Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles
Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with mul...
Saved in:
Published in | Agriculture (Basel) Vol. 10; no. 7; p. 256 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with multispectral and thermal cameras facilitate the monitoring of crops throughout the crop growing cycle, allowing for timely detection and intervention in case of any anomalies. The use of UAVs in smallholder agriculture is poised to ensure food security at household level and improve agricultural water management in developing countries. This review synthesises the use of UAVs in smallholder agriculture in the smallholder agriculture sector in developing countries. The review highlights the role of UAV derived normalised difference vegetation index (NDVI) in assessing crop health, evapotranspiration, water stress and disaster risk reduction. The focus is to provide more accurate statistics on irrigated areas, crop water requirements and to improve water productivity and crop yield. UAVs facilitate access to agro-meteorological information at field scale and in near real-time, important information for irrigation scheduling and other on-field decision-making. The technology improves smallholder agriculture by facilitating access to information on crop biophysical parameters in near real-time for improved preparedness and operational decision-making. Coupled with accurate meteorological data, the technology allows for precise estimations of crop water requirements and crop evapotranspiration at high spatial resolution. Timely access to crop health information helps inform operational decisions at the farm level, and thus, enhancing rural livelihoods and wellbeing. |
---|---|
AbstractList | Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with multispectral and thermal cameras facilitate the monitoring of crops throughout the crop growing cycle, allowing for timely detection and intervention in case of any anomalies. The use of UAVs in smallholder agriculture is poised to ensure food security at household level and improve agricultural water management in developing countries. This review synthesises the use of UAVs in smallholder agriculture in the smallholder agriculture sector in developing countries. The review highlights the role of UAV derived normalised difference vegetation index (NDVI) in assessing crop health, evapotranspiration, water stress and disaster risk reduction. The focus is to provide more accurate statistics on irrigated areas, crop water requirements and to improve water productivity and crop yield. UAVs facilitate access to agro-meteorological information at field scale and in near real-time, important information for irrigation scheduling and other on-field decision-making. The technology improves smallholder agriculture by facilitating access to information on crop biophysical parameters in near real-time for improved preparedness and operational decision-making. Coupled with accurate meteorological data, the technology allows for precise estimations of crop water requirements and crop evapotranspiration at high spatial resolution. Timely access to crop health information helps inform operational decisions at the farm level, and thus, enhancing rural livelihoods and wellbeing. |
Author | Chimonyo, Vimbayi G. P. Sibanda, Mbulisi Nhamo, Luxon Mabhaudhi, Tafadzwanashe Magidi, James Clulow, Alistair D. Nyamugama, Adolph |
Author_xml | – sequence: 1 givenname: Luxon orcidid: 0000-0003-2944-1769 surname: Nhamo fullname: Nhamo, Luxon – sequence: 2 givenname: James surname: Magidi fullname: Magidi, James – sequence: 3 givenname: Adolph orcidid: 0000-0002-9838-8175 surname: Nyamugama fullname: Nyamugama, Adolph – sequence: 4 givenname: Alistair D. surname: Clulow fullname: Clulow, Alistair D. – sequence: 5 givenname: Mbulisi orcidid: 0000-0002-4589-7099 surname: Sibanda fullname: Sibanda, Mbulisi – sequence: 6 givenname: Vimbayi G. P. surname: Chimonyo fullname: Chimonyo, Vimbayi G. P. – sequence: 7 givenname: Tafadzwanashe orcidid: 0000-0002-9323-8127 surname: Mabhaudhi fullname: Mabhaudhi, Tafadzwanashe |
BookMark | eNp9UU1rGzEQFSWBpo5_QS6CnN3oY62PowltYzA0hyY55CBmtZIts5ZcrTaQf185TkIpoXOZYXjvzZuZL-gkpugQuqDkK-eaXME6Bzv2ZcyOEiIJm4tP6IwRKWekkezkr_ozmg7DltTQlCsiztDjbU7D3tky4OTxcrfP6SnENV68i0KPIXb4AYrLuKK70ZbwFMozLpucxvUG38UdxOg6vHA5VPi92wTbu-EcnXroBzd9zRN09_3br-ub2ernj-X1YjWzXKkyc9T6VrJ2brVQAqQSijZMaOU5-Aa0cMzWPaGVouGcAiiqlehYy5xvLOV8gpZH3S7B1uxz2EF-NgmCeWmkvDaQy8GSmUslubCWUUobqzuwknZKetFq4eu0qnV51KqH-D26oZhtGnOs9g1rGOFEy7msKH1E2Xq9ITtvbChQQoolQ-gNJebwGvPBayqX_8N9c_w_1h8uQ5ip |
CitedBy_id | crossref_primary_10_3390_rs16040710 crossref_primary_10_1142_S230138502450016X crossref_primary_10_1080_01431161_2023_2240523 crossref_primary_10_3390_geographies4030024 crossref_primary_10_7745_KJSSF_2024_57_4_272 crossref_primary_10_1007_s40003_024_00829_0 crossref_primary_10_1088_1755_1315_1045_1_012147 crossref_primary_10_3390_agriculture13040780 crossref_primary_10_3390_drones6070169 crossref_primary_10_3390_su15043557 crossref_primary_10_1016_j_jclepro_2021_129099 crossref_primary_10_1590_fst_76321 crossref_primary_10_3390_agriculture11010022 crossref_primary_10_3390_agriengineering5010005 crossref_primary_10_3390_agriengineering5010003 crossref_primary_10_1016_j_jclepro_2022_132735 crossref_primary_10_3390_rs13050876 crossref_primary_10_1088_1755_1315_937_3_032101 crossref_primary_10_1108_AEAT_11_2020_0257 crossref_primary_10_3390_rs14030518 crossref_primary_10_26833_ijeg_1475023 crossref_primary_10_3390_agronomy15030618 crossref_primary_10_1080_01431161_2024_2368933 crossref_primary_10_1109_JSTARS_2022_3204223 crossref_primary_10_3390_w12102673 crossref_primary_10_3390_w13243627 crossref_primary_10_3390_drones8090476 crossref_primary_10_7868_25000640230106 crossref_primary_10_3390_eng5040166 crossref_primary_10_1007_s40808_021_01234_0 crossref_primary_10_17660_ActaHortic_2024_1409_8 crossref_primary_10_3390_agronomy13071729 crossref_primary_10_1016_j_heliyon_2024_e26913 crossref_primary_10_17660_ActaHortic_2024_1409_41 crossref_primary_10_1016_j_paerosci_2024_101005 crossref_primary_10_3390_w13212964 crossref_primary_10_3390_data8050088 crossref_primary_10_3390_rs15164066 crossref_primary_10_3389_frsen_2021_762093 crossref_primary_10_3390_rs13163238 crossref_primary_10_3390_drones9030157 crossref_primary_10_1016_j_jag_2024_103833 crossref_primary_10_1016_j_grets_2025_100192 crossref_primary_10_1111_ppa_14006 crossref_primary_10_1080_10106049_2024_2347935 crossref_primary_10_1080_23311932_2025_2454354 crossref_primary_10_1016_j_agwat_2025_109445 crossref_primary_10_33723_rs_1341624 crossref_primary_10_3390_drones8120783 crossref_primary_10_3390_s21216984 |
Cites_doi | 10.3390/rs2020562 10.1093/jxb/err248 10.1155/2015/431487 10.1016/j.agwat.2015.01.020 10.3390/rs11080945 10.3390/rs6087406 10.1016/j.biosystemseng.2010.11.010 10.1029/2018RG000598 10.1007/s13280-015-0714-0 10.3390/rs6042827 10.3390/rs9111110 10.1504/IJGENVI.2018.091429 10.1111/1365-2745.12184 10.1016/j.worlddev.2015.05.012 10.3390/rs11243012 10.1016/j.compag.2014.02.009 10.1002/2014WR016869 10.3390/s90503801 10.1017/S2040470017000826 10.3389/fpls.2019.00204 10.1590/1678-992x-2017-0158 10.3390/rs10050712 10.1016/j.agsy.2006.11.019 10.3390/rs9101048 10.3390/s19030642 10.3390/rs71013485 10.3390/rs5020539 10.3390/drones2030028 10.3390/drones3020040 10.3390/rs9080828 10.1371/journal.pone.0200288 10.3390/rs71014079 10.1093/jxb/erl165 10.1139/juvs-2015-0026 10.2134/agronj2000.92183x 10.2135/cropsci1995.0011183X003500050023x 10.1007/s11119-014-9355-8 10.1016/0034-4257(88)90106-X 10.3390/rs11060605 10.1016/j.wace.2014.03.003 10.5194/hess-21-6135-2017 10.1155/2015/195308 10.1002/2017GL076521 10.5194/isprsarchives-XL-7-181-2014 10.1016/j.compag.2017.07.026 10.2307/2390165 10.1080/10095020.2017.1325594 10.3390/bios5030537 10.1093/jxb/erv034 10.20944/preprints201803.0097.v1 10.5337/2017.205 10.3389/fpls.2017.00887 10.1016/j.agwat.2014.07.012 10.1371/journal.pone.0086908 10.1104/pp.17.01234 10.1007/s00271-012-0375-8 10.3390/rs10020285 10.1105/tpc.111.094912 10.1002/hyp.8408 10.2489/jswc.73.6.682 10.1016/j.agwat.2006.04.003 10.4314/wsa.v45i1.09 10.1080/01431161.2017.1410300 10.1080/014311602320567955 10.3390/rs70302971 10.1016/j.ijdrr.2013.02.001 10.5772/21279 10.1007/s12205-012-0006-1 10.1080/1573062X.2012.726360 10.2307/2401901 10.3390/w8090411 10.5194/hess-21-3879-2017 10.1155/2017/1353691 10.1080/01431168608948946 10.1016/j.isprsjprs.2017.05.003 10.3390/rs10111682 10.5194/hess-6-85-2002 10.3390/rs61111051 10.1016/j.agrformet.2017.01.009 10.4314/wsa.v42i4.18 10.3390/ijerph13010107 10.3389/fpls.2016.01720 10.3389/fpls.2017.01111 10.1016/j.rse.2017.06.007 10.1371/journal.pone.0159781 10.1061/(ASCE)0733-9437(2007)133:4(380) 10.1079/9780851996691.0000 10.3390/rs10071091 10.1126/science.1185383 10.1111/1365-2435.12081 10.1016/j.agwat.2009.03.023 10.5194/hess-20-697-2016 10.1016/j.agsy.2017.01.023 10.1016/j.agsy.2016.09.021 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI DOA |
DOI | 10.3390/agriculture10070256 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_578736cc21114c9dac71d87f6b96faf4 10_3390_agriculture10070256 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO KQ8 M0K MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI SOI PUEGO |
ID | FETCH-LOGICAL-c388t-e1cfb72b5c9686a7868142698f3af4a96e2c390ab764331aa81986d2b2ef4c133 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Mon Jun 30 13:37:21 EDT 2025 Tue Jul 01 02:12:30 EDT 2025 Thu Apr 24 23:04:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-e1cfb72b5c9686a7868142698f3af4a96e2c390ab764331aa81986d2b2ef4c133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9838-8175 0000-0003-2944-1769 0000-0002-4589-7099 0000-0002-9323-8127 |
OpenAccessLink | https://doaj.org/article/578736cc21114c9dac71d87f6b96faf4 |
PQID | 2420309757 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_578736cc21114c9dac71d87f6b96faf4 proquest_journals_2420309757 crossref_citationtrail_10_3390_agriculture10070256 crossref_primary_10_3390_agriculture10070256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 Huete (ref_52) 1988; 25 ref_91 ref_90 Matese (ref_109) 2015; 7 ref_14 ref_13 Allen (ref_86) 2007; 133 ref_99 ref_98 ref_95 Fereres (ref_77) 2006; 58 ref_19 ref_18 ref_16 Barrado (ref_29) 2014; 6 Hunt (ref_61) 2018; 39 Monteith (ref_71) 1972; 9 Gago (ref_58) 2015; 153 Ihuoma (ref_57) 2017; 141 Fang (ref_41) 2015; 5 Mungai (ref_5) 2016; 7 Pavlovic (ref_43) 2015; 29 ref_24 ref_22 Gokool (ref_85) 2016; 42 ref_21 ref_20 Meroni (ref_66) 2013; 5 ref_27 ref_26 Igbadun (ref_92) 2006; 85 Graeub (ref_35) 2016; 87 Craine (ref_72) 2013; 27 Slattery (ref_74) 2018; 176 Zhou (ref_63) 2017; 130 ref_70 Jones (ref_12) 2017; 155 (ref_40) 2017; 8 ref_78 Levidow (ref_7) 2014; 146 ref_76 Mokhtari (ref_87) 2013; 7 Sandbrook (ref_34) 2015; 44 Liu (ref_93) 2007; 94 Hatfield (ref_46) 2010; 2 Naumann (ref_30) 2018; 45 Haxeltine (ref_75) 1996; 10 ref_83 Solh (ref_31) 2014; 3 Singha (ref_105) 2016; 37 Costa (ref_51) 2019; 76 Dalezios (ref_55) 2018; 17 Ishihara (ref_15) 2015; 7 (ref_108) 2017; 8 Hoffmann (ref_17) 2016; 20 Xiang (ref_38) 2011; 108 Cosgrove (ref_3) 2015; 51 Nouri (ref_80) 2013; 10 Madugundu (ref_88) 2017; 21 Du (ref_6) 2015; 66 Mee (ref_42) 2017; 16 Cammarano (ref_56) 2014; 6 Fan (ref_4) 2011; 63 (ref_28) 2014; 103 ref_59 Su (ref_84) 2002; 6 Yang (ref_10) 2017; 8 Huang (ref_25) 2018; 56 Kim (ref_101) 2012; 16 ref_60 ref_68 ref_67 ref_65 Townshend (ref_47) 1986; 7 Fuentes (ref_54) 2012; 30 ref_62 Castillo (ref_104) 2016; 19 Ballesteros (ref_23) 2014; 15 Boken (ref_48) 2002; 23 McCabe (ref_107) 2017; 21 Jin (ref_64) 2017; 198 ref_36 ref_32 Scott (ref_33) 2017; 20 ref_110 ref_113 ref_112 Vriet (ref_69) 2012; 24 Nhamo (ref_11) 2019; 45 Aparicio (ref_50) 2000; 92 ref_39 Molden (ref_96) 2010; 97 ref_37 DeBell (ref_97) 2015; 4 Godfray (ref_2) 2010; 327 She (ref_45) 2015; 7 ref_106 Filella (ref_49) 1995; 35 Gibson (ref_89) 2013; 39 Xu (ref_53) 2018; 73 Li (ref_82) 2009; 9 ref_44 ref_102 ref_1 Ramoelo (ref_100) 2014; 6 ref_9 ref_8 Migliavacca (ref_79) 2017; 236 Wolfert (ref_111) 2017; 153 Allen (ref_81) 2011; 25 Onoda (ref_73) 2014; 102 Jayanthi (ref_103) 2013; 4 |
References_xml | – volume: 2 start-page: 562 year: 2010 ident: ref_46 article-title: Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices publication-title: Remote Sens. doi: 10.3390/rs2020562 – volume: 63 start-page: 13 year: 2011 ident: ref_4 article-title: Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China publication-title: J. Exp. Bot. doi: 10.1093/jxb/err248 – ident: ref_70 doi: 10.1155/2015/431487 – volume: 153 start-page: 9 year: 2015 ident: ref_58 article-title: UAVs challenge to assess water stress for sustainable agriculture publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.01.020 – ident: ref_27 doi: 10.3390/rs11080945 – volume: 6 start-page: 7406 year: 2014 ident: ref_100 article-title: Validation of global evapotranspiration product (MOD16) using flux tower data in the African savanna, South Africa publication-title: Remote Sens. doi: 10.3390/rs6087406 – volume: 108 start-page: 174 year: 2011 ident: ref_38 article-title: Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV) publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2010.11.010 – volume: 56 start-page: 333 year: 2018 ident: ref_25 article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review publication-title: Rev. Geophys. doi: 10.1029/2018RG000598 – volume: 16 start-page: 1 year: 2017 ident: ref_42 article-title: Detecting and monitoring plant nutrient stress using remote sensing approaches: A review publication-title: Asian J. Plant Sci. – ident: ref_68 – volume: 44 start-page: 636 year: 2015 ident: ref_34 article-title: The social implications of using drones for biodiversity conservation publication-title: Ambio doi: 10.1007/s13280-015-0714-0 – volume: 6 start-page: 2827 year: 2014 ident: ref_56 article-title: Assessing the robustness of vegetation indices to estimate wheat N in Mediterranean environments publication-title: Remote Sens. doi: 10.3390/rs6042827 – ident: ref_13 doi: 10.3390/rs9111110 – ident: ref_1 – volume: 17 start-page: 262 year: 2018 ident: ref_55 article-title: Water scarcity management: Part 2: Satellite-based composite drought analysis publication-title: Int. J. Glob. Environ. Issues doi: 10.1504/IJGENVI.2018.091429 – volume: 102 start-page: 167 year: 2014 ident: ref_73 article-title: Trade-off between light interception efficiency and light use efficiency: Implications for species coexistence in one-sided light competition publication-title: J. Ecol. doi: 10.1111/1365-2745.12184 – volume: 87 start-page: 1 year: 2016 ident: ref_35 article-title: The state of family farms in the world publication-title: World Dev. doi: 10.1016/j.worlddev.2015.05.012 – ident: ref_110 doi: 10.3390/rs11243012 – volume: 103 start-page: 104 year: 2014 ident: ref_28 article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.02.009 – volume: 51 start-page: 4823 year: 2015 ident: ref_3 article-title: Water management: Current and future challenges and research directions publication-title: Water Resour. Res. doi: 10.1002/2014WR016869 – volume: 9 start-page: 3801 year: 2009 ident: ref_82 article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data publication-title: Sensors doi: 10.3390/s90503801 – volume: 8 start-page: 267 year: 2017 ident: ref_40 article-title: Mapping Cynodon dactylon in vineyards using UAV images for site-specific weed control publication-title: Adv. Anim. Biosci. doi: 10.1017/S2040470017000826 – ident: ref_76 doi: 10.3389/fpls.2019.00204 – volume: 76 start-page: 93 year: 2019 ident: ref_51 article-title: Spatial variability of coffee plant water consumption based on the SEBAL algorithm publication-title: Sci. Agric. doi: 10.1590/1678-992x-2017-0158 – ident: ref_9 doi: 10.3390/rs10050712 – volume: 94 start-page: 478 year: 2007 ident: ref_93 article-title: GEPIC—Modelling wheat yield and crop water productivity with high resolution on a global scale publication-title: Agric. Syst. doi: 10.1016/j.agsy.2006.11.019 – ident: ref_106 doi: 10.3390/rs9101048 – ident: ref_112 doi: 10.3390/s19030642 – volume: 7 start-page: 13485 year: 2015 ident: ref_45 article-title: Comparison of the continuity of vegetation indices derived from Landsat 8 OLI and Landsat 7 ETM+ data among different vegetation types publication-title: Remote Sens. doi: 10.3390/rs71013485 – volume: 5 start-page: 539 year: 2013 ident: ref_66 article-title: Remote sensing-based yield estimation in a stochastic framework—Case study of durum wheat in Tunisia publication-title: Remote Sens. doi: 10.3390/rs5020539 – ident: ref_60 doi: 10.3390/drones2030028 – ident: ref_16 doi: 10.3390/drones3020040 – ident: ref_98 doi: 10.3390/rs9080828 – ident: ref_21 doi: 10.1371/journal.pone.0200288 – volume: 7 start-page: 14079 year: 2015 ident: ref_15 article-title: The impact of sunlight conditions on the consistency of vegetation indices in croplands—Effective usage of vegetation indices from continuous ground-based spectral measurements publication-title: Remote Sens. doi: 10.3390/rs71014079 – volume: 58 start-page: 147 year: 2006 ident: ref_77 article-title: Deficit irrigation for reducing agricultural water use publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl165 – volume: 4 start-page: 7 year: 2015 ident: ref_97 article-title: Water resource management at catchment scales using lightweight UAVs: Current capabilities and future perspectives publication-title: J. Unmanned Veh. Syst. doi: 10.1139/juvs-2015-0026 – volume: 92 start-page: 83 year: 2000 ident: ref_50 article-title: Spectral vegetation indices as nondestructive tools for determining durum wheat yield publication-title: Agron. J. doi: 10.2134/agronj2000.92183x – volume: 35 start-page: 1400 year: 1995 ident: ref_49 article-title: Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis publication-title: Crop Sci. doi: 10.2135/cropsci1995.0011183X003500050023x – volume: 29 start-page: 14 year: 2015 ident: ref_43 article-title: Chlorophyll as a measure of plant health: Agroecological aspects publication-title: Pestic. Phytomed. – volume: 15 start-page: 579 year: 2014 ident: ref_23 article-title: Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing publication-title: Precis. Agric. doi: 10.1007/s11119-014-9355-8 – volume: 25 start-page: 295 year: 1988 ident: ref_52 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – ident: ref_59 doi: 10.3390/rs11060605 – volume: 3 start-page: 62 year: 2014 ident: ref_31 article-title: Drought preparedness and drought mitigation in the developing world׳ s drylands publication-title: Weather Clim. Extrem. doi: 10.1016/j.wace.2014.03.003 – volume: 21 start-page: 6135 year: 2017 ident: ref_88 article-title: Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-6135-2017 – ident: ref_14 doi: 10.1155/2015/195308 – volume: 45 start-page: 3285 year: 2018 ident: ref_30 article-title: Global changes in drought conditions under different levels of warming publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL076521 – ident: ref_67 – ident: ref_65 doi: 10.5194/isprsarchives-XL-7-181-2014 – volume: 141 start-page: 267 year: 2017 ident: ref_57 article-title: Recent advances in crop water stress detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.07.026 – volume: 37 start-page: 125 year: 2016 ident: ref_105 article-title: Land suitability evaluation criteria for agricultural crop selection: A review publication-title: Agric. Rev. – volume: 10 start-page: 551 year: 1996 ident: ref_75 article-title: A general model for the light-use efficiency of primary production publication-title: Funct. Ecol. doi: 10.2307/2390165 – volume: 20 start-page: 59 year: 2017 ident: ref_33 article-title: Sustainable development and geospatial information: A strategic framework for integrating a global policy agenda into national geospatial capabilities publication-title: Geo-Spat. Inf. Sci. doi: 10.1080/10095020.2017.1325594 – volume: 5 start-page: 537 year: 2015 ident: ref_41 article-title: Current and prospective methods for plant disease detection publication-title: Biosensors doi: 10.3390/bios5030537 – volume: 66 start-page: 2253 year: 2015 ident: ref_6 article-title: Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv034 – ident: ref_22 doi: 10.20944/preprints201803.0097.v1 – ident: ref_32 doi: 10.5337/2017.205 – volume: 8 start-page: 887 year: 2017 ident: ref_108 article-title: Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00887 – volume: 146 start-page: 84 year: 2014 ident: ref_7 article-title: Improving water-efficient irrigation: Prospects and difficulties of innovative practices publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.07.012 – ident: ref_37 doi: 10.1371/journal.pone.0086908 – volume: 176 start-page: 990 year: 2018 ident: ref_74 article-title: The impacts of fluctuating light on crop performance publication-title: Plant Physiol. doi: 10.1104/pp.17.01234 – ident: ref_36 – ident: ref_19 – volume: 30 start-page: 523 year: 2012 ident: ref_54 article-title: Computational water stress indices obtained from thermal image analysis of grapevine canopies publication-title: Irrig. Sci. doi: 10.1007/s00271-012-0375-8 – ident: ref_39 doi: 10.3390/rs10020285 – volume: 24 start-page: 842 year: 2012 ident: ref_69 article-title: Boosting crop yields with plant steroids publication-title: Plant Cell doi: 10.1105/tpc.111.094912 – volume: 25 start-page: 4011 year: 2011 ident: ref_81 article-title: Satellite-based ET estimation in agriculture using SEBAL and METRIC publication-title: Hydrol. Process. doi: 10.1002/hyp.8408 – volume: 73 start-page: 682 year: 2018 ident: ref_53 article-title: The feasibility of satellite remote sensing and spatial interpolation to estimate cover crop biomass and nitrogen uptake in a small watershed publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.73.6.682 – ident: ref_78 – ident: ref_113 – volume: 85 start-page: 141 year: 2006 ident: ref_92 article-title: Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2006.04.003 – volume: 45 start-page: 20 year: 2019 ident: ref_11 article-title: Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa publication-title: Water SA doi: 10.4314/wsa.v45i1.09 – volume: 39 start-page: 5345 year: 2018 ident: ref_61 article-title: What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1410300 – volume: 23 start-page: 4155 year: 2002 ident: ref_48 article-title: Improving an operational wheat yield model using phenological phase-based Normalized Difference Vegetation Index publication-title: Int. J. Remote Sens. doi: 10.1080/014311602320567955 – volume: 7 start-page: 2971 year: 2015 ident: ref_109 article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture publication-title: Remote Sens. doi: 10.3390/rs70302971 – volume: 4 start-page: 71 year: 2013 ident: ref_103 article-title: Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2013.02.001 – ident: ref_83 doi: 10.5772/21279 – volume: 16 start-page: 229 year: 2012 ident: ref_101 article-title: Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-012-0006-1 – volume: 10 start-page: 247 year: 2013 ident: ref_80 article-title: A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation publication-title: Urban Water J. doi: 10.1080/1573062X.2012.726360 – volume: 7 start-page: 407 year: 2013 ident: ref_87 article-title: Sensitivity analysis of METRIC–based evapotranspiration algorithm publication-title: Int. J. Environ. Res. – volume: 9 start-page: 747 year: 1972 ident: ref_71 article-title: Solar radiation and productivity in tropical ecosystems publication-title: J. Appl. Ecol. doi: 10.2307/2401901 – ident: ref_8 doi: 10.3390/w8090411 – volume: 21 start-page: 3879 year: 2017 ident: ref_107 article-title: The future of Earth observation in hydrology publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-3879-2017 – volume: 19 start-page: 93 year: 2016 ident: ref_104 article-title: Index insurance: Using public data to benefit small-scale agriculture publication-title: Int. Food Agribus. Manag. Rev. – ident: ref_44 doi: 10.1155/2017/1353691 – volume: 7 start-page: 1435 year: 1986 ident: ref_47 article-title: Analysis of the dynamics of African vegetation using the normalized difference vegetation index publication-title: Int. J. Remote Sens. doi: 10.1080/01431168608948946 – volume: 130 start-page: 246 year: 2017 ident: ref_63 article-title: Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.003 – ident: ref_90 doi: 10.3390/rs10111682 – volume: 6 start-page: 85 year: 2002 ident: ref_84 article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-85-2002 – ident: ref_20 – volume: 6 start-page: 11051 year: 2014 ident: ref_29 article-title: UAV flight experiments applied to the remote sensing of vegetated areas publication-title: Remote Sens. doi: 10.3390/rs61111051 – volume: 236 start-page: 87 year: 2017 ident: ref_79 article-title: Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.01.009 – volume: 42 start-page: 673 year: 2016 ident: ref_85 article-title: Estimating total evaporation at the field scale using the SEBS model and data infilling procedures publication-title: Water SA doi: 10.4314/wsa.v42i4.18 – ident: ref_95 doi: 10.3390/ijerph13010107 – ident: ref_24 – volume: 7 start-page: 1720 year: 2016 ident: ref_5 article-title: Smallholder farms and the potential for sustainable intensification publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01720 – volume: 39 start-page: 477 year: 2013 ident: ref_89 article-title: Estimating evapotranspiration using remote sensing and the Surface Energy Balance System—A South African perspective publication-title: Water SA – ident: ref_102 – volume: 8 start-page: 1111 year: 2017 ident: ref_10 article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01111 – volume: 198 start-page: 105 year: 2017 ident: ref_64 article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.007 – ident: ref_18 – ident: ref_62 doi: 10.1371/journal.pone.0159781 – volume: 133 start-page: 380 year: 2007 ident: ref_86 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) – ident: ref_94 doi: 10.1079/9780851996691.0000 – ident: ref_26 doi: 10.3390/rs10071091 – volume: 327 start-page: 812 year: 2010 ident: ref_2 article-title: Food security: The challenge of feeding 9 billion people publication-title: Science doi: 10.1126/science.1185383 – ident: ref_91 – volume: 27 start-page: 833 year: 2013 ident: ref_72 article-title: Mechanisms of plant competition for nutrients, water and light publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12081 – volume: 97 start-page: 528 year: 2010 ident: ref_96 article-title: Improving agricultural water productivity: Between optimism and caution publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2009.03.023 – volume: 20 start-page: 697 year: 2016 ident: ref_17 article-title: Estimating evaporation with thermal UAV data and two-source energy balance models publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-697-2016 – volume: 153 start-page: 69 year: 2017 ident: ref_111 article-title: Big data in smart farming—A review publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.01.023 – volume: 155 start-page: 269 year: 2017 ident: ref_12 article-title: Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.09.021 – ident: ref_99 |
SSID | ssj0000913806 |
Score | 2.395089 |
SecondaryResourceType | review_article |
Snippet | Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 256 |
SubjectTerms | Access to information Accuracy Adaptation Agricultural management Agricultural production Agriculture Altitude Anomalies Cameras Climate change crop health Crop production Crop yield Crops Decision making Developing countries Disaster management Disaster risk Drones Emergency preparedness Evapotranspiration Farmers Food security Freshwater resources Global positioning systems GPS High resolution Information dissemination Irrigated areas irrigation Irrigation scheduling LDCs Meteorological data Normalized difference vegetative index Productivity Remote sensing resilience Risk management Risk reduction Satellites Sensors Spatial analysis Spatial discrimination Spatial resolution Unmanned aerial vehicles Water management water productivity Water requirements Water stress |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGG4ULnowfkYUTQ8ebYCt67qTAQMhHggxoiQelrZr8aAbDvz_9u3KiNF43bom68fzfvTp8yJ0I5JY6cxoQlWUEWqkIIL2BKHcArKIOLjQwLaYsPGMPsyjuU-4rTytcoOJDqizQkGOvGNNCZwGxFF8t_wkUDUKTld9CY1d1LQQzHkDNQfDyfSxzrKA6iXvskpuKLTxfUcsSi9qoYEgACb_h0lyyv2_gNlZm9EhOvBuIu5X83qEdnR-jPb7215P0Ou0LNw9yRUuDK6TA3jbyHYg8gy_WHeyxNNK2tXVisC-Og-e5R8CgBb33ULEz_rN0eRO0Ww0fLofE18qgaiQ8zXRPWVkHMhIJYwzEXPGe3BJlZtQGCoSpgNl_17ImMEVKSGsI8BZFshAG6psnHqGGnmR63OEmfVgaGgSJy2fRCJRQGQLMymt5yBZt4WCzWilyuuIQzmL99TGEzDE6R9D3EK39UfLSkbj_-YDmIa6KWhguwdFuUj9lkoBa0KgfVu4pirJhIp7GY8Nkwkz9q9bqL2ZxNRvzFW6XUYX_7--RHsBhNaOmdtGjXX5pa-s_7GW136RfQMrSN4p priority: 102 providerName: ProQuest |
Title | Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles |
URI | https://www.proquest.com/docview/2420309757 https://doaj.org/article/578736cc21114c9dac71d87f6b96faf4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEWhVB4Yidq8_Bhb1KpiqCpEoRJDdHZsGCBFafn_-Jy0BYFgYY0cJzlf7r5LPn9HyCVIrk1uTZDoNA8SqyCAJIQgES4gQyoQQiPbYsxG0-Rmls4-tfpCTlglD1wZroMeFSO5172UiZY5aB7mglumJLNgvRKoy3mfiikfg2UYiy6rZIZiV9d34KmsxSwMEgMw1X9JRV6x_1tA9llmuE_2anhIe9VtHZAtUxyS3d5m1iPyOCnnfn_kgs4tXX8UoJtBbgIocvrgYGRJJ5Wkq-8RQeuuPHRavAIGWNrzDkjvzbOnxx2T6XBwdz0K6hYJgY6FWAYm1FbxSKVaMsGACyZC3JwqbOxsA5KZSLunB8UZbo0CcABAsDxSkbGJdvXpCWkU88KcEsocckliK72kvExBaiSwxblSDjEo1m2SaGWtTNf64djG4iVzdQSaOPvBxE1ytT7prZLP-H14H5dhPRS1r_0B5xFZ7RHZXx7RJK3VImb1C7nIHBLBn0k85Wf_cY1zshNh4e15uy3SWJbv5sKhk6Vqk-3-YDy5bXuH_ADSXOcX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwEB2h5dD2UJXSqlug9aHciNg4jmMfKrQU0FJgtarYFqmH1HZseigJzW6F-Cm-EY-T7KpqxY1rYlvKeDIzHs-8B_BByczYwtmImbSImNMqUixWERPeIKtUYAiN1RZjPpqyzxfpxQrcdb0wWFbZ2cRgqIvKYI5817sSvA3I0mzv-neErFF4u9pRaDRqcWJvb_yRbfbx-MDv7zalR4fnn0ZRyyoQmUSIeWRj43RGdWokF1xlgosY-zmFS5RjSnJLTSIHSmccu4mU8j5T8IJqah0zMSZAvclfZQkf0B6s7h-OJ18WWR1E2RQD3sAbJX6ZXXVZtyAaFgsSMMT4ywUGpoB_HEHwbkcv4HkblpJho0drsGLLl_BsuFx1Hb5P6ir0Zc5I5cgiGUGWg_wCqizINx--1mTSQMkGbgrSsgGRaXml0LCTYVB88tX-DGV5r2D6KEJ8Db2yKu0bINxHTCxxMkDZy1RJg4VzSaG1j1Q0H_SBdtLKTYtbjvQZv3J_fkER5_8RcR92FpOuG9iOh4fv4zYshiLmdnhQ1Zd5-wvnaNsSLDP37oEZWSiTxYXIHNeSO__VfdjsNjFvDcEsX6rt24dfv4cno_Oz0_z0eHyyAU8pHutDVfAm9Ob1H7vlY5-5ftcqHIEfj63j92XFGkc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEUCwV8gBtRN4nj2AeEtrSrlqLVCrFQiUOwHbscICnZRYi_xq9jxnF2hUC99Zo4lmKP5-VvvgF4plVpXe1dwm1RJ9wbnWie6oRLVMi6kORCE9piLo6X_M1ZcbYDv4daGIJVDjoxKOq6tZQj30dTQrcBJQbwPsIiFoezVxffE-ogRTetQzuNXkRO3a-fGL6tXp4c4l4_z7LZ0fvXx0nsMJDYXMp14lLrTZmZwiohhS6lkCnVdkqfa8-1Ei6zuZpoUwqqLNIa7acUdWYy57lNKRmK6n-3pKhoBLsHR_PFu02Ghxg35UT0VEc5TrOvz7tIqOEInEDuxl_mMHQN-McoBEs3uwU3o4vKpr1M3YYd19yBG9PtrHfh06JrQ43mirWebRITbDsIJ9BNzT6iK9uxRU8rG_pUsNgZiC2bb5qUPJuGQ8A-uC8BoncPlleyiPdh1LSNewBMoPfEc68Crb0qtLIEostrY9BrMWIyhmxYrcpGDnNqpfG1wliGlrj6zxKP4cXmo4uewuPy4Qe0DZuhxL8dHrTdeRWPc0V6LifIOZoKblWtbZnWsvTCKOHxr8ewN2xiFZXCqtqK8MPLXz-Fayjb1duT-ekjuJ5RhB8AwnswWnc_3GN0g9bmSZQ3Bp-vWsT_ADiYHnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+of+Improving+Agricultural+and+Water+Productivity+through+Unmanned+Aerial+Vehicles&rft.jtitle=Agriculture+%28Basel%29&rft.au=Luxon+Nhamo&rft.au=James+Magidi&rft.au=Adolph+Nyamugama&rft.au=Alistair+D.+Clulow&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=10&rft.issue=7&rft.spage=256&rft_id=info:doi/10.3390%2Fagriculture10070256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_578736cc21114c9dac71d87f6b96faf4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |