Root functional traits explain root exudation rate and composition across a range of grassland species
Plant root exudation is a crucial means through which plants communicate with soil microbes and influence rhizosphere processes. Exudation can also underlie ecosystem response to changing environmental conditions. Different plant species vary in their root exudate quantity and quality, but our under...
Saved in:
Published in | The Journal of ecology Vol. 110; no. 1; pp. 21 - 33 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant root exudation is a crucial means through which plants communicate with soil microbes and influence rhizosphere processes. Exudation can also underlie ecosystem response to changing environmental conditions. Different plant species vary in their root exudate quantity and quality, but our understanding of the plant characteristics that drive these differences is fragmentary. We hypothesised that root exudates would be under phylogenetic control and fit within an exploitative root nutrient uptake strategy, specifically that high rates of root exudation would link to root traits indicative of exploitative growth.
We collected root exudates from plants grown in field soil, as well as leachates of the entire plant–soil system, to assess both the quantity and quality of root exudates, and their interaction with the soil metabolome, across 18 common grassland species.
We found that exudation varied with plant functional group and that differences were trait dependent. Particularly, root diameter, root tissue density and root nitrogen content explained much of the variation in exudate metabolome, along with plant phylogeny. Specific root exudation rate was highest in forbs and was negatively correlated with root tissue density, a trait indicative of conservative resource‐use strategy, and positively correlated with root diameter, which is associated with microbial collaboration and resource uptake ‘outsourcing’.
Synthesis. We provide novel insight into species‐specific differences in root exudates and identify root functional traits that might underlie these differences. Our results show that root exudation fits, although not entirely, within current models of the root economic space, with strong positive relationships to outsourcing traits like high root diameter. Determining the role of root exudates as a key facet of the resource‐outsourcing strategy necessitates further research into the fundamental controls on root exudation quantity and quality, particularly during environmental change.
Our study shows that root exudates fit into the root economic spectrum and are associated with resource‐outsourcing traits: exudation rates increase with root diameter, decrease with root tissue density and operate under plant phylogenetic control. Metabolite composition of exudates is species specific, with some phylogenetic association. It is likely that quantity and composition operate together in conjunction with root trait syndromes to inform a rhizosphere microbial function consistent with the growth strategy of the plant. Greater consideration and characterisation of root exudates remain key to fully unravelling plant–microbe relationships and their role in plant environmental adaptation and survival. |
---|---|
AbstractList | Plant root exudation is a crucial means through which plants communicate with soil microbes and influence rhizosphere processes. Exudation can also underlie ecosystem response to changing environmental conditions. Different plant species vary in their root exudate quantity and quality, but our understanding of the plant characteristics that drive these differences is fragmentary. We hypothesised that root exudates would be under phylogenetic control and fit within an exploitative root nutrient uptake strategy, specifically that high rates of root exudation would link to root traits indicative of exploitative growth.
We collected root exudates from plants grown in field soil, as well as leachates of the entire plant–soil system, to assess both the quantity and quality of root exudates, and their interaction with the soil metabolome, across 18 common grassland species.
We found that exudation varied with plant functional group and that differences were trait dependent. Particularly, root diameter, root tissue density and root nitrogen content explained much of the variation in exudate metabolome, along with plant phylogeny. Specific root exudation rate was highest in forbs and was negatively correlated with root tissue density, a trait indicative of conservative resource‐use strategy, and positively correlated with root diameter, which is associated with microbial collaboration and resource uptake ‘outsourcing’.
Synthesis. We provide novel insight into species‐specific differences in root exudates and identify root functional traits that might underlie these differences. Our results show that root exudation fits, although not entirely, within current models of the root economic space, with strong positive relationships to outsourcing traits like high root diameter. Determining the role of root exudates as a key facet of the resource‐outsourcing strategy necessitates further research into the fundamental controls on root exudation quantity and quality, particularly during environmental change.
Our study shows that root exudates fit into the root economic spectrum and are associated with resource‐outsourcing traits: exudation rates increase with root diameter, decrease with root tissue density and operate under plant phylogenetic control. Metabolite composition of exudates is species specific, with some phylogenetic association. It is likely that quantity and composition operate together in conjunction with root trait syndromes to inform a rhizosphere microbial function consistent with the growth strategy of the plant. Greater consideration and characterisation of root exudates remain key to fully unravelling plant–microbe relationships and their role in plant environmental adaptation and survival. Plant root exudation is a crucial means through which plants communicate with soil microbes and influence rhizosphere processes. Exudation can also underlie ecosystem response to changing environmental conditions. Different plant species vary in their root exudate quantity and quality, but our understanding of the plant characteristics that drive these differences is fragmentary. We hypothesised that root exudates would be under phylogenetic control and fit within an exploitative root nutrient uptake strategy, specifically that high rates of root exudation would link to root traits indicative of exploitative growth. We collected root exudates from plants grown in field soil, as well as leachates of the entire plant–soil system, to assess both the quantity and quality of root exudates, and their interaction with the soil metabolome, across 18 common grassland species. We found that exudation varied with plant functional group and that differences were trait dependent. Particularly, root diameter, root tissue density and root nitrogen content explained much of the variation in exudate metabolome, along with plant phylogeny. Specific root exudation rate was highest in forbs and was negatively correlated with root tissue density, a trait indicative of conservative resource‐use strategy, and positively correlated with root diameter, which is associated with microbial collaboration and resource uptake ‘outsourcing’. Synthesis. We provide novel insight into species‐specific differences in root exudates and identify root functional traits that might underlie these differences. Our results show that root exudation fits, although not entirely, within current models of the root economic space, with strong positive relationships to outsourcing traits like high root diameter. Determining the role of root exudates as a key facet of the resource‐outsourcing strategy necessitates further research into the fundamental controls on root exudation quantity and quality, particularly during environmental change. Plant root exudation is a crucial means through which plants communicate with soil microbes and influence rhizosphere processes. Exudation can also underlie ecosystem response to changing environmental conditions. Different plant species vary in their root exudate quantity and quality, but our understanding of the plant characteristics that drive these differences is fragmentary. We hypothesised that root exudates would be under phylogenetic control and fit within an exploitative root nutrient uptake strategy, specifically that high rates of root exudation would link to root traits indicative of exploitative growth. We collected root exudates from plants grown in field soil, as well as leachates of the entire plant–soil system, to assess both the quantity and quality of root exudates, and their interaction with the soil metabolome, across 18 common grassland species. We found that exudation varied with plant functional group and that differences were trait dependent. Particularly, root diameter, root tissue density and root nitrogen content explained much of the variation in exudate metabolome, along with plant phylogeny. Specific root exudation rate was highest in forbs and was negatively correlated with root tissue density, a trait indicative of conservative resource‐use strategy, and positively correlated with root diameter, which is associated with microbial collaboration and resource uptake ‘outsourcing’. Synthesis . We provide novel insight into species‐specific differences in root exudates and identify root functional traits that might underlie these differences. Our results show that root exudation fits, although not entirely, within current models of the root economic space, with strong positive relationships to outsourcing traits like high root diameter. Determining the role of root exudates as a key facet of the resource‐outsourcing strategy necessitates further research into the fundamental controls on root exudation quantity and quality, particularly during environmental change. |
Author | Muhamadali, Howbeer Langridge, Holly Williams, Alex Straathof, Angela L. Hollywood, Katherine A. Vries, Franciska T. Goodacre, Royston |
Author_xml | – sequence: 1 givenname: Alex orcidid: 0000-0003-3894-304X surname: Williams fullname: Williams, Alex email: alex.williams-4@manchester.ac.uk organization: The University of Manchester – sequence: 2 givenname: Holly surname: Langridge fullname: Langridge, Holly organization: The University of Manchester – sequence: 3 givenname: Angela L. surname: Straathof fullname: Straathof, Angela L. organization: Ontario Soil and Crop Improvement Association – sequence: 4 givenname: Howbeer surname: Muhamadali fullname: Muhamadali, Howbeer organization: University of Liverpool – sequence: 5 givenname: Katherine A. surname: Hollywood fullname: Hollywood, Katherine A. organization: The University of Manchester – sequence: 6 givenname: Royston orcidid: 0000-0003-2230-645X surname: Goodacre fullname: Goodacre, Royston organization: University of Liverpool – sequence: 7 givenname: Franciska T. orcidid: 0000-0002-6822-8883 surname: Vries fullname: Vries, Franciska T. organization: University of Amsterdam |
BookMark | eNqFkM9rwyAUx2V0sLbbeVdhl13SGo0xOY6ynxQGYzuLNS_FksZME9b-99N27NBLvSjvfb5P_UzQqLUtIHSbklka1jxlOU-oyPgsnBi5QOP_ygiNCaE0IZkQV2ji_YYQkgtOxqj-sLbH9dDq3thWNbh3yvQew65rlGmxi23YDZWKfexUD1i1FdZ221lvDkWlnfUeq9Bt14BtjddOed9EznegDfhrdFmrxsPN3z5FX0-Pn4uXZPn-_Lp4WCaaFSVJsowVtMxVpUtSUUG5KDkQlqmKV1yTlS4Kzlhda1bSPKvVqoJAQU7yHLhYUTZF98e5nbPfA_hebo3X0IS3gB28pHlwU4qMpgG9O0E3dnBBQaTSomSiLIpAzY_U4Y8Oatk5s1VuL1Mio3cZLctoWR68hwQ_SWjTH-xFtc353I9pYH_uGvn2uDjmfgEr9JdB |
CitedBy_id | crossref_primary_10_1111_nph_18157 crossref_primary_10_1007_s11104_023_06205_1 crossref_primary_10_1021_acs_jafc_3c02912 crossref_primary_10_1111_1365_2745_13746 crossref_primary_10_1186_s12870_022_03683_w crossref_primary_10_1007_s11104_024_06491_3 crossref_primary_10_1016_j_foreco_2023_121239 crossref_primary_10_1038_s41598_024_84162_0 crossref_primary_10_1111_1365_2745_14396 crossref_primary_10_1007_s11104_024_07156_x crossref_primary_10_3390_cimb47030205 crossref_primary_10_1080_27669645_2023_2207941 crossref_primary_10_1016_j_scitotenv_2024_172424 crossref_primary_10_1134_S1064229322080129 crossref_primary_10_24072_pcjournal_229 crossref_primary_10_3390_plants13182542 crossref_primary_10_1134_S1021443722020182 crossref_primary_10_3390_genes16030285 crossref_primary_10_3389_fpls_2022_949086 crossref_primary_10_1016_j_soilbio_2025_109753 crossref_primary_10_1016_j_agee_2024_109181 crossref_primary_10_3390_ijms23031084 crossref_primary_10_1111_nph_19638 crossref_primary_10_3390_ijms241813720 crossref_primary_10_1038_s41467_022_34449_5 crossref_primary_10_3390_ijms232315248 crossref_primary_10_1016_j_agee_2025_109578 crossref_primary_10_1016_j_earscirev_2023_104462 crossref_primary_10_3390_plants11162121 crossref_primary_10_1016_j_apsoil_2022_104731 crossref_primary_10_1111_nph_19060 crossref_primary_10_1007_s00284_024_03917_0 crossref_primary_10_1111_pce_14898 crossref_primary_10_1007_s11104_024_06793_6 crossref_primary_10_1002_ece3_70164 crossref_primary_10_1111_1365_2745_14177 crossref_primary_10_1111_gcb_16685 crossref_primary_10_1016_j_rhisph_2024_100899 crossref_primary_10_1093_aob_mcae151 crossref_primary_10_1002_ldr_5055 crossref_primary_10_1007_s11104_024_06691_x crossref_primary_10_1007_s00374_023_01701_z crossref_primary_10_1111_nph_19690 crossref_primary_10_1007_s11104_025_07379_6 crossref_primary_10_1016_j_soilbio_2023_109212 crossref_primary_10_1016_j_foreco_2023_121068 crossref_primary_10_3389_fpls_2024_1423703 crossref_primary_10_1002_bes2_1970 crossref_primary_10_3390_plants13152122 crossref_primary_10_1007_s11104_023_06472_y crossref_primary_10_3390_plants12030630 crossref_primary_10_1111_nph_19567 crossref_primary_10_1016_j_foreco_2024_121719 crossref_primary_10_1016_j_micres_2023_127435 crossref_primary_10_1111_pce_14755 crossref_primary_10_1016_j_soilbio_2024_109548 crossref_primary_10_1007_s11104_024_06847_9 crossref_primary_10_1016_j_soilbio_2023_109146 crossref_primary_10_1111_nph_18118 crossref_primary_10_1016_j_envexpbot_2024_106057 crossref_primary_10_1186_s12302_023_00724_5 crossref_primary_10_3390_f14020386 crossref_primary_10_1093_aob_mcad102 crossref_primary_10_3390_plants12081659 crossref_primary_10_1007_s11104_023_06421_9 crossref_primary_10_1038_s41564_023_01582_w crossref_primary_10_1016_j_geoderma_2023_116380 crossref_primary_10_1016_j_soilbio_2022_108722 crossref_primary_10_1111_1365_2745_13934 crossref_primary_10_1111_1365_2745_14107 crossref_primary_10_1007_s11104_023_06126_z crossref_primary_10_1111_pce_14247 crossref_primary_10_1111_1365_2745_14067 crossref_primary_10_1007_s11104_022_05800_y crossref_primary_10_1007_s11104_024_07049_z crossref_primary_10_3390_microorganisms12020405 crossref_primary_10_3390_f13030421 crossref_primary_10_1007_s11104_024_06740_5 crossref_primary_10_1016_j_micres_2024_127706 crossref_primary_10_1111_nph_19663 crossref_primary_10_3390_metabo12111100 crossref_primary_10_3390_app14114648 crossref_primary_10_1007_s11104_022_05549_4 crossref_primary_10_1093_treephys_tpad067 crossref_primary_10_1111_nph_19261 crossref_primary_10_1016_j_plantsci_2023_111896 crossref_primary_10_1016_j_rhisph_2025_101024 crossref_primary_10_1016_j_micres_2024_127698 crossref_primary_10_1016_j_soilbio_2024_109324 crossref_primary_10_3390_plants14030479 crossref_primary_10_1016_j_rhisph_2024_100858 crossref_primary_10_1093_treephys_tpad118 crossref_primary_10_1111_nph_19490 crossref_primary_10_1007_s11104_022_05516_z crossref_primary_10_1016_j_soilbio_2025_109738 crossref_primary_10_1016_j_rhisph_2023_100784 crossref_primary_10_1016_j_soilbio_2025_109731 crossref_primary_10_3390_f13111913 crossref_primary_10_1016_j_soilbio_2023_109093 crossref_primary_10_1186_s13007_024_01297_x |
Cites_doi | 10.1023/A:1004817212321 10.1038/s41598-019-54309-5 10.1007/s11104-017-3555-8 10.1016/j.jes.2020.05.011 10.1007/s11306-007-0082-2 10.1104/pp.108.127613 10.1111/1365-2745.12562 10.1039/C8RA01753K 10.1007/s10725-011-9564-3 10.1073/pnas.1717308115 10.1111/tpj.13639 10.1038/nature25783 10.1038/s41564-018-0129-3 10.5772/65405 10.1111/nph.16223 10.1002/jpln.201000085 10.1002/ece3.4383 10.1111/1365-2745.12605 10.1007/978-94-017-1570-6_23 10.1093/bioinformatics/bti236 10.1371/journal.pcbi.1005752 10.1038/srep29033 10.1371/journal.pone.0204128 10.1111/nph.16389 10.1111/nph.15361 10.1111/j.1469-8137.2006.01667.x 10.3389/fpls.2019.00157 10.1007/978-4-431-66902-9_3 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 10.1111/nph.16865 10.1111/j.1365-3040.2009.01926.x 10.3389/fpls.2018.01662 10.1002/ece3.2051 10.1016/j.mib.2019.07.003 10.1126/sciadv.aba3756 10.3390/12071290 10.1371/journal.pone.0035498 10.1016/j.apsoil.2015.04.009 10.1002/ece3.5043 10.1093/nar/gky1033 10.1111/nph.14571 10.1093/femsec/fix022 10.1093/aob/mcf040 10.1111/j.1461-0248.2010.01570.x 10.1016/j.tplants.2016.01.008 10.1093/bioinformatics/btv428 10.1111/nph.16976 10.1111/nph.16001 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.13630 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany Economics |
EISSN | 1365-2745 |
EndPage | 33 |
ExternalDocumentID | 10_1111_1365_2745_13630 JEC13630 |
Genre | article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/L02456X/1 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABTAH ABTLG ABXSQ ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFXHP AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABAWQ ABSQW ACHJO AEYWJ AGHNM AGUYK AGYGG CITATION 7QG 7SN 7SS 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3890-4438296adc90d2725795e034ad5d5c0bc88533ffc39264fabde272e6066e57b23 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:32:16 EDT 2025 Fri Jul 25 19:33:02 EDT 2025 Tue Jul 01 03:13:48 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Jan 22 16:26:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3890-4438296adc90d2725795e034ad5d5c0bc88533ffc39264fabde272e6066e57b23 |
Notes | Handling Editor Tom Walker ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3894-304X 0000-0002-6822-8883 0000-0003-2230-645X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13630 |
PQID | 2618937988 |
PQPubID | 37508 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2636397421 proquest_journals_2618937988 crossref_primary_10_1111_1365_2745_13630 crossref_citationtrail_10_1111_1365_2745_13630 wiley_primary_10_1111_1365_2745_13630_JEC13630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2019; 10 2015; 31 2005; 21 2002; 2/3 2006; 170 2008; 148 2016; 104 2020; 10 2020; 98 2011; 14 2020; 6 2018; 9 2018; 8 2018; 3 2001 2002; 89 2011; 64 2007; 3 2019; 9 2012 2018; 425 2015; 93 2011 2020; 226 2020; 225 2019; 224 2002 2011; 174 2007; 12 2019; 221 2020; 229 2017; 215 2001; 82 2016; 6 2001; 230 2009; 32 2017; 93 2017; 92 2021 2018; 555 2017; 13 2018; 115 2019; 47 2016; 21 2019; 49 2016 2013 2012; 7 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 Oksanen J. (e_1_2_8_33_1) 2011 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 Williams A. (e_1_2_8_51_1) 2021 e_1_2_8_15_1 e_1_2_8_38_1 R Core Team (e_1_2_8_36_1) 2013 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Liaw A. (e_1_2_8_26_1) 2002; 2 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Kolde (e_1_2_8_22_1) 2012 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – year: 2011 – volume: 13 issue: 11 year: 2017 article-title: mixOmics: An R package for ‘omics feature selection and multiple data integration publication-title: PLOS Computational Biology – volume: 2/3 start-page: 18 year: 2002 end-page: 22 article-title: Classification and regression by randomForest publication-title: R News – volume: 425 start-page: 415 issue: 1 year: 2018 end-page: 432 article-title: The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO concentrations publication-title: Plant and Soil – volume: 225 start-page: 1899 issue: 5 year: 2020 end-page: 1905 article-title: Plant root exudation under drought: Implications for ecosystem functioning publication-title: New Phytologist – volume: 14 start-page: 187 issue: 2 year: 2011 end-page: 194 article-title: Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long‐term CO fumigation publication-title: Ecology Letters – volume: 10 issue: 1 year: 2020 article-title: Root exudate composition of grass and forb species in natural grasslands publication-title: Scientific Reports – volume: 12 start-page: 1290 issue: 7 year: 2007 end-page: 1306 article-title: Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant‐fungus interactions publication-title: Molecules – start-page: 201 year: 2002 end-page: 213 – volume: 226 start-page: 583 issue: 2 year: 2020 end-page: 594 article-title: Root exudation of mature beech forests across a nutrient availability gradient: The role of root morphology and fungal activity publication-title: New Phytologist – volume: 104 start-page: 1299 issue: 5 year: 2016 end-page: 1310 article-title: Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum publication-title: Journal of Ecology – volume: 215 start-page: 1562 issue: 4 year: 2017 end-page: 1573 article-title: A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine‐root tissues in seed plants publication-title: New Phytologist – volume: 98 start-page: 22 year: 2020 end-page: 30 article-title: Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry publication-title: Journal of Environmental Sciences – volume: 229 start-page: 259 issue: 1 year: 2020 end-page: 271 article-title: Root exudation as a major competitive fine‐root functional trait of 18 coexisting species in a subtropical forest publication-title: New Phytologist – volume: 224 start-page: 132 issue: 1 year: 2019 end-page: 145 article-title: Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling publication-title: New Phytologist – volume: 47 start-page: D1102 issue: D1 year: 2019 end-page: D1109 article-title: PubChem 2019 update: Improved access to chemical data publication-title: Nucleic Acids Research – volume: 3 start-page: 211 issue: 3 year: 2007 end-page: 221 article-title: Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) publication-title: Metabolomics – volume: 89 start-page: 293 issue: 3 year: 2002 end-page: 299 article-title: Detection of root mucilage using an anti‐fucose antibody publication-title: Annals of Botany – volume: 229 start-page: 1492 year: 2020 end-page: 1507 article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species publication-title: New Phytologist – volume: 6 start-page: 2774 issue: 9 year: 2016 end-page: 2780 article-title: phylosignal: An R package to measure, test, and explore the phylogenetic signal publication-title: Ecology and Evolution – volume: 31 start-page: 3718 issue: 22 year: 2015 end-page: 3720 article-title: dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering publication-title: Bioinformatics – volume: 555 start-page: 94 issue: 7694 year: 2018 end-page: 97 article-title: Evolutionary history resolves global organization of root functional traits publication-title: Nature – volume: 32 start-page: 666 issue: 6 year: 2009 end-page: 681 article-title: Regulation and function of root exudates publication-title: Plant, Cell & Environment – volume: 7 issue: 4 year: 2012 article-title: Benzoxazinoids in root exudates of maize attract to the rhizosphere publication-title: PLoS One – volume: 82 start-page: 2397 issue: 9 year: 2001 end-page: 2402 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology – volume: 21 start-page: 256 issue: 3 year: 2016 end-page: 265 article-title: Metabolomics in the rhizosphere: Tapping into belowground chemical communication publication-title: Trends in Plant Science – volume: 8 start-page: 15336 issue: 28 year: 2018 end-page: 15343 article-title: Toxicity of graphene oxide to naked oats ( L.) in hydroponic and soil cultures publication-title: RSC Advances – volume: 92 start-page: 147 issue: 1 year: 2017 end-page: 162 article-title: Metabolite profiling of non‐sterile rhizosphere soil publication-title: The Plant Journal – volume: 174 start-page: 3 issue: 1 year: 2011 end-page: 11 article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency publication-title: Journal of Plant Nutrition and Soil Science – start-page: 1 year: 2012 end-page: 6 – volume: 21 start-page: 1635 issue: 8 year: 2005 end-page: 1638 article-title: GMD@CSB.DB: The Golm metabolome database publication-title: Bioinformatics – volume: 93 start-page: 78 year: 2015 end-page: 87 article-title: Identification of benzoic acid and 3‐phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms publication-title: Applied Soil Ecology – volume: 6 issue: 1 year: 2016 article-title: Natural variation of root exudates in Arabidopsis thaliana‐linking metabolomic and genomic data publication-title: Scientific Reports – volume: 64 start-page: 241 issue: 3 year: 2011 end-page: 249 article-title: The effect of root exudates on root architecture in Arabidopsis thaliana publication-title: Plant Growth Regulation – volume: 221 start-page: 233 issue: 1 year: 2019 end-page: 246 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytologist – volume: 10 year: 2019 article-title: Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli publication-title: Frontiers in Plant Science – start-page: 71 year: 2001 end-page: 100 – volume: 49 start-page: 1 year: 2019 end-page: 6 article-title: Causes and consequences of a conserved bacterial root microbiome response to drought stress publication-title: Current Opinion in Microbiology – volume: 13 issue: 10 year: 2018 article-title: Linking root exudates to functional plant traits publication-title: PLoS One – year: 2021 article-title: Williams et al JEcol Supplemental data files publication-title: figshare – volume: 8 start-page: 8573 issue: 16 year: 2018 end-page: 8581 article-title: Root exudation rate as functional trait involved in plant nutrient‐use strategy classification publication-title: Ecology and Evolution – volume: 6 issue: 27 year: 2020 article-title: The fungal collaboration gradient dominates the root economics space in plants publication-title: Science Advances – year: 2016 – volume: 104 start-page: 1311 issue: 5 year: 2016 end-page: 1313 article-title: Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum: Commentary on Kramer‐Walter et al (2016) publication-title: Journal of Ecology – volume: 148 start-page: 1547 issue: 3 year: 2008 end-page: 1556 article-title: Root‐secreted malic acid recruits beneficial soil bacteria publication-title: Plant Physiology – volume: 3 start-page: 470 issue: 4 year: 2018 end-page: 480 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nature Microbiology – volume: 230 start-page: 77 issue: 1 year: 2001 end-page: 86 article-title: Impact of root exudates of different cultivars and plant development stages of rice ( L.) on methane production in a paddy soil publication-title: Plant and Soil – volume: 115 start-page: E4284 issue: 18 year: 2018 end-page: E4293 article-title: Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 year: 2018 article-title: Plant nutrient resource use strategies shape active rhizosphere microbiota through root exudation publication-title: Frontiers in Plant Science – volume: 93 issue: 4 year: 2017 article-title: The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites publication-title: FEMS Microbiology Ecology – volume: 9 start-page: 5526 issue: 10 year: 2019 end-page: 5541 article-title: Semi‐polar root exudates in natural grassland communities publication-title: Ecology and Evolution – year: 2013 – volume: 170 start-page: 357 issue: 2 year: 2006 end-page: 368 article-title: Suites of root traits differ between annual and perennial species growing in the field publication-title: New Phytologist – ident: e_1_2_8_2_1 doi: 10.1023/A:1004817212321 – ident: e_1_2_8_12_1 doi: 10.1038/s41598-019-54309-5 – ident: e_1_2_8_25_1 doi: 10.1007/s11104-017-3555-8 – ident: e_1_2_8_30_1 doi: 10.1016/j.jes.2020.05.011 – ident: e_1_2_8_44_1 doi: 10.1007/s11306-007-0082-2 – year: 2021 ident: e_1_2_8_51_1 article-title: Williams et al JEcol Supplemental data files publication-title: figshare – ident: e_1_2_8_40_1 doi: 10.1104/pp.108.127613 – ident: e_1_2_8_24_1 doi: 10.1111/1365-2745.12562 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_8_36_1 – ident: e_1_2_8_8_1 doi: 10.1039/C8RA01753K – ident: e_1_2_8_5_1 doi: 10.1007/s10725-011-9564-3 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.1717308115 – ident: e_1_2_8_34_1 doi: 10.1111/tpj.13639 – ident: e_1_2_8_28_1 doi: 10.1038/nature25783 – ident: e_1_2_8_54_1 doi: 10.1038/s41564-018-0129-3 – ident: e_1_2_8_14_1 doi: 10.5772/65405 – volume-title: vegan: Community ecology package year: 2011 ident: e_1_2_8_33_1 – ident: e_1_2_8_50_1 doi: 10.1111/nph.16223 – ident: e_1_2_8_7_1 doi: 10.1002/jpln.201000085 – ident: e_1_2_8_15_1 doi: 10.1002/ece3.4383 – ident: e_1_2_8_47_1 doi: 10.1111/1365-2745.12605 – ident: e_1_2_8_9_1 doi: 10.1007/978-94-017-1570-6_23 – ident: e_1_2_8_23_1 doi: 10.1093/bioinformatics/bti236 – ident: e_1_2_8_38_1 doi: 10.1371/journal.pcbi.1005752 – ident: e_1_2_8_31_1 doi: 10.1038/srep29033 – ident: e_1_2_8_19_1 doi: 10.1371/journal.pone.0204128 – ident: e_1_2_8_29_1 doi: 10.1111/nph.16389 – ident: e_1_2_8_42_1 doi: 10.1111/nph.15361 – ident: e_1_2_8_39_1 doi: 10.1111/j.1469-8137.2006.01667.x – ident: e_1_2_8_6_1 doi: 10.3389/fpls.2019.00157 – volume: 2 start-page: 18 year: 2002 ident: e_1_2_8_26_1 article-title: Classification and regression by randomForest publication-title: R News – ident: e_1_2_8_37_1 doi: 10.1007/978-4-431-66902-9_3 – ident: e_1_2_8_18_1 doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – ident: e_1_2_8_45_1 doi: 10.1111/nph.16865 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-3040.2009.01926.x – ident: e_1_2_8_16_1 doi: 10.3389/fpls.2018.01662 – ident: e_1_2_8_20_1 doi: 10.1002/ece3.2051 – ident: e_1_2_8_52_1 doi: 10.1016/j.mib.2019.07.003 – ident: e_1_2_8_4_1 doi: 10.1126/sciadv.aba3756 – start-page: 1 volume-title: pheatmap: Pretty Heatmaps year: 2012 ident: e_1_2_8_22_1 – ident: e_1_2_8_43_1 doi: 10.3390/12071290 – ident: e_1_2_8_32_1 doi: 10.1371/journal.pone.0035498 – ident: e_1_2_8_27_1 doi: 10.1016/j.apsoil.2015.04.009 – ident: e_1_2_8_11_1 doi: 10.1002/ece3.5043 – ident: e_1_2_8_21_1 doi: 10.1093/nar/gky1033 – ident: e_1_2_8_48_1 doi: 10.1111/nph.14571 – ident: e_1_2_8_17_1 doi: 10.1093/femsec/fix022 – ident: e_1_2_8_41_1 doi: 10.1093/aob/mcf040 – ident: e_1_2_8_35_1 doi: 10.1111/j.1461-0248.2010.01570.x – ident: e_1_2_8_49_1 doi: 10.1016/j.tplants.2016.01.008 – ident: e_1_2_8_13_1 doi: 10.1093/bioinformatics/btv428 – ident: e_1_2_8_46_1 doi: 10.1111/nph.16976 – ident: e_1_2_8_10_1 doi: 10.1111/nph.16001 |
SSID | ssj0006750 |
Score | 2.6400003 |
Snippet | Plant root exudation is a crucial means through which plants communicate with soil microbes and influence rhizosphere processes. Exudation can also underlie... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21 |
SubjectTerms | Density Economic models Economics ecosystems Environmental changes Environmental conditions Exploitation Exudates Exudation Forbs Functional groups Grasslands Herbivores Leachates metabolome metabolomics Microorganisms nitrogen content Nutrient uptake Outsourcing Phylogeny Plant roots Plant species Plant tissues plant–microbe communication Rhizosphere root exudates root traits roots Soil Soil microorganisms Soils Species Tissue Uptake |
Title | Root functional traits explain root exudation rate and composition across a range of grassland species |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13630 https://www.proquest.com/docview/2618937988 https://www.proquest.com/docview/2636397421 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50UfDiW1xdJYIHL126bZq2R5UVERQRBW8lr4oo7bLbBfXXO5O26wNExFtoEppMMpNvkskXgEM0gEbwXHgqVsLjwggPbZ7xEhsFNo9lGrv9jssrcX7HL-6jNpqQ7sLU_BCzDTfSDGevScGlmnxS8uY2FY8oUiskr52-ECy6-SCQQjjst3zhPo_jhtyHYnm-1f-6Ln2Azc-Q1a05Zyug2tbWoSZP_Wml-vrtG5Hjv7qzCssNImXH9RRagzlbrMNi_Ubl6zosnJSIHzGxOHQE168bkN-UZcVoRaw3Ehm9M1FNmH0ZPcvHgo0p275M6-eaGJFRMFkYRuHrTYwYk04MTGJu8WBZmbOHMeJ4irNkdPsTHfhNuDsb3p6ee817DZ5G2ON7nA4VUyGNxtEOYjQGaWT9kEsTmUj7SieIDcI814jJcH5IZSyWsuRC2ShWQbgFnaIs7DawVInECJUolUquZZ7KgVDaz00wkDKJVRf67WhluiEzp74-Z61TQ_LMSJ6Zk2cXjmYVRjWPx89Fe-3wZ41CTzJ0NAnZpUnShYNZNqoina_IwpZTKhPSMSkPBtg8N9a__Sq7GJ66xM5fK-zCUuAmNW0G9aBTjad2D-FRpfZhPuDX-04P3gE4BgMo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB7EC_qiHo_iejsRfPClS7dN0_ZRZWW9PoiCbyW3iiitrF1Qf70zabuugsjBt0CSNrdJvplMvgHYww3QCJ4LT8VKeFwY4eGeZ7zERoHNY5nGzt5xcSkGN_z0NrqdeAtT80OMDW4kGW6_JgEng_SElDfPqXhErlohqu0zFNfbqVVXHxRSCIj9ljHc53Hc0PuQN8-XD3w-mT7g5iRodafO8RLotr21s8lDd1Sprn77QuX4uw4tw2IDStlBvYr-wJQtVmCuDlP5ugKzhyVCSEzM9R3H9etfyK_KsmJ0KNa2REahJqpnZl-eHuV9wYaUbV9GdcQmRnwUTBaGkQd74ybGpBsHJjG3uLOszNndEKE8uVoyegCKOvwq3Bz3r48GXhOywdOIfHyP071iKqTROOFBjPtBGlk_5NJEJtK-0gnCgzDPNcIyXCJSGYulLGlRNopVEK7BdFEWdh1YqkRihEqUSiXXMk9lTyjt5yboSZnEqgPddroy3fCZU18fs1avofHMaDwzN54d2B9XeKqpPL4vutXOf9bI9HOGuiaBuzRJOrA7zkZppCsWWdhyRGVCuinlQQ-b5yb7p19lp_0jl9j43wr_YH5wfXGenZ9cnm3CQuBWONmGtmC6Go7sNqKlSu04cXgHXNEGbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VtKBe2vKouhSKkThwySqbOE5ypLAryksIgcQt8hOhomS1ZCXg1zPjJAtFQgj1Zsl2Yntm7G_s8WeALZwAjeBOBCpVIuDCiADnPBNkNomsS2We-v2O4xOxf8EPLpMumpDuwjT8ELMNN7IMP1-TgY-Ne2bk7W0qnlCkVoxe-0cuwowUe-_siUEK8XDYEYaHPE1bdh8K5nnxgX8Xpie0-Ryz-kVn9BVU19wm1uRvf1qrvn54weT4X_35Bl9aSMp2Gh1ahA-2XIL55pHK-yX49LtCAImJ-aFnuL5fBndWVTWjJbHZSWT00ER9y-zd-EZel2xC2fZu2rzXxIiNgsnSMIpfb4PEmPTDwCTmlleWVY5dTRDIU6Alo-uf6MGvwMVoeL67H7QPNgQacU8YcDpVzIU0GsUdpTgb5IkNYy5NYhIdKp0hOIid0wjKUEGkMhZLWfKhbJKqKP4Oc2VV2h_AciUyI1SmVC65li6XA6F06Ew0kDJLVQ_6nbQK3bKZU19vis6rofEsaDwLP5492J5VGDdEHq8XXevEX7QWfVugp0nQLs-yHmzOstEW6YBFlraaUpmYzkl5NMDmeVm_9aviYLjrE6vvrbABC6d7o-Loz8nhT_gcef2mjaE1mKsnU7uOUKlWv7wxPAJPbgUk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+functional+traits+explain+root+exudation+rate+and+composition+across+a+range+of+grassland+species&rft.jtitle=The+Journal+of+ecology&rft.au=Williams%2C+Alex&rft.au=Langridge%2C+Holly&rft.au=Straathof%2C+Angela+L.&rft.au=Muhamadali%2C+Howbeer&rft.date=2022-01-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=110&rft.issue=1&rft.spage=21&rft.epage=33&rft_id=info:doi/10.1111%2F1365-2745.13630&rft.externalDBID=10.1111%252F1365-2745.13630&rft.externalDocID=JEC13630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |