A Comprehensive Survey of COVID-19 Detection Using Medical Images

The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reve...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 2; no. 6; p. 434
Main Authors Shah, Faisal Muhammad, Joy, Sajib Kumar Saha, Ahmed, Farzad, Hossain, Tonmoy, Humaira, Mayeesha, Ami, Amit Saha, Paul, Shimul, Jim, Md Abidur Rahman Khan, Ahmed, Sifat
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.
AbstractList The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.
The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.
ArticleNumber 434
Author Ahmed, Farzad
Ami, Amit Saha
Ahmed, Sifat
Shah, Faisal Muhammad
Humaira, Mayeesha
Jim, Md Abidur Rahman Khan
Joy, Sajib Kumar Saha
Hossain, Tonmoy
Paul, Shimul
Author_xml – sequence: 1
  givenname: Faisal Muhammad
  surname: Shah
  fullname: Shah, Faisal Muhammad
  email: faisal.cse@aust.edu
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 2
  givenname: Sajib Kumar Saha
  surname: Joy
  fullname: Joy, Sajib Kumar Saha
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 3
  givenname: Farzad
  surname: Ahmed
  fullname: Ahmed, Farzad
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 4
  givenname: Tonmoy
  surname: Hossain
  fullname: Hossain, Tonmoy
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 5
  givenname: Mayeesha
  surname: Humaira
  fullname: Humaira, Mayeesha
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 6
  givenname: Amit Saha
  surname: Ami
  fullname: Ami, Amit Saha
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 7
  givenname: Shimul
  surname: Paul
  fullname: Paul, Shimul
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 8
  givenname: Md Abidur Rahman Khan
  surname: Jim
  fullname: Jim, Md Abidur Rahman Khan
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
– sequence: 9
  givenname: Sifat
  surname: Ahmed
  fullname: Ahmed, Sifat
  organization: Department of Computer Science and Engineering, Ahsanullah University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34485924$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha0KVCjlD3RRReqGTYpf8WNTaTS0MBIVi5aqO8vj3AxGiT21k5H49_UwUCgLFpYt-Zzjz_e8Q3shBkDoA8GfCcbyNHOqpa4xJTXGirKavEGHVAhSK43l3v2Z1lo3vw_Qcc63GGPaYM5F8xYdMM5Voyk_RLNZNY_DOsENhOw3UP2Y0gbuqthV86tfi7Oa6OoMRnCjj6G6zj6squ_Qemf7ajHYFeT3aL-zfYbjh_0IXX_7-nN-UV9enS_ms8vaMaVJLZZKybIIbrqWaCJbigVTrZNLKrQQWFinWacYVZy4jkumlg6g4VQJaoVmR-jLLnc9LQdoHYQx2d6skx9sujPRevP_TfA3ZhU3RnFMmGQl4OQhIMU_E-TRDD476HsbIE7Z0KZwEM7l9q1PL6S3cUqhfM9QzSjjDROqqD4-J_qH8jjdIlA7gUsx5wSdcX6020kWQN8bgs22S7Pr0pQuzX2XhhQrfWF9TH_VxHamXMRhBekJ-xXXX7bXrYM
CitedBy_id crossref_primary_10_3390_app132312725
crossref_primary_10_3390_electronics11152296
crossref_primary_10_3390_diagnostics12020267
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_1007_s11664_024_11092_y
crossref_primary_10_3390_su141912222
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_1016_j_engappai_2024_109977
crossref_primary_10_5812_iranjradiol_117992
crossref_primary_10_1109_TAI_2022_3224097
crossref_primary_10_1016_j_vrih_2022_03_002
crossref_primary_10_3390_app12094694
crossref_primary_10_1007_s00521_023_08975_2
crossref_primary_10_14201_adcaij_31528
crossref_primary_10_1109_ACCESS_2023_3325404
crossref_primary_10_1155_2022_1306664
crossref_primary_10_1016_j_puhe_2024_10_004
crossref_primary_10_3390_s23125543
crossref_primary_10_1016_j_bspc_2022_103770
crossref_primary_10_1038_s41598_024_63739_9
crossref_primary_10_1002_cpe_8023
crossref_primary_10_3390_bioengineering10030363
crossref_primary_10_1016_j_patcog_2022_108826
crossref_primary_10_1111_exsy_13141
crossref_primary_10_3390_diagnostics14050500
crossref_primary_10_1016_j_bspc_2022_103925
crossref_primary_10_3390_math10173199
crossref_primary_10_1002_jmv_28293
crossref_primary_10_1016_j_compbiomed_2022_105350
Cites_doi 10.1007/978-3-030-55258-9_17
10.1101/2020.02.14.20023028
10.1109/CVPR.2009.5206848
10.1101/2020.05.01.20088211
10.1109/TCBB.2021.3065361
10.1038/s41598-020-76550-z
10.31224/osf.io/yt9sx
10.1101/2020.03.24.20042317
10.1109/TIP.2021.3058783
10.1101/2020.03.30.20047456
10.1109/ACCESS.2020.3005510
10.2139/ssrn.3541136
10.1101/2020.03.19.20039354
10.21203/rs.3.rs-36353/v1
10.1016/j.media.2020.101794
10.1109/TPAMI.2016.2644615
10.1101/2020.04.13.20063479
10.1145/2939672.2939785
10.1007/s42600-021-00151-6
10.1109/TNNLS.2021.3070467
10.36227/techrxiv.12083964.v2
10.1101/2020.05.04.20090423
10.1016/j.imu.2020.100360
10.3390/make2040027
10.1007/s10044-021-00984-y
10.1007/s40846-020-00529-4
10.1109/CVPR.2015.7298594
10.1101/2020.03.20.20039834
10.1109/ICCV.2017.74
10.1109/RBME.2020.2987975
10.1109/ESCI50559.2021.9397043
10.1016/j.cmpb.2020.105581
10.1145/2939672.2939778
10.1101/2020.04.13.20063941
10.1016/j.patrec.2020.10.001
10.1088/1361-6560/abe838
10.1109/ACCESS.2020.3003810
10.1609/aaai.v31i1.11231
10.1101/2020.04.16.20064709
10.1109/CVPR.2016.308
10.1109/CVPR.2017.243
10.1016/j.eng.2020.04.010
10.1016/j.bbe.2021.05.013
10.1016/j.ijmedinf.2020.104284
10.1016/j.asoc.2020.106742
10.1007/3-540-46805-6_19
10.1101/2020.02.25.20021568
10.1016/j.compbiomed.2020.103869
10.1109/ACCESS.2020.3010287
10.1109/BIBM49941.2020.9313304
10.1109/3DV.2016.79
10.1007/s42979-021-00690-w
10.1101/2020.04.22.20074948
10.1109/JBHI.2020.3037127
10.1016/j.eswa.2020.114054
10.1016/j.cmpb.2020.105532
10.1109/TMI.2020.2993291
10.3390/a14060183
10.1101/2020.03.28.20046045
10.1109/ICECE51571.2020.9393129
10.1109/CVPR.2016.319
10.1109/JBHI.2020.3019505
10.1101/2020.06.21.20136598
10.1117/12.2588672
10.1101/2020.03.12.20027185
10.1109/TAI.2021.3092698
10.24017/covid.14
10.1007/s13246-020-00865-4
10.1101/2020.06.22.20137547
10.1007/978-3-030-78618-2_4
10.36227/techrxiv.12334265.v1
10.1016/j.cmpb.2020.105608
10.2139/ssrn.3630150
10.1016/j.eswa.2020.113909
10.1609/aaai.v35i6.16617
10.3389/frai.2021.598932
10.1007/978-3-030-59710-8_15
10.1109/CVPR.2016.90
10.1007/978-3-319-24574-4_28
10.1007/s10489-020-01900-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1007/s42979-021-00823-1
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Advanced Technologies & Aerospace Collection

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID PMC8401373
34485924
10_1007_s42979_021_00823_1
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
BSONS
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c3891-6b887b88105fd1917d20638dc7b2696606ac93f832841cf4738bcee542862a693
IEDL.DBID BENPR
ISSN 2662-995X
2661-8907
IngestDate Thu Aug 21 18:45:25 EDT 2025
Fri Jul 11 05:06:20 EDT 2025
Fri Jul 25 23:35:52 EDT 2025
Wed Feb 19 02:08:35 EST 2025
Thu Apr 24 23:02:33 EDT 2025
Tue Jul 01 03:19:15 EDT 2025
Fri Feb 21 02:47:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords COVID-19
Deep learning
Survey
Medical image
AI
X-ray
CT scan
Language English
License The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3891-6b887b88105fd1917d20638dc7b2696606ac93f832841cf4738bcee542862a693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8401373
PMID 34485924
PQID 2932345368
PQPubID 6623307
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8401373
proquest_miscellaneous_2569614479
proquest_journals_2932345368
pubmed_primary_34485924
crossref_citationtrail_10_1007_s42979_021_00823_1
crossref_primary_10_1007_s42979_021_00823_1
springer_journals_10_1007_s42979_021_00823_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211100
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationTitleAlternate SN Comput Sci
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Boudrioua MS. COVID-19 detection from chest x-ray images using cnns models: further evidence from deep transfer learning. Available at SSRN 3630150, 2020.
Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020.
Li X and Zhu D. Covid-xpert: an AI powered population screening of COVID-19 cases using chest radiography images. arXiv preprint. 2020. arXiv:2004.03042.
Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). MedRxiv. 2020.
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu T-Y. Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017;3146–3154.
Ramesh V, Rister B and Rubin DL. Covid-19 lung lesion segmentation using a sparsely supervised mask R-CNN on chest x-rays automatically computed from volumetric CTS. arXiv preprint. 2021. arXiv:2105.08147.
Schapire R. A brief introduction to boosting. ijcai’99: Proc. of the sixteenth international joint conference on artificial intelligence (pp. 1401–1406). 1999.
Oh Y, Park S, and Ye JC. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging. 2020.
Who director-general’s opening remarks at the media briefing on COVID-19—11 march 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 11 Mar 2020.
Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhao C-W and Cheng M-M. Jcs: an explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint. 2020. arXiv:2004.07054.
Deng J, Dong W, Socher R, Li L-J, Li K and Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, 2009, pp. 248–255.
Kassani SH, Kassasni PH, Wesolowski MJ, Schneider KA and Deters R. Automatic detection of coronavirus disease (COVID-19) in x-ray and CT images: a machine learning-based approach. arXiv preprint. 2020. arXiv:2004.10641.
Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W and Wang X. Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv. 2020.
Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Zhao H, Jie Y, Wang R, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv. 2020.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.
Ozkaya U, Ozturk S, Barstugan M. Coronavirus (COVID-19) classification using deep features fusion and ranking technique. arXiv preprint. 2020. arXiv:2004.03698.
Khan AI, Shah JL, and Bhat MM. Coronet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed.2020;p. 105581.
Ilyas M, Rehman H, Naït-Ali A. Detection of COVID-19 from chest x-ray images using artificial intelligence: an early review. arXiv preprint. 2020. arXiv:2004.05436.
Chatterjee S, Saad F, Sarasaen C, Ghosh S, Khatun R, Radeva P, Rose G, Stober S, Speck O, and Nürnberger A. Exploration of interpretability techniques for deep COVID-19 classification using chest x-ray images. arXiv preprint. 2020. arXiv:2006.02570.
Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, and Khan MK. Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint. 2020. arXiv:2004.00038.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.
Polsinelli M, Cinque L and Placidi G. A light cnn for detecting COVID-19 from CT scans of the chest. arXiv preprint. 2020. arXiv:2004.12837.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;pp. 2672–2680.
Luz EJS, Silva PL, Silva R, Silva L, Moreira G, and Menotti D. Towards an effective and efficient deep learning model for COVID-19 patterns detection in x-ray images. CoRR. 2020.
Szegedy C, Ioffe S, Vanhoucke V and Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint. 2016. arXiv:1602.07261.
Hemdan EE-D, Shouman MA and Karar ME. Covidx-net: a framework of deep learning classifiers to diagnose COVID-19 in x-ray images. 2020. arXiv preprintarXiv:2003.11055.
Apostolopoulos ID and Mpesiana TA. COVID-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;1.
JinCChenWCaoYXuZZhangXDengLZhengCZhouJShiHFengJDevelopment and evaluation of an AI system for COVID-19 diagnosismedRxiv202010.1101/2020.03.20.20039834
Wang L and Wong A. COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. arXiv preprint. 2020. arXiv:2003.09871.
Seum A, Raj AH, Sakib S and Hossain T. A comparative study of cnn transfer learning classification algorithms with segmentation for COVID-19 detection from CT scan images. In 2020 11th international conference on electrical and computer engineering (ICECE). IEEE. 2020, pp. 234–237.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprintarXiv:1409.1556, 2014.
Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E. Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv preprint. 2020. arXiv:2003.05037.
He K, Zhang X, Ren S and Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
Milletari F, Navab N and Ahmadi S. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). 2016, pp. 565–571.
Hassanien AE, Mahdy LN, Ezzat KA, Elmousalami HH, and Ella HA. Automatic x-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine. medRxiv. 2020.
Tahir A, Qiblawey Y, Khandakar A, Rahman T, Khurshid U, Musharavati F, Kiranyaz S, and Chowdhury ME. Coronavirus: comparing COVID-19, sars and mers in the eyes of AI. arXiv preprint. 2020. arXiv:2005.11524.
Amyar A, Modzelewski R and Ruan S. Multi-task deep learning based CT imaging analysis for COVID-19: classification and segmentation. medRxiv. 2020.
Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-COVID: predicting COVID-19 from chest x-ray images using deep transfer learning. arXiv preprint. 2020. arXiv:2004.09363.
Ezzat D, Ella HA, et al. Gsa-densenet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm. arXiv preprint. 2020. arXiv:2004.05084.
Lv D, Qi W, Li Y, Sun L, Wang Y. A cascade network for detecting COVID-19 using chest x-rays. arXiv preprint. 2020. arXiv:2005.01468.
Farooq M and Hafeez A. COVID-resnet: a deep learning framework for screening of covid19 from radiographs. arXiv preprint. 2020. arXiv:2003.14395.
Mahmud T, Rahman MA and Fattah SA. Covxnet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimization. Comput Biol Med. 2020;p. 103869.
BreimanLBagging predictorsMach Learn199624212314014259570858.68080
Yeh C-F, Cheng H-T, Wei A, Liu K-C, Ko M-C, Kuo P-C, Chen R-J, Lee P-C, Chuang J-H, Chen C-M, et al. A cascaded learning strategy for robust COVID-19 pneumonia chest x-ray screening. arXiv preprint. 2020. arXiv:2004.12786.
SethyPKBeheraSKDetection of coronavirus disease (COVID-19) based on deep featuresPreprints202020200303002020
Abbas A, Abdelsamea MM and Gaber M. 4s-dt: self supervised super sample decomposition for transfer learning with application to COVID-19 detection. arXiv preprint. 2020. arXiv:2007.11450.
Chowdhury ME, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, et al. Can AI help in screening viral and COVID-19 pneumonia? arXiv preprint. 2020. arXiv:2003.13145.
Chen T and Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
SinghKKSiddharthaMSinghADiagnosis of coronavirus disease (COVID-19) from chest x-ray images using modified xceptionnetRomanian J Inf Sci Technol202023S91S105
Lundberg SM and Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, 2017, pp. 4768–4777.
Alom MZ, Rahman M, Nasrin MS, Taha, TM, Asari VK. Covid\_mtnet: Covid-19 detection with multi-task deep learning approaches. arXiv preprint. 2020. arXiv:2004.03747.
Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, Hu S, Wang Y, Hu X, Zheng B, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv. 2020.
Basu S and Mitra S. Deep learning for screening COVID-19 using chest x-ray images. arXiv preprint. 2020. arXiv:2004.10507.
Liu B, Yan B, Zhou Y, Yang Y, and Zhang Y. Experiments of federated learning for COVID-19 chest x-ray images. arXiv preprint. 2020. arXiv:2007.05592.
Mobiny A, Cicalese PA, Zare S, Yuan P, Abavisani M, Wu CC, Ahuja J, de Groot PM, Van Nguyen H. Radiologist-level COVID-19 detection using CT scans with detail-oriented capsule networks. arXiv pre
823_CR74
823_CR75
823_CR72
823_CR73
823_CR78
823_CR79
823_CR76
KK Singh (823_CR47) 2020; 23
823_CR70
823_CR71
823_CR103
823_CR102
823_CR101
823_CR100
823_CR107
823_CR106
823_CR105
823_CR104
823_CR109
823_CR108
823_CR85
823_CR86
823_CR83
823_CR84
823_CR89
823_CR87
823_CR88
823_CR81
823_CR82
L Breiman (823_CR119) 1996; 24
823_CR80
823_CR110
823_CR113
823_CR112
823_CR111
823_CR16
823_CR17
823_CR14
823_CR15
C Cortes (823_CR116) 1995; 20
823_CR18
823_CR19
823_CR7
823_CR96
823_CR8
823_CR5
823_CR94
823_CR6
823_CR12
823_CR9
823_CR98
823_CR99
823_CR92
A Alorf (823_CR115) 2021; 14
823_CR93
823_CR90
823_CR91
823_CR27
823_CR28
823_CR25
823_CR26
823_CR29
823_CR20
823_CR24
823_CR21
823_CR22
823_CR3
823_CR4
823_CR1
823_CR2
823_CR38
823_CR39
823_CR36
823_CR37
823_CR30
823_CR31
823_CR34
823_CR35
823_CR32
823_CR33
TB Chandra (823_CR11) 2021; 165
823_CR49
PK Sethy (823_CR23) 2020; 2020030300
823_CR48
823_CR41
823_CR42
AM Ismael (823_CR10) 2021; 164
823_CR40
823_CR45
823_CR46
823_CR43
823_CR44
S Hu (823_CR77) 2020; 8
823_CR118
823_CR117
823_CR58
823_CR59
823_CR52
823_CR53
823_CR50
823_CR51
823_CR56
823_CR57
823_CR54
823_CR55
MM Ahsan (823_CR114) 2020; 2
823_CR120
S Ahmed (823_CR95) 2021; 2
C Jin (823_CR13) 2020
823_CR69
823_CR63
823_CR64
823_CR61
V Badrinarayanan (823_CR97) 2017; 39
823_CR62
823_CR67
823_CR68
823_CR65
823_CR66
823_CR60
References_xml – reference: Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhao C-W and Cheng M-M. Jcs: an explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint. 2020. arXiv:2004.07054.
– reference: Khalifa NEM, Taha MHN, Hassanien AE and Elghamrawy S. Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest x-ray dataset. arXiv preprint. 2020. arXiv:2004.01184.
– reference: Tabik S, Gómez-Ríos A, Martín-Rodríguez J, Sevillano-García I, Rey-Area M, Charte D, Guirado E, Suárez J, Luengo J, Valero-González M, et al. Covidgr dataset and COVID-sdnet methodology for predicting covid-19 based on chest x-ray images. arXiv preprint. 2020. arXiv:2006.01409.
– reference: Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020.
– reference: Li T, Han Z, Wei B, Zheng Y, Hong Y, Cong J. Robust screening of COVID-19 from chest x-ray via discriminative cost-sensitive learning. arXiv preprint. 2020. arXiv:2004.12592.
– reference: Al-antari MA, Hua C-H, Lee S. Fast deep learning computer-aided diagnosis against the novel COVID-19 pandemic from digital chest x-ray images. 2020.
– reference: Apostolopoulos ID and Mpesiana TA. COVID-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;1.
– reference: Pereira RM, Bertolini D, Teixeira LO, Silla CN Jr, Costa YM. COVID-19 identification in chest x-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed.. 2020. p. 105532.
– reference: Yamac M, Ahishali M, Degerli A, Kiranyaz S, Chowdhury ME and Gabbouj M. Convolutional sparse support estimator based COVID-19 recognition from x-ray images. arXiv preprint. 2020. arXiv:2005.04014.
– reference: Hemdan EE-D, Shouman MA and Karar ME. Covidx-net: a framework of deep learning classifiers to diagnose COVID-19 in x-ray images. 2020. arXiv preprintarXiv:2003.11055.
– reference: Ezzat D, Ella HA, et al. Gsa-densenet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm. arXiv preprint. 2020. arXiv:2004.05084.
– reference: Heidari M, Mirniaharikandehei S, Khuzani AZ, Danala G, Qiu Y, Zheng B. Improving performance of CNN to predict likelihood of COVID-19 using chest x-ray images with preprocessing algorithms. arXiv preprint. 2020. arXiv:2006.12229.
– reference: S. Walvekar and S. Shinde, “Efficient medical image segmentation of covid-19 chest ct images based on deep learning techniques,” in 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). IEEE, 2021, pp. 203–206.
– reference: Lundberg SM and Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, 2017, pp. 4768–4777.
– reference: ChandraTBVermaKSinghBKJainDNetamSSCoronavirus disease (COVID-19) detection in chest x-ray images using majority voting based classifier ensembleExpert Syst Appl202116511390910.1016/j.eswa.2020.113909
– reference: JinCChenWCaoYXuZZhangXDengLZhengCZhouJShiHFengJDevelopment and evaluation of an AI system for COVID-19 diagnosismedRxiv202010.1101/2020.03.20.20039834
– reference: Huang G, Liu Z, Van Der Maaten V and Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
– reference: Yeh C-F, Cheng H-T, Wei A, Liu K-C, Ko M-C, Kuo P-C, Chen R-J, Lee P-C, Chuang J-H, Chen C-M, et al. A cascaded learning strategy for robust COVID-19 pneumonia chest x-ray screening. arXiv preprint. 2020. arXiv:2004.12786.
– reference: Qiu Y, Liu Y, Xu J. Miniseg: An extremely minimum network for efficient COVID-19 segmentation. arXiv preprint. 2020. arXiv:2004.09750.
– reference: LeCun Y, Haffner P, Bottou L and Bengio Y. Object recognition with gradient-based learning. In: Shape, contour and grouping in computer vision. Springer, 1999, pp. 319–345.
– reference: Ilyas M, Rehman H, Naït-Ali A. Detection of COVID-19 from chest x-ray images using artificial intelligence: an early review. arXiv preprint. 2020. arXiv:2004.05436.
– reference: Boudrioua MS. COVID-19 detection from chest x-ray images using cnns models: further evidence from deep transfer learning. Available at SSRN 3630150, 2020.
– reference: Goodwin BD, Jaskolski C, Zhong C, Asmani H. Intra-model variability in COVID-19 classification using chest x-ray images. arXiv preprint. 2020. arXiv:2005.02167.
– reference: Chen X, Yao L, Zhang Y. Residual attention u-net for automated multi-class segmentation of COVID-19 chest CT images. arXiv preprint. 2020. arXiv:2004.05645.
– reference: Asif S, Wenhui Y, Jin H, Tao Y, Jinhai S. Classification of COVID-19 from chest x-ray images using deep convolutional neural networks. medRxiv. 2020.
– reference: Deng J, Dong W, Socher R, Li L-J, Li K and Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, 2009, pp. 248–255.
– reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;5998–6008.
– reference: Farooq M and Hafeez A. COVID-resnet: a deep learning framework for screening of covid19 from radiographs. arXiv preprint. 2020. arXiv:2003.14395.
– reference: Szegedy C, Ioffe S, Vanhoucke V and Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint. 2016. arXiv:1602.07261.
– reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626.
– reference: Khan AI, Shah JL, and Bhat MM. Coronet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed.2020;p. 105581.
– reference: Tahir A, Qiblawey Y, Khandakar A, Rahman T, Khurshid U, Musharavati F, Kiranyaz S, and Chowdhury ME. Coronavirus: comparing COVID-19, sars and mers in the eyes of AI. arXiv preprint. 2020. arXiv:2005.11524.
– reference: Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1135–1144.
– reference: Nair V and Hinton GE. Rectified linear units improve restricted boltzmann machines. ICML. 2010.
– reference: Who director-general’s opening remarks at the media briefing on COVID-19—11 march 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 11 Mar 2020.
– reference: Schapire R. A brief introduction to boosting. ijcai’99: Proc. of the sixteenth international joint conference on artificial intelligence (pp. 1401–1406). 1999.
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.
– reference: Brunese L, Mercaldo F, Reginelli A and Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-rays. Comput Methods Programs Biomed. 2020; p. 105608.
– reference: Chen T and Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
– reference: Li X and Zhu D. Covid-xpert: an AI powered population screening of COVID-19 cases using chest radiography images. arXiv preprint. 2020. arXiv:2004.03042.
– reference: Liu B, Yan B, Zhou Y, Yang Y, and Zhang Y. Experiments of federated learning for COVID-19 chest x-ray images. arXiv preprint. 2020. arXiv:2007.05592.
– reference: Lv D, Qi W, Li Y, Sun L, Wang Y. A cascade network for detecting COVID-19 using chest x-rays. arXiv preprint. 2020. arXiv:2005.01468.
– reference: Ghoshal B, Tucker A. Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection. arXiv preprint. 2020. arXiv:2003.10769.
– reference: Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting possibly representative COVID-19 biomarkers from x-ray images with deep learning approach and image data related to pulmonary diseases. J Med Biol Eng. 2020. 1.
– reference: Al-Karawi D, Al-Zaidi S, Polus N and Jassim S. Machine learning analysis of chest CT scan images as a complementary digital test of coronavirus (COVID-19) patients. medRxiv. 2020.
– reference: Luz EJS, Silva PL, Silva R, Silva L, Moreira G, and Menotti D. Towards an effective and efficient deep learning model for COVID-19 patterns detection in x-ray images. CoRR. 2020.
– reference: Ahuja S, Panigrahi BK, Dey N, Rajinikanth V and Gandhi TK. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. 2020.
– reference: Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, and Khan MK. Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint. 2020. arXiv:2004.00038.
– reference: Milletari F, Navab N and Ahmadi S. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). 2016, pp. 565–571.
– reference: Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu T-Y. Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017;3146–3154.
– reference: Xu X, Jiang X, Ma C, Du P, Li X, Lv S, Yu L, Ni Q, Chen Y, Su J et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering. 2020.
– reference: Punn NS and Agarwal S. Automated diagnosis of COVID-19 with limited posteroanterior chest x-ray images using fine-tuned deep neural networks. arXiv preprint. 2020. arXiv:2004.11676.
– reference: HuSGaoYNiuZJiangYLiLXiaoXWangMFangEFMenpes-SmithWXiaJWeakly supervised deep learning for COVID-19 infection detection and classification from CT imagesIEEE Access.2020811886911888310.1109/ACCESS.2020.3005510
– reference: Seum A, Raj AH, Sakib S and Hossain T. A comparative study of cnn transfer learning classification algorithms with segmentation for COVID-19 detection from CT scan images. In 2020 11th international conference on electrical and computer engineering (ICECE). IEEE. 2020, pp. 234–237.
– reference: Mahmud T, Rahman MA and Fattah SA. Covxnet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimization. Comput Biol Med. 2020;p. 103869.
– reference: Brownlee J. How to improve performance with transfer learning for deep learning neural networks. 2020. https://machinelearningmastery.com/how-to-improve-performance-with-transfer-learning-for-deep-learning-neural-networks/. Accessed 11 Mar 2020.
– reference: Wu H, Ruan W, Wang J, Zheng D, Liu B, Geng Y, Chai X, Chen J, Li K, Li S, et al. Interpretable machine learning for COVID-19: an empirical study on severity prediction task. IEEE Trans Artif Intell. 2021.
– reference: Manapure P, Likhar K, and Kosare H. Detecting COVID-19 in x-ray images with Keras, tensor flow, and deep learning. Assessment. 2(3).
– reference: AhmedSHossainTHoqueOBSarkerSRahmanSShahFMAutomated COVID-19 detection from chest x-ray images: a high-resolution network (hrnet) approachSN Comput Sci20212411710.1007/s42979-021-00690-w
– reference: Ozkaya U, Ozturk S, Barstugan M. Coronavirus (COVID-19) classification using deep features fusion and ranking technique. arXiv preprint. 2020. arXiv:2004.03698.
– reference: Chatterjee S, Saad F, Sarasaen C, Ghosh S, Khatun R, Radeva P, Rose G, Stober S, Speck O, and Nürnberger A. Exploration of interpretability techniques for deep COVID-19 classification using chest x-ray images. arXiv preprint. 2020. arXiv:2006.02570.
– reference: Abbas A, Abdelsamea MM, Gaber MM. Classification of COVID-19 in chest x-ray images using detrac deep convolutional neural network. arXiv preprint. 2020. arXiv:2003.13815.
– reference: Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN and Mohammadi A. Covid-caps: a capsule network-based framework for identification of COVID-19 cases from x-ray images. arXiv preprint. 2020. arXiv:2004.02696.
– reference: Wang L and Wong A. COVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. arXiv preprint. 2020. arXiv:2003.09871.
– reference: Gozes O, Frid-Adar M, Sagie N, Zhang H, Ji W, Greenspan H. Coronavirus detection and analysis on chest ct with deep learning. arXiv preprint. 2020. arXiv:2004.02640.
– reference: Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, Hu S, Wang Y, Hu X, Zheng B, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv. 2020.
– reference: Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-COVID: predicting COVID-19 from chest x-ray images using deep transfer learning. arXiv preprint. 2020. arXiv:2004.09363.
– reference: Hall LO, Paul R, Goldgof DB, Goldgof GM. Finding COVID-19 from chest x-rays using deep learning on a small dataset. arXiv preprint. 2020. arXiv:2004.02060.
– reference: Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Zhao H, Jie Y, Wang R, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv. 2020.
– reference: K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprintarXiv:1409.1556, 2014.
– reference: Zhang J, Xie Y, Li Y, Shen C, Xia Y. COVID-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint. 2020. arXiv:2003.12338.
– reference: CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098
– reference: Hassanien AE, Mahdy LN, Ezzat KA, Elmousalami HH, and Ella HA. Automatic x-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine. medRxiv. 2020.
– reference: Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W, Hou X, Ma W, Xu Z, Zheng Z, et al. Ai-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system in four weeks. medRxiv. 2020.
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
– reference: Mobiny A, Cicalese PA, Zare S, Yuan P, Abavisani M, Wu CC, Ahuja J, de Groot PM, Van Nguyen H. Radiologist-level COVID-19 detection using CT scans with detail-oriented capsule networks. arXiv preprint. 2020. arXiv:2004.07407.
– reference: Rahimzadeh M and Attar A. A new modified deep convolutional neural network for detecting COVID-19 from x-ray images. arXiv preprint. 2020. arXiv:2004.08052.
– reference: Sun L, Mo Z, Yan F, Xia L, Shan F, Ding Z, Shao W, Shi F, Yuan H, Jiang H, et al. Adaptive feature selection guided deep forest for COVID-19 classification with chest CT. arXiv preprint. 2020. arXiv:2005.03264.
– reference: Alom MZ, Rahman M, Nasrin MS, Taha, TM, Asari VK. Covid\_mtnet: Covid-19 detection with multi-task deep learning approaches. arXiv preprint. 2020. arXiv:2004.03747.
– reference: Karim M, Döhmen T, Rebholz-Schuhmann D, Decker S, Cochez M, Beyan O, et al. Deepcovidexplainer: explainable COVID-19 predictions based on chest x-ray images. 2020. arXiv preprint arXiv:2004.04582.
– reference: Fu M, Yi S-L, Zeng Y, Ye F, Li Y, Dong X, Ren Y-D, Luo L, Pan J-S and Zhang Q. Deep learning-based recognizing COVID-19 and other common infectious diseases of the lung by chest ct scan images. medRxiv. 2020.
– reference: BreimanLBagging predictorsMach Learn199624212314014259570858.68080
– reference: Zhou B, Khosla A, Lapedriza A, Oliva A and Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2921–2929.
– reference: Rajaraman S, Siegelman J, Alderson PO, Folio LS, Folio LR and Antani SK. Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays. arXiv preprint. 2020. arXiv:2004.08379.
– reference: Amyar A, Modzelewski R and Ruan S. Multi-task deep learning based CT imaging analysis for COVID-19: classification and segmentation. medRxiv. 2020.
– reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;pp. 2672–2680.
– reference: Ahishali M, Degerli A, Yamac M, Kiranyaz S, Chowdhury ME, Hameed K, Hamid T, Mazhar R and Gabbouj M. A comparative study on early detection of COVID-19 from chest x-ray images. arXiv preprint. 2020. arXiv:2006.05332.
– reference: Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev Biomed Eng. 2020.
– reference: AlorfAThe practicality of deep learning algorithms in COVID-19 detection: application to chest x-ray imagesAlgorithms202114618310.3390/a14060183
– reference: He X, Yang X, Zhang S, Zhao J, Zhang Y, Xing E and Xie P. Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. medRxiv. 2020.
– reference: Chowdhury ME, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, et al. Can AI help in screening viral and COVID-19 pneumonia? arXiv preprint. 2020. arXiv:2003.13145.
– reference: Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W and Wang X. Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv. 2020.
– reference: Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). MedRxiv. 2020.
– reference: de la Iglesia Vayá M, Saborit JM, Montell JA, Pertusa A, Bustos A, Cazorla M, Galant J, Barber X, Orozco-Beltrán D, García-García F, et al. Bimcv COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients. arXiv preprint. 2020. arXiv:2006.01174.
– reference: Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E. Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv preprint. 2020. arXiv:2003.05037.
– reference: Ulhaq A, Khan A, Gomes D, Pau M. Computer vision for COVID-19 control: a survey. arXiv preprint. 2020. arXiv:2004.09420.
– reference: IsmaelAMŞengürADeep learning approaches for COVID-19 detection based on chest x-ray imagesExpert Syst Appl202116411405410.1016/j.eswa.2020.114054
– reference: Wang S, Zha Y, Li W, Wu Q, Li X, Niu M, Wang M, Qiu X, Li H, Yu H, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J. 2020.
– reference: Abbas A, Abdelsamea MM and Gaber M. 4s-dt: self supervised super sample decomposition for transfer learning with application to COVID-19 detection. arXiv preprint. 2020. arXiv:2007.11450.
– reference: Ramesh V, Rister B and Rubin DL. Covid-19 lung lesion segmentation using a sparsely supervised mask R-CNN on chest x-rays automatically computed from volumetric CTS. arXiv preprint. 2021. arXiv:2105.08147.
– reference: Oh Y, Park S, and Ye JC. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging. 2020.
– reference: SinghKKSiddharthaMSinghADiagnosis of coronavirus disease (COVID-19) from chest x-ray images using modified xceptionnetRomanian J Inf Sci Technol202023S91S105
– reference: Shi F, Xia L, Shan F, Wu D, Wei Y, Yuan H, Jiang H, Gao Y, Sui H and Shen D. Large-scale screening of COVID-19 from community acquired pneumonia using infection size-aware classification. arXiv preprint. 2020. arXiv:2003.09860.
– reference: Zhao J, Zhang Y, He X and Xie P. Covid-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint. arXiv:2003.13865. 2020.
– reference: BadrinarayananVKendallACipollaRSegnet: a deep convolutional encoder-decoder architecture for image segmentationIEEE Trans Pattern Anal Mach Intell201739122481249510.1109/TPAMI.2016.2644615
– reference: He K, Zhang X, Ren S and Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
– reference: SethyPKBeheraSKDetection of coronavirus disease (COVID-19) based on deep featuresPreprints202020200303002020
– reference: Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.
– reference: Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020.
– reference: Salih SQ, Abdulla HK, Ahmed ZS, Surameery NMS, and Rashid RD. Modified alexnet convolution neural network for COVID-19 detection using chest x-ray images. Kurdistan J Appl Res. 2020;119–130.
– reference: Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks. arXiv preprint. 2020. arXiv:2003.10849.
– reference: Shelke A, Inamdar M, Shah V, Tiwari A, Hussain A, Chafekar T and Mehendale N. Chest x-ray classification using deep learning for automated COVID-19 screening. medRxiv. 2020.
– reference: Worldometer: Coronavirus cases. https://www.worldometers.info/coronavirus/. Accessed 11 Mar 2020.
– reference: Basu S and Mitra S. Deep learning for screening COVID-19 using chest x-ray images. arXiv preprint. 2020. arXiv:2004.10507.
– reference: Zhang Y, Niu S, Qiu Z, Wei Y, Zhao P, Yao J, Huang J, Wu Q, Tan M. Covid-da: Deep domain adaptation from typical pneumonia to COVID-19. arXiv preprint. 2020. arXiv:2005.01577.
– reference: Kassani SH, Kassasni PH, Wesolowski MJ, Schneider KA and Deters R. Automatic detection of coronavirus disease (COVID-19) in x-ray and CT images: a machine learning-based approach. arXiv preprint. 2020. arXiv:2004.10641.
– reference: AhsanMMGuptaKDIslamMMSenSRahmanMShakhawat HossainMCOVID-19 symptoms detection based on nasnetmobile with explainable AI using various imaging modalitiesMach Learn Knowl Extract20202449050410.3390/make2040027
– reference: Zhou T, Canu S, Ruan S. An automatic COVID-19 CT segmentation based on u-net with attention mechanism. arXiv preprint. 2020. arXiv:2004.06673.
– reference: Fan D-P, Zhou T, Ji G-P, Zhou Y, Chen G, Fu H, Shen J, Shao L. Inf-net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging. 2020.
– reference: Polsinelli M, Cinque L and Placidi G. A light cnn for detecting COVID-19 from CT scans of the chest. arXiv preprint. 2020. arXiv:2004.12837.
– ident: 823_CR14
– ident: 823_CR15
  doi: 10.1007/978-3-030-55258-9_17
– ident: 823_CR82
  doi: 10.1101/2020.02.14.20023028
– ident: 823_CR5
– ident: 823_CR108
  doi: 10.1109/CVPR.2009.5206848
– ident: 823_CR89
– ident: 823_CR52
  doi: 10.1101/2020.05.01.20088211
– ident: 823_CR46
– ident: 823_CR64
  doi: 10.1109/TCBB.2021.3065361
– ident: 823_CR98
– ident: 823_CR51
  doi: 10.1038/s41598-020-76550-z
– ident: 823_CR8
– ident: 823_CR9
  doi: 10.31224/osf.io/yt9sx
– ident: 823_CR40
– ident: 823_CR17
– ident: 823_CR68
  doi: 10.1101/2020.03.24.20042317
– ident: 823_CR78
  doi: 10.1109/TIP.2021.3058783
– ident: 823_CR69
  doi: 10.1101/2020.03.30.20047456
– volume: 8
  start-page: 118869
  year: 2020
  ident: 823_CR77
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3005510
– ident: 823_CR120
– ident: 823_CR1
  doi: 10.2139/ssrn.3541136
– ident: 823_CR76
  doi: 10.1101/2020.03.19.20039354
– ident: 823_CR44
  doi: 10.21203/rs.3.rs-36353/v1
– ident: 823_CR88
  doi: 10.1016/j.media.2020.101794
– ident: 823_CR93
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 823_CR97
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2644615
– ident: 823_CR80
  doi: 10.1101/2020.04.13.20063479
– ident: 823_CR87
– ident: 823_CR117
  doi: 10.1145/2939672.2939785
– ident: 823_CR37
  doi: 10.1007/s42600-021-00151-6
– ident: 823_CR39
– ident: 823_CR90
  doi: 10.1109/TNNLS.2021.3070467
– ident: 823_CR33
  doi: 10.36227/techrxiv.12083964.v2
– ident: 823_CR16
– ident: 823_CR36
  doi: 10.1101/2020.05.04.20090423
– ident: 823_CR35
  doi: 10.1016/j.imu.2020.100360
– volume: 2
  start-page: 490
  issue: 4
  year: 2020
  ident: 823_CR114
  publication-title: Mach Learn Knowl Extract
  doi: 10.3390/make2040027
– ident: 823_CR27
  doi: 10.1007/s10044-021-00984-y
– volume: 2020030300
  start-page: 2020
  year: 2020
  ident: 823_CR23
  publication-title: Preprints
– ident: 823_CR50
– ident: 823_CR54
  doi: 10.1007/s40846-020-00529-4
– ident: 823_CR105
  doi: 10.1109/CVPR.2015.7298594
– year: 2020
  ident: 823_CR13
  publication-title: medRxiv
  doi: 10.1101/2020.03.20.20039834
– ident: 823_CR101
– ident: 823_CR6
  doi: 10.1109/ICCV.2017.74
– ident: 823_CR7
  doi: 10.1109/RBME.2020.2987975
– ident: 823_CR99
  doi: 10.1109/ESCI50559.2021.9397043
– ident: 823_CR109
– ident: 823_CR34
  doi: 10.1016/j.cmpb.2020.105581
– ident: 823_CR110
  doi: 10.1145/2939672.2939778
– ident: 823_CR79
  doi: 10.1101/2020.04.13.20063941
– ident: 823_CR56
  doi: 10.1016/j.patrec.2020.10.001
– ident: 823_CR70
– ident: 823_CR75
  doi: 10.1088/1361-6560/abe838
– ident: 823_CR22
– ident: 823_CR66
  doi: 10.1109/ACCESS.2020.3003810
– ident: 823_CR107
  doi: 10.1609/aaai.v31i1.11231
– ident: 823_CR85
– ident: 823_CR91
– ident: 823_CR81
  doi: 10.1101/2020.04.16.20064709
– ident: 823_CR106
  doi: 10.1109/CVPR.2016.308
– ident: 823_CR18
– ident: 823_CR103
  doi: 10.1109/CVPR.2017.243
– ident: 823_CR3
  doi: 10.1016/j.eng.2020.04.010
– ident: 823_CR59
  doi: 10.1016/j.bbe.2021.05.013
– ident: 823_CR92
  doi: 10.1016/j.ijmedinf.2020.104284
– ident: 823_CR104
– ident: 823_CR32
  doi: 10.1016/j.asoc.2020.106742
– ident: 823_CR100
  doi: 10.1007/3-540-46805-6_19
– ident: 823_CR73
  doi: 10.1101/2020.02.25.20021568
– ident: 823_CR38
– ident: 823_CR67
  doi: 10.1016/j.compbiomed.2020.103869
– ident: 823_CR4
– ident: 823_CR49
  doi: 10.1109/ACCESS.2020.3010287
– ident: 823_CR86
  doi: 10.1109/BIBM49941.2020.9313304
– ident: 823_CR96
  doi: 10.1109/3DV.2016.79
– ident: 823_CR30
– ident: 823_CR24
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  ident: 823_CR95
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00690-w
– ident: 823_CR118
– ident: 823_CR20
  doi: 10.1101/2020.04.22.20074948
– ident: 823_CR61
  doi: 10.1109/JBHI.2020.3037127
– volume: 164
  start-page: 114054
  year: 2021
  ident: 823_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114054
– ident: 823_CR53
  doi: 10.1016/j.cmpb.2020.105532
– ident: 823_CR41
  doi: 10.1109/TMI.2020.2993291
– volume: 14
  start-page: 183
  issue: 6
  year: 2021
  ident: 823_CR115
  publication-title: Algorithms
  doi: 10.3390/a14060183
– ident: 823_CR65
  doi: 10.1101/2020.03.28.20046045
– ident: 823_CR94
  doi: 10.1109/ICECE51571.2020.9393129
– ident: 823_CR112
  doi: 10.1109/CVPR.2016.319
– ident: 823_CR12
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 823_CR116
  publication-title: Mach Learn
– ident: 823_CR83
  doi: 10.1109/JBHI.2020.3019505
– ident: 823_CR72
  doi: 10.1101/2020.06.21.20136598
– ident: 823_CR31
  doi: 10.1117/12.2588672
– volume: 23
  start-page: S91
  year: 2020
  ident: 823_CR47
  publication-title: Romanian J Inf Sci Technol
– ident: 823_CR62
  doi: 10.1101/2020.03.12.20027185
– ident: 823_CR113
  doi: 10.1109/TAI.2021.3092698
– ident: 823_CR45
  doi: 10.24017/covid.14
– ident: 823_CR28
  doi: 10.1007/s13246-020-00865-4
– ident: 823_CR29
– ident: 823_CR71
  doi: 10.1101/2020.06.22.20137547
– ident: 823_CR43
  doi: 10.1007/978-3-030-78618-2_4
– ident: 823_CR48
– ident: 823_CR84
  doi: 10.36227/techrxiv.12334265.v1
– ident: 823_CR60
  doi: 10.1016/j.cmpb.2020.105608
– ident: 823_CR25
  doi: 10.2139/ssrn.3630150
– volume: 165
  start-page: 113909
  year: 2021
  ident: 823_CR11
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113909
– ident: 823_CR19
  doi: 10.1609/aaai.v35i6.16617
– ident: 823_CR111
– ident: 823_CR63
– ident: 823_CR58
  doi: 10.3389/frai.2021.598932
– ident: 823_CR21
  doi: 10.1007/978-3-030-59710-8_15
– ident: 823_CR26
– ident: 823_CR74
– ident: 823_CR102
  doi: 10.1109/CVPR.2016.90
– ident: 823_CR55
  doi: 10.1007/978-3-319-24574-4_28
– ident: 823_CR42
  doi: 10.1007/s10489-020-01900-3
– ident: 823_CR2
– ident: 823_CR57
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 823_CR119
  publication-title: Mach Learn
SSID ssj0002504465
Score 2.397399
Snippet The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 434
SubjectTerms Artificial intelligence
Classification
Computed tomography
Computer Aided Methods to Combat COVID-19 Pandemic
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
COVID-19
Data Structures and Information Theory
Datasets
Feature extraction
Image enhancement
Information Systems and Communication Service
Medical imaging
Pattern Recognition and Graphics
Polymerase chain reaction
Preprocessing
Software Engineering/Programming and Operating Systems
Survey
Survey Article
Viral diseases
Vision
X-rays
Title A Comprehensive Survey of COVID-19 Detection Using Medical Images
URI https://link.springer.com/article/10.1007/s42979-021-00823-1
https://www.ncbi.nlm.nih.gov/pubmed/34485924
https://www.proquest.com/docview/2932345368
https://www.proquest.com/docview/2569614479
https://pubmed.ncbi.nlm.nih.gov/PMC8401373
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9B-7KXCTTGAqUyEm_DgsRO4jxNLdAB0sq0jalvURw7AglS6Mck_nvuXDeoQ_CQJztKfGffh-_udwAH1MpByVhxUehjLs2x5pm2godxYYUpUQFpqkb-MUzOr-XlKB75C7epT6tcykQnqM24pDvyI1RLkZCxSNS3h0dOXaMouupbaKxDG0WwQuer3T8b_vzV3LIQQJd0_SRREUU8y-KRr5xx9XMojNOMU5aCizjxcFU7vTI5X2dO_hc-dVppsAEfvTnJegv-b8KarT9Br8fomE_szSI7nf2eT_7ZJzau2MnV34tTHmbs1M5cElbNXNIA8wEbdnGPAma6BdeDsz8n59y3SuAlBRp5olFY4IPWUmXIBTMR2SKmTHWUEABnUpSZqPD4KhmWlUyF0qgeY3Q-kqhIMvEZWvW4tl-AaWVNpUxaaEvY86VSQlkpC1NJ5GKRBhAuSZSXHkec2lnc5Q0CsiNrjmTNHVnzMICvzTsPCxSNd2d3lpTP_Yma5i_8D2C_GcazQAGOorbjOc6Jca3oIaZZANsLRjWfE-iHxuhsBpCusLCZQDjbqyP17Y3D21bkg6YigMMls19-6-1V7Ly_il34ENHGc2WNHWjNJnO7h_bNTHdhXQ2-d6HdG_T7w67f0s-pVvY9
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOLSXqhWlDaXFSO0JrJLYSZwDqlZsl93yOhSqvaVx7AgkyMI-QPwpfiMzzgNtUblxyCmOEo_nmZn5BuArjXJQMlRcZHqbS7OteaKt4H6YWWFyNECaupEPj6L-qfw1DIcLcN_0wlBZZaMTnaI2o5z-kX9HsxQIGYpI_bi65jQ1irKrzQiNii327d0thmyTnUEXz_dbEPR-nuz2eT1VgOeUk-ORRrnCCx2LwlC0YgIy2yaPdRARVmWU5YkokNOV9PNCxkJptCQh-ulRkEUEvoQqf0kKkZBEqd5e-0-H4MCkm16JZi_gSRIO6z4d162Hqj9OONVEuPwW9-dt4RMH92md5j_JWmcDe2_hTe28sk7Fbe9gwZbL0OkwUipje1bVwrPfs_GNvWOjgu0e_xl0uZ-wrp26kq-SuRIFVqeH2OAS1dnkPZy-CAlXYLEclfYjMK2sKZSJM20J6T5XSigrZWYKiTyTxR74DYnSvEYtp-EZF2mLt-zImiJZU0fW1Pdgs33mqsLseHb1WkP5tJbfSfrIbR5stLdR8iidkpV2NMM1Ie4V49E48eBDdVDt6wRGvSGGth7Ec0fYLiBU7_k75fmZQ_dWFPHGwoOt5rAfP-v_u1h9fhfr8Kp_cniQHgyO9j_B64CY0DVUrsHidDyzn9Gzmuovjp0Z_H1p-XkA0H4svA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+of+COVID-19+Detection+Using+Medical+Images&rft.jtitle=SN+computer+science&rft.au=Shah%2C+Faisal+Muhammad&rft.au=Joy%2C+Sajib+Kumar+Saha&rft.au=Ahmed%2C+Farzad&rft.au=Hossain%2C+Tonmoy&rft.date=2021-11-01&rft.pub=Springer+Singapore&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=6&rft_id=info:doi/10.1007%2Fs42979-021-00823-1&rft.externalDocID=10_1007_s42979_021_00823_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon