction
Hydraulics
Karst
karst forest
karsts
Leaves
Plant species
Plant water potential
population distribution
Safety
safety margin
Safety margins
Soil depth
Soil water
Spatial distribution
Species
Stems
topography
Water availability
Water depth
Water potential
water stress
Woody plants
Xylem
xylem water potential
Title Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13731
https://www.proquest.com/docview/2498144417
https://www.proquest.com/docview/2524330572
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelUOjL1q0rS9uNG_ShLw6RHNnW4ygJZbA9jBb6ZvSVUeo4oXag6Uv_9d1JdpoWxhh7E5JOlk866ST97o6xM6mEtE6YhM_o6iZTAkVq5JKZ5s7njjsbojV8_5FdXo-_3cgeTUi2MNE_xObCjSQjrNck4No0W0Ie8Vm42w95mgdLasohtein2HK7G98RRKYS3GnTzrkPYXle0b_cl56VzW2VNew507fM9L2NUJO74ao1Q_v4ypHjf_3OAXvTaaTwNU6hd2zH1-_ZXoxRucbUxHapo8mzURwSdKtCc8ierhbLzvM1NHS1_qtag45AEXAhDlAL0SgFdO3gYV35Ofi5WVS3zRwwn5RYbAtuayAM0BqWFeFzgIxfQMMdnr5bQPUaeUV1Qtw_8vEAIfz3B3Y9nVxdXCZdYIfE0rNookZSF9oXlltSmHSaqkIb55RRGieIzEw6MjhkRpqZzHN67JSFLzIptM-ssekR260Xtf_IAGsVfKxHY6v4WHBTOO6VmZlMWY7N2AEb9sNa2s7rOQXfqMr-9EOML4nxZWD8gJ1vCJbR4cefq57286TsJL_BYuoQBXYbsC-bYpRZeojRtV-ssI7ERnChzQV2L0yKv32qnE4uQuL4XwlO2L4gGE6AzZ2y3fZ-5T-hHtWaz0FUfgPonhHq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemoQlegAHTCoPdJB54SVU7dRI_oqlV2dfD1El7i_xVNC1NK5pKlBf-de7stCuTEEK8Wcn54tg-39m-ux9jH6US0jphEj6ho5tMCRSpnksmmjufO-5sQGu4vMpGN_2zW3m7FQsT80NsDtxIMsJ6TQJOB9JbUh4dtFDdd3maUyj1E8L1Dtuqa7GVeDfeJIhMJahr0za9D3nzPGLwu2Z6MDe3jdagdYYvmF23Nzqb3HeXjenaH49SOf7fD71kz1ujFD7HWbTPdnz9iu1FmMoVlga2LR0MHuLisEK7MCxes5_j2bxNfg0LOl3_Wq1AR18RcAEKqIEYlwK6dvB9Vfkp-KmZVXeLKeBzsmORF9zVQG5AK5hX5KIDFP8CGu5xA94AWtjYWUQToP8ozQMEBPA37GY4GJ-OkhbbIbF0M5qontSF9oXllmwmnaaq0MY5ZZTGOSIzk_YMjpmRZiLznO47ZeGLTArtM2tsesB261ntDxkgVcH7ute3ivcFN4XjXpmJyZTlyMZ2WHc9rqVtE58T_kZVrjdA1PEldXwZOr7DPm0qzGPOjz-THq0nStkK_wJfU4MI263DTjavUWzpLkbXfrZEGolMcK3NBTYvzIq_faocDk5D4e2_VjhmT0fjy4vy4svV-Tv2TJBXTvCiO2K7zbelf49mVWM-BLn5BQnbFgU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKxCXllfVhQKDxIFLVrETJ_ERtbsqrwqhVuIW-ZWqaja7YrMSy4W_zoyTbJdKCCFuVmJPnPGMPba_mWHstVRCWidMxCs6usmUQJWKXVRp7nzuuLMhW8Ons-z0In3_VQ5oQvKF6eJDbA7cSDPCfE0KvnDVlpJ3-Cxc7cc8ycmTejfN4oIE--SL2Iq7210kiExFuNQmfXQfAvPcIvD7wnRjbW7brGHRme4zM3S3w5pcj1etGdsftyI5_tf_PGB7vUkKbzsZesju-OYRu9slqVxjaWL70sHkxisOG_TTwvIx-3k-X_Shr2FJZ-uX9Rp0hxQBFxIBtdB5pYBuHHxf134Gfmbm9dVyBvicrFikBVcNEAhoDYuaADpA3i-g4Rq33y2gfY28ojoh8R8FeYCQ__sJu5hOzo9Poz6zQ2TpXjRSsdSF9oXlliwmnSSq0MY5ZZRGCZGZSWKDQ2akqWSe022nLHyRSaF9Zo1NDthOM2_8IQOsVfBUx6lVPBXcFI57ZSqTKcuRjB2x8TCspe3DnlP2jboctj_E-JIYXwbGj9ibTYNFF_Hjz1WPBjkpe9Vf4mvqEGV2G7FXm9eotHQToxs_X2EdiURwps0Fdi8Ixd8-VU4nx6Hw9F8bvGT3Pp9My4_vzj48Y_cFQXIChO6I7bTfVv452lSteRG05hfGcxS9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topography+strongly+affects+drought+stress+and+xylem+embolism+resistance+in+woody+plants+from+a+karst+forest+in+Southwest+China&rft.jtitle=Functional+ecology&rft.au=Qi%E2%80%90Wei+Zhang&rft.au=Shi%E2%80%90Dan+Zhu&rft.au=Jansen%2C+Steven&rft.au=Kun%E2%80%90Fang+Cao&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=35&rft.issue=3&rft.spage=566&rft.epage=577&rft_id=info:doi/10.1111%2F1365-2435.13731&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon