Ship energy consumption prediction: Multi-model fusion methods and multi-dimensional performance evaluation

Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship en...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 322; p. 120538
Main Authors Hu, Zhihui, Fan, Ailong, Mao, Wengang, Shu, Yaqing, Wang, Yifu, Xia, Minjie, Yi, Qiuyu, Li, Bin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2025
Subjects
Online AccessGet full text
ISSN0029-8018
DOI10.1016/j.oceaneng.2025.120538

Cover

Loading…
Abstract Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship energy consumption models. Therefore, this study innovatively introduces multi-model fusion methods, including Stacking, Blending, and Voting, to establish three ship energy consumption fusion models. Additionally, to comprehensively evaluate model prediction performance, three distinct evaluation metrics are proposed: accuracy, extrapolation capability, and physical inconsistency. Using a large container ship as the research subject, validation is conducted based on real operational data. The results show that, compared to eight mainstream single models, the three fusion models perform better in terms of accuracy, extrapolation capability, and physical inconsistency. Furthermore, the comprehensive performance indicator of the Voting-based fusion model is improved by 44.4580%–84.4882%, demonstrating that multi-model fusion helps enhance ship energy consumption prediction performance. The research findings improve the reliability of ship energy consumption model predictions, further increasing their practical application value. •Three fusion models for ship energy consumption prediction were constructed.•Multi-dimensional evaluation metrics were constructed for ship energy consumption.•Physical inconsistency quantifies how models violate fundamental physical laws.•Compared to single models, the Voting improved performance by 44.46%–84.49%.
AbstractList Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship energy consumption models. Therefore, this study innovatively introduces multi-model fusion methods, including Stacking, Blending, and Voting, to establish three ship energy consumption fusion models. Additionally, to comprehensively evaluate model prediction performance, three distinct evaluation metrics are proposed: accuracy, extrapolation capability, and physical inconsistency. Using a large container ship as the research subject, validation is conducted based on real operational data. The results show that, compared to eight mainstream single models, the three fusion models perform better in terms of accuracy, extrapolation capability, and physical inconsistency. Furthermore, the comprehensive performance indicator of the Voting-based fusion model is improved by 44.4580%–84.4882%, demonstrating that multi-model fusion helps enhance ship energy consumption prediction performance. The research findings improve the reliability of ship energy consumption model predictions, further increasing their practical application value. •Three fusion models for ship energy consumption prediction were constructed.•Multi-dimensional evaluation metrics were constructed for ship energy consumption.•Physical inconsistency quantifies how models violate fundamental physical laws.•Compared to single models, the Voting improved performance by 44.46%–84.49%.
Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily relies on single-method modelling, with evaluation metrics typically limited to accuracy, which restricts the practical application of ship energy consumption models. Therefore, this study innovatively introduces multi-model fusion methods, including Stacking, Blending, and Voting, to establish three ship energy consumption fusion models. Additionally, to comprehensively evaluate model prediction performance, three distinct evaluation metrics are proposed: accuracy, extrapolation capability, and physical inconsistency. Using a large container ship as the research subject, validation is conducted based on real operational data. The results show that, compared to eight mainstream single models, the three fusion models perform better in terms of accuracy, extrapolation capability, and physical inconsistency. Furthermore, the comprehensive performance indicator of the Voting-based fusion model is improved by 44.4580%–84.4882%, demonstrating that multi-model fusion helps enhance ship energy consumption prediction performance. The research findings improve the reliability of ship energy consumption model predictions, further increasing their practical application value.
ArticleNumber 120538
Author Li, Bin
Shu, Yaqing
Mao, Wengang
Hu, Zhihui
Wang, Yifu
Xia, Minjie
Fan, Ailong
Yi, Qiuyu
Author_xml – sequence: 1
  givenname: Zhihui
  orcidid: 0000-0002-6572-7986
  surname: Hu
  fullname: Hu, Zhihui
  organization: College of Navigation, Jimei University, Xiamen, Fujian, China
– sequence: 2
  givenname: Ailong
  orcidid: 0000-0001-6296-9819
  surname: Fan
  fullname: Fan, Ailong
  email: fanailong@whut.edu.cn
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China
– sequence: 3
  givenname: Wengang
  surname: Mao
  fullname: Mao, Wengang
  organization: Department of Mechanics and Maritime Science, Chalmers University of Technology, Sweden
– sequence: 4
  givenname: Yaqing
  surname: Shu
  fullname: Shu, Yaqing
  organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan, China
– sequence: 5
  givenname: Yifu
  surname: Wang
  fullname: Wang, Yifu
  organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan, China
– sequence: 6
  givenname: Minjie
  surname: Xia
  fullname: Xia, Minjie
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China
– sequence: 7
  givenname: Qiuyu
  surname: Yi
  fullname: Yi, Qiuyu
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China
– sequence: 8
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China
BackLink https://research.chalmers.se/publication/545155$$DView record from Swedish Publication Index
BookMark eNqFkctu3DAMRbVIgebRXyj0A57qYXnsoosWQV9Agi7SrglaojKa2pIh2Sny97UzzaabrEjg8h6QvBfsLKZIjL2VYieFbN4dd8kSRor3OyWU2UkljG7P2LkQqqtaIdvX7KKUoxCiaYQ-Z7_vDmHiFCnfP3KbYlnGaQ4p8imTC3Zr3_PbZZhDNSZHA_dL2eSR5kNyhWN0fHySXRgpbhoOfKLsUx4xWuL0gMOCG-iKvfI4FHrzr16yX18-_7z-Vt38-Pr9-tNNZXXbzhX12HeGyBusG7RKSk_GqL3cy7bVpDvq7L7XXiqDSjq9jtvGU193e-p6j_qS3Z245Q9NSw9TDiPmR0gYIFMhzPYA9oDDSLlAIVBeGtcqAz3WBLU2NXTOK6CuIZQWjZf9Sv1wotqcSsnkwYb56a45YxhACtgigCM8RwBbBHCKYLU3_9mf13rR-PFkpPVlD4EyFBto_awLmewMLoWXEH8BSjmt_Q
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_120733
Cites_doi 10.1016/j.oceaneng.2023.115271
10.1049/itr2.12133
10.1016/j.oceaneng.2021.108840
10.1016/j.engappai.2023.107425
10.1016/j.energy.2020.118874
10.1016/j.trd.2017.09.014
10.3233/ISP-1982-2933501
10.1016/j.oceaneng.2022.112405
10.1016/j.apenergy.2024.123382
10.1016/j.rsma.2021.101988
10.1007/s10479-019-03183-5
10.1016/j.oceaneng.2023.116434
10.1016/j.joes.2021.02.005
10.1016/j.marpolbul.2023.115411
10.1016/j.commtr.2022.100074
10.1016/j.oceaneng.2018.03.068
10.1016/j.apenergy.2023.121315
10.3390/jmse9030273
10.1016/j.ocecoaman.2023.106946
10.1016/j.ocecoaman.2024.107167
10.1016/j.fuel.2024.131421
10.1016/j.tre.2023.103261
10.1016/j.oceaneng.2023.115509
10.1016/j.oceaneng.2024.118156
10.1016/j.oceaneng.2024.117668
10.1109/ACCESS.2019.2933630
10.1016/j.oceaneng.2022.110904
10.1016/j.energy.2024.133150
10.1016/j.compag.2021.106039
10.1016/j.oceaneng.2020.108530
10.1016/j.eswa.2023.121877
10.1016/j.oceaneng.2021.110321
10.1016/j.oceaneng.2021.110209
10.3390/jmse9040449
10.1016/j.oceaneng.2023.115505
10.1016/j.trc.2024.104827
10.1016/j.energy.2024.130318
10.1080/20464177.2018.1546644
10.1016/j.enbuild.2023.113195
10.1016/j.energy.2024.133265
10.1016/j.oceaneng.2023.115520
10.1016/j.oceaneng.2019.106282
10.1016/j.trc.2023.104361
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
F1S
DOI 10.1016/j.oceaneng.2025.120538
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID oai_research_chalmers_se_2f15d825_ba4e_4354_9df2_e96ea1ca5f1b
10_1016_j_oceaneng_2025_120538
S0029801825002537
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
M41
R2-
RIG
SAC
SET
SSH
WUQ
ADTPV
AOWAS
EFKBS
F1S
ID FETCH-LOGICAL-c388t-ebab95eef5a46ac211fe5527171883e39e9c7b3f125a21d3babc6feb497e9bfa3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Thu Aug 21 06:41:08 EDT 2025
Tue Jul 01 05:24:07 EDT 2025
Thu Apr 24 22:52:20 EDT 2025
Sat Mar 08 15:48:06 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Extrapolation
Data-driven
Ship energy consumption prediction
Multi-model fusion
Physical inconsistency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-ebab95eef5a46ac211fe5527171883e39e9c7b3f125a21d3babc6feb497e9bfa3
ORCID 0000-0001-6296-9819
0000-0002-6572-7986
ParticipantIDs swepub_primary_oai_research_chalmers_se_2f15d825_ba4e_4354_9df2_e96ea1ca5f1b
crossref_citationtrail_10_1016_j_oceaneng_2025_120538
crossref_primary_10_1016_j_oceaneng_2025_120538
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_120538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (bib20) 2012
Pachauri (bib32) 2024; 366
Du, Chen, Li, Schönborn, Sun (bib5) 2022; 2
Yuan, Liu, Zhang, Liu, Yuan, Li (bib43) 2021; 221
Han, Liu, Li, Sun, Yan (bib14) 2024; 309
Li, Du, Chen, Nguyen, Zhang, Schönborn, Sun (bib28) 2022; 2
Wang, Yan, Wang, Zhen (bib38) 2023; 157
Karatuğ, Tadros, Ventura, Soares (bib24) 2024; 292
Fan, Yan, Xiong, Shu, Fan, Wang, He, Chen (bib10) 2023; 194
Alymani, Mengash, Aljebreen, Alasmari, Allafi, Alshahrani, Elfaki, Hamza, Abdelmageed (bib2) 2023; 57
Wu, Zhang, Jiao, Guo, Alhaj Hamoud (bib41) 2021; 184
Hu, Zhou, Zhen, Jin, Li, Osman (bib19) 2022; 249
Cai, Li, Yu, Li, Sun (bib3) 2024; 291
Fan, Yang, Yang, Liu, Vladimir (bib8) 2022; 113
(bib21) 2012
Lang, Wu, Mao (bib26) 2024; 238
Wang, Zhang, Shen (bib39) 2023; 286
Hu, Zhou, Osman, Li, Jin, Zhen (bib18) 2021; 9
Öztürk, Başar (bib31) 2022; 243
Shu, Yu, Liu (bib34) 2024; 254
Wang, Fan, Tu, Vladimir (bib37) 2021; 47
Yuksel, Bayraktar, Sokukcu (bib44) 2023; 286
(bib22) 2021
Massaoudi, Refaat, Chihi, Trabelsi, Oueslati, Abu-Rub (bib50) 2021; 214
Gkerekos, Lazakis, Theotokatos (bib12) 2019; 188
Gupta, Mathur, Mathur, Nayak (bib13) 2023; 292
Jin, Hua, Zhang, Guo (bib23) 2022; 16
Tzortzis, Sakalis (bib35) 2021; 226
Holtrop, Mennen (bib16) 1982; 29
Cepowski, Drozd (bib4) 2023; 347
Luo, Yan, Wang (bib29) 2024; 167
Lan, Huang, Ma, Ruan, Ma, Li, Zhao, Wang, Zhang, Wang (bib25) 2024; 307
Anh Tran (bib49) 2021; 6
Fan, Yan, Bucknall, Yin, Ji, Liu, Song, Chen (bib7) 2020; 19
Papandreou, Ziakopoulos (bib48) 2022; 243
Yang, Chen, Rytter, Zhao, Yang (bib42) 2019
Du, Chen, Li, Schönborn, Sun (bib6) 2022; 2
Shu, Han, Song, Yan, Gan, Zhu, Zheng (bib33) 2024; 367
Zhou, Pazouki, Murphy, Uriondo, Granado, Quincoces, Fernandes-Salvador (bib46) 2023; 285
Fan, Wang, Yang, Tu, Yang, Shu (bib11) 2024; 248
Nguyen, Fu, Ogawa, Zheng (bib30) 2023; 177
Wang, Ji, Zhao, Liu, Xu (bib36) 2018; 65
Han, Liu, Sun, Yan (bib15) 2024; 302
Wang, Liu, Guo, Wang, Wang, Huang (bib40) 2024; 310
Hu, Jin, Hu, Sen, Zhou, Osman (bib17) 2019; 7
Fan, Yang, Yang, Wu, Vladimir (bib9) 2022; 264
Lee, Roh, Kim, Jung, Park (bib27) 2018; 157
Zhu, Zuo, Li (bib47) 2021; 9
Agand, Kennedy, Harris (bib1) 2023; 284
Zhang, Tsoulakos, Kujala, Hirdaris (bib45) 2024; 130
Lee (10.1016/j.oceaneng.2025.120538_bib27) 2018; 157
Fan (10.1016/j.oceaneng.2025.120538_bib7) 2020; 19
Hu (10.1016/j.oceaneng.2025.120538_bib17) 2019; 7
Holtrop (10.1016/j.oceaneng.2025.120538_bib16) 1982; 29
Du (10.1016/j.oceaneng.2025.120538_bib5) 2022; 2
Cai (10.1016/j.oceaneng.2025.120538_bib3) 2024; 291
Jin (10.1016/j.oceaneng.2025.120538_bib23) 2022; 16
Tzortzis (10.1016/j.oceaneng.2025.120538_bib35) 2021; 226
(10.1016/j.oceaneng.2025.120538_bib20) 2012
Zhou (10.1016/j.oceaneng.2025.120538_bib46) 2023; 285
Li (10.1016/j.oceaneng.2025.120538_bib28) 2022; 2
Papandreou (10.1016/j.oceaneng.2025.120538_bib48) 2022; 243
Lan (10.1016/j.oceaneng.2025.120538_bib25) 2024; 307
Gkerekos (10.1016/j.oceaneng.2025.120538_bib12) 2019; 188
Fan (10.1016/j.oceaneng.2025.120538_bib9) 2022; 264
Cepowski (10.1016/j.oceaneng.2025.120538_bib4) 2023; 347
Agand (10.1016/j.oceaneng.2025.120538_bib1) 2023; 284
Wang (10.1016/j.oceaneng.2025.120538_bib39) 2023; 286
Du (10.1016/j.oceaneng.2025.120538_bib6) 2022; 2
Shu (10.1016/j.oceaneng.2025.120538_bib34) 2024; 254
(10.1016/j.oceaneng.2025.120538_bib21) 2012
Hu (10.1016/j.oceaneng.2025.120538_bib19) 2022; 249
Pachauri (10.1016/j.oceaneng.2025.120538_bib32) 2024; 366
Anh Tran (10.1016/j.oceaneng.2025.120538_bib49) 2021; 6
Shu (10.1016/j.oceaneng.2025.120538_bib33) 2024; 367
Wang (10.1016/j.oceaneng.2025.120538_bib36) 2018; 65
Lang (10.1016/j.oceaneng.2025.120538_bib26) 2024; 238
Massaoudi (10.1016/j.oceaneng.2025.120538_bib50) 2021; 214
Zhu (10.1016/j.oceaneng.2025.120538_bib47) 2021; 9
Han (10.1016/j.oceaneng.2025.120538_bib14) 2024; 309
Yuksel (10.1016/j.oceaneng.2025.120538_bib44) 2023; 286
Wang (10.1016/j.oceaneng.2025.120538_bib38) 2023; 157
Wang (10.1016/j.oceaneng.2025.120538_bib40) 2024; 310
Hu (10.1016/j.oceaneng.2025.120538_bib18) 2021; 9
Öztürk (10.1016/j.oceaneng.2025.120538_bib31) 2022; 243
Nguyen (10.1016/j.oceaneng.2025.120538_bib30) 2023; 177
Wu (10.1016/j.oceaneng.2025.120538_bib41) 2021; 184
Gupta (10.1016/j.oceaneng.2025.120538_bib13) 2023; 292
Fan (10.1016/j.oceaneng.2025.120538_bib8) 2022; 113
Luo (10.1016/j.oceaneng.2025.120538_bib29) 2024; 167
Yuan (10.1016/j.oceaneng.2025.120538_bib43) 2021; 221
Fan (10.1016/j.oceaneng.2025.120538_bib11) 2024; 248
Alymani (10.1016/j.oceaneng.2025.120538_bib2) 2023; 57
Zhang (10.1016/j.oceaneng.2025.120538_bib45) 2024; 130
Fan (10.1016/j.oceaneng.2025.120538_bib10) 2023; 194
Han (10.1016/j.oceaneng.2025.120538_bib15) 2024; 302
(10.1016/j.oceaneng.2025.120538_bib22) 2021
Wang (10.1016/j.oceaneng.2025.120538_bib37) 2021; 47
Karatuğ (10.1016/j.oceaneng.2025.120538_bib24) 2024; 292
Yang (10.1016/j.oceaneng.2025.120538_bib42) 2019
References_xml – volume: 2
  year: 2022
  ident: bib5
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part III – sensor data and meteorological data
  publication-title: Commun. Transport. Res.
– volume: 302
  year: 2024
  ident: bib15
  article-title: A novel prediction model for ship fuel consumption considering shipping data privacy: an XGBoost-IGWO-LSTM-based personalized federated learning approach
  publication-title: Ocean Eng.
– volume: 6
  start-page: 317
  year: 2021
  end-page: 339
  ident: bib49
  article-title: Comparative analysis on the fuel consumption prediction model for bulk carriers from ship launching to current states based on sea trial data and machine learning technique
  publication-title: J. Ocean Eng. Sci.
– volume: 292
  year: 2024
  ident: bib24
  article-title: Decision support system for ship energy efficiency management based on an optimization model
  publication-title: Energy
– volume: 284
  year: 2023
  ident: bib1
  article-title: Fuel consumption prediction for a passenger ferry using machine learning and in-service data: a comparative study
  publication-title: Ocean Eng.
– year: 2021
  ident: bib22
  article-title: Guidelines on operational carbon intensity indicators and the calculation methods
  publication-title: CII Guidelines, G1)
– volume: 19
  start-page: 215
  year: 2020
  end-page: 228
  ident: bib7
  article-title: A novel ship energy efficiency model considering random environmental parameters
  publication-title: J. Marine Eng. & Technol.
– volume: 366
  year: 2024
  ident: bib32
  article-title: An emission predictive system for CO and NOx from gas turbine based on ensemble machine learning approach
  publication-title: Fuel
– volume: 16
  start-page: 114
  year: 2022
  end-page: 132
  ident: bib23
  article-title: Stacking‐based ensemble learning method for cognitive distraction state recognition for drivers in traditional and connected environments
  publication-title: IET Intell. Transp. Syst.
– volume: 157
  year: 2023
  ident: bib38
  article-title: Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction
  publication-title: Transport. Res. C Emerg. Technol.
– volume: 184
  year: 2021
  ident: bib41
  article-title: Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration
  publication-title: Comput. Electron. Agric.
– volume: 2
  year: 2022
  ident: bib28
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part I – voyage report data and meteorological data
  publication-title: Commun. Transport. Res.
– volume: 264
  year: 2022
  ident: bib9
  article-title: A review of ship fuel consumption models
  publication-title: Ocean Eng.
– volume: 167
  year: 2024
  ident: bib29
  article-title: Ship sailing speed optimization considering dynamic meteorological conditions
  publication-title: Transport. Res. C Emerg. Technol.
– volume: 221
  year: 2021
  ident: bib43
  article-title: Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors
  publication-title: Ocean Eng.
– volume: 2
  year: 2022
  ident: bib6
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part II – voyage report data, AIS data and meteorological data
  publication-title: Commun. Transport. Res.
– year: 2012
  ident: bib20
  article-title: Guidelines for the development of a SHIP energy efficiency management plan (SEEMP)
  publication-title: MEPC
– volume: 29
  start-page: 166
  year: 1982
  end-page: 171
  ident: bib16
  article-title: An approximate power prediction method
  publication-title: Int. Shipbuild. Prog.
– volume: 310
  year: 2024
  ident: bib40
  article-title: A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach
  publication-title: Energy
– volume: 291
  year: 2024
  ident: bib3
  article-title: Diversity, quality, and quantity of real ship data on the black-box and gray-box prediction models of ship fuel consumption
  publication-title: Ocean Eng.
– volume: 214
  year: 2021
  ident: bib50
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting
  publication-title: Energy
– volume: 7
  start-page: 119497
  year: 2019
  end-page: 119505
  ident: bib17
  article-title: Prediction of fuel consumption for enroute ship based on machine learning
  publication-title: IEEE Access
– volume: 130
  year: 2024
  ident: bib45
  article-title: A deep learning method for the prediction of ship fuel consumption in real operational conditions
  publication-title: Eng. Appl. Artif. Intell.
– volume: 57
  year: 2023
  ident: bib2
  article-title: Sustainable residential building energy consumption forecasting for smart cities using optimal weighted voting ensemble learning
  publication-title: Sustain. Energy Technol. Assessments
– volume: 347
  year: 2023
  ident: bib4
  article-title: Measurement-based relationships between container ship operating parameters and fuel consumption
  publication-title: Appl. Energy
– volume: 157
  start-page: 301
  year: 2018
  end-page: 312
  ident: bib27
  article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems
  publication-title: Ocean Eng.
– volume: 194
  year: 2023
  ident: bib10
  article-title: Characteristics of real-world ship energy consumption and emissions based on onboard testing
  publication-title: Mar. Pollut. Bull.
– volume: 248
  year: 2024
  ident: bib11
  article-title: Comprehensive evaluation of machine learning models for predicting ship energy consumption based on onboard sensor data
  publication-title: Ocean Coast Manag.
– volume: 307
  year: 2024
  ident: bib25
  article-title: A novel method of fuel consumption prediction for wing-diesel hybrid ships based on high-dimensional feature selection and improved blending ensemble learning method
  publication-title: Ocean Eng.
– volume: 47
  year: 2021
  ident: bib37
  article-title: An energy efficiency practice for coastal bulk carrier: speed decision and benefit analysis
  publication-title: Regional Stud. Marine Sci.
– volume: 292
  year: 2023
  ident: bib13
  article-title: Blending of energy benchmarks models for residential buildings
  publication-title: Energy Build.
– volume: 188
  year: 2019
  ident: bib12
  article-title: Machine learning models for predicting ship main engine Fuel Oil Consumption: a comparative study
  publication-title: Ocean Eng.
– year: 2019
  ident: bib42
  article-title: A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping
  publication-title: Ann. Oper. Res.
– volume: 9
  start-page: 273
  year: 2021
  ident: bib47
  article-title: Modeling of ship fuel consumption based on multisource and heterogeneous data: case study of passenger ship
  publication-title: J. Mar. Sci. Eng.
– volume: 309
  year: 2024
  ident: bib14
  article-title: A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity
  publication-title: Energy
– volume: 243
  year: 2022
  ident: bib48
  article-title: Predicting VLCC fuel consumption with machine learning using operationally available sensor data
  publication-title: Ocean Eng.
– volume: 177
  year: 2023
  ident: bib30
  article-title: An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction
  publication-title: Transport. Res. E Logist. Transport. Rev.
– volume: 113
  year: 2022
  ident: bib8
  article-title: Joint optimisation for improving ship energy efficiency considering speed and trim control
  publication-title: Transport. Res. Transport Environ.
– volume: 285
  year: 2023
  ident: bib46
  article-title: Predicting ship fuel consumption using a combination of metocean and on-board data
  publication-title: Ocean Eng.
– volume: 243
  year: 2022
  ident: bib31
  article-title: Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping
  publication-title: Ocean Eng.
– volume: 249
  year: 2022
  ident: bib19
  article-title: A two-step strategy for fuel consumption prediction and optimization of ocean-going ships
  publication-title: Ocean Eng.
– volume: 254
  year: 2024
  ident: bib34
  article-title: Investigation of ship energy consumption based on neural network
  publication-title: Ocean Coast Manag.
– volume: 9
  start-page: 449
  year: 2021
  ident: bib18
  article-title: A novel hybrid fuel consumption prediction model for ocean-going container ships based on sensor data
  publication-title: JMSE
– volume: 286
  year: 2023
  ident: bib44
  article-title: Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine
  publication-title: Ocean Eng.
– volume: 367
  year: 2024
  ident: bib33
  article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes
  publication-title: Appl. Energy
– volume: 286
  year: 2023
  ident: bib39
  article-title: Novel ship fuel consumption modelling approaches for speed and trim optimisation: using engine data as auxiliary
  publication-title: Ocean Eng.
– volume: 65
  start-page: 817
  year: 2018
  end-page: 824
  ident: bib36
  article-title: Predicting ship fuel consumption based on LASSO regression
  publication-title: Transport. Res. Transport Environ.
– year: 2012
  ident: bib21
  article-title: Guidelines for calculation of reference lines for use with the energy efficiency design index (EEDI)
  publication-title: MEPC
– volume: 238
  year: 2024
  ident: bib26
  article-title: Physics-informed machine learning models for ship speed prediction
  publication-title: Expert Syst. Appl.
– volume: 226
  year: 2021
  ident: bib35
  article-title: A dynamic ship speed optimization method with time horizon segmentation
  publication-title: Ocean Eng.
– volume: 284
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib1
  article-title: Fuel consumption prediction for a passenger ferry using machine learning and in-service data: a comparative study
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115271
– volume: 16
  start-page: 114
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib23
  article-title: Stacking‐based ensemble learning method for cognitive distraction state recognition for drivers in traditional and connected environments
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/itr2.12133
– volume: 226
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib35
  article-title: A dynamic ship speed optimization method with time horizon segmentation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108840
– volume: 130
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib45
  article-title: A deep learning method for the prediction of ship fuel consumption in real operational conditions
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107425
– volume: 214
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib50
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118874
– volume: 65
  start-page: 817
  year: 2018
  ident: 10.1016/j.oceaneng.2025.120538_bib36
  article-title: Predicting ship fuel consumption based on LASSO regression
  publication-title: Transport. Res. Transport Environ.
  doi: 10.1016/j.trd.2017.09.014
– volume: 29
  start-page: 166
  issue: 335
  year: 1982
  ident: 10.1016/j.oceaneng.2025.120538_bib16
  article-title: An approximate power prediction method
  publication-title: Int. Shipbuild. Prog.
  doi: 10.3233/ISP-1982-2933501
– volume: 264
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib9
  article-title: A review of ship fuel consumption models
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112405
– volume: 367
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib33
  article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123382
– volume: 47
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib37
  article-title: An energy efficiency practice for coastal bulk carrier: speed decision and benefit analysis
  publication-title: Regional Stud. Marine Sci.
  doi: 10.1016/j.rsma.2021.101988
– volume: 57
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib2
  article-title: Sustainable residential building energy consumption forecasting for smart cities using optimal weighted voting ensemble learning
  publication-title: Sustain. Energy Technol. Assessments
– year: 2019
  ident: 10.1016/j.oceaneng.2025.120538_bib42
  article-title: A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-019-03183-5
– volume: 291
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib3
  article-title: Diversity, quality, and quantity of real ship data on the black-box and gray-box prediction models of ship fuel consumption
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.116434
– year: 2012
  ident: 10.1016/j.oceaneng.2025.120538_bib20
  article-title: Guidelines for the development of a SHIP energy efficiency management plan (SEEMP)
  publication-title: MEPC
– volume: 6
  start-page: 317
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib49
  article-title: Comparative analysis on the fuel consumption prediction model for bulk carriers from ship launching to current states based on sea trial data and machine learning technique
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2021.02.005
– volume: 194
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib10
  article-title: Characteristics of real-world ship energy consumption and emissions based on onboard testing
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2023.115411
– year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib22
  article-title: Guidelines on operational carbon intensity indicators and the calculation methods
  publication-title: CII Guidelines, G1)
– year: 2012
  ident: 10.1016/j.oceaneng.2025.120538_bib21
  article-title: Guidelines for calculation of reference lines for use with the energy efficiency design index (EEDI)
  publication-title: MEPC
– volume: 2
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib28
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part I – voyage report data and meteorological data
  publication-title: Commun. Transport. Res.
  doi: 10.1016/j.commtr.2022.100074
– volume: 157
  start-page: 301
  year: 2018
  ident: 10.1016/j.oceaneng.2025.120538_bib27
  article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.03.068
– volume: 347
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib4
  article-title: Measurement-based relationships between container ship operating parameters and fuel consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121315
– volume: 9
  start-page: 273
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib47
  article-title: Modeling of ship fuel consumption based on multisource and heterogeneous data: case study of passenger ship
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse9030273
– volume: 248
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib11
  article-title: Comprehensive evaluation of machine learning models for predicting ship energy consumption based on onboard sensor data
  publication-title: Ocean Coast Manag.
  doi: 10.1016/j.ocecoaman.2023.106946
– volume: 254
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib34
  article-title: Investigation of ship energy consumption based on neural network
  publication-title: Ocean Coast Manag.
  doi: 10.1016/j.ocecoaman.2024.107167
– volume: 366
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib32
  article-title: An emission predictive system for CO and NOx from gas turbine based on ensemble machine learning approach
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.131421
– volume: 2
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib6
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part II – voyage report data, AIS data and meteorological data
  publication-title: Commun. Transport. Res.
– volume: 113
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib8
  article-title: Joint optimisation for improving ship energy efficiency considering speed and trim control
  publication-title: Transport. Res. Transport Environ.
– volume: 177
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib30
  article-title: An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction
  publication-title: Transport. Res. E Logist. Transport. Rev.
  doi: 10.1016/j.tre.2023.103261
– volume: 285
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib46
  article-title: Predicting ship fuel consumption using a combination of metocean and on-board data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115509
– volume: 307
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib25
  article-title: A novel method of fuel consumption prediction for wing-diesel hybrid ships based on high-dimensional feature selection and improved blending ensemble learning method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.118156
– volume: 2
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib5
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part III – sensor data and meteorological data
  publication-title: Commun. Transport. Res.
– volume: 302
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib15
  article-title: A novel prediction model for ship fuel consumption considering shipping data privacy: an XGBoost-IGWO-LSTM-based personalized federated learning approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117668
– volume: 7
  start-page: 119497
  year: 2019
  ident: 10.1016/j.oceaneng.2025.120538_bib17
  article-title: Prediction of fuel consumption for enroute ship based on machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933630
– volume: 249
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib19
  article-title: A two-step strategy for fuel consumption prediction and optimization of ocean-going ships
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.110904
– volume: 309
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib14
  article-title: A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133150
– volume: 184
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib41
  article-title: Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106039
– volume: 221
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib43
  article-title: Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108530
– volume: 238
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib26
  article-title: Physics-informed machine learning models for ship speed prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121877
– volume: 243
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib48
  article-title: Predicting VLCC fuel consumption with machine learning using operationally available sensor data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110321
– volume: 243
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120538_bib31
  article-title: Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110209
– volume: 9
  start-page: 449
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120538_bib18
  article-title: A novel hybrid fuel consumption prediction model for ocean-going container ships based on sensor data
  publication-title: JMSE
  doi: 10.3390/jmse9040449
– volume: 286
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib44
  article-title: Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115505
– volume: 167
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib29
  article-title: Ship sailing speed optimization considering dynamic meteorological conditions
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2024.104827
– volume: 292
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib24
  article-title: Decision support system for ship energy efficiency management based on an optimization model
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130318
– volume: 19
  start-page: 215
  year: 2020
  ident: 10.1016/j.oceaneng.2025.120538_bib7
  article-title: A novel ship energy efficiency model considering random environmental parameters
  publication-title: J. Marine Eng. & Technol.
  doi: 10.1080/20464177.2018.1546644
– volume: 292
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib13
  article-title: Blending of energy benchmarks models for residential buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113195
– volume: 310
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120538_bib40
  article-title: A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133265
– volume: 286
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib39
  article-title: Novel ship fuel consumption modelling approaches for speed and trim optimisation: using engine data as auxiliary
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115520
– volume: 188
  year: 2019
  ident: 10.1016/j.oceaneng.2025.120538_bib12
  article-title: Machine learning models for predicting ship main engine Fuel Oil Consumption: a comparative study
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106282
– volume: 157
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120538_bib38
  article-title: Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2023.104361
SSID ssj0006603
Score 2.4235842
Snippet Improving energy consumption prediction performance is of significant importance in ship energy efficiency optimisation. However, existing research primarily...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 120538
SubjectTerms Data-driven
Extrapolation
Multi-model fusion
Physical inconsistency
Ship energy consumption prediction
Title Ship energy consumption prediction: Multi-model fusion methods and multi-dimensional performance evaluation
URI https://dx.doi.org/10.1016/j.oceaneng.2025.120538
https://research.chalmers.se/publication/545155
Volume 322
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgEkBAVE6UM-cM3uxo8k7q2qWi0PlQNU6s3yY8xuQSHqbq_89s44SXc5oB64JZGdWJ7RPOL5vmHsw6ypwcRoCjqlK1StoHAeE1eotBOln6GTzgWyl9X8Sn261tc77GzEwlBZ5WD7e5uerfXwZDrs5rRbLgnjKwzaV0xxyHFLQpQrVZOWT_5syjyqaibHMg8avYUSvpmgi3AttD8wTxR6UgrUyOafDmqbSTR7n4uX7MUQNvLTfmWv2A60e-zZFpngHnv-lT4zMFC_Zj-_LZYdhwzt4yEDLbN14N0tnc3Q5QnP8Nsid8Ph6Y5-nPG-pfSKuzbyXG1YRGoA0JN38G6DM-AbovA37Ori_PvZvBg6KxRBNs26AO-80QBJO1W5gElgAqJiK9FTNRKkARNqLxNGPyixKHF4qBJ4ZVCyPjn5lu22v1t4x3gTGhEExmkpehV17aoolfBSR3xBLOM-0-N22jDQjlP3i192rC-7saMYLInB9mLYZ9OHeV1PvPHoDDNKy_6lQha9w6Nzv_TiffgW0W4PfEsLGxa5mc3KrsCKVOqISodhhgKL0aayJiZhwVTgyuB0Kv37_1jKAXtKd3110CHbXd_ewREGPmt_nDX7mD05_fh5fnkP2RIHDw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gBFQlBALU8fuKa78SOJuVUV1ZYuy4FW6s3yY9zdgkLU3f5_xo6zXQ6oB25Rkoktz2hmHM_3DSGfJk0NyntVxFO6QtQCCmNx4wqVNKy0EwzSqUB2Xk0vxdcrebVDTgYsTCyrzL6_9-nJW-c747ya4265jBhfptC_4hYnBm5ePyK7kZ1Kjsju8dn5dL5xyFU14UOlRxTYAgrfHGGUMC2017hVZPKoZGiUzT9j1DaZaApAp8_Js5w50uN-ci_IDrT7ZG-LT3CfPP0eh8kk1C_Jzx-LZUchofuoS1jL5CBodxuPZ-LlZ5oQuEVqiEPDXfx3Rvuu0itqWk9TwWHhYw-Anr-DdvdQA3rPFf6KXJ5-uTiZFrm5QuF406wLsMYqCRCkEZVxuA8MENnYSgxWDQeuQLna8oAJECrNc3zdVQGsUKhcGwx_TUbt7xYOCG1cwxzDVC14K7ysTeW5YJZLjx_wpT8kclhO7TLzeGyA8UsPJWY3elCDjmrQvRoOyXgj1_XcGw9KqEFb-i8r0hggHpSd9erdjBWZtzPl0kK7Repns9Ir0CyU0qPdYaYhQGPCKbTygWlQFZjSGRlK--Y_pvKRPJ5efJvp2dn8_C15Ep_0xULvyGh9ewfvMQ9a2w_Zzv8Ax9AJwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+energy+consumption+prediction%3A+Multi-model+fusion+methods+and+multi-dimensional+performance+evaluation&rft.jtitle=Ocean+engineering&rft.au=Hu%2C+Zhihui&rft.au=Fan%2C+Ailong&rft.au=Mao%2C+Wengang&rft.au=Shu%2C+Yaqing&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=322&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.120538&rft.externalDocID=S0029801825002537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon