Enhancing Indoor Robot Pedestrian Detection Using Improved PIXOR Backbone and Gaussian Heatmap Regression in 3D LiDAR Point Clouds
Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for pedes...
Saved in:
Published in | IEEE access Vol. 12; pp. 9162 - 9176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
IEEE |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for pedestrian perception in indoor mobile robots. This novel approach employs an enhanced adaptation of the cutting-edge PIXOR model, integrating two pivotal augmentations: a remodeled convolutional backbone leveraging Inverted Residual Blocks (IRB) in unison with Gaussian Heatmap Regression (GHR), as well as a Modified Focal Loss (MFL) function to tackle data imbalance issues. The IRB component notably bolsters the network’s aptitude for processing intricate spatial representations generated from sparse 3D LiDAR scans. Meanwhile, integrating GHR further elevates accuracy by enabling precise localization of pedestrian subjects. This is achieved by modeling the probability distribution and predicting the central location of individuals in the point cloud data. Extensively evaluated on the large-scale JRDB dataset comprising intense scans from 16-beam Velodyne LiDAR sensors, IRBGHR-PIXOR accomplishes exceptional results, attaining 97.17% Average Precision (AP) at the 0.5 IOU threshold. Notably, this level of accuracy is achieved without significantly increasing model complexity. By enhancing algorithms to overcome challenges in confined indoor environments, this research paves the way for safe and effective deployment of autonomous technologies once encumbered by perceptual limitations in human-centered spaces. Nonetheless, evaluating performance in diverse edge cases and integration with complementary sensory cues promise continued progress. The developments contribute towards the vital capacity of reliable dynamic perception for next-generation robotic systems coexisting in human-centric environments. |
---|---|
AbstractList | Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for pedestrian perception in indoor mobile robots. This novel approach employs an enhanced adaptation of the cutting-edge PIXOR model, integrating two pivotal augmentations: a remodeled convolutional backbone leveraging Inverted Residual Blocks (IRB) in unison with Gaussian Heatmap Regression (GHR), as well as a Modified Focal Loss (MFL) function to tackle data imbalance issues. The IRB component notably bolsters the network’s aptitude for processing intricate spatial representations generated from sparse 3D LiDAR scans. Meanwhile, integrating GHR further elevates accuracy by enabling precise localization of pedestrian subjects. This is achieved by modeling the probability distribution and predicting the central location of individuals in the point cloud data. Extensively evaluated on the large-scale JRDB dataset comprising intense scans from 16-beam Velodyne LiDAR sensors, IRBGHR-PIXOR accomplishes exceptional results, attaining 97.17% Average Precision (AP) at the 0.5 IOU threshold. Notably, this level of accuracy is achieved without significantly increasing model complexity. By enhancing algorithms to overcome challenges in confined indoor environments, this research paves the way for safe and effective deployment of autonomous technologies once encumbered by perceptual limitations in human-centered spaces. Nonetheless, evaluating performance in diverse edge cases and integration with complementary sensory cues promise continued progress. The developments contribute towards the vital capacity of reliable dynamic perception for next-generation robotic systems coexisting in human-centric environments. |
Author | Nguyen, Nguyen Trung Nguyen, Duy Anh Hoang, Khang Nguyen Tran, Hoang Ngoc |
Author_xml | – sequence: 1 givenname: Duy Anh orcidid: 0000-0002-2432-2050 surname: Nguyen fullname: Nguyen, Duy Anh organization: Department of Mechatronic Engineering, Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam – sequence: 2 givenname: Khang Nguyen orcidid: 0000-0003-3616-0367 surname: Hoang fullname: Hoang, Khang Nguyen organization: Department of Software Engineering, FPT University, Can Tho, Vietnam – sequence: 3 givenname: Nguyen Trung surname: Nguyen fullname: Nguyen, Nguyen Trung organization: Department of Software Engineering, FPT University, Can Tho, Vietnam – sequence: 4 givenname: Duy Anh surname: Nguyen fullname: Nguyen, Duy Anh organization: Department of Mechatronic Engineering, Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam – sequence: 5 givenname: Hoang Ngoc orcidid: 0000-0002-1401-3668 surname: Tran fullname: Tran, Hoang Ngoc organization: Department of Software Engineering, FPT University, Can Tho, Vietnam |
BookMark | eNp9kU-LUzEUxYOM4FjnE7gJuG7Nn5f3kmV97cwUClM6DrgL9yVpTW2TmqSCWz-56XQEcWE2Nxzu73I45y26CjE4hN5TMqGUqI_Tvp8_Pk4YYc2Ec0FlK1-ha0ZbNeaCt1d__d-gm5x3pD5ZJdFdo1_z8BWC8WGLF8HGmPA6DrHglbMul-Qh4JkrzhQfA37Kz3uHY4o_nMWrxZeHNf4E5ttQHWEIFt_BKeczdO-gHOCI126bXJUq7QPmM7z0s-kar6IPBff7eLL5HXq9gX12Ny9zhJ5u55_7-_Hy4W7RT5djw6Us4w2hlFPTtNYZKuskCjolh24YDBVENoIpJVqhCOnURoJynBjRskrTzinOR2hxuWsj7PQx-QOknzqC189CTFsNqXizd7oB0xrZkQFANLZhireGtc5a1klKGdRbHy63ahTfTzUpvYunFKp9zRSVhElV8x4hddkyKeac3EYbX-AcZUng95oSfW5QXxrU5wb1S4OV5f-wfxz_j_oN8PyemA |
CitedBy_id | crossref_primary_10_1007_s11554_024_01578_7 crossref_primary_10_1007_s11760_024_03779_w crossref_primary_10_1007_s11042_024_19302_9 |
Cites_doi | 10.1109/JSEN.2020.3020626 10.1109/CVPR.2017.597 10.1108/SR-01-2022-0022 10.1109/CVPR.2017.691 10.1007/s11263-022-01710-9 10.1109/CVPR.2014.81 10.1109/CVPR42600.2020.00178 10.1109/ICASSP43922.2022.9747512 10.1007/s11831-021-09670-y 10.1109/MITS.2021.3109041 10.1007/s11263-015-0816-y 10.1109/TPAMI.2016.2577031 10.1007/s11263-019-01204-1 10.1007/s11554-022-01201-7 10.1007/978-3-030-90436-4_37 10.1109/CVPR.2018.00474 10.1109/IV47402.2020.9304830 10.1109/CVPR.2017.16 10.1109/IROS51168.2021.9636384 10.1109/TITS.2019.2892405 10.1109/TPAMI.2021.3070543 10.1109/TNNLS.2020.3015992 10.1109/TPAMI.2016.2537320 10.1088/1742-6596/2232/1/012015 10.1109/CVPR42600.2020.01255 10.1109/IOTM.001.2200199 10.3390/s18103337 10.1016/j.inffus.2020.11.002 10.1109/ICCV.2019.00208 10.1109/TIM.2022.3165251 10.1109/CVPR.2017.198 10.1109/TITS.2020.2972974 10.1109/CVPR.2019.00115 10.1109/TPAMI.2018.2858826 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3351868 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 9176 |
ExternalDocumentID | oai_doaj_org_article_4ac6c870baa54d42936c26edd278112a 10_1109_ACCESS_2024_3351868 |
GroupedDBID | 0R~ 4.4 5VS 6IK AAJGR AAYXX ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIG RNS 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c388t-f01131c46dec18c4609a798b7bbc15084529956590079f8a9e30c562c3817e933 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Mon Jun 30 03:37:31 EDT 2025 Tue Jul 01 04:14:16 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-f01131c46dec18c4609a798b7bbc15084529956590079f8a9e30c562c3817e933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2432-2050 0000-0002-1401-3668 0000-0003-3616-0367 |
OpenAccessLink | https://doaj.org/article/4ac6c870baa54d42936c26edd278112a |
PQID | 2918028935 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ac6c870baa54d42936c26edd278112a proquest_journals_2918028935 crossref_citationtrail_10_1109_ACCESS_2024_3351868 crossref_primary_10_1109_ACCESS_2024_3351868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: IEEE |
References | Sermanet (ref19) Alex (ref7) ref11 ref10 Andreas (ref15) Zhengxiong (ref16) ref17 Xiaozhi (ref36) Paszke (ref51) 2017 Vendrow (ref14) 2022 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref9 ref4 ref3 ref6 ref40 Gugger (ref53) 2018 Yin (ref5) ref35 Charles (ref12) ref37 Yang (ref8) 2019 ref31 ref30 ref2 ref1 ref39 ref38 Vora (ref34) 2019 Charles (ref29) Dai (ref22) ref24 ref23 ref26 ref25 ref20 ref21 Shi (ref32) 2021 Loshchilov (ref52) ref28 ref27 Ehsanpour (ref13) 2021 Krizhevsky (ref18) Ge (ref54) 2020 Shi (ref33) 2019 |
References_xml | – year: 2019 ident: ref33 article-title: PV-RCNN: Point-voxel feature set abstraction for 3D object detection publication-title: arXiv:1912.13192 – ident: ref9 doi: 10.1109/JSEN.2020.3020626 – ident: ref27 doi: 10.1109/CVPR.2017.597 – ident: ref25 doi: 10.1108/SR-01-2022-0022 – start-page: 3354 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. ident: ref15 article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite – ident: ref50 doi: 10.1109/CVPR.2017.691 – ident: ref3 doi: 10.1007/s11263-022-01710-9 – ident: ref21 doi: 10.1109/CVPR.2014.81 – ident: ref31 doi: 10.1109/CVPR42600.2020.00178 – ident: ref39 doi: 10.1109/ICASSP43922.2022.9747512 – start-page: 12697 volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. ident: ref7 article-title: PointPillars: Fast encoders for object detection from point clouds – ident: ref11 doi: 10.1007/s11831-021-09670-y – ident: ref4 doi: 10.1109/MITS.2021.3109041 – ident: ref24 doi: 10.1007/s11263-015-0816-y – ident: ref23 doi: 10.1109/TPAMI.2016.2577031 – ident: ref48 doi: 10.1007/s11263-019-01204-1 – start-page: 4490 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. ident: ref5 article-title: VoxelNet: End-to-end learning for point cloud based 3D object detection – ident: ref47 doi: 10.1007/s11554-022-01201-7 – start-page: 1 volume-title: Proc. NIPS ident: ref36 article-title: 3D object proposals for accurate object class detection – ident: ref37 doi: 10.1007/978-3-030-90436-4_37 – start-page: 1097 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref18 article-title: ImageNet classification with deep convolutional neural networks – ident: ref46 doi: 10.1109/CVPR.2018.00474 – volume-title: The 1Cycle Policy year: 2018 ident: ref53 – ident: ref49 doi: 10.1109/IV47402.2020.9304830 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref19 article-title: OverFeat: Integrated recognition, localization and detection using convolutional networks – year: 2021 ident: ref13 article-title: JRDB-act: A large-scale dataset for spatio-temporal action, social group and activity detection publication-title: arXiv:2106.08827 – year: 2019 ident: ref34 article-title: PointPainting: Sequential fusion for 3D object detection publication-title: arXiv:1911.10150 – year: 2017 ident: ref51 article-title: Automatic differentiation in PyTorch – ident: ref28 doi: 10.1109/CVPR.2017.16 – ident: ref38 doi: 10.1109/IROS51168.2021.9636384 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref52 article-title: Decoupled weight decay regularization – ident: ref2 doi: 10.1109/TITS.2019.2892405 – ident: ref1 doi: 10.1109/TPAMI.2021.3070543 – ident: ref10 doi: 10.1109/TNNLS.2020.3015992 – year: 2022 ident: ref14 article-title: JRDB-pose: A large-scale dataset for multi-person pose estimation and tracking publication-title: arXiv:2210.11940 – start-page: 13264 volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. ident: ref16 article-title: Rethinking the heatmap regression for bottom-up human pose estimation – ident: ref20 doi: 10.1109/TPAMI.2016.2537320 – ident: ref45 doi: 10.1088/1742-6596/2232/1/012015 – start-page: 918 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. ident: ref12 article-title: Frustum PointNets for 3D object detection from RGB-D data – ident: ref42 doi: 10.1109/CVPR42600.2020.01255 – year: 2020 ident: ref54 article-title: Afdet: Anchor free one stage 3D object detection publication-title: arXiv:2006.12671 – ident: ref35 doi: 10.1109/IOTM.001.2200199 – ident: ref30 doi: 10.3390/s18103337 – year: 2021 ident: ref32 article-title: PV-RCNN++: Point-voxel feature set abstraction with local vector representation for 3D object detection publication-title: arXiv:2102.00463 – ident: ref26 doi: 10.1016/j.inffus.2020.11.002 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref29 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space – year: 2019 ident: ref8 article-title: PIXOR: Real-time 3D object detection from point clouds publication-title: arXiv:1902.06326 – start-page: 379 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref22 article-title: R-FCN: Object detection via region based fully convolutional networks – ident: ref43 doi: 10.1109/ICCV.2019.00208 – ident: ref6 doi: 10.1109/TIM.2022.3165251 – ident: ref40 doi: 10.1109/CVPR.2017.198 – ident: ref44 doi: 10.1109/TITS.2020.2972974 – ident: ref41 doi: 10.1109/CVPR.2019.00115 – ident: ref17 doi: 10.1109/TPAMI.2018.2858826 |
SSID | ssj0000816957 |
Score | 2.3132133 |
Snippet | Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 9162 |
SubjectTerms | Accuracy Algorithms Gaussian heatmap Indoor environments Lidar pedestrian detection pedestrian tracking Perception Performance evaluation PIXOR point cloud Robot navigation Robots Robustness (mathematics) Statistical analysis Three dimensional models |
Title | Enhancing Indoor Robot Pedestrian Detection Using Improved PIXOR Backbone and Gaussian Heatmap Regression in 3D LiDAR Point Clouds |
URI | https://www.proquest.com/docview/2918028935 https://doaj.org/article/4ac6c870baa54d42936c26edd278112a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGnrbDsO6BZWsHHnqcV8eSbemYJu3SYY8gWIHcBImSu2CFXDTOH-gvryi7RYYB62UnA4YMyyJFfpTJj4wd2QgplMKI3NDlmTBVnpncqqyUhivRiLpEKhT-9r2aX4gvq3K10-qLcsJ6euB-4Y6FwQqjUlljSuGi9eQVFpV3rqAaySJBo-jzdoKpZIPluFJlPdAMjXN1PJlO4xfFgLAQnzgviSX-D1eUGPv_MsjJy5y9YM8HeAiTflr77IkPL9mzHdLAV-z2NPwikoxwCefBte0NLFvbdrDwzqcmHAFmvksZVgFSRgD0JwfeweJ89WMJJwZ_2zZ4MMHBZ7PdUCElzCnj3FzD0l_2ubEB1gH4DL6uZ5MlLNp16GB61W7d5jW7ODv9OZ1nQyeFDLmUXdbEXczHKCrncSzjNVemVtLW1iIRwtPf1xgoUQfRWjXSKM9zjMgIib_PK87fsL0Q5_WWQc55rRw66iQmGqeMFdYhetMII2WFI1bcL6rGgWacul1c6RRu5Er3ktAkCT1IYsQ-Pjx03bNs_Hv4CUnrYShRZKcbUXH0oDj6McUZsYN7Weth3250oYgRL2K48t3_eMd79pTm3R_ZHLC97mbrDyOI6eyHpK93NSHsCQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Indoor+Robot+Pedestrian+Detection+Using+Improved+PIXOR+Backbone+and+Gaussian+Heatmap+Regression+in+3D+LiDAR+Point+Clouds&rft.jtitle=IEEE+access&rft.au=Nguyen%2C+Duy+Anh&rft.au=Hoang%2C+Khang+Nguyen&rft.au=Nguyen%2C+Nguyen+Trung&rft.au=Nguyen%2C+Duy+Anh&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=9162&rft.epage=9176&rft_id=info:doi/10.1109%2FACCESS.2024.3351868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3351868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |