Enhancing Indoor Robot Pedestrian Detection Using Improved PIXOR Backbone and Gaussian Heatmap Regression in 3D LiDAR Point Clouds

Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for pedes...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 9162 - 9176
Main Authors Nguyen, Duy Anh, Hoang, Khang Nguyen, Nguyen, Nguyen Trung, Tran, Hoang Ngoc
Format Journal Article
LanguageEnglish
Published Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
IEEE
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for pedestrian perception in indoor mobile robots. This novel approach employs an enhanced adaptation of the cutting-edge PIXOR model, integrating two pivotal augmentations: a remodeled convolutional backbone leveraging Inverted Residual Blocks (IRB) in unison with Gaussian Heatmap Regression (GHR), as well as a Modified Focal Loss (MFL) function to tackle data imbalance issues. The IRB component notably bolsters the network’s aptitude for processing intricate spatial representations generated from sparse 3D LiDAR scans. Meanwhile, integrating GHR further elevates accuracy by enabling precise localization of pedestrian subjects. This is achieved by modeling the probability distribution and predicting the central location of individuals in the point cloud data. Extensively evaluated on the large-scale JRDB dataset comprising intense scans from 16-beam Velodyne LiDAR sensors, IRBGHR-PIXOR accomplishes exceptional results, attaining 97.17% Average Precision (AP) at the 0.5 IOU threshold. Notably, this level of accuracy is achieved without significantly increasing model complexity. By enhancing algorithms to overcome challenges in confined indoor environments, this research paves the way for safe and effective deployment of autonomous technologies once encumbered by perceptual limitations in human-centered spaces. Nonetheless, evaluating performance in diverse edge cases and integration with complementary sensory cues promise continued progress. The developments contribute towards the vital capacity of reliable dynamic perception for next-generation robotic systems coexisting in human-centric environments.
AbstractList Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for pedestrian perception in indoor mobile robots. This novel approach employs an enhanced adaptation of the cutting-edge PIXOR model, integrating two pivotal augmentations: a remodeled convolutional backbone leveraging Inverted Residual Blocks (IRB) in unison with Gaussian Heatmap Regression (GHR), as well as a Modified Focal Loss (MFL) function to tackle data imbalance issues. The IRB component notably bolsters the network’s aptitude for processing intricate spatial representations generated from sparse 3D LiDAR scans. Meanwhile, integrating GHR further elevates accuracy by enabling precise localization of pedestrian subjects. This is achieved by modeling the probability distribution and predicting the central location of individuals in the point cloud data. Extensively evaluated on the large-scale JRDB dataset comprising intense scans from 16-beam Velodyne LiDAR sensors, IRBGHR-PIXOR accomplishes exceptional results, attaining 97.17% Average Precision (AP) at the 0.5 IOU threshold. Notably, this level of accuracy is achieved without significantly increasing model complexity. By enhancing algorithms to overcome challenges in confined indoor environments, this research paves the way for safe and effective deployment of autonomous technologies once encumbered by perceptual limitations in human-centered spaces. Nonetheless, evaluating performance in diverse edge cases and integration with complementary sensory cues promise continued progress. The developments contribute towards the vital capacity of reliable dynamic perception for next-generation robotic systems coexisting in human-centric environments.
Author Nguyen, Nguyen Trung
Nguyen, Duy Anh
Hoang, Khang Nguyen
Tran, Hoang Ngoc
Author_xml – sequence: 1
  givenname: Duy Anh
  orcidid: 0000-0002-2432-2050
  surname: Nguyen
  fullname: Nguyen, Duy Anh
  organization: Department of Mechatronic Engineering, Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
– sequence: 2
  givenname: Khang Nguyen
  orcidid: 0000-0003-3616-0367
  surname: Hoang
  fullname: Hoang, Khang Nguyen
  organization: Department of Software Engineering, FPT University, Can Tho, Vietnam
– sequence: 3
  givenname: Nguyen Trung
  surname: Nguyen
  fullname: Nguyen, Nguyen Trung
  organization: Department of Software Engineering, FPT University, Can Tho, Vietnam
– sequence: 4
  givenname: Duy Anh
  surname: Nguyen
  fullname: Nguyen, Duy Anh
  organization: Department of Mechatronic Engineering, Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
– sequence: 5
  givenname: Hoang Ngoc
  orcidid: 0000-0002-1401-3668
  surname: Tran
  fullname: Tran, Hoang Ngoc
  organization: Department of Software Engineering, FPT University, Can Tho, Vietnam
BookMark eNp9kU-LUzEUxYOM4FjnE7gJuG7Nn5f3kmV97cwUClM6DrgL9yVpTW2TmqSCWz-56XQEcWE2Nxzu73I45y26CjE4hN5TMqGUqI_Tvp8_Pk4YYc2Ec0FlK1-ha0ZbNeaCt1d__d-gm5x3pD5ZJdFdo1_z8BWC8WGLF8HGmPA6DrHglbMul-Qh4JkrzhQfA37Kz3uHY4o_nMWrxZeHNf4E5ttQHWEIFt_BKeczdO-gHOCI126bXJUq7QPmM7z0s-kar6IPBff7eLL5HXq9gX12Ny9zhJ5u55_7-_Hy4W7RT5djw6Us4w2hlFPTtNYZKuskCjolh24YDBVENoIpJVqhCOnURoJynBjRskrTzinOR2hxuWsj7PQx-QOknzqC189CTFsNqXizd7oB0xrZkQFANLZhireGtc5a1klKGdRbHy63ahTfTzUpvYunFKp9zRSVhElV8x4hddkyKeac3EYbX-AcZUng95oSfW5QXxrU5wb1S4OV5f-wfxz_j_oN8PyemA
CitedBy_id crossref_primary_10_1007_s11554_024_01578_7
crossref_primary_10_1007_s11760_024_03779_w
crossref_primary_10_1007_s11042_024_19302_9
Cites_doi 10.1109/JSEN.2020.3020626
10.1109/CVPR.2017.597
10.1108/SR-01-2022-0022
10.1109/CVPR.2017.691
10.1007/s11263-022-01710-9
10.1109/CVPR.2014.81
10.1109/CVPR42600.2020.00178
10.1109/ICASSP43922.2022.9747512
10.1007/s11831-021-09670-y
10.1109/MITS.2021.3109041
10.1007/s11263-015-0816-y
10.1109/TPAMI.2016.2577031
10.1007/s11263-019-01204-1
10.1007/s11554-022-01201-7
10.1007/978-3-030-90436-4_37
10.1109/CVPR.2018.00474
10.1109/IV47402.2020.9304830
10.1109/CVPR.2017.16
10.1109/IROS51168.2021.9636384
10.1109/TITS.2019.2892405
10.1109/TPAMI.2021.3070543
10.1109/TNNLS.2020.3015992
10.1109/TPAMI.2016.2537320
10.1088/1742-6596/2232/1/012015
10.1109/CVPR42600.2020.01255
10.1109/IOTM.001.2200199
10.3390/s18103337
10.1016/j.inffus.2020.11.002
10.1109/ICCV.2019.00208
10.1109/TIM.2022.3165251
10.1109/CVPR.2017.198
10.1109/TITS.2020.2972974
10.1109/CVPR.2019.00115
10.1109/TPAMI.2018.2858826
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3351868
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 9176
ExternalDocumentID oai_doaj_org_article_4ac6c870baa54d42936c26edd278112a
10_1109_ACCESS_2024_3351868
GroupedDBID 0R~
4.4
5VS
6IK
AAJGR
AAYXX
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIG
RNS
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c388t-f01131c46dec18c4609a798b7bbc15084529956590079f8a9e30c562c3817e933
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:21 EDT 2025
Mon Jun 30 03:37:31 EDT 2025
Tue Jul 01 04:14:16 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-f01131c46dec18c4609a798b7bbc15084529956590079f8a9e30c562c3817e933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2432-2050
0000-0002-1401-3668
0000-0003-3616-0367
OpenAccessLink https://doaj.org/article/4ac6c870baa54d42936c26edd278112a
PQID 2918028935
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_4ac6c870baa54d42936c26edd278112a
proquest_journals_2918028935
crossref_citationtrail_10_1109_ACCESS_2024_3351868
crossref_primary_10_1109_ACCESS_2024_3351868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: IEEE
References Sermanet (ref19)
Alex (ref7)
ref11
ref10
Andreas (ref15)
Zhengxiong (ref16)
ref17
Xiaozhi (ref36)
Paszke (ref51) 2017
Vendrow (ref14) 2022
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref9
ref4
ref3
ref6
ref40
Gugger (ref53) 2018
Yin (ref5)
ref35
Charles (ref12)
ref37
Yang (ref8) 2019
ref31
ref30
ref2
ref1
ref39
ref38
Vora (ref34) 2019
Charles (ref29)
Dai (ref22)
ref24
ref23
ref26
ref25
ref20
ref21
Shi (ref32) 2021
Loshchilov (ref52)
ref28
ref27
Ehsanpour (ref13) 2021
Krizhevsky (ref18)
Ge (ref54) 2020
Shi (ref33) 2019
References_xml – year: 2019
  ident: ref33
  article-title: PV-RCNN: Point-voxel feature set abstraction for 3D object detection
  publication-title: arXiv:1912.13192
– ident: ref9
  doi: 10.1109/JSEN.2020.3020626
– ident: ref27
  doi: 10.1109/CVPR.2017.597
– ident: ref25
  doi: 10.1108/SR-01-2022-0022
– start-page: 3354
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref15
  article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite
– ident: ref50
  doi: 10.1109/CVPR.2017.691
– ident: ref3
  doi: 10.1007/s11263-022-01710-9
– ident: ref21
  doi: 10.1109/CVPR.2014.81
– ident: ref31
  doi: 10.1109/CVPR42600.2020.00178
– ident: ref39
  doi: 10.1109/ICASSP43922.2022.9747512
– start-page: 12697
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  ident: ref7
  article-title: PointPillars: Fast encoders for object detection from point clouds
– ident: ref11
  doi: 10.1007/s11831-021-09670-y
– ident: ref4
  doi: 10.1109/MITS.2021.3109041
– ident: ref24
  doi: 10.1007/s11263-015-0816-y
– ident: ref23
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref48
  doi: 10.1007/s11263-019-01204-1
– start-page: 4490
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref5
  article-title: VoxelNet: End-to-end learning for point cloud based 3D object detection
– ident: ref47
  doi: 10.1007/s11554-022-01201-7
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref36
  article-title: 3D object proposals for accurate object class detection
– ident: ref37
  doi: 10.1007/978-3-030-90436-4_37
– start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref18
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref46
  doi: 10.1109/CVPR.2018.00474
– volume-title: The 1Cycle Policy
  year: 2018
  ident: ref53
– ident: ref49
  doi: 10.1109/IV47402.2020.9304830
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref19
  article-title: OverFeat: Integrated recognition, localization and detection using convolutional networks
– year: 2021
  ident: ref13
  article-title: JRDB-act: A large-scale dataset for spatio-temporal action, social group and activity detection
  publication-title: arXiv:2106.08827
– year: 2019
  ident: ref34
  article-title: PointPainting: Sequential fusion for 3D object detection
  publication-title: arXiv:1911.10150
– year: 2017
  ident: ref51
  article-title: Automatic differentiation in PyTorch
– ident: ref28
  doi: 10.1109/CVPR.2017.16
– ident: ref38
  doi: 10.1109/IROS51168.2021.9636384
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref52
  article-title: Decoupled weight decay regularization
– ident: ref2
  doi: 10.1109/TITS.2019.2892405
– ident: ref1
  doi: 10.1109/TPAMI.2021.3070543
– ident: ref10
  doi: 10.1109/TNNLS.2020.3015992
– year: 2022
  ident: ref14
  article-title: JRDB-pose: A large-scale dataset for multi-person pose estimation and tracking
  publication-title: arXiv:2210.11940
– start-page: 13264
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  ident: ref16
  article-title: Rethinking the heatmap regression for bottom-up human pose estimation
– ident: ref20
  doi: 10.1109/TPAMI.2016.2537320
– ident: ref45
  doi: 10.1088/1742-6596/2232/1/012015
– start-page: 918
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref12
  article-title: Frustum PointNets for 3D object detection from RGB-D data
– ident: ref42
  doi: 10.1109/CVPR42600.2020.01255
– year: 2020
  ident: ref54
  article-title: Afdet: Anchor free one stage 3D object detection
  publication-title: arXiv:2006.12671
– ident: ref35
  doi: 10.1109/IOTM.001.2200199
– ident: ref30
  doi: 10.3390/s18103337
– year: 2021
  ident: ref32
  article-title: PV-RCNN++: Point-voxel feature set abstraction with local vector representation for 3D object detection
  publication-title: arXiv:2102.00463
– ident: ref26
  doi: 10.1016/j.inffus.2020.11.002
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– year: 2019
  ident: ref8
  article-title: PIXOR: Real-time 3D object detection from point clouds
  publication-title: arXiv:1902.06326
– start-page: 379
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: R-FCN: Object detection via region based fully convolutional networks
– ident: ref43
  doi: 10.1109/ICCV.2019.00208
– ident: ref6
  doi: 10.1109/TIM.2022.3165251
– ident: ref40
  doi: 10.1109/CVPR.2017.198
– ident: ref44
  doi: 10.1109/TITS.2020.2972974
– ident: ref41
  doi: 10.1109/CVPR.2019.00115
– ident: ref17
  doi: 10.1109/TPAMI.2018.2858826
SSID ssj0000816957
Score 2.3132133
Snippet Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9162
SubjectTerms Accuracy
Algorithms
Gaussian heatmap
Indoor environments
Lidar
pedestrian detection
pedestrian tracking
Perception
Performance evaluation
PIXOR
point cloud
Robot navigation
Robots
Robustness (mathematics)
Statistical analysis
Three dimensional models
Title Enhancing Indoor Robot Pedestrian Detection Using Improved PIXOR Backbone and Gaussian Heatmap Regression in 3D LiDAR Point Clouds
URI https://www.proquest.com/docview/2918028935
https://doaj.org/article/4ac6c870baa54d42936c26edd278112a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGnrbDsO6BZWsHHnqcV8eSbemYJu3SYY8gWIHcBImSu2CFXDTOH-gvryi7RYYB62UnA4YMyyJFfpTJj4wd2QgplMKI3NDlmTBVnpncqqyUhivRiLpEKhT-9r2aX4gvq3K10-qLcsJ6euB-4Y6FwQqjUlljSuGi9eQVFpV3rqAaySJBo-jzdoKpZIPluFJlPdAMjXN1PJlO4xfFgLAQnzgviSX-D1eUGPv_MsjJy5y9YM8HeAiTflr77IkPL9mzHdLAV-z2NPwikoxwCefBte0NLFvbdrDwzqcmHAFmvksZVgFSRgD0JwfeweJ89WMJJwZ_2zZ4MMHBZ7PdUCElzCnj3FzD0l_2ubEB1gH4DL6uZ5MlLNp16GB61W7d5jW7ODv9OZ1nQyeFDLmUXdbEXczHKCrncSzjNVemVtLW1iIRwtPf1xgoUQfRWjXSKM9zjMgIib_PK87fsL0Q5_WWQc55rRw66iQmGqeMFdYhetMII2WFI1bcL6rGgWacul1c6RRu5Er3ktAkCT1IYsQ-Pjx03bNs_Hv4CUnrYShRZKcbUXH0oDj6McUZsYN7Weth3250oYgRL2K48t3_eMd79pTm3R_ZHLC97mbrDyOI6eyHpK93NSHsCQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Indoor+Robot+Pedestrian+Detection+Using+Improved+PIXOR+Backbone+and+Gaussian+Heatmap+Regression+in+3D+LiDAR+Point+Clouds&rft.jtitle=IEEE+access&rft.au=Nguyen%2C+Duy+Anh&rft.au=Hoang%2C+Khang+Nguyen&rft.au=Nguyen%2C+Nguyen+Trung&rft.au=Nguyen%2C+Duy+Anh&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=9162&rft.epage=9176&rft_id=info:doi/10.1109%2FACCESS.2024.3351868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3351868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon