Ship energy consumption prediction: Multi-model fusion methods and multi-dimensional performance evaluation
Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship en...
Saved in:
Published in | Ocean engineering Vol. 322; p. 120538 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 |
DOI | 10.1016/j.oceaneng.2025.120538 |
Cover
Loading…
Abstract | Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship energy consumption models. Therefore, this study innovatively introduces multi-model fusion methods, including Stacking, Blending, and Voting, to establish three ship energy consumption fusion models. Additionally, to comprehensively evaluate model prediction performance, three distinct evaluation metrics are proposed: accuracy, extrapolation capability, and physical inconsistency. Using a large container ship as the research subject, validation is conducted based on real operational data. The results show that, compared to eight mainstream single models, the three fusion models perform better in terms of accuracy, extrapolation capability, and physical inconsistency. Furthermore, the comprehensive performance indicator of the Voting-based fusion model is improved by 44.4580%–84.4882%, demonstrating that multi-model fusion helps enhance ship energy consumption prediction performance. The research findings improve the reliability of ship energy consumption model predictions, further increasing their practical application value.
•Three fusion models for ship energy consumption prediction were constructed.•Multi-dimensional evaluation metrics were constructed for ship energy consumption.•Physical inconsistency quantifies how models violate fundamental physical laws.•Compared to single models, the Voting improved performance by 44.46%–84.49%. |
---|---|
AbstractList | Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship energy consumption models. Therefore, this study innovatively introduces multi-model fusion methods, including Stacking, Blending, and Voting, to establish three ship energy consumption fusion models. Additionally, to comprehensively evaluate model prediction performance, three distinct evaluation metrics are proposed: accuracy, extrapolation capability, and physical inconsistency. Using a large container ship as the research subject, validation is conducted based on real operational data. The results show that, compared to eight mainstream single models, the three fusion models perform better in terms of accuracy, extrapolation capability, and physical inconsistency. Furthermore, the comprehensive performance indicator of the Voting-based fusion model is improved by 44.4580%–84.4882%, demonstrating that multi-model fusion helps enhance ship energy consumption prediction performance. The research findings improve the reliability of ship energy consumption model predictions, further increasing their practical application value.
•Three fusion models for ship energy consumption prediction were constructed.•Multi-dimensional evaluation metrics were constructed for ship energy consumption.•Physical inconsistency quantifies how models violate fundamental physical laws.•Compared to single models, the Voting improved performance by 44.46%–84.49%. Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship energy consumption models. Therefore, this study innovatively introduces multi-model fusion methods, including Stacking, Blending, and Voting, to establish three ship energy consumption fusion models. Additionally, to comprehensively evaluate model prediction performance, three distinct evaluation metrics are proposed: accuracy, extrapolation capability, and physical inconsistency. Using a large container ship as the research subject, validation is conducted based on real operational data. The results show that, compared to eight mainstream single models, the three fusion models perform better in terms of accuracy, extrapolation capability, and physical inconsistency. Furthermore, the comprehensive performance indicator of the Voting-based fusion model is improved by 44.4580%–84.4882%, demonstrating that multi-model fusion helps enhance ship energy consumption prediction performance. The research findings improve the reliability of ship energy consumption model predictions, further increasing their practical application value. |
ArticleNumber | 120538 |
Author | Li, Bin Shu, Yaqing Mao, Wengang Hu, Zhihui Wang, Yifu Xia, Minjie Fan, Ailong Yi, Qiuyu |
Author_xml | – sequence: 1 givenname: Zhihui orcidid: 0000-0002-6572-7986 surname: Hu fullname: Hu, Zhihui organization: College of Navigation, Jimei University, Xiamen, Fujian, China – sequence: 2 givenname: Ailong orcidid: 0000-0001-6296-9819 surname: Fan fullname: Fan, Ailong email: fanailong@whut.edu.cn organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China – sequence: 3 givenname: Wengang surname: Mao fullname: Mao, Wengang organization: Department of Mechanics and Maritime Science, Chalmers University of Technology, Sweden – sequence: 4 givenname: Yaqing surname: Shu fullname: Shu, Yaqing organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan, China – sequence: 5 givenname: Yifu surname: Wang fullname: Wang, Yifu organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan, China – sequence: 6 givenname: Minjie surname: Xia fullname: Xia, Minjie organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China – sequence: 7 givenname: Qiuyu surname: Yi fullname: Yi, Qiuyu organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China – sequence: 8 givenname: Bin surname: Li fullname: Li, Bin organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China |
BackLink | https://research.chalmers.se/publication/545155$$DView record from Swedish Publication Index |
BookMark | eNqFkctu3DAMRbVIgebRXyj0A57qYXnsoosWQV9Agi7SrglaojKa2pIh2Sny97UzzaabrEjg8h6QvBfsLKZIjL2VYieFbN4dd8kSRor3OyWU2UkljG7P2LkQqqtaIdvX7KKUoxCiaYQ-Z7_vDmHiFCnfP3KbYlnGaQ4p8imTC3Zr3_PbZZhDNSZHA_dL2eSR5kNyhWN0fHySXRgpbhoOfKLsUx4xWuL0gMOCG-iKvfI4FHrzr16yX18-_7z-Vt38-Pr9-tNNZXXbzhX12HeGyBusG7RKSk_GqL3cy7bVpDvq7L7XXiqDSjq9jtvGU193e-p6j_qS3Z245Q9NSw9TDiPmR0gYIFMhzPYA9oDDSLlAIVBeGtcqAz3WBLU2NXTOK6CuIZQWjZf9Sv1wotqcSsnkwYb56a45YxhACtgigCM8RwBbBHCKYLU3_9mf13rR-PFkpPVlD4EyFBto_awLmewMLoWXEH8BSjmt_Q |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_120733 |
Cites_doi | 10.1016/j.oceaneng.2023.115271 10.1049/itr2.12133 10.1016/j.oceaneng.2021.108840 10.1016/j.engappai.2023.107425 10.1016/j.energy.2020.118874 10.1016/j.trd.2017.09.014 10.3233/ISP-1982-2933501 10.1016/j.oceaneng.2022.112405 10.1016/j.apenergy.2024.123382 10.1016/j.rsma.2021.101988 10.1007/s10479-019-03183-5 10.1016/j.oceaneng.2023.116434 10.1016/j.joes.2021.02.005 10.1016/j.marpolbul.2023.115411 10.1016/j.commtr.2022.100074 10.1016/j.oceaneng.2018.03.068 10.1016/j.apenergy.2023.121315 10.3390/jmse9030273 10.1016/j.ocecoaman.2023.106946 10.1016/j.ocecoaman.2024.107167 10.1016/j.fuel.2024.131421 10.1016/j.tre.2023.103261 10.1016/j.oceaneng.2023.115509 10.1016/j.oceaneng.2024.118156 10.1016/j.oceaneng.2024.117668 10.1109/ACCESS.2019.2933630 10.1016/j.oceaneng.2022.110904 10.1016/j.energy.2024.133150 10.1016/j.compag.2021.106039 10.1016/j.oceaneng.2020.108530 10.1016/j.eswa.2023.121877 10.1016/j.oceaneng.2021.110321 10.1016/j.oceaneng.2021.110209 10.3390/jmse9040449 10.1016/j.oceaneng.2023.115505 10.1016/j.trc.2024.104827 10.1016/j.energy.2024.130318 10.1080/20464177.2018.1546644 10.1016/j.enbuild.2023.113195 10.1016/j.energy.2024.133265 10.1016/j.oceaneng.2023.115520 10.1016/j.oceaneng.2019.106282 10.1016/j.trc.2023.104361 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION ADTPV AOWAS F1S |
DOI | 10.1016/j.oceaneng.2025.120538 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
ExternalDocumentID | oai_research_chalmers_se_2f15d825_ba4e_4354_9df2_e96ea1ca5f1b 10_1016_j_oceaneng_2025_120538 S0029801825002537 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 M41 R2- RIG SAC SET SSH WUQ ADTPV AOWAS EFKBS F1S |
ID | FETCH-LOGICAL-c388t-ebab95eef5a46ac211fe5527171883e39e9c7b3f125a21d3babc6feb497e9bfa3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Aug 21 06:41:08 EDT 2025 Tue Jul 01 05:24:07 EDT 2025 Thu Apr 24 22:52:20 EDT 2025 Sat Mar 08 15:48:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extrapolation Data-driven Ship energy consumption prediction Multi-model fusion Physical inconsistency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-ebab95eef5a46ac211fe5527171883e39e9c7b3f125a21d3babc6feb497e9bfa3 |
ORCID | 0000-0001-6296-9819 0000-0002-6572-7986 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_2f15d825_ba4e_4354_9df2_e96ea1ca5f1b crossref_citationtrail_10_1016_j_oceaneng_2025_120538 crossref_primary_10_1016_j_oceaneng_2025_120538 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_120538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bib20) 2012 Pachauri (bib32) 2024; 366 Du, Chen, Li, Schönborn, Sun (bib5) 2022; 2 Yuan, Liu, Zhang, Liu, Yuan, Li (bib43) 2021; 221 Han, Liu, Li, Sun, Yan (bib14) 2024; 309 Li, Du, Chen, Nguyen, Zhang, Schönborn, Sun (bib28) 2022; 2 Wang, Yan, Wang, Zhen (bib38) 2023; 157 Karatuğ, Tadros, Ventura, Soares (bib24) 2024; 292 Fan, Yan, Xiong, Shu, Fan, Wang, He, Chen (bib10) 2023; 194 Alymani, Mengash, Aljebreen, Alasmari, Allafi, Alshahrani, Elfaki, Hamza, Abdelmageed (bib2) 2023; 57 Wu, Zhang, Jiao, Guo, Alhaj Hamoud (bib41) 2021; 184 Hu, Zhou, Zhen, Jin, Li, Osman (bib19) 2022; 249 Cai, Li, Yu, Li, Sun (bib3) 2024; 291 Fan, Yang, Yang, Liu, Vladimir (bib8) 2022; 113 (bib21) 2012 Lang, Wu, Mao (bib26) 2024; 238 Wang, Zhang, Shen (bib39) 2023; 286 Hu, Zhou, Osman, Li, Jin, Zhen (bib18) 2021; 9 Öztürk, Başar (bib31) 2022; 243 Shu, Yu, Liu (bib34) 2024; 254 Wang, Fan, Tu, Vladimir (bib37) 2021; 47 Yuksel, Bayraktar, Sokukcu (bib44) 2023; 286 (bib22) 2021 Massaoudi, Refaat, Chihi, Trabelsi, Oueslati, Abu-Rub (bib50) 2021; 214 Gkerekos, Lazakis, Theotokatos (bib12) 2019; 188 Gupta, Mathur, Mathur, Nayak (bib13) 2023; 292 Jin, Hua, Zhang, Guo (bib23) 2022; 16 Tzortzis, Sakalis (bib35) 2021; 226 Holtrop, Mennen (bib16) 1982; 29 Cepowski, Drozd (bib4) 2023; 347 Luo, Yan, Wang (bib29) 2024; 167 Lan, Huang, Ma, Ruan, Ma, Li, Zhao, Wang, Zhang, Wang (bib25) 2024; 307 Anh Tran (bib49) 2021; 6 Fan, Yan, Bucknall, Yin, Ji, Liu, Song, Chen (bib7) 2020; 19 Papandreou, Ziakopoulos (bib48) 2022; 243 Yang, Chen, Rytter, Zhao, Yang (bib42) 2019 Du, Chen, Li, Schönborn, Sun (bib6) 2022; 2 Shu, Han, Song, Yan, Gan, Zhu, Zheng (bib33) 2024; 367 Zhou, Pazouki, Murphy, Uriondo, Granado, Quincoces, Fernandes-Salvador (bib46) 2023; 285 Fan, Wang, Yang, Tu, Yang, Shu (bib11) 2024; 248 Nguyen, Fu, Ogawa, Zheng (bib30) 2023; 177 Wang, Ji, Zhao, Liu, Xu (bib36) 2018; 65 Han, Liu, Sun, Yan (bib15) 2024; 302 Wang, Liu, Guo, Wang, Wang, Huang (bib40) 2024; 310 Hu, Jin, Hu, Sen, Zhou, Osman (bib17) 2019; 7 Fan, Yang, Yang, Wu, Vladimir (bib9) 2022; 264 Lee, Roh, Kim, Jung, Park (bib27) 2018; 157 Zhu, Zuo, Li (bib47) 2021; 9 Agand, Kennedy, Harris (bib1) 2023; 284 Zhang, Tsoulakos, Kujala, Hirdaris (bib45) 2024; 130 Lee (10.1016/j.oceaneng.2025.120538_bib27) 2018; 157 Fan (10.1016/j.oceaneng.2025.120538_bib7) 2020; 19 Hu (10.1016/j.oceaneng.2025.120538_bib17) 2019; 7 Holtrop (10.1016/j.oceaneng.2025.120538_bib16) 1982; 29 Du (10.1016/j.oceaneng.2025.120538_bib5) 2022; 2 Cai (10.1016/j.oceaneng.2025.120538_bib3) 2024; 291 Jin (10.1016/j.oceaneng.2025.120538_bib23) 2022; 16 Tzortzis (10.1016/j.oceaneng.2025.120538_bib35) 2021; 226 (10.1016/j.oceaneng.2025.120538_bib20) 2012 Zhou (10.1016/j.oceaneng.2025.120538_bib46) 2023; 285 Li (10.1016/j.oceaneng.2025.120538_bib28) 2022; 2 Papandreou (10.1016/j.oceaneng.2025.120538_bib48) 2022; 243 Lan (10.1016/j.oceaneng.2025.120538_bib25) 2024; 307 Gkerekos (10.1016/j.oceaneng.2025.120538_bib12) 2019; 188 Fan (10.1016/j.oceaneng.2025.120538_bib9) 2022; 264 Cepowski (10.1016/j.oceaneng.2025.120538_bib4) 2023; 347 Agand (10.1016/j.oceaneng.2025.120538_bib1) 2023; 284 Wang (10.1016/j.oceaneng.2025.120538_bib39) 2023; 286 Du (10.1016/j.oceaneng.2025.120538_bib6) 2022; 2 Shu (10.1016/j.oceaneng.2025.120538_bib34) 2024; 254 (10.1016/j.oceaneng.2025.120538_bib21) 2012 Hu (10.1016/j.oceaneng.2025.120538_bib19) 2022; 249 Pachauri (10.1016/j.oceaneng.2025.120538_bib32) 2024; 366 Anh Tran (10.1016/j.oceaneng.2025.120538_bib49) 2021; 6 Shu (10.1016/j.oceaneng.2025.120538_bib33) 2024; 367 Wang (10.1016/j.oceaneng.2025.120538_bib36) 2018; 65 Lang (10.1016/j.oceaneng.2025.120538_bib26) 2024; 238 Massaoudi (10.1016/j.oceaneng.2025.120538_bib50) 2021; 214 Zhu (10.1016/j.oceaneng.2025.120538_bib47) 2021; 9 Han (10.1016/j.oceaneng.2025.120538_bib14) 2024; 309 Yuksel (10.1016/j.oceaneng.2025.120538_bib44) 2023; 286 Wang (10.1016/j.oceaneng.2025.120538_bib38) 2023; 157 Wang (10.1016/j.oceaneng.2025.120538_bib40) 2024; 310 Hu (10.1016/j.oceaneng.2025.120538_bib18) 2021; 9 Öztürk (10.1016/j.oceaneng.2025.120538_bib31) 2022; 243 Nguyen (10.1016/j.oceaneng.2025.120538_bib30) 2023; 177 Wu (10.1016/j.oceaneng.2025.120538_bib41) 2021; 184 Gupta (10.1016/j.oceaneng.2025.120538_bib13) 2023; 292 Fan (10.1016/j.oceaneng.2025.120538_bib8) 2022; 113 Luo (10.1016/j.oceaneng.2025.120538_bib29) 2024; 167 Yuan (10.1016/j.oceaneng.2025.120538_bib43) 2021; 221 Fan (10.1016/j.oceaneng.2025.120538_bib11) 2024; 248 Alymani (10.1016/j.oceaneng.2025.120538_bib2) 2023; 57 Zhang (10.1016/j.oceaneng.2025.120538_bib45) 2024; 130 Fan (10.1016/j.oceaneng.2025.120538_bib10) 2023; 194 Han (10.1016/j.oceaneng.2025.120538_bib15) 2024; 302 (10.1016/j.oceaneng.2025.120538_bib22) 2021 Wang (10.1016/j.oceaneng.2025.120538_bib37) 2021; 47 Karatuğ (10.1016/j.oceaneng.2025.120538_bib24) 2024; 292 Yang (10.1016/j.oceaneng.2025.120538_bib42) 2019 |
References_xml | – volume: 2 year: 2022 ident: bib5 article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part III – sensor data and meteorological data publication-title: Commun. Transport. Res. – volume: 302 year: 2024 ident: bib15 article-title: A novel prediction model for ship fuel consumption considering shipping data privacy: an XGBoost-IGWO-LSTM-based personalized federated learning approach publication-title: Ocean Eng. – volume: 6 start-page: 317 year: 2021 end-page: 339 ident: bib49 article-title: Comparative analysis on the fuel consumption prediction model for bulk carriers from ship launching to current states based on sea trial data and machine learning technique publication-title: J. Ocean Eng. Sci. – volume: 292 year: 2024 ident: bib24 article-title: Decision support system for ship energy efficiency management based on an optimization model publication-title: Energy – volume: 284 year: 2023 ident: bib1 article-title: Fuel consumption prediction for a passenger ferry using machine learning and in-service data: a comparative study publication-title: Ocean Eng. – year: 2021 ident: bib22 article-title: Guidelines on operational carbon intensity indicators and the calculation methods publication-title: CII Guidelines, G1) – volume: 19 start-page: 215 year: 2020 end-page: 228 ident: bib7 article-title: A novel ship energy efficiency model considering random environmental parameters publication-title: J. Marine Eng. & Technol. – volume: 366 year: 2024 ident: bib32 article-title: An emission predictive system for CO and NOx from gas turbine based on ensemble machine learning approach publication-title: Fuel – volume: 16 start-page: 114 year: 2022 end-page: 132 ident: bib23 article-title: Stacking‐based ensemble learning method for cognitive distraction state recognition for drivers in traditional and connected environments publication-title: IET Intell. Transp. Syst. – volume: 157 year: 2023 ident: bib38 article-title: Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction publication-title: Transport. Res. C Emerg. Technol. – volume: 184 year: 2021 ident: bib41 article-title: Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration publication-title: Comput. Electron. Agric. – volume: 2 year: 2022 ident: bib28 article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part I – voyage report data and meteorological data publication-title: Commun. Transport. Res. – volume: 264 year: 2022 ident: bib9 article-title: A review of ship fuel consumption models publication-title: Ocean Eng. – volume: 167 year: 2024 ident: bib29 article-title: Ship sailing speed optimization considering dynamic meteorological conditions publication-title: Transport. Res. C Emerg. Technol. – volume: 221 year: 2021 ident: bib43 article-title: Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors publication-title: Ocean Eng. – volume: 2 year: 2022 ident: bib6 article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part II – voyage report data, AIS data and meteorological data publication-title: Commun. Transport. Res. – year: 2012 ident: bib20 article-title: Guidelines for the development of a SHIP energy efficiency management plan (SEEMP) publication-title: MEPC – volume: 29 start-page: 166 year: 1982 end-page: 171 ident: bib16 article-title: An approximate power prediction method publication-title: Int. Shipbuild. Prog. – volume: 310 year: 2024 ident: bib40 article-title: A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach publication-title: Energy – volume: 291 year: 2024 ident: bib3 article-title: Diversity, quality, and quantity of real ship data on the black-box and gray-box prediction models of ship fuel consumption publication-title: Ocean Eng. – volume: 214 year: 2021 ident: bib50 article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting publication-title: Energy – volume: 7 start-page: 119497 year: 2019 end-page: 119505 ident: bib17 article-title: Prediction of fuel consumption for enroute ship based on machine learning publication-title: IEEE Access – volume: 130 year: 2024 ident: bib45 article-title: A deep learning method for the prediction of ship fuel consumption in real operational conditions publication-title: Eng. Appl. Artif. Intell. – volume: 57 year: 2023 ident: bib2 article-title: Sustainable residential building energy consumption forecasting for smart cities using optimal weighted voting ensemble learning publication-title: Sustain. Energy Technol. Assessments – volume: 347 year: 2023 ident: bib4 article-title: Measurement-based relationships between container ship operating parameters and fuel consumption publication-title: Appl. Energy – volume: 157 start-page: 301 year: 2018 end-page: 312 ident: bib27 article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems publication-title: Ocean Eng. – volume: 194 year: 2023 ident: bib10 article-title: Characteristics of real-world ship energy consumption and emissions based on onboard testing publication-title: Mar. Pollut. Bull. – volume: 248 year: 2024 ident: bib11 article-title: Comprehensive evaluation of machine learning models for predicting ship energy consumption based on onboard sensor data publication-title: Ocean Coast Manag. – volume: 307 year: 2024 ident: bib25 article-title: A novel method of fuel consumption prediction for wing-diesel hybrid ships based on high-dimensional feature selection and improved blending ensemble learning method publication-title: Ocean Eng. – volume: 47 year: 2021 ident: bib37 article-title: An energy efficiency practice for coastal bulk carrier: speed decision and benefit analysis publication-title: Regional Stud. Marine Sci. – volume: 292 year: 2023 ident: bib13 article-title: Blending of energy benchmarks models for residential buildings publication-title: Energy Build. – volume: 188 year: 2019 ident: bib12 article-title: Machine learning models for predicting ship main engine Fuel Oil Consumption: a comparative study publication-title: Ocean Eng. – year: 2019 ident: bib42 article-title: A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping publication-title: Ann. Oper. Res. – volume: 9 start-page: 273 year: 2021 ident: bib47 article-title: Modeling of ship fuel consumption based on multisource and heterogeneous data: case study of passenger ship publication-title: J. Mar. Sci. Eng. – volume: 309 year: 2024 ident: bib14 article-title: A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity publication-title: Energy – volume: 243 year: 2022 ident: bib48 article-title: Predicting VLCC fuel consumption with machine learning using operationally available sensor data publication-title: Ocean Eng. – volume: 177 year: 2023 ident: bib30 article-title: An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction publication-title: Transport. Res. E Logist. Transport. Rev. – volume: 113 year: 2022 ident: bib8 article-title: Joint optimisation for improving ship energy efficiency considering speed and trim control publication-title: Transport. Res. Transport Environ. – volume: 285 year: 2023 ident: bib46 article-title: Predicting ship fuel consumption using a combination of metocean and on-board data publication-title: Ocean Eng. – volume: 243 year: 2022 ident: bib31 article-title: Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping publication-title: Ocean Eng. – volume: 249 year: 2022 ident: bib19 article-title: A two-step strategy for fuel consumption prediction and optimization of ocean-going ships publication-title: Ocean Eng. – volume: 254 year: 2024 ident: bib34 article-title: Investigation of ship energy consumption based on neural network publication-title: Ocean Coast Manag. – volume: 9 start-page: 449 year: 2021 ident: bib18 article-title: A novel hybrid fuel consumption prediction model for ocean-going container ships based on sensor data publication-title: JMSE – volume: 286 year: 2023 ident: bib44 article-title: Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine publication-title: Ocean Eng. – volume: 367 year: 2024 ident: bib33 article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes publication-title: Appl. Energy – volume: 286 year: 2023 ident: bib39 article-title: Novel ship fuel consumption modelling approaches for speed and trim optimisation: using engine data as auxiliary publication-title: Ocean Eng. – volume: 65 start-page: 817 year: 2018 end-page: 824 ident: bib36 article-title: Predicting ship fuel consumption based on LASSO regression publication-title: Transport. Res. Transport Environ. – year: 2012 ident: bib21 article-title: Guidelines for calculation of reference lines for use with the energy efficiency design index (EEDI) publication-title: MEPC – volume: 238 year: 2024 ident: bib26 article-title: Physics-informed machine learning models for ship speed prediction publication-title: Expert Syst. Appl. – volume: 226 year: 2021 ident: bib35 article-title: A dynamic ship speed optimization method with time horizon segmentation publication-title: Ocean Eng. – volume: 284 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib1 article-title: Fuel consumption prediction for a passenger ferry using machine learning and in-service data: a comparative study publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115271 – volume: 16 start-page: 114 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib23 article-title: Stacking‐based ensemble learning method for cognitive distraction state recognition for drivers in traditional and connected environments publication-title: IET Intell. Transp. Syst. doi: 10.1049/itr2.12133 – volume: 226 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib35 article-title: A dynamic ship speed optimization method with time horizon segmentation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108840 – volume: 130 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib45 article-title: A deep learning method for the prediction of ship fuel consumption in real operational conditions publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107425 – volume: 214 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib50 article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting publication-title: Energy doi: 10.1016/j.energy.2020.118874 – volume: 65 start-page: 817 year: 2018 ident: 10.1016/j.oceaneng.2025.120538_bib36 article-title: Predicting ship fuel consumption based on LASSO regression publication-title: Transport. Res. Transport Environ. doi: 10.1016/j.trd.2017.09.014 – volume: 29 start-page: 166 issue: 335 year: 1982 ident: 10.1016/j.oceaneng.2025.120538_bib16 article-title: An approximate power prediction method publication-title: Int. Shipbuild. Prog. doi: 10.3233/ISP-1982-2933501 – volume: 264 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib9 article-title: A review of ship fuel consumption models publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112405 – volume: 367 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib33 article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123382 – volume: 47 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib37 article-title: An energy efficiency practice for coastal bulk carrier: speed decision and benefit analysis publication-title: Regional Stud. Marine Sci. doi: 10.1016/j.rsma.2021.101988 – volume: 57 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib2 article-title: Sustainable residential building energy consumption forecasting for smart cities using optimal weighted voting ensemble learning publication-title: Sustain. Energy Technol. Assessments – year: 2019 ident: 10.1016/j.oceaneng.2025.120538_bib42 article-title: A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping publication-title: Ann. Oper. Res. doi: 10.1007/s10479-019-03183-5 – volume: 291 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib3 article-title: Diversity, quality, and quantity of real ship data on the black-box and gray-box prediction models of ship fuel consumption publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.116434 – year: 2012 ident: 10.1016/j.oceaneng.2025.120538_bib20 article-title: Guidelines for the development of a SHIP energy efficiency management plan (SEEMP) publication-title: MEPC – volume: 6 start-page: 317 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib49 article-title: Comparative analysis on the fuel consumption prediction model for bulk carriers from ship launching to current states based on sea trial data and machine learning technique publication-title: J. Ocean Eng. Sci. doi: 10.1016/j.joes.2021.02.005 – volume: 194 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib10 article-title: Characteristics of real-world ship energy consumption and emissions based on onboard testing publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2023.115411 – year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib22 article-title: Guidelines on operational carbon intensity indicators and the calculation methods publication-title: CII Guidelines, G1) – year: 2012 ident: 10.1016/j.oceaneng.2025.120538_bib21 article-title: Guidelines for calculation of reference lines for use with the energy efficiency design index (EEDI) publication-title: MEPC – volume: 2 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib28 article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part I – voyage report data and meteorological data publication-title: Commun. Transport. Res. doi: 10.1016/j.commtr.2022.100074 – volume: 157 start-page: 301 year: 2018 ident: 10.1016/j.oceaneng.2025.120538_bib27 article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.068 – volume: 347 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib4 article-title: Measurement-based relationships between container ship operating parameters and fuel consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121315 – volume: 9 start-page: 273 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib47 article-title: Modeling of ship fuel consumption based on multisource and heterogeneous data: case study of passenger ship publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9030273 – volume: 248 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib11 article-title: Comprehensive evaluation of machine learning models for predicting ship energy consumption based on onboard sensor data publication-title: Ocean Coast Manag. doi: 10.1016/j.ocecoaman.2023.106946 – volume: 254 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib34 article-title: Investigation of ship energy consumption based on neural network publication-title: Ocean Coast Manag. doi: 10.1016/j.ocecoaman.2024.107167 – volume: 366 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib32 article-title: An emission predictive system for CO and NOx from gas turbine based on ensemble machine learning approach publication-title: Fuel doi: 10.1016/j.fuel.2024.131421 – volume: 2 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib6 article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part II – voyage report data, AIS data and meteorological data publication-title: Commun. Transport. Res. – volume: 113 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib8 article-title: Joint optimisation for improving ship energy efficiency considering speed and trim control publication-title: Transport. Res. Transport Environ. – volume: 177 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib30 article-title: An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction publication-title: Transport. Res. E Logist. Transport. Rev. doi: 10.1016/j.tre.2023.103261 – volume: 285 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib46 article-title: Predicting ship fuel consumption using a combination of metocean and on-board data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115509 – volume: 307 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib25 article-title: A novel method of fuel consumption prediction for wing-diesel hybrid ships based on high-dimensional feature selection and improved blending ensemble learning method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.118156 – volume: 2 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib5 article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part III – sensor data and meteorological data publication-title: Commun. Transport. Res. – volume: 302 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib15 article-title: A novel prediction model for ship fuel consumption considering shipping data privacy: an XGBoost-IGWO-LSTM-based personalized federated learning approach publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117668 – volume: 7 start-page: 119497 year: 2019 ident: 10.1016/j.oceaneng.2025.120538_bib17 article-title: Prediction of fuel consumption for enroute ship based on machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933630 – volume: 249 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib19 article-title: A two-step strategy for fuel consumption prediction and optimization of ocean-going ships publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.110904 – volume: 309 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib14 article-title: A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity publication-title: Energy doi: 10.1016/j.energy.2024.133150 – volume: 184 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib41 article-title: Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106039 – volume: 221 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib43 article-title: Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108530 – volume: 238 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib26 article-title: Physics-informed machine learning models for ship speed prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121877 – volume: 243 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib48 article-title: Predicting VLCC fuel consumption with machine learning using operationally available sensor data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110321 – volume: 243 year: 2022 ident: 10.1016/j.oceaneng.2025.120538_bib31 article-title: Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110209 – volume: 9 start-page: 449 year: 2021 ident: 10.1016/j.oceaneng.2025.120538_bib18 article-title: A novel hybrid fuel consumption prediction model for ocean-going container ships based on sensor data publication-title: JMSE doi: 10.3390/jmse9040449 – volume: 286 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib44 article-title: Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115505 – volume: 167 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib29 article-title: Ship sailing speed optimization considering dynamic meteorological conditions publication-title: Transport. Res. C Emerg. Technol. doi: 10.1016/j.trc.2024.104827 – volume: 292 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib24 article-title: Decision support system for ship energy efficiency management based on an optimization model publication-title: Energy doi: 10.1016/j.energy.2024.130318 – volume: 19 start-page: 215 year: 2020 ident: 10.1016/j.oceaneng.2025.120538_bib7 article-title: A novel ship energy efficiency model considering random environmental parameters publication-title: J. Marine Eng. & Technol. doi: 10.1080/20464177.2018.1546644 – volume: 292 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib13 article-title: Blending of energy benchmarks models for residential buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113195 – volume: 310 year: 2024 ident: 10.1016/j.oceaneng.2025.120538_bib40 article-title: A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach publication-title: Energy doi: 10.1016/j.energy.2024.133265 – volume: 286 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib39 article-title: Novel ship fuel consumption modelling approaches for speed and trim optimisation: using engine data as auxiliary publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115520 – volume: 188 year: 2019 ident: 10.1016/j.oceaneng.2025.120538_bib12 article-title: Machine learning models for predicting ship main engine Fuel Oil Consumption: a comparative study publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106282 – volume: 157 year: 2023 ident: 10.1016/j.oceaneng.2025.120538_bib38 article-title: Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction publication-title: Transport. Res. C Emerg. Technol. doi: 10.1016/j.trc.2023.104361 |
SSID | ssj0006603 |
Score | 2.4235842 |
Snippet | Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 120538 |
SubjectTerms | Data-driven Extrapolation Multi-model fusion Physical inconsistency Ship energy consumption prediction |
Title | Ship energy consumption prediction: Multi-model fusion methods and multi-dimensional performance evaluation |
URI | https://dx.doi.org/10.1016/j.oceaneng.2025.120538 https://research.chalmers.se/publication/545155 |
Volume | 322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgEkBAVE6UM-cM3uxo8k7q2qWi0PlQNU6s3yY8xuQSHqbq_89s44SXc5oB64JZGdWJ7RPOL5vmHsw6ypwcRoCjqlK1StoHAeE1eotBOln6GTzgWyl9X8Sn261tc77GzEwlBZ5WD7e5uerfXwZDrs5rRbLgnjKwzaV0xxyHFLQpQrVZOWT_5syjyqaibHMg8avYUSvpmgi3AttD8wTxR6UgrUyOafDmqbSTR7n4uX7MUQNvLTfmWv2A60e-zZFpngHnv-lT4zMFC_Zj-_LZYdhwzt4yEDLbN14N0tnc3Q5QnP8Nsid8Ph6Y5-nPG-pfSKuzbyXG1YRGoA0JN38G6DM-AbovA37Ori_PvZvBg6KxRBNs26AO-80QBJO1W5gElgAqJiK9FTNRKkARNqLxNGPyixKHF4qBJ4ZVCyPjn5lu22v1t4x3gTGhEExmkpehV17aoolfBSR3xBLOM-0-N22jDQjlP3i192rC-7saMYLInB9mLYZ9OHeV1PvPHoDDNKy_6lQha9w6Nzv_TiffgW0W4PfEsLGxa5mc3KrsCKVOqISodhhgKL0aayJiZhwVTgyuB0Kv37_1jKAXtKd3110CHbXd_ewREGPmt_nDX7mD05_fh5fnkP2RIHDw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gBFQlBALU8fuKa78SOJuVUV1ZYuy4FW6s3yY9zdgkLU3f5_xo6zXQ6oB25Rkoktz2hmHM_3DSGfJk0NyntVxFO6QtQCCmNx4wqVNKy0EwzSqUB2Xk0vxdcrebVDTgYsTCyrzL6_9-nJW-c747ya4265jBhfptC_4hYnBm5ePyK7kZ1Kjsju8dn5dL5xyFU14UOlRxTYAgrfHGGUMC2017hVZPKoZGiUzT9j1DaZaApAp8_Js5w50uN-ci_IDrT7ZG-LT3CfPP0eh8kk1C_Jzx-LZUchofuoS1jL5CBodxuPZ-LlZ5oQuEVqiEPDXfx3Rvuu0itqWk9TwWHhYw-Anr-DdvdQA3rPFf6KXJ5-uTiZFrm5QuF406wLsMYqCRCkEZVxuA8MENnYSgxWDQeuQLna8oAJECrNc3zdVQGsUKhcGwx_TUbt7xYOCG1cwxzDVC14K7ysTeW5YJZLjx_wpT8kclhO7TLzeGyA8UsPJWY3elCDjmrQvRoOyXgj1_XcGw9KqEFb-i8r0hggHpSd9erdjBWZtzPl0kK7Repns9Ir0CyU0qPdYaYhQGPCKbTygWlQFZjSGRlK--Y_pvKRPJ5efJvp2dn8_C15Ep_0xULvyGh9ewfvMQ9a2w_Zzv8Ax9AJwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+energy+consumption+prediction%3A+Multi-model+fusion+methods+and+multi-dimensional+performance+evaluation&rft.jtitle=Ocean+engineering&rft.au=Hu%2C+Zhihui&rft.au=Fan%2C+Ailong&rft.au=Mao%2C+Wengang&rft.au=Shu%2C+Yaqing&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=322&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.120538&rft.externalDocID=S0029801825002537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |