Shifted Fractional-Order Jacobi Collocation Method for Solving Variable-Order Fractional Integro-Differential Equation with Weakly Singular Kernel
We propose a fractional-order shifted Jacobi–Gauss collocation method for variable-order fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK) subject to initial conditions. Using the Riemann–Liouville fractional integral and derivative and fractional-order shifted Jaco...
Saved in:
Published in | Fractal and fractional Vol. 6; no. 1; p. 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-3110 2504-3110 |
DOI | 10.3390/fractalfract6010019 |
Cover
Loading…
Abstract | We propose a fractional-order shifted Jacobi–Gauss collocation method for variable-order fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK) subject to initial conditions. Using the Riemann–Liouville fractional integral and derivative and fractional-order shifted Jacobi polynomials, the approximate solutions of VO-FIDE-WSK are derived by solving systems of algebraic equations. The superior accuracy of the method is illustrated through several numerical examples. |
---|---|
AbstractList | We propose a fractional-order shifted Jacobi–Gauss collocation method for variable-order fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK) subject to initial conditions. Using the Riemann–Liouville fractional integral and derivative and fractional-order shifted Jacobi polynomials, the approximate solutions of VO-FIDE-WSK are derived by solving systems of algebraic equations. The superior accuracy of the method is illustrated through several numerical examples. |
Author | Babatin, Mohammed M. Abdelkawy, Mohamed A. Amin, Ahmed Z. M. Lopes, António M. Hashim, Ishak |
Author_xml | – sequence: 1 givenname: Mohamed A. orcidid: 0000-0002-9043-9644 surname: Abdelkawy fullname: Abdelkawy, Mohamed A. – sequence: 2 givenname: Ahmed Z. M. orcidid: 0000-0003-4044-3335 surname: Amin fullname: Amin, Ahmed Z. M. – sequence: 3 givenname: António M. orcidid: 0000-0001-7359-4370 surname: Lopes fullname: Lopes, António M. – sequence: 4 givenname: Ishak orcidid: 0000-0003-4237-7140 surname: Hashim fullname: Hashim, Ishak – sequence: 5 givenname: Mohammed M. surname: Babatin fullname: Babatin, Mohammed M. |
BookMark | eNp9kc1uEzEQgC1UJErpE3CxxHnBP7v2-ohCC4GiHsLP0Rp7x4mDWbdeB9TX4InZJBUghDjNaGa-b6SZx-RkzCMS8pSz51Ia9iIU8BXSISjGGePmATkVHWsbyTk7-SN_RM6nacsYE9rIjulT8mO1iaHiQC_3eMwjpOa6DFjoW_DZRbrIKWUP-xZ9j3WTBxpyoaucvsVxTT9BieAS3kO_LXQ5VlyX3LyKIWDBsca5eHG7O6q-x7qhnxG-pDu6mkW7BIW-wzJiekIeBkgTnt_HM_Lx8uLD4k1zdf16uXh51XjZ97UJMAAM3GEHxsmBo-sCmkErF7QDH6SE0CujOLLeSAFaaKbEYFonAVUw8owsj94hw9belPgVyp3NEO2hkMvaQqnRJ7S-Q8fBy9Z3bWvEvJ9pw1irQXWKaze7nh1dNyXf7nCqdpt3ZT7DZIUSXPSMCz1PyeOUL3maCoZfWzmz-1_af_xypsxflI_1cMVaIKb_sj8BRG2tgw |
CitedBy_id | crossref_primary_10_3934_math_2024388 crossref_primary_10_1016_j_rinp_2022_106067 crossref_primary_10_1142_S0129183124500888 crossref_primary_10_3390_fractalfract7020173 crossref_primary_10_3390_fractalfract7090656 crossref_primary_10_1007_s40314_022_01845_y |
Cites_doi | 10.1515/ijnsns-2016-0160 10.1007/s11075-013-9710-2 10.1016/j.cnsns.2015.10.027 10.1177/1077546315581228 10.1016/j.jcp.2015.03.063 10.1016/j.camwa.2013.01.023 10.1016/j.jcp.2012.03.001 10.1063/1.4958717 10.1016/j.camwa.2010.10.027 10.1016/j.cam.2013.07.044 10.1007/s11071-014-1854-7 10.1016/j.camwa.2013.10.011 10.1155/2016/6345978 10.1016/j.cam.2016.06.012 10.1080/00207160.2014.964692 10.1016/j.apnum.2017.06.010 10.1016/j.cnsns.2019.01.005 10.1016/j.cnsns.2011.04.025 10.1016/j.aml.2015.02.010 10.1155/2015/902161 10.1016/j.cam.2011.06.019 10.1007/s11075-011-9465-6 10.1007/978-3-540-30728-0 10.1016/j.apnum.2016.07.011 10.1007/s11071-018-4366-z 10.1016/j.apnum.2013.11.003 10.1016/j.mcm.2011.01.002 10.2298/TSCI180320239Y 10.3233/FI-2017-1479 10.1016/j.jcp.2014.03.039 10.1140/epjst/e2018-00020-2 10.1016/j.camwa.2016.11.019 10.1016/j.mcm.2011.09.034 10.1142/9789814355216 10.1155/2013/586870 10.1016/j.jcp.2014.12.043 10.1016/j.camwa.2011.12.050 10.1016/j.jcp.2013.09.039 10.1137/S0036142902410271 10.1016/j.jcp.2014.08.015 10.1007/s40314-020-1070-7 10.1016/j.jcp.2014.12.001 10.3846/13926292.2017.1258014 10.1016/j.apm.2015.10.009 10.1016/j.chaos.2020.109721 10.1016/j.apacoust.2013.12.010 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/fractalfract6010019 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2504-3110 |
ExternalDocumentID | oai_doaj_org_article_c5eb1ac34c544923880790047a65617b 10_3390_fractalfract6010019 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c388t-fadaad1be5a9b3d1eb5fe9d76bf7bacf33af86961e08932a727062d94b3ae6f93 |
IEDL.DBID | DOA |
ISSN | 2504-3110 |
IngestDate | Wed Aug 27 00:50:01 EDT 2025 Fri Jul 25 11:42:02 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Tue Jul 01 00:22:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-fadaad1be5a9b3d1eb5fe9d76bf7bacf33af86961e08932a727062d94b3ae6f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9043-9644 0000-0003-4044-3335 0000-0003-4237-7140 0000-0001-7359-4370 |
OpenAccessLink | https://doaj.org/article/c5eb1ac34c544923880790047a65617b |
PQID | 2621280127 |
PQPubID | 2055410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5eb1ac34c544923880790047a65617b proquest_journals_2621280127 crossref_primary_10_3390_fractalfract6010019 crossref_citationtrail_10_3390_fractalfract6010019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fractal and fractional |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Nemati (ref_12) 2016; 308 Zayernouri (ref_29) 2015; 293 Doha (ref_47) 2012; 64 Alikhanov (ref_33) 2015; 268 ref_53 Lin (ref_38) 2009; 212 Yi (ref_16) 2016; 40 Shen (ref_49) 2003; 41 Abdelkawy (ref_57) 2020; 134 Doha (ref_43) 2014; 77 Chen (ref_22) 2015; 46 Yang (ref_8) 2019; 23 Chen (ref_32) 2014; 68 Yang (ref_51) 2013; 225 Abdelkawy (ref_58) 2020; 39 Wang (ref_13) 2016; 275 Okuzono (ref_54) 2014; 79 Atangana (ref_27) 2015; 293 Liu (ref_36) 2016; 2016 Eslahchi (ref_2) 2014; 257 Abdelkawy (ref_1) 2015; 1 Momani (ref_11) 2006; 182 Chen (ref_24) 2014; 238 Ghoreishi (ref_44) 2011; 61 Abdelkawy (ref_42) 2017; 18 Yang (ref_6) 2017; 226 Sun (ref_23) 2015; 2015 Mokhtary (ref_45) 2011; 58 Bhrawy (ref_46) 2015; 293 Xu (ref_21) 2014; 40 Pedas (ref_17) 2016; 110 Chen (ref_37) 2011; 236 Chen (ref_48) 2012; 231 Mokhtary (ref_15) 2017; 121 Bhrawy (ref_41) 2013; 222 Yi (ref_19) 2015; 92 Bhrawy (ref_55) 2017; 73 Yang (ref_7) 2017; 151 Wen (ref_52) 2014; 67 Bhrawy (ref_40) 2016; 4 Tavares (ref_26) 2016; 35 Zaky (ref_56) 2018; 94 Bhrawy (ref_4) 2015; 294 Zhang (ref_28) 2014; 242 Zayernouri (ref_5) 2014; 257 Doha (ref_20) 2019; 72 Bhrawy (ref_25) 2015; 80 Zhao (ref_14) 2014; 65 Bhrawy (ref_39) 2012; 17 Razminia (ref_35) 2012; 55 Doha (ref_50) 2011; 53 ref_3 Alqahtani (ref_30) 2017; 22 Lopes (ref_10) 2016; 22 Zhao (ref_31) 2015; 293 Chen (ref_9) 2016; 26 Sweilam (ref_34) 2013; 2013 Bhrawy (ref_18) 2018; 47 |
References_xml | – volume: 238 start-page: 329 year: 2014 ident: ref_24 article-title: Numerical solution for the variable order linear cable equation with Bernstein polynomials publication-title: Appl. Math. Comput. – volume: 18 start-page: 411 year: 2017 ident: ref_42 article-title: Jacobi collocation approximation for solving multi-dimensional Volterra integral equations publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2016-0160 – volume: 65 start-page: 723 year: 2014 ident: ref_14 article-title: Collocation methods for fractional integro-differential equations with weakly singular kernels publication-title: Numer. Algorithms doi: 10.1007/s11075-013-9710-2 – volume: 35 start-page: 69 year: 2016 ident: ref_26 article-title: Caputo derivatives of fractional variable order: Numerical approximations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.10.027 – volume: 22 start-page: 2100 year: 2016 ident: ref_10 article-title: Modeling vegetable fractals by means of fractional-order equations publication-title: J. Vib. Control doi: 10.1177/1077546315581228 – volume: 294 start-page: 462 year: 2015 ident: ref_4 article-title: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.03.063 – volume: 68 start-page: 2133 year: 2014 ident: ref_32 article-title: Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.01.023 – volume: 231 start-page: 5016 year: 2012 ident: ref_48 article-title: Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.03.001 – volume: 26 start-page: 084303 year: 2016 ident: ref_9 article-title: Design and implementation of grid multi-scroll fractional-order chaotic attractors publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4958717 – volume: 61 start-page: 30 year: 2011 ident: ref_44 article-title: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.10.027 – volume: 257 start-page: 105 year: 2014 ident: ref_2 article-title: Application of the collocation method for solving nonlinear fractional integro-differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.07.044 – volume: 80 start-page: 101 year: 2015 ident: ref_25 article-title: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1854-7 – volume: 67 start-page: 1 year: 2014 ident: ref_52 article-title: Convergence analysis of a new multiscale finite element method for the stationary Navier–Stokes problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.10.011 – volume: 2016 start-page: 6345978 year: 2016 ident: ref_36 article-title: An operational matrix technique for solving variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials publication-title: Adv. Math. Phys. doi: 10.1155/2016/6345978 – volume: 308 start-page: 231 year: 2016 ident: ref_12 article-title: A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.06.012 – volume: 225 start-page: 407 year: 2013 ident: ref_51 article-title: An approximation of semiconductor device by mixed finite element method and characteristics-mixed finite element method publication-title: Appl. Math. Comput. – volume: 92 start-page: 1715 year: 2015 ident: ref_19 article-title: CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2014.964692 – volume: 121 start-page: 52 year: 2017 ident: ref_15 article-title: Numerical analysis of an operational Jacobi Tau method for fractional weakly singular integro-differential equations publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2017.06.010 – volume: 72 start-page: 342 year: 2019 ident: ref_20 article-title: Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.01.005 – volume: 40 start-page: 699 year: 2014 ident: ref_21 article-title: A finite difference technique for solving variable-order fractional integro-differential equations publication-title: Bull. Iran. Math. Soc. – volume: 17 start-page: 62 year: 2012 ident: ref_39 article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.04.025 – volume: 46 start-page: 83 year: 2015 ident: ref_22 article-title: Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2015.02.010 – volume: 2015 start-page: 902161 year: 2015 ident: ref_23 article-title: Numerical algorithm to solve a class of variable order fractional integral-differential equation based on Chebyshev polynomials publication-title: Math. Probl. Eng. doi: 10.1155/2015/902161 – volume: 236 start-page: 209 year: 2011 ident: ref_37 article-title: Numerical analysis for a variable-order nonlinear cable equation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2011.06.019 – volume: 58 start-page: 475 year: 2011 ident: ref_45 article-title: The L2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations publication-title: Numer. Algorithms doi: 10.1007/s11075-011-9465-6 – ident: ref_53 doi: 10.1007/978-3-540-30728-0 – volume: 110 start-page: 204 year: 2016 ident: ref_17 article-title: Spline collocation for fractional weakly singular integro-differential equations publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2016.07.011 – volume: 94 start-page: 757 year: 2018 ident: ref_56 article-title: Correction to: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4366-z – volume: 77 start-page: 43 year: 2014 ident: ref_43 article-title: A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2013.11.003 – volume: 222 start-page: 255 year: 2013 ident: ref_41 article-title: A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients publication-title: Appl. Math. Comput. – volume: 53 start-page: 1820 year: 2011 ident: ref_50 article-title: A Jacobi–Jacobi dual-Petrov–Galerkin method for third-and fifth-order differential equations publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.01.002 – volume: 23 start-page: 1677 year: 2019 ident: ref_8 article-title: A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer publication-title: Therm. Sci. doi: 10.2298/TSCI180320239Y – volume: 47 start-page: 553 year: 2018 ident: ref_18 article-title: A spectral technique for solving two-dimensional fractional integral equations with weakly singular kernel publication-title: Hacet. J. Math. Stat. – volume: 151 start-page: 63 year: 2017 ident: ref_7 article-title: A new family of the local fractional PDEs publication-title: Fundam. Informaticae doi: 10.3233/FI-2017-1479 – volume: 293 start-page: 142 year: 2015 ident: ref_46 article-title: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.03.039 – volume: 268 start-page: 12 year: 2015 ident: ref_33 article-title: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation publication-title: Appl. Math. Comput. – volume: 226 start-page: 3567 year: 2017 ident: ref_6 article-title: A new fractional derivative involving the normalized sinc function without singular kernel publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2018-00020-2 – volume: 182 start-page: 754 year: 2006 ident: ref_11 article-title: Numerical methods for fourth-order fractional integro-differential equations publication-title: Appl. Math. Comput. – volume: 1 start-page: 1 year: 2015 ident: ref_1 article-title: A Jacobi spectral collocation scheme for solving Abel’s integral equations publication-title: Prog. Fract. Differ. Appl. – volume: 73 start-page: 1100 year: 2017 ident: ref_55 article-title: Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.11.019 – volume: 4 start-page: 1 year: 2016 ident: ref_40 article-title: Legendre–Gauss–Lobatto collocation method for solving multi-dimensional Fredholm integral equations publication-title: Comput. Math. Appl. – volume: 55 start-page: 1106 year: 2012 ident: ref_35 article-title: Solution existence for non-autonomous variable-order fractional differential equations publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.09.034 – ident: ref_3 doi: 10.1142/9789814355216 – volume: 2013 start-page: 586870 year: 2013 ident: ref_34 article-title: Numerical simulations for the space-time variable order nonlinear fractional wave equation publication-title: J. Appl. Math. doi: 10.1155/2013/586870 – volume: 293 start-page: 104 year: 2015 ident: ref_27 article-title: On the stability and convergence of the time-fractional variable order telegraph equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.12.043 – volume: 242 start-page: 541 year: 2014 ident: ref_28 article-title: Numerical analysis of a new space–time variable fractional order advection–dispersion equation publication-title: Appl. Math. Comput. – volume: 64 start-page: 558 year: 2012 ident: ref_47 article-title: An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.12.050 – volume: 257 start-page: 460 year: 2014 ident: ref_5 article-title: Exponentially accurate spectral and spectral element methods for fractional ODEs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.039 – volume: 41 start-page: 1595 year: 2003 ident: ref_49 article-title: A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902410271 – volume: 275 start-page: 72 year: 2016 ident: ref_13 article-title: SCW method for solving the fractional integro-differential equations with a weakly singular kernel publication-title: Appl. Math. Comput. – volume: 293 start-page: 184 year: 2015 ident: ref_31 article-title: Second-order approximations for variable order fractional derivatives: Algorithms and applications publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.015 – volume: 39 start-page: 1 year: 2020 ident: ref_58 article-title: Highly accurate technique for solving distributed-order time-fractional-sub-diffusion equations of fourth order publication-title: Comput. Appl. Math. doi: 10.1007/s40314-020-1070-7 – volume: 293 start-page: 312 year: 2015 ident: ref_29 article-title: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.12.001 – volume: 22 start-page: 1 year: 2017 ident: ref_30 article-title: Space-time spectral collocation algorithm for the variable-order Galilei invariant advection diffusion equations with a nonlinear source term publication-title: Math. Model. Anal. doi: 10.3846/13926292.2017.1258014 – volume: 40 start-page: 3422 year: 2016 ident: ref_16 article-title: Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.10.009 – volume: 212 start-page: 435 year: 2009 ident: ref_38 article-title: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation publication-title: Appl. Math. Comput. – volume: 134 start-page: 109721 year: 2020 ident: ref_57 article-title: Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109721 – volume: 79 start-page: 1 year: 2014 ident: ref_54 article-title: A finite-element method using dispersion reduced spline elements for room acoustics simulation publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2013.12.010 |
SSID | ssj0002793507 |
Score | 2.2367737 |
Snippet | We propose a fractional-order shifted Jacobi–Gauss collocation method for variable-order fractional integro-differential equations with weakly singular kernel... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 19 |
SubjectTerms | Algorithms Approximation Boundary conditions Collocation methods Derivatives Differential equations Fractional calculus fractional-order shifted Jacobi polynomial Initial conditions Integrals Kernels Polynomials Riemann–Liouville fractional derivative Riemann–Liouville fractional integral variable-order fractional integro-differential equation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNoD4lV1eckHjliQOHGSE-KxKx5aWrHQcovGjt0iog3sLgf-Br-YGce7VAJxShQ_Dhl75pux5xvGdtCEZQXEWuTKJIJO9gQUVgqrdaUjDS4GynfuX6rTm-T8Nr0NAbdxuFY51YleUVeNoRj5XqxQyZI6zQ4eHgVVjaLT1VBC4wtboFZ0vhaOupe_rmZRlhiXHyKelm5Ion-_5yj5CGr_IGfEc-z8Z5I8c_87xeytTW-JLQaYyA9buS6zOTtcYd_6M47V8Sp7Gfy7c4gXeW_UJidALX4SkSY_Ry2n7zjFBJo2Isf7vlA0R4TKB01NQQT-G71kypsKg95m4WeeQqIRJ6F4CiqBmncfW1JwTpFb_sfCff3MBzgR3WPlF3Y0tPUau-l1r49PRaiwIIzM84lwUAFUkbYpFFpWkdV096zKlHaZBuOkBJerQkV2H3FNDAh29lVcFYmWYJUr5Hc2P2yG9gfjSaGjXKNDk0YmUc7mmYvwrZIJTiBN3mHx9CeXJtCPUxWMukQ3hCRTfiCZDtudDXpo2Tc-735E0pt1Jeps_6EZ_S3DTixNiuYJjExMmhA7HSqwrCDSTEBoG2W6wzansi_Dfh6Xb6tv_fPmDfY1pgQJH6TZZPOT0ZPdQtgy0dthbb4CxC7y8Q priority: 102 providerName: ProQuest |
Title | Shifted Fractional-Order Jacobi Collocation Method for Solving Variable-Order Fractional Integro-Differential Equation with Weakly Singular Kernel |
URI | https://www.proquest.com/docview/2621280127 https://doaj.org/article/c5eb1ac34c544923880790047a65617b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbK9gIHBG0RS2HlQ4-1IHHixMcu7PKoFlC3PG7R2LEFbbQLy3Lgb_QXd8YJy0oguHBKFNlO5Jl4vhl7vmHsG5qwTENsRK5sImhnT4B2UjhjShMZ8DFQvvPgWB2cJUeX6eVcqS86E1bTA9cTt21TXE3AysSmCZGJob5lmjgOAZFIlBlafdHmzTlTf8J2mpaIdGqaIYl-_banpCOowoWckMCtM2eKAmP_swU5WJn-Cltu4CH_UX_WKvvgRp_Y0mDGrXr3mf0bXl17xIm8P6mTEqASJ0SgyY9wdTPXnGIB4zoSxwehQDRHZMqH44qCB_wcvWPKl2o6PY3CDwN1xFjsNUVT8OeveO-2JgPnFLHlFw7-Vg98iAPR-VX-001GrvrCzvq937sHoqmsICxO4FR4KAHKyLgUtJFl5AydOSszZXxmwHopwedKq8jtIJ6JAUHOjopLnRgJTnkt11hrNB65dcYTbaLcoCOTRjZR3uWZj_CulAkOIG3eZvHjJBe2oR2n6hdVge4HSaZ4QTJt9n3W6aZm3Xi9eZekN2tKlNnhASpS0ShS8ZYitdnmo-yL5j--K2KFpp2MeLbxHu_4yhZjSp8IIZxN1ppO7t0Wgpqp6bCFvL_fYR-7vePTX52gzf8BeBP7Ng |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYQHGgPFaWtupS2PrS3Wmxsx0kOVUUL212WhcNCyy21HRtQow3sboV4jT5In7EzTrIggbhxShQ7PmTG3_zE8w0hH8CEJZnmhqXKSoZ_9pjOnGDOmMJERnuusd55dKD6x3LvJD5ZIv_aWhg8VtliYgDqorKYI9_iCkAW4TT5cnHJsGsU_l1tW2jUajF011cQss0-D3ZAvh857-0efeuzpqsAsyJN58zrQusiMi7WmRFF5AyetyoSZXxitPVCaJ-qTEWuC7acazDwXcWLTBqhnfJIvgSQvyKFyHBHpb3vi5wOB2UH_6omN4Lx7pbHUiddhguGPoHR55YBDH0C7piBYNt6a-RZ45TS7VqLnpMlN1knT0cLRtfZC_J3fHbuwTulvWldCqFLdoi0nXQPMNWcU8xAVHX-j45CW2oK_jAdVyWmLOgPiMmxSqt56WYVOgiEFRXbaVq1AOSUdPeypiCnmCemP53-XV7TMSyEp2bp0E0nrnxJjh_ly78iy5Nq4l4TKjMTpQbCpziyUnmXJj6Cu0JIWEDYtEN4-5Fz25CdY8-NMoegByWT3yOZDvm0eOmi5vp4ePpXlN5iKhJ1hwfV9DRv9n1uYzCG2gppY4lceACXSYYUnRoc6SgxHbLZyj5v0GOW3-j6xsPD78lq_2i0n-8PDoZvyBOOpRkhPbRJlufTP-4tOExz8y5oKSW_Hntb_Ad92zEG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLemTkJwQIw_ojCGD3DDamMnTnJAiNFW60rLRBnsltmODRNRs7VFaF-Dj8On4z3H6ZBAu-2UKLF9yHv5vT_2-z1CXoAJS3PFNcukiRnu7DGVW8Gs1qWOtHJcYb3zdCYPjuPDk-Rki_xua2HwWGWLiR6oy9pgjrzHJYAswmnac-FYxNFg9Ob8gmEHKdxpbdtpNCoysZc_IXxbvR4PQNYvOR8NP707YKHDADMiy9bMqVKpMtI2UbkWZWQ1nr0qU6ldqpVxQiiXyVxGtg92nSsw9n3JyzzWQlnpkIgJ4H87haio3yHb-8PZ0cdNhoeD6oO31VAdCZH3ew4Ln1TlLxgIeX6fv8yh7xrwj1Hwlm50j9wNLip92-jUDtmyi_vkznTD77p6QH7Nv5058FXpaNkURqiKfUAST3oICKvPKOYj6iYbSKe-STUF75jO6woTGPQzROhYsxUmXa1Cx56-omaD0LgFAKiiw4uGkJxi1ph-sep7dUnnsBCeoaUTu1zY6iE5vpFv_4h0FvXCPiY0znWUaQimksjE0tksdRHclSKGBYTJuoS3H7kwgfocO3BUBYRAKJniP5LpklebSecN88f1w_dRepuhSNvtH9TLr0VAgcIkYBqVEbFJYmTGA_BMcyTsVOBWR6nukt1W9kXAklVxpflPrn_9nNyCX6J4P55NnpLbHOs0fK5ol3TWyx_2GXhPa70X1JSS05v-M_4AM2g2mA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifted+Fractional-Order+Jacobi+Collocation+Method+for+Solving+Variable-Order+Fractional+Integro-Differential+Equation+with+Weakly+Singular+Kernel&rft.jtitle=Fractal+and+fractional&rft.au=Mohamed+A.+Abdelkawy&rft.au=Ahmed+Z.+M.+Amin&rft.au=Ant%C3%B3nio+M.+Lopes&rft.au=Ishak+Hashim&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=6&rft.issue=1&rft.spage=19&rft_id=info:doi/10.3390%2Ffractalfract6010019&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c5eb1ac34c544923880790047a65617b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |