Charge Transport in Blue Quantum Dot Light‐Emitting Diodes

Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 10; no. 11
Main Authors Li, Shuxin, Lin, Wenxin, Feng, Haonan, Blom, Paul W. M., Huang, Jiangxia, Li, Jiahao, Lin, Xiongfeng, Guo, Yulin, Liang, Wenlin, Wu, Longjia, Niu, Quan, Ma, Yuguang
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10−11 m2 V−1 s−1. The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV. Quantum dot semiconductor is a disordered system in which hole transport occurs via a hopping way. During the transport process, hole carriers hop between localized sites that exhibit a Gaussian distribution. In this study, the hole transport mechanism in quantum dots is investigated using single‐carrier devices. The study employs the EGDM model to provide a quantitative analysis of this transport behavior.
AbstractList Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10 −11 m 2  V −1  s −1 . The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV.
Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10−11 m2 V−1 s−1. The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV. Quantum dot semiconductor is a disordered system in which hole transport occurs via a hopping way. During the transport process, hole carriers hop between localized sites that exhibit a Gaussian distribution. In this study, the hole transport mechanism in quantum dots is investigated using single‐carrier devices. The study employs the EGDM model to provide a quantitative analysis of this transport behavior.
Abstract Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate. Here, the hole transport in blue quantum dots (QDs) (CdZnSe/ZnSe/ZnS/CdZnS/ZnS based) is investigated by combining current‐voltage and transient electroluminescence measurements. The study demonstrates that the hole transport in QD thin films is characterized by a trap‐free space‐charge‐limited current with a zero‐field room temperature mobility of 4.4 × 10−11 m2 V−1 s−1. The zero‐field hole mobility is thermally activated with an activation energy of 0.30 eV. Applying the Extended Gaussian Disorder model provides a consistent description of the QD hole current as a function of voltage and temperature. The QD hole mobility is characterized by a hopping distance of 2.8 nm in a Gaussian broadened density of states with a width of 0.12 eV.
Author Wu, Longjia
Guo, Yulin
Niu, Quan
Ma, Yuguang
Li, Shuxin
Li, Jiahao
Lin, Xiongfeng
Liang, Wenlin
Feng, Haonan
Blom, Paul W. M.
Lin, Wenxin
Huang, Jiangxia
Author_xml – sequence: 1
  givenname: Shuxin
  surname: Li
  fullname: Li, Shuxin
  organization: South China University of Technology
– sequence: 2
  givenname: Wenxin
  surname: Lin
  fullname: Lin, Wenxin
  organization: South China University of Technology
– sequence: 3
  givenname: Haonan
  surname: Feng
  fullname: Feng, Haonan
  organization: South China University of Technology
– sequence: 4
  givenname: Paul W. M.
  surname: Blom
  fullname: Blom, Paul W. M.
  email: blom@mpip-mainz.mpg.de
  organization: Max Planck Institute for Polymer Research
– sequence: 5
  givenname: Jiangxia
  surname: Huang
  fullname: Huang, Jiangxia
  organization: South China University of Technology
– sequence: 6
  givenname: Jiahao
  surname: Li
  fullname: Li, Jiahao
  organization: South China University of Technology
– sequence: 7
  givenname: Xiongfeng
  surname: Lin
  fullname: Lin, Xiongfeng
  organization: TCL Corporate Research
– sequence: 8
  givenname: Yulin
  surname: Guo
  fullname: Guo, Yulin
  organization: TCL Corporate Research
– sequence: 9
  givenname: Wenlin
  surname: Liang
  fullname: Liang, Wenlin
  organization: TCL Corporate Research
– sequence: 10
  givenname: Longjia
  surname: Wu
  fullname: Wu, Longjia
  organization: TCL Corporate Research
– sequence: 11
  givenname: Quan
  orcidid: 0009-0007-3024-7222
  surname: Niu
  fullname: Niu, Quan
  email: qqniu@scut.edu.cn
  organization: South China University of Technology
– sequence: 12
  givenname: Yuguang
  surname: Ma
  fullname: Ma, Yuguang
  organization: South China University of Technology
BookMark eNqFkMtKA0EQRRtRMEa3rucHEqsfM9MNbjTGB0REUHDXVPoRWybToaeDZOcn-I1-idGIiCCuqijuOQV3j2y3sXWEHFIYUgB2hK6ZDxkwAUAF2yI9RpUa0Aoetn_su-Sg655gnakrLkreI8ejR0wzV9wlbLtFTLkIbXHaLF1xu8Q2L-fFWczFJMwe89vL63gecg7trDgL0bpun-x4bDp38DX75P58fDe6HExuLq5GJ5OB4VLBQHqFNROWgTCVN6WrKlCWl5XjCh16rKWkXNU49caL2lhqYWqFQeulFF7wPrnaeG3EJ71IYY5ppSMG_XmIaaYx5WAapwEB106hmJGihnKqmCunNePcggQHa9dw4zIpdl1y_ttHQX9UqT-q1N9VrgHxCzAhYw6xzQlD8zfGN9hzaNzqnyf6ZDy5lhT4O3Fdiho
CitedBy_id crossref_primary_10_1039_D4CC04751F
crossref_primary_10_1002_adma_202413183
crossref_primary_10_1038_s41528_025_00390_y
Cites_doi 10.1021/nl8020347
10.1103/PhysRevLett.92.216802
10.1038/s41467-020-16560-7
10.1021/ja00072a025
10.1063/1.1542940
10.1021/jz300048y
10.1038/nmat4526
10.1002/adma.201607022
10.1063/1.1868865
10.1038/nnano.2011.46
10.1103/PhysRevB.85.205316
10.1103/PhysRevB.55.R656
10.1038/nnano.2015.247
10.1038/nnano.2011.159
10.1038/s41563-019-0582-2
10.1021/jp206526s
10.1103/PhysRevLett.94.206601
10.1139/p56-151
10.1515/zpch-2014-0587
10.1063/1.372021
10.1103/PhysRevLett.80.3819
10.1103/PhysRevLett.91.216601
10.1103/PhysRev.103.51
10.1063/5.0180211
10.1126/science.aaz8541
10.1021/jz500086c
10.1002/adma.201303393
10.1103/PhysRevLett.95.156801
10.1103/PhysRevB.77.075316
10.1103/PhysRevB.57.12964
10.1021/nl301104z
10.1103/PhysRevB.70.193202
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/aelm.202400142
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0a0aaea492c84705b92e5b7233d080e0
10_1002_aelm_202400142
AELM810
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52103207
– fundername: Fundamental Research Funds for Central Universities of the Central South University
  funderid: 2023ZYGXZR025
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2022A1515011969
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
CITATION
M~E
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3890-8f9a724d204c6fc5e6609d356e39aeafa7881397abfcf47cd1d0bd4cadf884f43
IEDL.DBID 24P
ISSN 2199-160X
IngestDate Wed Aug 27 01:30:43 EDT 2025
Tue Jul 01 00:35:26 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Wed Jan 22 17:12:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3890-8f9a724d204c6fc5e6609d356e39aeafa7881397abfcf47cd1d0bd4cadf884f43
ORCID 0009-0007-3024-7222
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400142
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_0a0aaea492c84705b92e5b7233d080e0
crossref_primary_10_1002_aelm_202400142
crossref_citationtrail_10_1002_aelm_202400142
wiley_primary_10_1002_aelm_202400142_AELM810
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2024
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2011 2012 2015 2015; 6 12 229 10
2012 2012; 85 3
2011 2014 2020; 115 5 11
2004; 92
1997; 55
2005 2014 2003 1998 2005 2004; 94 26 91 57 86 70
2000; 87
2015; 10
2017 2021; 29 373
2005; 95
1970; 21
2008; 8
2008; 77
1998; 80
2024; 135
2003; 93
1956 1956; 103 34
2011; 6
1993; 115
2016; 15
2020; 19
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_5_1
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_20_1
Lampert M. A. (e_1_2_8_14_1) 1970; 21
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_19_1
e_1_2_8_18_3
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_18_4
e_1_2_8_18_5
e_1_2_8_18_6
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 29 373
  year: 2017 2021
  publication-title: Adv. Mater. Science
– volume: 6 12 229 10
  start-page: 348 2631 167 1013
  year: 2011 2012 2015 2015
  publication-title: Nat. Nanotechnol. Nano Lett. Z. Phys. Chem. Nat. Nanotechnol.
– volume: 103 34
  start-page: 51 1356
  year: 1956 1956
  publication-title: Phys. Rev. Can. J. Phys.
– volume: 80
  start-page: 3819
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 1013
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 115
  start-page: 8706
  year: 1993
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 141
  year: 2016
  publication-title: Nat. Mater.
– volume: 55
  start-page: R656
  year: 1997
  publication-title: Phys. Rev. B
– volume: 115 5 11
  start-page: 1335 2852
  year: 2011 2014 2020
  publication-title: J. Phys. Chem. C J. Phys. Chem. Lett. Nat. Commun.
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 92
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 733
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 3516
  year: 2008
  publication-title: Nano Lett.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 87
  start-page: 1361
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 19
  start-page: 323
  year: 2020
  publication-title: Nat. Mater.
– volume: 93
  start-page: 3509
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 558
  year: 1970
  publication-title: Electrical Sci.
– volume: 135
  year: 2024
  publication-title: J. Appl. Phys.
– volume: 85 3
  start-page: 1169
  year: 2012 2012
  publication-title: Phys. Rev. B J. Phys. Chem. Lett.
– volume: 94 26 91 57 86 70
  start-page: 512
  year: 2005 2014 2003 1998 2005 2004
  publication-title: Phys. Rev. Lett. Adv. Mater. Phys. Rev. Lett. Phys. Rev. B Appl. Phys. Lett. Phys. Rev. B
– ident: e_1_2_8_6_1
  doi: 10.1021/nl8020347
– ident: e_1_2_8_8_1
  doi: 10.1103/PhysRevLett.92.216802
– ident: e_1_2_8_5_3
  doi: 10.1038/s41467-020-16560-7
– ident: e_1_2_8_21_1
  doi: 10.1021/ja00072a025
– ident: e_1_2_8_12_1
  doi: 10.1063/1.1542940
– ident: e_1_2_8_7_2
  doi: 10.1021/jz300048y
– ident: e_1_2_8_22_1
  doi: 10.1038/nmat4526
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201607022
– ident: e_1_2_8_18_5
  doi: 10.1063/1.1868865
– ident: e_1_2_8_2_1
  doi: 10.1038/nnano.2011.46
– ident: e_1_2_8_7_1
  doi: 10.1103/PhysRevB.85.205316
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.55.R656
– ident: e_1_2_8_2_4
  doi: 10.1038/nnano.2015.247
– ident: e_1_2_8_3_1
  doi: 10.1038/nnano.2011.159
– ident: e_1_2_8_4_1
  doi: 10.1038/s41563-019-0582-2
– ident: e_1_2_8_13_1
– ident: e_1_2_8_5_1
  doi: 10.1021/jp206526s
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevLett.94.206601
– ident: e_1_2_8_19_2
  doi: 10.1139/p56-151
– ident: e_1_2_8_2_3
  doi: 10.1515/zpch-2014-0587
– ident: e_1_2_8_11_1
  doi: 10.1063/1.372021
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.80.3819
– ident: e_1_2_8_18_3
  doi: 10.1103/PhysRevLett.91.216601
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRev.103.51
– ident: e_1_2_8_16_1
  doi: 10.1063/5.0180211
– ident: e_1_2_8_1_2
  doi: 10.1126/science.aaz8541
– ident: e_1_2_8_5_2
  doi: 10.1021/jz500086c
– ident: e_1_2_8_18_2
  doi: 10.1002/adma.201303393
– ident: e_1_2_8_20_1
  doi: 10.1038/nnano.2015.247
– ident: e_1_2_8_10_1
  doi: 10.1103/PhysRevLett.95.156801
– ident: e_1_2_8_9_1
  doi: 10.1103/PhysRevB.77.075316
– ident: e_1_2_8_18_4
  doi: 10.1103/PhysRevB.57.12964
– ident: e_1_2_8_2_2
  doi: 10.1021/nl301104z
– volume: 21
  start-page: 558
  year: 1970
  ident: e_1_2_8_14_1
  publication-title: Electrical Sci.
– ident: e_1_2_8_18_6
  doi: 10.1103/PhysRevB.70.193202
SSID ssj0001763453
Score 2.3047988
Snippet Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing debate....
Abstract Although quantum dot light‐emitting diodes (QLEDs) are extensively studied nowadays, their charge transport mechanism remains a subject of ongoing...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms blue quantum dots
extended Gaussian disorder model
hopping transport
trap‐free space‐charge‐limited current
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykxdRVJxf5CB4sSzNR9uAl81tDNkEwcFuJZ8y2DrR9e5P8Df6S0zSrmwH8eK1vG3a523yPknePC8AN1KmsaQijqSSfrXKikhIlkXEyCS13I2IIZtw8pSMpvRxxmZbpb58TlglD1wB10ECCWEE5Vi5gRQxybFhMsWEaEd2TJitu5i3NZkKqyuu21BGNiqNCHeEWfiD5z5lMqZ4JwoFsf5dchqiy_AQHNS0EHar1zkCe6Y4Bvd-L_zVwEaAHM4L2FuUBj6XDpByCfurNRz76fX359dgOQ85zLA_X2nzcQKmw8HLwyiqqx1EypEGFGWWixRTjRFViVXMJAnimrDEEO4AsMILvzv2IKRVlqZKxxpJTZXQNsuopeQUtIpVYc4AdBRHp4pzppXfB3U3x9QyRTRWcep6aBtEm6_PVS0F7itSLPJKxBjnHq28QasNbhv7t0oE41fLngezsfLi1eGCc2leuzT_y6VtcBdc8UdbeXcwnmQxOv-PNi_Avn9wdcrwErTW76W5cnRjLa_Dn_UDOWnQKg
  priority: 102
  providerName: Directory of Open Access Journals
Title Charge Transport in Blue Quantum Dot Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400142
https://doaj.org/article/0a0aaea492c84705b92e5b7233d080e0
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iFy-iqFgfJQfBi0uz2ewj4KW1LUVaUbDQ25JnKbS70nbv_gR_o7_EJLvd2oOI1zC7SyY7M18mM18AuOU89jlhvscFt9kqzTzGw8QLFI9iTY1HdNWEo-doMCZPk3Dyo4u_5IeoE27WMpy_tgbO-Kq1JQ1lam47yW0NpE-MEz6w_bWWPR-Tl22WxZgPcVSUxjKp50dosmFuRLi1-4qdyOQI_HcBq4s4_WNwVEFF2C7X9gTsqewUPNjz8amCNSk5nGWwMy8UfC2MkooF7OZrOLRb7q-Pz95i5uqaYXeWS7U6A-N-7-1x4FU3IHjCAAnkJZqyGBOJERGRFqGKIkRlEEYqoEwxzSwZvEEUjGuhSSykLxGXRDCpk4RoEpyD_SzP1AWABvbIWFAaSmHPRs3DPtGhCCQWfmystgG8zexTUdGD21sq5mlJbIxTq6201lYD3NXy7yUxxq-SHavMWsoSWruBfDlNK_tIEUPMzIhQLEy8RCGnWIU8xkEgDaZVqAHu3VL88a203RuOEh9d_k_8ChzasbLH8Brsr5eFujFgY82b7n9quq36Nw2AzTc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1SF7oRRcX6zEJw42Amk3kE3LS2pWpbFCx0N-RZCrUVbfd-gt_ol5ibaad0IeJ25maG3MxJztzce4LQpZRpKJkIA6kkRKusCISMsyAyMkktdzOizybs9pJ2nz0M4mU2IdTCFPoQZcANkOHnawA4BKRvVqqhwoyhlBySIEPmZuFNltAUsEnZ0yrM4vDDvBalgyYPwoQMltKNhN6sP2JtafIK_uuM1S85rV20s-CKuFYM7h7aMJN9dAsb5EODS1VyPJrg-nhu8PPceWn-ihvTGe7AP_f351fzdeQTm3FjNNXm4wD1W82Xu3awOAIhUI5JkCCzXKSUaUqYSqyKTZIQrqM4MREXRlgBavCOUghplWWp0qEmUjMltM0yZll0iCqT6cQcIex4j04V57FWsDnqGofMxirSVIWpg20VBcve52qhDw7HVIzzQtmY5uCtvPRWFV2V9m-FMsavlnVwZmkFitb-wvR9mC8AkhNBhOsR41S5BZPEklMTy5RGkXak1pAquvZD8ce78lqz081Ccvw_8wu01X7pdvLOfe_xBG3D_aLg8BRVZu9zc-aYx0ye-2_rB1qxz64
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kBfEiior1uQfBi0s3yeYFXlrbUrUtClaKl7DPUmiTUpu7P8Hf6C9xN0lTexDxmkwSdnZn5svszLcAXDHmW4xQCzHOTLZKUUSZGyBHMs9XofaIWTVhf-B1h-Rh5I5-dPHn_BBlws1YRuavjYHPhaqvSUOpnJpOclMDaRHthKuGKk-v62rjdfg2XOdZtAGRjIxS22aILA-PVtyN2K5vvmQjNmUU_puQNYs5nT2wW4BF2Mhndx9syfgA3Jod8rGEJS05nMSwOU0lfE61mtIZbCVL2DM_3V8fn-3ZJKtshq1JIuT7IRh22i93XVScgYC4hhIYBSqkvk2EjQn3FHelpwcpHNeTTkglVdTQwWtMQZniivhcWAIzQTgVKgiIIs4RqMRJLI8B1MBH-DwMXcHN7qh-2CLK5Y6wueVru60BtBp9xAuCcHNOxTTKqY3tyGgrKrVVA9el_DynxvhVsmmUWUoZSuvsQrIYR4WFRJhiqkdEQpvriIldFtrSZb7tOEKjWolr4Cabij--FTXavX5g4ZP_iV-C7adWJ-rdDx5PwY65nTccnoHKcpHKc408luyiWFzfQS_Qpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Transport+in+Blue+Quantum+Dot+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+electronic+materials&rft.au=Li%2C+Shuxin&rft.au=Lin%2C+Wenxin&rft.au=Feng%2C+Haonan&rft.au=Blom%2C+Paul+W.+M.&rft.date=2024-11-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400142&rft.externalDBID=10.1002%252Faelm.202400142&rft.externalDocID=AELM810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon