Charge Transport in Blue Quantum Dot Light‐Emitting Diodes
Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient...
Saved in:
Published in | Advanced electronic materials Vol. 10; no. 11 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10−11 m2 V−1 s−1. The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV.
Quantum dot semiconductor is a disordered system in which hole transport occurs via a hopping way. During the transport process, hole carriers hop between localized sites that exhibit a Gaussian distribution. In this study, the hole transport mechanism in quantum dots is investigated using single‐carrier devices. The study employs the EGDM model to provide a quantitative analysis of this transport behavior. |
---|---|
AbstractList | Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10
−11
m
2
V
−1
s
−1
. The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV. Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10−11 m2 V−1 s−1. The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV. Quantum dot semiconductor is a disordered system in which hole transport occurs via a hopping way. During the transport process, hole carriers hop between localized sites that exhibit a Gaussian distribution. In this study, the hole transport mechanism in quantum dots is investigated using single‐carrier devices. The study employs the EGDM model to provide a quantitative analysis of this transport behavior. Abstract Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10−11 m2 V−1 s−1. The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV. |
Author | Wu, Longjia Guo, Yulin Niu, Quan Ma, Yuguang Li, Shuxin Li, Jiahao Lin, Xiongfeng Liang, Wenlin Feng, Haonan Blom, Paul W. M. Lin, Wenxin Huang, Jiangxia |
Author_xml | – sequence: 1 givenname: Shuxin surname: Li fullname: Li, Shuxin organization: South China University of Technology – sequence: 2 givenname: Wenxin surname: Lin fullname: Lin, Wenxin organization: South China University of Technology – sequence: 3 givenname: Haonan surname: Feng fullname: Feng, Haonan organization: South China University of Technology – sequence: 4 givenname: Paul W. M. surname: Blom fullname: Blom, Paul W. M. email: blom@mpip-mainz.mpg.de organization: Max Planck Institute for Polymer Research – sequence: 5 givenname: Jiangxia surname: Huang fullname: Huang, Jiangxia organization: South China University of Technology – sequence: 6 givenname: Jiahao surname: Li fullname: Li, Jiahao organization: South China University of Technology – sequence: 7 givenname: Xiongfeng surname: Lin fullname: Lin, Xiongfeng organization: TCL Corporate Research – sequence: 8 givenname: Yulin surname: Guo fullname: Guo, Yulin organization: TCL Corporate Research – sequence: 9 givenname: Wenlin surname: Liang fullname: Liang, Wenlin organization: TCL Corporate Research – sequence: 10 givenname: Longjia surname: Wu fullname: Wu, Longjia organization: TCL Corporate Research – sequence: 11 givenname: Quan orcidid: 0009-0007-3024-7222 surname: Niu fullname: Niu, Quan email: qqniu@scut.edu.cn organization: South China University of Technology – sequence: 12 givenname: Yuguang surname: Ma fullname: Ma, Yuguang organization: South China University of Technology |
BookMark | eNqFkMtKA0EQRRtRMEa3rucHEqsfM9MNbjTGB0REUHDXVPoRWybToaeDZOcn-I1-idGIiCCuqijuOQV3j2y3sXWEHFIYUgB2hK6ZDxkwAUAF2yI9RpUa0Aoetn_su-Sg655gnakrLkreI8ejR0wzV9wlbLtFTLkIbXHaLF1xu8Q2L-fFWczFJMwe89vL63gecg7trDgL0bpun-x4bDp38DX75P58fDe6HExuLq5GJ5OB4VLBQHqFNROWgTCVN6WrKlCWl5XjCh16rKWkXNU49caL2lhqYWqFQeulFF7wPrnaeG3EJ71IYY5ppSMG_XmIaaYx5WAapwEB106hmJGihnKqmCunNePcggQHa9dw4zIpdl1y_ttHQX9UqT-q1N9VrgHxCzAhYw6xzQlD8zfGN9hzaNzqnyf6ZDy5lhT4O3Fdiho |
CitedBy_id | crossref_primary_10_1039_D4CC04751F crossref_primary_10_1002_adma_202413183 crossref_primary_10_1038_s41528_025_00390_y |
Cites_doi | 10.1021/nl8020347 10.1103/PhysRevLett.92.216802 10.1038/s41467-020-16560-7 10.1021/ja00072a025 10.1063/1.1542940 10.1021/jz300048y 10.1038/nmat4526 10.1002/adma.201607022 10.1063/1.1868865 10.1038/nnano.2011.46 10.1103/PhysRevB.85.205316 10.1103/PhysRevB.55.R656 10.1038/nnano.2015.247 10.1038/nnano.2011.159 10.1038/s41563-019-0582-2 10.1021/jp206526s 10.1103/PhysRevLett.94.206601 10.1139/p56-151 10.1515/zpch-2014-0587 10.1063/1.372021 10.1103/PhysRevLett.80.3819 10.1103/PhysRevLett.91.216601 10.1103/PhysRev.103.51 10.1063/5.0180211 10.1126/science.aaz8541 10.1021/jz500086c 10.1002/adma.201303393 10.1103/PhysRevLett.95.156801 10.1103/PhysRevB.77.075316 10.1103/PhysRevB.57.12964 10.1021/nl301104z 10.1103/PhysRevB.70.193202 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/aelm.202400142 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_0a0aaea492c84705b92e5b7233d080e0 10_1002_aelm_202400142 AELM810 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52103207 – fundername: Fundamental Research Funds for Central Universities of the Central South University funderid: 2023ZYGXZR025 – fundername: Natural Science Foundation of Guangdong Province funderid: 2022A1515011969 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN CITATION M~E AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3890-8f9a724d204c6fc5e6609d356e39aeafa7881397abfcf47cd1d0bd4cadf884f43 |
IEDL.DBID | 24P |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:30:43 EDT 2025 Tue Jul 01 00:35:26 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Wed Jan 22 17:12:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3890-8f9a724d204c6fc5e6609d356e39aeafa7881397abfcf47cd1d0bd4cadf884f43 |
ORCID | 0009-0007-3024-7222 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400142 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a0aaea492c84705b92e5b7233d080e0 crossref_primary_10_1002_aelm_202400142 crossref_citationtrail_10_1002_aelm_202400142 wiley_primary_10_1002_aelm_202400142_AELM810 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2024 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2011 2012 2015 2015; 6 12 229 10 2012 2012; 85 3 2011 2014 2020; 115 5 11 2004; 92 1997; 55 2005 2014 2003 1998 2005 2004; 94 26 91 57 86 70 2000; 87 2015; 10 2017 2021; 29 373 2005; 95 1970; 21 2008; 8 2008; 77 1998; 80 2024; 135 2003; 93 1956 1956; 103 34 2011; 6 1993; 115 2016; 15 2020; 19 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_5_1 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_20_1 Lampert M. A. (e_1_2_8_14_1) 1970; 21 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_19_1 e_1_2_8_18_3 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_18_4 e_1_2_8_18_5 e_1_2_8_18_6 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – volume: 29 373 year: 2017 2021 publication-title: Adv. Mater. Science – volume: 6 12 229 10 start-page: 348 2631 167 1013 year: 2011 2012 2015 2015 publication-title: Nat. Nanotechnol. Nano Lett. Z. Phys. Chem. Nat. Nanotechnol. – volume: 103 34 start-page: 51 1356 year: 1956 1956 publication-title: Phys. Rev. Can. J. Phys. – volume: 80 start-page: 3819 year: 1998 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 1013 year: 2015 publication-title: Nat. Nanotechnol. – volume: 115 start-page: 8706 year: 1993 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 141 year: 2016 publication-title: Nat. Mater. – volume: 55 start-page: R656 year: 1997 publication-title: Phys. Rev. B – volume: 115 5 11 start-page: 1335 2852 year: 2011 2014 2020 publication-title: J. Phys. Chem. C J. Phys. Chem. Lett. Nat. Commun. – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 92 year: 2004 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 733 year: 2011 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 3516 year: 2008 publication-title: Nano Lett. – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 87 start-page: 1361 year: 2000 publication-title: J. Appl. Phys. – volume: 19 start-page: 323 year: 2020 publication-title: Nat. Mater. – volume: 93 start-page: 3509 year: 2003 publication-title: J. Appl. Phys. – volume: 21 start-page: 558 year: 1970 publication-title: Electrical Sci. – volume: 135 year: 2024 publication-title: J. Appl. Phys. – volume: 85 3 start-page: 1169 year: 2012 2012 publication-title: Phys. Rev. B J. Phys. Chem. Lett. – volume: 94 26 91 57 86 70 start-page: 512 year: 2005 2014 2003 1998 2005 2004 publication-title: Phys. Rev. Lett. Adv. Mater. Phys. Rev. Lett. Phys. Rev. B Appl. Phys. Lett. Phys. Rev. B – ident: e_1_2_8_6_1 doi: 10.1021/nl8020347 – ident: e_1_2_8_8_1 doi: 10.1103/PhysRevLett.92.216802 – ident: e_1_2_8_5_3 doi: 10.1038/s41467-020-16560-7 – ident: e_1_2_8_21_1 doi: 10.1021/ja00072a025 – ident: e_1_2_8_12_1 doi: 10.1063/1.1542940 – ident: e_1_2_8_7_2 doi: 10.1021/jz300048y – ident: e_1_2_8_22_1 doi: 10.1038/nmat4526 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201607022 – ident: e_1_2_8_18_5 doi: 10.1063/1.1868865 – ident: e_1_2_8_2_1 doi: 10.1038/nnano.2011.46 – ident: e_1_2_8_7_1 doi: 10.1103/PhysRevB.85.205316 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevB.55.R656 – ident: e_1_2_8_2_4 doi: 10.1038/nnano.2015.247 – ident: e_1_2_8_3_1 doi: 10.1038/nnano.2011.159 – ident: e_1_2_8_4_1 doi: 10.1038/s41563-019-0582-2 – ident: e_1_2_8_13_1 – ident: e_1_2_8_5_1 doi: 10.1021/jp206526s – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevLett.94.206601 – ident: e_1_2_8_19_2 doi: 10.1139/p56-151 – ident: e_1_2_8_2_3 doi: 10.1515/zpch-2014-0587 – ident: e_1_2_8_11_1 doi: 10.1063/1.372021 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.80.3819 – ident: e_1_2_8_18_3 doi: 10.1103/PhysRevLett.91.216601 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRev.103.51 – ident: e_1_2_8_16_1 doi: 10.1063/5.0180211 – ident: e_1_2_8_1_2 doi: 10.1126/science.aaz8541 – ident: e_1_2_8_5_2 doi: 10.1021/jz500086c – ident: e_1_2_8_18_2 doi: 10.1002/adma.201303393 – ident: e_1_2_8_20_1 doi: 10.1038/nnano.2015.247 – ident: e_1_2_8_10_1 doi: 10.1103/PhysRevLett.95.156801 – ident: e_1_2_8_9_1 doi: 10.1103/PhysRevB.77.075316 – ident: e_1_2_8_18_4 doi: 10.1103/PhysRevB.57.12964 – ident: e_1_2_8_2_2 doi: 10.1021/nl301104z – volume: 21 start-page: 558 year: 1970 ident: e_1_2_8_14_1 publication-title: Electrical Sci. – ident: e_1_2_8_18_6 doi: 10.1103/PhysRevB.70.193202 |
SSID | ssj0001763453 |
Score | 2.3047988 |
Snippet | Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate.... Abstract Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | blue quantum dots extended Gaussian disorder model hopping transport trap‐free space‐charge‐limited current |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykxdRVJxf5CB4sSzNR9uAl81tDNkEwcFuJZ8y2DrR9e5P8Df6S0zSrmwH8eK1vG3a523yPknePC8AN1KmsaQijqSSfrXKikhIlkXEyCS13I2IIZtw8pSMpvRxxmZbpb58TlglD1wB10ECCWEE5Vi5gRQxybFhMsWEaEd2TJitu5i3NZkKqyuu21BGNiqNCHeEWfiD5z5lMqZ4JwoFsf5dchqiy_AQHNS0EHar1zkCe6Y4Bvd-L_zVwEaAHM4L2FuUBj6XDpByCfurNRz76fX359dgOQ85zLA_X2nzcQKmw8HLwyiqqx1EypEGFGWWixRTjRFViVXMJAnimrDEEO4AsMILvzv2IKRVlqZKxxpJTZXQNsuopeQUtIpVYc4AdBRHp4pzppXfB3U3x9QyRTRWcep6aBtEm6_PVS0F7itSLPJKxBjnHq28QasNbhv7t0oE41fLngezsfLi1eGCc2leuzT_y6VtcBdc8UdbeXcwnmQxOv-PNi_Avn9wdcrwErTW76W5cnRjLa_Dn_UDOWnQKg priority: 102 providerName: Directory of Open Access Journals |
Title | Charge Transport in Blue Quantum Dot Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400142 https://doaj.org/article/0a0aaea492c84705b92e5b7233d080e0 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iFy-iqFgfJQfBi0uz2ewj4KW1LUVaUbDQ25JnKbS70nbv_gR_o7_EJLvd2oOI1zC7SyY7M18mM18AuOU89jlhvscFt9kqzTzGw8QLFI9iTY1HdNWEo-doMCZPk3Dyo4u_5IeoE27WMpy_tgbO-Kq1JQ1lam47yW0NpE-MEz6w_bWWPR-Tl22WxZgPcVSUxjKp50dosmFuRLi1-4qdyOQI_HcBq4s4_WNwVEFF2C7X9gTsqewUPNjz8amCNSk5nGWwMy8UfC2MkooF7OZrOLRb7q-Pz95i5uqaYXeWS7U6A-N-7-1x4FU3IHjCAAnkJZqyGBOJERGRFqGKIkRlEEYqoEwxzSwZvEEUjGuhSSykLxGXRDCpk4RoEpyD_SzP1AWABvbIWFAaSmHPRs3DPtGhCCQWfmystgG8zexTUdGD21sq5mlJbIxTq6201lYD3NXy7yUxxq-SHavMWsoSWruBfDlNK_tIEUPMzIhQLEy8RCGnWIU8xkEgDaZVqAHu3VL88a203RuOEh9d_k_8ChzasbLH8Brsr5eFujFgY82b7n9quq36Nw2AzTc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1SF7oRRcX6zEJw42Amk3kE3LS2pWpbFCx0N-RZCrUVbfd-gt_ol5ibaad0IeJ25maG3MxJztzce4LQpZRpKJkIA6kkRKusCISMsyAyMkktdzOizybs9pJ2nz0M4mU2IdTCFPoQZcANkOHnawA4BKRvVqqhwoyhlBySIEPmZuFNltAUsEnZ0yrM4vDDvBalgyYPwoQMltKNhN6sP2JtafIK_uuM1S85rV20s-CKuFYM7h7aMJN9dAsb5EODS1VyPJrg-nhu8PPceWn-ihvTGe7AP_f351fzdeQTm3FjNNXm4wD1W82Xu3awOAIhUI5JkCCzXKSUaUqYSqyKTZIQrqM4MREXRlgBavCOUghplWWp0qEmUjMltM0yZll0iCqT6cQcIex4j04V57FWsDnqGofMxirSVIWpg20VBcve52qhDw7HVIzzQtmY5uCtvPRWFV2V9m-FMsavlnVwZmkFitb-wvR9mC8AkhNBhOsR41S5BZPEklMTy5RGkXak1pAquvZD8ce78lqz081Ccvw_8wu01X7pdvLOfe_xBG3D_aLg8BRVZu9zc-aYx0ye-2_rB1qxz64 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kBfEiior1uQfBi0s3yeYFXlrbUrUtClaKl7DPUmiTUpu7P8Hf6C9xN0lTexDxmkwSdnZn5svszLcAXDHmW4xQCzHOTLZKUUSZGyBHMs9XofaIWTVhf-B1h-Rh5I5-dPHn_BBlws1YRuavjYHPhaqvSUOpnJpOclMDaRHthKuGKk-v62rjdfg2XOdZtAGRjIxS22aILA-PVtyN2K5vvmQjNmUU_puQNYs5nT2wW4BF2Mhndx9syfgA3Jod8rGEJS05nMSwOU0lfE61mtIZbCVL2DM_3V8fn-3ZJKtshq1JIuT7IRh22i93XVScgYC4hhIYBSqkvk2EjQn3FHelpwcpHNeTTkglVdTQwWtMQZniivhcWAIzQTgVKgiIIs4RqMRJLI8B1MBH-DwMXcHN7qh-2CLK5Y6wueVru60BtBp9xAuCcHNOxTTKqY3tyGgrKrVVA9el_DynxvhVsmmUWUoZSuvsQrIYR4WFRJhiqkdEQpvriIldFtrSZb7tOEKjWolr4Cabij--FTXavX5g4ZP_iV-C7adWJ-rdDx5PwY65nTccnoHKcpHKc408luyiWFzfQS_Qpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Transport+in+Blue+Quantum+Dot+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+electronic+materials&rft.au=Li%2C+Shuxin&rft.au=Lin%2C+Wenxin&rft.au=Feng%2C+Haonan&rft.au=Blom%2C+Paul+W.+M.&rft.date=2024-11-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400142&rft.externalDBID=10.1002%252Faelm.202400142&rft.externalDocID=AELM810 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |