A Comprehensive Survey of COVID-19 Detection Using Medical Images
The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reve...
Saved in:
Published in | SN computer science Vol. 2; no. 6; p. 434 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification. |
---|---|
AbstractList | The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification. The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification. |
ArticleNumber | 434 |
Author | Ahmed, Farzad Ami, Amit Saha Ahmed, Sifat Shah, Faisal Muhammad Humaira, Mayeesha Jim, Md Abidur Rahman Khan Joy, Sajib Kumar Saha Hossain, Tonmoy Paul, Shimul |
Author_xml | – sequence: 1 givenname: Faisal Muhammad surname: Shah fullname: Shah, Faisal Muhammad email: faisal.cse@aust.edu organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 2 givenname: Sajib Kumar Saha surname: Joy fullname: Joy, Sajib Kumar Saha organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 3 givenname: Farzad surname: Ahmed fullname: Ahmed, Farzad organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 4 givenname: Tonmoy surname: Hossain fullname: Hossain, Tonmoy organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 5 givenname: Mayeesha surname: Humaira fullname: Humaira, Mayeesha organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 6 givenname: Amit Saha surname: Ami fullname: Ami, Amit Saha organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 7 givenname: Shimul surname: Paul fullname: Paul, Shimul organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 8 givenname: Md Abidur Rahman Khan surname: Jim fullname: Jim, Md Abidur Rahman Khan organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology – sequence: 9 givenname: Sifat surname: Ahmed fullname: Ahmed, Sifat organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34485924$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha0KVCjlD3RRReqGTYpf8WNTaTS0MBIVi5aqO8vj3AxGiT21k5H49_UwUCgLFpYt-Zzjz_e8Q3shBkDoA8GfCcbyNHOqpa4xJTXGirKavEGHVAhSK43l3v2Z1lo3vw_Qcc63GGPaYM5F8xYdMM5Voyk_RLNZNY_DOsENhOw3UP2Y0gbuqthV86tfi7Oa6OoMRnCjj6G6zj6squ_Qemf7ajHYFeT3aL-zfYbjh_0IXX_7-nN-UV9enS_ms8vaMaVJLZZKybIIbrqWaCJbigVTrZNLKrQQWFinWacYVZy4jkumlg6g4VQJaoVmR-jLLnc9LQdoHYQx2d6skx9sujPRevP_TfA3ZhU3RnFMmGQl4OQhIMU_E-TRDD476HsbIE7Z0KZwEM7l9q1PL6S3cUqhfM9QzSjjDROqqD4-J_qH8jjdIlA7gUsx5wSdcX6020kWQN8bgs22S7Pr0pQuzX2XhhQrfWF9TH_VxHamXMRhBekJ-xXXX7bXrYM |
CitedBy_id | crossref_primary_10_3390_app132312725 crossref_primary_10_3390_electronics11152296 crossref_primary_10_3390_diagnostics12020267 crossref_primary_10_1007_s10489_022_04446_8 crossref_primary_10_1007_s11664_024_11092_y crossref_primary_10_3390_su141912222 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_1016_j_engappai_2024_109977 crossref_primary_10_5812_iranjradiol_117992 crossref_primary_10_1109_TAI_2022_3224097 crossref_primary_10_1016_j_vrih_2022_03_002 crossref_primary_10_3390_app12094694 crossref_primary_10_1007_s00521_023_08975_2 crossref_primary_10_14201_adcaij_31528 crossref_primary_10_1109_ACCESS_2023_3325404 crossref_primary_10_1155_2022_1306664 crossref_primary_10_1016_j_puhe_2024_10_004 crossref_primary_10_3390_s23125543 crossref_primary_10_1016_j_bspc_2022_103770 crossref_primary_10_1038_s41598_024_63739_9 crossref_primary_10_1002_cpe_8023 crossref_primary_10_3390_bioengineering10030363 crossref_primary_10_1016_j_patcog_2022_108826 crossref_primary_10_1111_exsy_13141 crossref_primary_10_3390_diagnostics14050500 crossref_primary_10_1016_j_bspc_2022_103925 crossref_primary_10_3390_math10173199 crossref_primary_10_1002_jmv_28293 crossref_primary_10_1016_j_compbiomed_2022_105350 |
Cites_doi | 10.1007/978-3-030-55258-9_17 10.1101/2020.02.14.20023028 10.1109/CVPR.2009.5206848 10.1101/2020.05.01.20088211 10.1109/TCBB.2021.3065361 10.1038/s41598-020-76550-z 10.31224/osf.io/yt9sx 10.1101/2020.03.24.20042317 10.1109/TIP.2021.3058783 10.1101/2020.03.30.20047456 10.1109/ACCESS.2020.3005510 10.2139/ssrn.3541136 10.1101/2020.03.19.20039354 10.21203/rs.3.rs-36353/v1 10.1016/j.media.2020.101794 10.1109/TPAMI.2016.2644615 10.1101/2020.04.13.20063479 10.1145/2939672.2939785 10.1007/s42600-021-00151-6 10.1109/TNNLS.2021.3070467 10.36227/techrxiv.12083964.v2 10.1101/2020.05.04.20090423 10.1016/j.imu.2020.100360 10.3390/make2040027 10.1007/s10044-021-00984-y 10.1007/s40846-020-00529-4 10.1109/CVPR.2015.7298594 10.1101/2020.03.20.20039834 10.1109/ICCV.2017.74 10.1109/RBME.2020.2987975 10.1109/ESCI50559.2021.9397043 10.1016/j.cmpb.2020.105581 10.1145/2939672.2939778 10.1101/2020.04.13.20063941 10.1016/j.patrec.2020.10.001 10.1088/1361-6560/abe838 10.1109/ACCESS.2020.3003810 10.1609/aaai.v31i1.11231 10.1101/2020.04.16.20064709 10.1109/CVPR.2016.308 10.1109/CVPR.2017.243 10.1016/j.eng.2020.04.010 10.1016/j.bbe.2021.05.013 10.1016/j.ijmedinf.2020.104284 10.1016/j.asoc.2020.106742 10.1007/3-540-46805-6_19 10.1101/2020.02.25.20021568 10.1016/j.compbiomed.2020.103869 10.1109/ACCESS.2020.3010287 10.1109/BIBM49941.2020.9313304 10.1109/3DV.2016.79 10.1007/s42979-021-00690-w 10.1101/2020.04.22.20074948 10.1109/JBHI.2020.3037127 10.1016/j.eswa.2020.114054 10.1016/j.cmpb.2020.105532 10.1109/TMI.2020.2993291 10.3390/a14060183 10.1101/2020.03.28.20046045 10.1109/ICECE51571.2020.9393129 10.1109/CVPR.2016.319 10.1109/JBHI.2020.3019505 10.1101/2020.06.21.20136598 10.1117/12.2588672 10.1101/2020.03.12.20027185 10.1109/TAI.2021.3092698 10.24017/covid.14 10.1007/s13246-020-00865-4 10.1101/2020.06.22.20137547 10.1007/978-3-030-78618-2_4 10.36227/techrxiv.12334265.v1 10.1016/j.cmpb.2020.105608 10.2139/ssrn.3630150 10.1016/j.eswa.2020.113909 10.1609/aaai.v35i6.16617 10.3389/frai.2021.598932 10.1007/978-3-030-59710-8_15 10.1109/CVPR.2016.90 10.1007/978-3-319-24574-4_28 10.1007/s10489-020-01900-3 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021 – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. |
DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1007/s42979-021-00823-1 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Advanced Technologies & Aerospace Collection PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2661-8907 |
ExternalDocumentID | PMC8401373 34485924 10_1007_s42979_021_00823_1 |
Genre | Journal Article |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ BSONS CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c3891-6b887b88105fd1917d20638dc7b2696606ac93f832841cf4738bcee542862a693 |
IEDL.DBID | BENPR |
ISSN | 2662-995X 2661-8907 |
IngestDate | Thu Aug 21 18:45:25 EDT 2025 Fri Jul 11 05:06:20 EDT 2025 Fri Jul 25 23:35:52 EDT 2025 Wed Feb 19 02:08:35 EST 2025 Thu Apr 24 23:02:33 EDT 2025 Tue Jul 01 03:19:15 EDT 2025 Fri Feb 21 02:47:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | COVID-19 Deep learning Survey Medical image AI X-ray CT scan |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3891-6b887b88105fd1917d20638dc7b2696606ac93f832841cf4738bcee542862a693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8401373 |
PMID | 34485924 |
PQID | 2932345368 |
PQPubID | 6623307 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8401373 proquest_miscellaneous_2569614479 proquest_journals_2932345368 pubmed_primary_34485924 crossref_citationtrail_10_1007_s42979_021_00823_1 crossref_primary_10_1007_s42979_021_00823_1 springer_journals_10_1007_s42979_021_00823_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211100 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Kolkata |
PublicationTitle | SN computer science |
PublicationTitleAbbrev | SN COMPUT. SCI |
PublicationTitleAlternate | SN Comput Sci |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
References | Boudrioua MS. COVID-19 detection from chest x-ray images using cnns models: further evidence from deep transfer learning. Available at SSRN 3630150, 2020. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020. Li X and Zhu D. Covid-xpert: an AI powered population screening of COVID-19 cases using chest radiography images. arXiv preprint. 2020. arXiv:2004.03042. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). MedRxiv. 2020. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu T-Y. Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017;3146–3154. Ramesh V, Rister B and Rubin DL. Covid-19 lung lesion segmentation using a sparsely supervised mask R-CNN on chest x-rays automatically computed from volumetric CTS. arXiv preprint. 2021. arXiv:2105.08147. Schapire R. A brief introduction to boosting. ijcai’99: Proc. of the sixteenth international joint conference on artificial intelligence (pp. 1401–1406). 1999. Oh Y, Park S, and Ye JC. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging. 2020. Who director-general’s opening remarks at the media briefing on COVID-19—11 march 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 11 Mar 2020. Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhao C-W and Cheng M-M. Jcs: an explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint. 2020. arXiv:2004.07054. Deng J, Dong W, Socher R, Li L-J, Li K and Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, 2009, pp. 248–255. Kassani SH, Kassasni PH, Wesolowski MJ, Schneider KA and Deters R. Automatic detection of coronavirus disease (COVID-19) in x-ray and CT images: a machine learning-based approach. arXiv preprint. 2020. arXiv:2004.10641. Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W and Wang X. Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv. 2020. Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Zhao H, Jie Y, Wang R, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv. 2020. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241. Ozkaya U, Ozturk S, Barstugan M. Coronavirus (COVID-19) classification using deep features fusion and ranking technique. arXiv preprint. 2020. arXiv:2004.03698. Khan AI, Shah JL, and Bhat MM. Coronet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed.2020;p. 105581. Ilyas M, Rehman H, Naït-Ali A. Detection of COVID-19 from chest x-ray images using artificial intelligence: an early review. arXiv preprint. 2020. arXiv:2004.05436. Chatterjee S, Saad F, Sarasaen C, Ghosh S, Khatun R, Radeva P, Rose G, Stober S, Speck O, and Nürnberger A. Exploration of interpretability techniques for deep COVID-19 classification using chest x-ray images. arXiv preprint. 2020. arXiv:2006.02570. Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, and Khan MK. Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint. 2020. arXiv:2004.00038. Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826. Polsinelli M, Cinque L and Placidi G. A light cnn for detecting COVID-19 from CT scans of the chest. arXiv preprint. 2020. arXiv:2004.12837. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;pp. 2672–2680. Luz EJS, Silva PL, Silva R, Silva L, Moreira G, and Menotti D. Towards an effective and efficient deep learning model for COVID-19 patterns detection in x-ray images. CoRR. 2020. Szegedy C, Ioffe S, Vanhoucke V and Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint. 2016. arXiv:1602.07261. Hemdan EE-D, Shouman MA and Karar ME. Covidx-net: a framework of deep learning classifiers to diagnose COVID-19 in x-ray images. 2020. arXiv preprintarXiv:2003.11055. Apostolopoulos ID and Mpesiana TA. COVID-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;1. JinCChenWCaoYXuZZhangXDengLZhengCZhouJShiHFengJDevelopment and evaluation of an AI system for COVID-19 diagnosismedRxiv202010.1101/2020.03.20.20039834 Wang L and Wong A. COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. arXiv preprint. 2020. arXiv:2003.09871. Seum A, Raj AH, Sakib S and Hossain T. A comparative study of cnn transfer learning classification algorithms with segmentation for COVID-19 detection from CT scan images. In 2020 11th international conference on electrical and computer engineering (ICECE). IEEE. 2020, pp. 234–237. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprintarXiv:1409.1556, 2014. Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E. Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv preprint. 2020. arXiv:2003.05037. He K, Zhang X, Ren S and Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. Milletari F, Navab N and Ahmadi S. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). 2016, pp. 565–571. Hassanien AE, Mahdy LN, Ezzat KA, Elmousalami HH, and Ella HA. Automatic x-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine. medRxiv. 2020. Tahir A, Qiblawey Y, Khandakar A, Rahman T, Khurshid U, Musharavati F, Kiranyaz S, and Chowdhury ME. Coronavirus: comparing COVID-19, sars and mers in the eyes of AI. arXiv preprint. 2020. arXiv:2005.11524. Amyar A, Modzelewski R and Ruan S. Multi-task deep learning based CT imaging analysis for COVID-19: classification and segmentation. medRxiv. 2020. Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-COVID: predicting COVID-19 from chest x-ray images using deep transfer learning. arXiv preprint. 2020. arXiv:2004.09363. Ezzat D, Ella HA, et al. Gsa-densenet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm. arXiv preprint. 2020. arXiv:2004.05084. Lv D, Qi W, Li Y, Sun L, Wang Y. A cascade network for detecting COVID-19 using chest x-rays. arXiv preprint. 2020. arXiv:2005.01468. Farooq M and Hafeez A. COVID-resnet: a deep learning framework for screening of covid19 from radiographs. arXiv preprint. 2020. arXiv:2003.14395. Mahmud T, Rahman MA and Fattah SA. Covxnet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimization. Comput Biol Med. 2020;p. 103869. BreimanLBagging predictorsMach Learn199624212314014259570858.68080 Yeh C-F, Cheng H-T, Wei A, Liu K-C, Ko M-C, Kuo P-C, Chen R-J, Lee P-C, Chuang J-H, Chen C-M, et al. A cascaded learning strategy for robust COVID-19 pneumonia chest x-ray screening. arXiv preprint. 2020. arXiv:2004.12786. SethyPKBeheraSKDetection of coronavirus disease (COVID-19) based on deep featuresPreprints202020200303002020 Abbas A, Abdelsamea MM and Gaber M. 4s-dt: self supervised super sample decomposition for transfer learning with application to COVID-19 detection. arXiv preprint. 2020. arXiv:2007.11450. Chowdhury ME, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, et al. Can AI help in screening viral and COVID-19 pneumonia? arXiv preprint. 2020. arXiv:2003.13145. Chen T and Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794. SinghKKSiddharthaMSinghADiagnosis of coronavirus disease (COVID-19) from chest x-ray images using modified xceptionnetRomanian J Inf Sci Technol202023S91S105 Lundberg SM and Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, 2017, pp. 4768–4777. Alom MZ, Rahman M, Nasrin MS, Taha, TM, Asari VK. Covid\_mtnet: Covid-19 detection with multi-task deep learning approaches. arXiv preprint. 2020. arXiv:2004.03747. Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, Hu S, Wang Y, Hu X, Zheng B, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv. 2020. Basu S and Mitra S. Deep learning for screening COVID-19 using chest x-ray images. arXiv preprint. 2020. arXiv:2004.10507. Liu B, Yan B, Zhou Y, Yang Y, and Zhang Y. Experiments of federated learning for COVID-19 chest x-ray images. arXiv preprint. 2020. arXiv:2007.05592. Mobiny A, Cicalese PA, Zare S, Yuan P, Abavisani M, Wu CC, Ahuja J, de Groot PM, Van Nguyen H. Radiologist-level COVID-19 detection using CT scans with detail-oriented capsule networks. arXiv pre 823_CR74 823_CR75 823_CR72 823_CR73 823_CR78 823_CR79 823_CR76 KK Singh (823_CR47) 2020; 23 823_CR70 823_CR71 823_CR103 823_CR102 823_CR101 823_CR100 823_CR107 823_CR106 823_CR105 823_CR104 823_CR109 823_CR108 823_CR85 823_CR86 823_CR83 823_CR84 823_CR89 823_CR87 823_CR88 823_CR81 823_CR82 L Breiman (823_CR119) 1996; 24 823_CR80 823_CR110 823_CR113 823_CR112 823_CR111 823_CR16 823_CR17 823_CR14 823_CR15 C Cortes (823_CR116) 1995; 20 823_CR18 823_CR19 823_CR7 823_CR96 823_CR8 823_CR5 823_CR94 823_CR6 823_CR12 823_CR9 823_CR98 823_CR99 823_CR92 A Alorf (823_CR115) 2021; 14 823_CR93 823_CR90 823_CR91 823_CR27 823_CR28 823_CR25 823_CR26 823_CR29 823_CR20 823_CR24 823_CR21 823_CR22 823_CR3 823_CR4 823_CR1 823_CR2 823_CR38 823_CR39 823_CR36 823_CR37 823_CR30 823_CR31 823_CR34 823_CR35 823_CR32 823_CR33 TB Chandra (823_CR11) 2021; 165 823_CR49 PK Sethy (823_CR23) 2020; 2020030300 823_CR48 823_CR41 823_CR42 AM Ismael (823_CR10) 2021; 164 823_CR40 823_CR45 823_CR46 823_CR43 823_CR44 S Hu (823_CR77) 2020; 8 823_CR118 823_CR117 823_CR58 823_CR59 823_CR52 823_CR53 823_CR50 823_CR51 823_CR56 823_CR57 823_CR54 823_CR55 MM Ahsan (823_CR114) 2020; 2 823_CR120 S Ahmed (823_CR95) 2021; 2 C Jin (823_CR13) 2020 823_CR69 823_CR63 823_CR64 823_CR61 V Badrinarayanan (823_CR97) 2017; 39 823_CR62 823_CR67 823_CR68 823_CR65 823_CR66 823_CR60 |
References_xml | – reference: Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhao C-W and Cheng M-M. Jcs: an explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint. 2020. arXiv:2004.07054. – reference: Khalifa NEM, Taha MHN, Hassanien AE and Elghamrawy S. Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest x-ray dataset. arXiv preprint. 2020. arXiv:2004.01184. – reference: Tabik S, Gómez-Ríos A, Martín-Rodríguez J, Sevillano-García I, Rey-Area M, Charte D, Guirado E, Suárez J, Luengo J, Valero-González M, et al. Covidgr dataset and COVID-sdnet methodology for predicting covid-19 based on chest x-ray images. arXiv preprint. 2020. arXiv:2006.01409. – reference: Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020. – reference: Li T, Han Z, Wei B, Zheng Y, Hong Y, Cong J. Robust screening of COVID-19 from chest x-ray via discriminative cost-sensitive learning. arXiv preprint. 2020. arXiv:2004.12592. – reference: Al-antari MA, Hua C-H, Lee S. Fast deep learning computer-aided diagnosis against the novel COVID-19 pandemic from digital chest x-ray images. 2020. – reference: Apostolopoulos ID and Mpesiana TA. COVID-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;1. – reference: Pereira RM, Bertolini D, Teixeira LO, Silla CN Jr, Costa YM. COVID-19 identification in chest x-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed.. 2020. p. 105532. – reference: Yamac M, Ahishali M, Degerli A, Kiranyaz S, Chowdhury ME and Gabbouj M. Convolutional sparse support estimator based COVID-19 recognition from x-ray images. arXiv preprint. 2020. arXiv:2005.04014. – reference: Hemdan EE-D, Shouman MA and Karar ME. Covidx-net: a framework of deep learning classifiers to diagnose COVID-19 in x-ray images. 2020. arXiv preprintarXiv:2003.11055. – reference: Ezzat D, Ella HA, et al. Gsa-densenet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm. arXiv preprint. 2020. arXiv:2004.05084. – reference: Heidari M, Mirniaharikandehei S, Khuzani AZ, Danala G, Qiu Y, Zheng B. Improving performance of CNN to predict likelihood of COVID-19 using chest x-ray images with preprocessing algorithms. arXiv preprint. 2020. arXiv:2006.12229. – reference: S. Walvekar and S. Shinde, “Efficient medical image segmentation of covid-19 chest ct images based on deep learning techniques,” in 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). IEEE, 2021, pp. 203–206. – reference: Lundberg SM and Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, 2017, pp. 4768–4777. – reference: ChandraTBVermaKSinghBKJainDNetamSSCoronavirus disease (COVID-19) detection in chest x-ray images using majority voting based classifier ensembleExpert Syst Appl202116511390910.1016/j.eswa.2020.113909 – reference: JinCChenWCaoYXuZZhangXDengLZhengCZhouJShiHFengJDevelopment and evaluation of an AI system for COVID-19 diagnosismedRxiv202010.1101/2020.03.20.20039834 – reference: Huang G, Liu Z, Van Der Maaten V and Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708. – reference: Yeh C-F, Cheng H-T, Wei A, Liu K-C, Ko M-C, Kuo P-C, Chen R-J, Lee P-C, Chuang J-H, Chen C-M, et al. A cascaded learning strategy for robust COVID-19 pneumonia chest x-ray screening. arXiv preprint. 2020. arXiv:2004.12786. – reference: Qiu Y, Liu Y, Xu J. Miniseg: An extremely minimum network for efficient COVID-19 segmentation. arXiv preprint. 2020. arXiv:2004.09750. – reference: LeCun Y, Haffner P, Bottou L and Bengio Y. Object recognition with gradient-based learning. In: Shape, contour and grouping in computer vision. Springer, 1999, pp. 319–345. – reference: Ilyas M, Rehman H, Naït-Ali A. Detection of COVID-19 from chest x-ray images using artificial intelligence: an early review. arXiv preprint. 2020. arXiv:2004.05436. – reference: Boudrioua MS. COVID-19 detection from chest x-ray images using cnns models: further evidence from deep transfer learning. Available at SSRN 3630150, 2020. – reference: Goodwin BD, Jaskolski C, Zhong C, Asmani H. Intra-model variability in COVID-19 classification using chest x-ray images. arXiv preprint. 2020. arXiv:2005.02167. – reference: Chen X, Yao L, Zhang Y. Residual attention u-net for automated multi-class segmentation of COVID-19 chest CT images. arXiv preprint. 2020. arXiv:2004.05645. – reference: Asif S, Wenhui Y, Jin H, Tao Y, Jinhai S. Classification of COVID-19 from chest x-ray images using deep convolutional neural networks. medRxiv. 2020. – reference: Deng J, Dong W, Socher R, Li L-J, Li K and Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, 2009, pp. 248–255. – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;5998–6008. – reference: Farooq M and Hafeez A. COVID-resnet: a deep learning framework for screening of covid19 from radiographs. arXiv preprint. 2020. arXiv:2003.14395. – reference: Szegedy C, Ioffe S, Vanhoucke V and Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint. 2016. arXiv:1602.07261. – reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626. – reference: Khan AI, Shah JL, and Bhat MM. Coronet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed.2020;p. 105581. – reference: Tahir A, Qiblawey Y, Khandakar A, Rahman T, Khurshid U, Musharavati F, Kiranyaz S, and Chowdhury ME. Coronavirus: comparing COVID-19, sars and mers in the eyes of AI. arXiv preprint. 2020. arXiv:2005.11524. – reference: Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1135–1144. – reference: Nair V and Hinton GE. Rectified linear units improve restricted boltzmann machines. ICML. 2010. – reference: Who director-general’s opening remarks at the media briefing on COVID-19—11 march 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 11 Mar 2020. – reference: Schapire R. A brief introduction to boosting. ijcai’99: Proc. of the sixteenth international joint conference on artificial intelligence (pp. 1401–1406). 1999. – reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826. – reference: Brunese L, Mercaldo F, Reginelli A and Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-rays. Comput Methods Programs Biomed. 2020; p. 105608. – reference: Chen T and Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794. – reference: Li X and Zhu D. Covid-xpert: an AI powered population screening of COVID-19 cases using chest radiography images. arXiv preprint. 2020. arXiv:2004.03042. – reference: Liu B, Yan B, Zhou Y, Yang Y, and Zhang Y. Experiments of federated learning for COVID-19 chest x-ray images. arXiv preprint. 2020. arXiv:2007.05592. – reference: Lv D, Qi W, Li Y, Sun L, Wang Y. A cascade network for detecting COVID-19 using chest x-rays. arXiv preprint. 2020. arXiv:2005.01468. – reference: Ghoshal B, Tucker A. Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection. arXiv preprint. 2020. arXiv:2003.10769. – reference: Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting possibly representative COVID-19 biomarkers from x-ray images with deep learning approach and image data related to pulmonary diseases. J Med Biol Eng. 2020. 1. – reference: Al-Karawi D, Al-Zaidi S, Polus N and Jassim S. Machine learning analysis of chest CT scan images as a complementary digital test of coronavirus (COVID-19) patients. medRxiv. 2020. – reference: Luz EJS, Silva PL, Silva R, Silva L, Moreira G, and Menotti D. Towards an effective and efficient deep learning model for COVID-19 patterns detection in x-ray images. CoRR. 2020. – reference: Ahuja S, Panigrahi BK, Dey N, Rajinikanth V and Gandhi TK. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. 2020. – reference: Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, and Khan MK. Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint. 2020. arXiv:2004.00038. – reference: Milletari F, Navab N and Ahmadi S. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). 2016, pp. 565–571. – reference: Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu T-Y. Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017;3146–3154. – reference: Xu X, Jiang X, Ma C, Du P, Li X, Lv S, Yu L, Ni Q, Chen Y, Su J et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering. 2020. – reference: Punn NS and Agarwal S. Automated diagnosis of COVID-19 with limited posteroanterior chest x-ray images using fine-tuned deep neural networks. arXiv preprint. 2020. arXiv:2004.11676. – reference: HuSGaoYNiuZJiangYLiLXiaoXWangMFangEFMenpes-SmithWXiaJWeakly supervised deep learning for COVID-19 infection detection and classification from CT imagesIEEE Access.2020811886911888310.1109/ACCESS.2020.3005510 – reference: Seum A, Raj AH, Sakib S and Hossain T. A comparative study of cnn transfer learning classification algorithms with segmentation for COVID-19 detection from CT scan images. In 2020 11th international conference on electrical and computer engineering (ICECE). IEEE. 2020, pp. 234–237. – reference: Mahmud T, Rahman MA and Fattah SA. Covxnet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimization. Comput Biol Med. 2020;p. 103869. – reference: Brownlee J. How to improve performance with transfer learning for deep learning neural networks. 2020. https://machinelearningmastery.com/how-to-improve-performance-with-transfer-learning-for-deep-learning-neural-networks/. Accessed 11 Mar 2020. – reference: Wu H, Ruan W, Wang J, Zheng D, Liu B, Geng Y, Chai X, Chen J, Li K, Li S, et al. Interpretable machine learning for COVID-19: an empirical study on severity prediction task. IEEE Trans Artif Intell. 2021. – reference: Manapure P, Likhar K, and Kosare H. Detecting COVID-19 in x-ray images with Keras, tensor flow, and deep learning. Assessment. 2(3). – reference: AhmedSHossainTHoqueOBSarkerSRahmanSShahFMAutomated COVID-19 detection from chest x-ray images: a high-resolution network (hrnet) approachSN Comput Sci20212411710.1007/s42979-021-00690-w – reference: Ozkaya U, Ozturk S, Barstugan M. Coronavirus (COVID-19) classification using deep features fusion and ranking technique. arXiv preprint. 2020. arXiv:2004.03698. – reference: Chatterjee S, Saad F, Sarasaen C, Ghosh S, Khatun R, Radeva P, Rose G, Stober S, Speck O, and Nürnberger A. Exploration of interpretability techniques for deep COVID-19 classification using chest x-ray images. arXiv preprint. 2020. arXiv:2006.02570. – reference: Abbas A, Abdelsamea MM, Gaber MM. Classification of COVID-19 in chest x-ray images using detrac deep convolutional neural network. arXiv preprint. 2020. arXiv:2003.13815. – reference: Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN and Mohammadi A. Covid-caps: a capsule network-based framework for identification of COVID-19 cases from x-ray images. arXiv preprint. 2020. arXiv:2004.02696. – reference: Wang L and Wong A. COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. arXiv preprint. 2020. arXiv:2003.09871. – reference: Gozes O, Frid-Adar M, Sagie N, Zhang H, Ji W, Greenspan H. Coronavirus detection and analysis on chest ct with deep learning. arXiv preprint. 2020. arXiv:2004.02640. – reference: Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, Hu S, Wang Y, Hu X, Zheng B, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv. 2020. – reference: Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-COVID: predicting COVID-19 from chest x-ray images using deep transfer learning. arXiv preprint. 2020. arXiv:2004.09363. – reference: Hall LO, Paul R, Goldgof DB, Goldgof GM. Finding COVID-19 from chest x-rays using deep learning on a small dataset. arXiv preprint. 2020. arXiv:2004.02060. – reference: Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Zhao H, Jie Y, Wang R, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv. 2020. – reference: K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprintarXiv:1409.1556, 2014. – reference: Zhang J, Xie Y, Li Y, Shen C, Xia Y. COVID-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint. 2020. arXiv:2003.12338. – reference: CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098 – reference: Hassanien AE, Mahdy LN, Ezzat KA, Elmousalami HH, and Ella HA. Automatic x-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine. medRxiv. 2020. – reference: Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W, Hou X, Ma W, Xu Z, Zheng Z, et al. Ai-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system in four weeks. medRxiv. 2020. – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9. – reference: Mobiny A, Cicalese PA, Zare S, Yuan P, Abavisani M, Wu CC, Ahuja J, de Groot PM, Van Nguyen H. Radiologist-level COVID-19 detection using CT scans with detail-oriented capsule networks. arXiv preprint. 2020. arXiv:2004.07407. – reference: Rahimzadeh M and Attar A. A new modified deep convolutional neural network for detecting COVID-19 from x-ray images. arXiv preprint. 2020. arXiv:2004.08052. – reference: Sun L, Mo Z, Yan F, Xia L, Shan F, Ding Z, Shao W, Shi F, Yuan H, Jiang H, et al. Adaptive feature selection guided deep forest for COVID-19 classification with chest CT. arXiv preprint. 2020. arXiv:2005.03264. – reference: Alom MZ, Rahman M, Nasrin MS, Taha, TM, Asari VK. Covid\_mtnet: Covid-19 detection with multi-task deep learning approaches. arXiv preprint. 2020. arXiv:2004.03747. – reference: Karim M, Döhmen T, Rebholz-Schuhmann D, Decker S, Cochez M, Beyan O, et al. Deepcovidexplainer: explainable COVID-19 predictions based on chest x-ray images. 2020. arXiv preprint arXiv:2004.04582. – reference: Fu M, Yi S-L, Zeng Y, Ye F, Li Y, Dong X, Ren Y-D, Luo L, Pan J-S and Zhang Q. Deep learning-based recognizing COVID-19 and other common infectious diseases of the lung by chest ct scan images. medRxiv. 2020. – reference: BreimanLBagging predictorsMach Learn199624212314014259570858.68080 – reference: Zhou B, Khosla A, Lapedriza A, Oliva A and Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2921–2929. – reference: Rajaraman S, Siegelman J, Alderson PO, Folio LS, Folio LR and Antani SK. Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays. arXiv preprint. 2020. arXiv:2004.08379. – reference: Amyar A, Modzelewski R and Ruan S. Multi-task deep learning based CT imaging analysis for COVID-19: classification and segmentation. medRxiv. 2020. – reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;pp. 2672–2680. – reference: Ahishali M, Degerli A, Yamac M, Kiranyaz S, Chowdhury ME, Hameed K, Hamid T, Mazhar R and Gabbouj M. A comparative study on early detection of COVID-19 from chest x-ray images. arXiv preprint. 2020. arXiv:2006.05332. – reference: Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev Biomed Eng. 2020. – reference: AlorfAThe practicality of deep learning algorithms in COVID-19 detection: application to chest x-ray imagesAlgorithms202114618310.3390/a14060183 – reference: He X, Yang X, Zhang S, Zhao J, Zhang Y, Xing E and Xie P. Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. medRxiv. 2020. – reference: Chowdhury ME, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, et al. Can AI help in screening viral and COVID-19 pneumonia? arXiv preprint. 2020. arXiv:2003.13145. – reference: Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W and Wang X. Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv. 2020. – reference: Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). MedRxiv. 2020. – reference: de la Iglesia Vayá M, Saborit JM, Montell JA, Pertusa A, Bustos A, Cazorla M, Galant J, Barber X, Orozco-Beltrán D, García-García F, et al. Bimcv COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients. arXiv preprint. 2020. arXiv:2006.01174. – reference: Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E. Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv preprint. 2020. arXiv:2003.05037. – reference: Ulhaq A, Khan A, Gomes D, Pau M. Computer vision for COVID-19 control: a survey. arXiv preprint. 2020. arXiv:2004.09420. – reference: IsmaelAMŞengürADeep learning approaches for COVID-19 detection based on chest x-ray imagesExpert Syst Appl202116411405410.1016/j.eswa.2020.114054 – reference: Wang S, Zha Y, Li W, Wu Q, Li X, Niu M, Wang M, Qiu X, Li H, Yu H, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J. 2020. – reference: Abbas A, Abdelsamea MM and Gaber M. 4s-dt: self supervised super sample decomposition for transfer learning with application to COVID-19 detection. arXiv preprint. 2020. arXiv:2007.11450. – reference: Ramesh V, Rister B and Rubin DL. Covid-19 lung lesion segmentation using a sparsely supervised mask R-CNN on chest x-rays automatically computed from volumetric CTS. arXiv preprint. 2021. arXiv:2105.08147. – reference: Oh Y, Park S, and Ye JC. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging. 2020. – reference: SinghKKSiddharthaMSinghADiagnosis of coronavirus disease (COVID-19) from chest x-ray images using modified xceptionnetRomanian J Inf Sci Technol202023S91S105 – reference: Shi F, Xia L, Shan F, Wu D, Wei Y, Yuan H, Jiang H, Gao Y, Sui H and Shen D. Large-scale screening of COVID-19 from community acquired pneumonia using infection size-aware classification. arXiv preprint. 2020. arXiv:2003.09860. – reference: Zhao J, Zhang Y, He X and Xie P. Covid-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint. arXiv:2003.13865. 2020. – reference: BadrinarayananVKendallACipollaRSegnet: a deep convolutional encoder-decoder architecture for image segmentationIEEE Trans Pattern Anal Mach Intell201739122481249510.1109/TPAMI.2016.2644615 – reference: He K, Zhang X, Ren S and Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. – reference: SethyPKBeheraSKDetection of coronavirus disease (COVID-19) based on deep featuresPreprints202020200303002020 – reference: Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241. – reference: Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020. – reference: Salih SQ, Abdulla HK, Ahmed ZS, Surameery NMS, and Rashid RD. Modified alexnet convolution neural network for COVID-19 detection using chest x-ray images. Kurdistan J Appl Res. 2020;119–130. – reference: Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks. arXiv preprint. 2020. arXiv:2003.10849. – reference: Shelke A, Inamdar M, Shah V, Tiwari A, Hussain A, Chafekar T and Mehendale N. Chest x-ray classification using deep learning for automated COVID-19 screening. medRxiv. 2020. – reference: Worldometer: Coronavirus cases. https://www.worldometers.info/coronavirus/. Accessed 11 Mar 2020. – reference: Basu S and Mitra S. Deep learning for screening COVID-19 using chest x-ray images. arXiv preprint. 2020. arXiv:2004.10507. – reference: Zhang Y, Niu S, Qiu Z, Wei Y, Zhao P, Yao J, Huang J, Wu Q, Tan M. Covid-da: Deep domain adaptation from typical pneumonia to COVID-19. arXiv preprint. 2020. arXiv:2005.01577. – reference: Kassani SH, Kassasni PH, Wesolowski MJ, Schneider KA and Deters R. Automatic detection of coronavirus disease (COVID-19) in x-ray and CT images: a machine learning-based approach. arXiv preprint. 2020. arXiv:2004.10641. – reference: AhsanMMGuptaKDIslamMMSenSRahmanMShakhawat HossainMCOVID-19 symptoms detection based on nasnetmobile with explainable AI using various imaging modalitiesMach Learn Knowl Extract20202449050410.3390/make2040027 – reference: Zhou T, Canu S, Ruan S. An automatic COVID-19 CT segmentation based on u-net with attention mechanism. arXiv preprint. 2020. arXiv:2004.06673. – reference: Fan D-P, Zhou T, Ji G-P, Zhou Y, Chen G, Fu H, Shen J, Shao L. Inf-net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging. 2020. – reference: Polsinelli M, Cinque L and Placidi G. A light cnn for detecting COVID-19 from CT scans of the chest. arXiv preprint. 2020. arXiv:2004.12837. – ident: 823_CR14 – ident: 823_CR15 doi: 10.1007/978-3-030-55258-9_17 – ident: 823_CR82 doi: 10.1101/2020.02.14.20023028 – ident: 823_CR5 – ident: 823_CR108 doi: 10.1109/CVPR.2009.5206848 – ident: 823_CR89 – ident: 823_CR52 doi: 10.1101/2020.05.01.20088211 – ident: 823_CR46 – ident: 823_CR64 doi: 10.1109/TCBB.2021.3065361 – ident: 823_CR98 – ident: 823_CR51 doi: 10.1038/s41598-020-76550-z – ident: 823_CR8 – ident: 823_CR9 doi: 10.31224/osf.io/yt9sx – ident: 823_CR40 – ident: 823_CR17 – ident: 823_CR68 doi: 10.1101/2020.03.24.20042317 – ident: 823_CR78 doi: 10.1109/TIP.2021.3058783 – ident: 823_CR69 doi: 10.1101/2020.03.30.20047456 – volume: 8 start-page: 118869 year: 2020 ident: 823_CR77 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3005510 – ident: 823_CR120 – ident: 823_CR1 doi: 10.2139/ssrn.3541136 – ident: 823_CR76 doi: 10.1101/2020.03.19.20039354 – ident: 823_CR44 doi: 10.21203/rs.3.rs-36353/v1 – ident: 823_CR88 doi: 10.1016/j.media.2020.101794 – ident: 823_CR93 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 823_CR97 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2644615 – ident: 823_CR80 doi: 10.1101/2020.04.13.20063479 – ident: 823_CR87 – ident: 823_CR117 doi: 10.1145/2939672.2939785 – ident: 823_CR37 doi: 10.1007/s42600-021-00151-6 – ident: 823_CR39 – ident: 823_CR90 doi: 10.1109/TNNLS.2021.3070467 – ident: 823_CR33 doi: 10.36227/techrxiv.12083964.v2 – ident: 823_CR16 – ident: 823_CR36 doi: 10.1101/2020.05.04.20090423 – ident: 823_CR35 doi: 10.1016/j.imu.2020.100360 – volume: 2 start-page: 490 issue: 4 year: 2020 ident: 823_CR114 publication-title: Mach Learn Knowl Extract doi: 10.3390/make2040027 – ident: 823_CR27 doi: 10.1007/s10044-021-00984-y – volume: 2020030300 start-page: 2020 year: 2020 ident: 823_CR23 publication-title: Preprints – ident: 823_CR50 – ident: 823_CR54 doi: 10.1007/s40846-020-00529-4 – ident: 823_CR105 doi: 10.1109/CVPR.2015.7298594 – year: 2020 ident: 823_CR13 publication-title: medRxiv doi: 10.1101/2020.03.20.20039834 – ident: 823_CR101 – ident: 823_CR6 doi: 10.1109/ICCV.2017.74 – ident: 823_CR7 doi: 10.1109/RBME.2020.2987975 – ident: 823_CR99 doi: 10.1109/ESCI50559.2021.9397043 – ident: 823_CR109 – ident: 823_CR34 doi: 10.1016/j.cmpb.2020.105581 – ident: 823_CR110 doi: 10.1145/2939672.2939778 – ident: 823_CR79 doi: 10.1101/2020.04.13.20063941 – ident: 823_CR56 doi: 10.1016/j.patrec.2020.10.001 – ident: 823_CR70 – ident: 823_CR75 doi: 10.1088/1361-6560/abe838 – ident: 823_CR22 – ident: 823_CR66 doi: 10.1109/ACCESS.2020.3003810 – ident: 823_CR107 doi: 10.1609/aaai.v31i1.11231 – ident: 823_CR85 – ident: 823_CR91 – ident: 823_CR81 doi: 10.1101/2020.04.16.20064709 – ident: 823_CR106 doi: 10.1109/CVPR.2016.308 – ident: 823_CR18 – ident: 823_CR103 doi: 10.1109/CVPR.2017.243 – ident: 823_CR3 doi: 10.1016/j.eng.2020.04.010 – ident: 823_CR59 doi: 10.1016/j.bbe.2021.05.013 – ident: 823_CR92 doi: 10.1016/j.ijmedinf.2020.104284 – ident: 823_CR104 – ident: 823_CR32 doi: 10.1016/j.asoc.2020.106742 – ident: 823_CR100 doi: 10.1007/3-540-46805-6_19 – ident: 823_CR73 doi: 10.1101/2020.02.25.20021568 – ident: 823_CR38 – ident: 823_CR67 doi: 10.1016/j.compbiomed.2020.103869 – ident: 823_CR4 – ident: 823_CR49 doi: 10.1109/ACCESS.2020.3010287 – ident: 823_CR86 doi: 10.1109/BIBM49941.2020.9313304 – ident: 823_CR96 doi: 10.1109/3DV.2016.79 – ident: 823_CR30 – ident: 823_CR24 – volume: 2 start-page: 1 issue: 4 year: 2021 ident: 823_CR95 publication-title: SN Comput Sci doi: 10.1007/s42979-021-00690-w – ident: 823_CR118 – ident: 823_CR20 doi: 10.1101/2020.04.22.20074948 – ident: 823_CR61 doi: 10.1109/JBHI.2020.3037127 – volume: 164 start-page: 114054 year: 2021 ident: 823_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114054 – ident: 823_CR53 doi: 10.1016/j.cmpb.2020.105532 – ident: 823_CR41 doi: 10.1109/TMI.2020.2993291 – volume: 14 start-page: 183 issue: 6 year: 2021 ident: 823_CR115 publication-title: Algorithms doi: 10.3390/a14060183 – ident: 823_CR65 doi: 10.1101/2020.03.28.20046045 – ident: 823_CR94 doi: 10.1109/ICECE51571.2020.9393129 – ident: 823_CR112 doi: 10.1109/CVPR.2016.319 – ident: 823_CR12 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 823_CR116 publication-title: Mach Learn – ident: 823_CR83 doi: 10.1109/JBHI.2020.3019505 – ident: 823_CR72 doi: 10.1101/2020.06.21.20136598 – ident: 823_CR31 doi: 10.1117/12.2588672 – volume: 23 start-page: S91 year: 2020 ident: 823_CR47 publication-title: Romanian J Inf Sci Technol – ident: 823_CR62 doi: 10.1101/2020.03.12.20027185 – ident: 823_CR113 doi: 10.1109/TAI.2021.3092698 – ident: 823_CR45 doi: 10.24017/covid.14 – ident: 823_CR28 doi: 10.1007/s13246-020-00865-4 – ident: 823_CR29 – ident: 823_CR71 doi: 10.1101/2020.06.22.20137547 – ident: 823_CR43 doi: 10.1007/978-3-030-78618-2_4 – ident: 823_CR48 – ident: 823_CR84 doi: 10.36227/techrxiv.12334265.v1 – ident: 823_CR60 doi: 10.1016/j.cmpb.2020.105608 – ident: 823_CR25 doi: 10.2139/ssrn.3630150 – volume: 165 start-page: 113909 year: 2021 ident: 823_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113909 – ident: 823_CR19 doi: 10.1609/aaai.v35i6.16617 – ident: 823_CR111 – ident: 823_CR63 – ident: 823_CR58 doi: 10.3389/frai.2021.598932 – ident: 823_CR21 doi: 10.1007/978-3-030-59710-8_15 – ident: 823_CR26 – ident: 823_CR74 – ident: 823_CR102 doi: 10.1109/CVPR.2016.90 – ident: 823_CR55 doi: 10.1007/978-3-319-24574-4_28 – ident: 823_CR42 doi: 10.1007/s10489-020-01900-3 – ident: 823_CR2 – ident: 823_CR57 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 823_CR119 publication-title: Mach Learn |
SSID | ssj0002504465 |
Score | 2.397399 |
Snippet | The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 434 |
SubjectTerms | Artificial intelligence Classification Computed tomography Computer Aided Methods to Combat COVID-19 Pandemic Computer Imaging Computer Science Computer Systems Organization and Communication Networks COVID-19 Data Structures and Information Theory Datasets Feature extraction Image enhancement Information Systems and Communication Service Medical imaging Pattern Recognition and Graphics Polymerase chain reaction Preprocessing Software Engineering/Programming and Operating Systems Survey Survey Article Viral diseases Vision X-rays |
Title | A Comprehensive Survey of COVID-19 Detection Using Medical Images |
URI | https://link.springer.com/article/10.1007/s42979-021-00823-1 https://www.ncbi.nlm.nih.gov/pubmed/34485924 https://www.proquest.com/docview/2932345368 https://www.proquest.com/docview/2569614479 https://pubmed.ncbi.nlm.nih.gov/PMC8401373 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9B-7KXCTTGAqUyEm_DgsRO4jxNLdAB0sq0jalvURw7AglS6Mck_nvuXDeoQ_CQJztKfGffh-_udwAH1MpByVhxUehjLs2x5pm2godxYYUpUQFpqkb-MUzOr-XlKB75C7epT6tcykQnqM24pDvyI1RLkZCxSNS3h0dOXaMouupbaKxDG0WwQuer3T8b_vzV3LIQQJd0_SRREUU8y-KRr5xx9XMojNOMU5aCizjxcFU7vTI5X2dO_hc-dVppsAEfvTnJegv-b8KarT9Br8fomE_szSI7nf2eT_7ZJzau2MnV34tTHmbs1M5cElbNXNIA8wEbdnGPAma6BdeDsz8n59y3SuAlBRp5olFY4IPWUmXIBTMR2SKmTHWUEABnUpSZqPD4KhmWlUyF0qgeY3Q-kqhIMvEZWvW4tl-AaWVNpUxaaEvY86VSQlkpC1NJ5GKRBhAuSZSXHkec2lnc5Q0CsiNrjmTNHVnzMICvzTsPCxSNd2d3lpTP_Yma5i_8D2C_GcazQAGOorbjOc6Jca3oIaZZANsLRjWfE-iHxuhsBpCusLCZQDjbqyP17Y3D21bkg6YigMMls19-6-1V7Ly_il34ENHGc2WNHWjNJnO7h_bNTHdhXQ2-d6HdG_T7w67f0s-pVvY9 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOLSXqhWlDaXFSO0JrJLYSZwDqlZsl93yOhSqvaVx7AgkyMI-QPwpfiMzzgNtUblxyCmOEo_nmZn5BuArjXJQMlRcZHqbS7OteaKt4H6YWWFyNECaupEPj6L-qfw1DIcLcN_0wlBZZaMTnaI2o5z-kX9HsxQIGYpI_bi65jQ1irKrzQiNii327d0thmyTnUEXz_dbEPR-nuz2eT1VgOeUk-ORRrnCCx2LwlC0YgIy2yaPdRARVmWU5YkokNOV9PNCxkJptCQh-ulRkEUEvoQqf0kKkZBEqd5e-0-H4MCkm16JZi_gSRIO6z4d162Hqj9OONVEuPwW9-dt4RMH92md5j_JWmcDe2_hTe28sk7Fbe9gwZbL0OkwUipje1bVwrPfs_GNvWOjgu0e_xl0uZ-wrp26kq-SuRIFVqeH2OAS1dnkPZy-CAlXYLEclfYjMK2sKZSJM20J6T5XSigrZWYKiTyTxR74DYnSvEYtp-EZF2mLt-zImiJZU0fW1Pdgs33mqsLseHb1WkP5tJbfSfrIbR5stLdR8iidkpV2NMM1Ie4V49E48eBDdVDt6wRGvSGGth7Ec0fYLiBU7_k75fmZQ_dWFPHGwoOt5rAfP-v_u1h9fhfr8Kp_cniQHgyO9j_B64CY0DVUrsHidDyzn9Gzmuovjp0Z_H1p-XkA0H4svA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+of+COVID-19+Detection+Using+Medical+Images&rft.jtitle=SN+computer+science&rft.au=Shah%2C+Faisal+Muhammad&rft.au=Joy%2C+Sajib+Kumar+Saha&rft.au=Ahmed%2C+Farzad&rft.au=Hossain%2C+Tonmoy&rft.date=2021-11-01&rft.pub=Springer+Singapore&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=6&rft_id=info:doi/10.1007%2Fs42979-021-00823-1&rft.externalDocID=10_1007_s42979_021_00823_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |