Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with mul...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 10; no. 7; p. 256
Main Authors Nhamo, Luxon, Magidi, James, Nyamugama, Adolph, Clulow, Alistair D., Sibanda, Mbulisi, Chimonyo, Vimbayi G. P., Mabhaudhi, Tafadzwanashe
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with multispectral and thermal cameras facilitate the monitoring of crops throughout the crop growing cycle, allowing for timely detection and intervention in case of any anomalies. The use of UAVs in smallholder agriculture is poised to ensure food security at household level and improve agricultural water management in developing countries. This review synthesises the use of UAVs in smallholder agriculture in the smallholder agriculture sector in developing countries. The review highlights the role of UAV derived normalised difference vegetation index (NDVI) in assessing crop health, evapotranspiration, water stress and disaster risk reduction. The focus is to provide more accurate statistics on irrigated areas, crop water requirements and to improve water productivity and crop yield. UAVs facilitate access to agro-meteorological information at field scale and in near real-time, important information for irrigation scheduling and other on-field decision-making. The technology improves smallholder agriculture by facilitating access to information on crop biophysical parameters in near real-time for improved preparedness and operational decision-making. Coupled with accurate meteorological data, the technology allows for precise estimations of crop water requirements and crop evapotranspiration at high spatial resolution. Timely access to crop health information helps inform operational decisions at the farm level, and thus, enhancing rural livelihoods and wellbeing.
AbstractList Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with multispectral and thermal cameras facilitate the monitoring of crops throughout the crop growing cycle, allowing for timely detection and intervention in case of any anomalies. The use of UAVs in smallholder agriculture is poised to ensure food security at household level and improve agricultural water management in developing countries. This review synthesises the use of UAVs in smallholder agriculture in the smallholder agriculture sector in developing countries. The review highlights the role of UAV derived normalised difference vegetation index (NDVI) in assessing crop health, evapotranspiration, water stress and disaster risk reduction. The focus is to provide more accurate statistics on irrigated areas, crop water requirements and to improve water productivity and crop yield. UAVs facilitate access to agro-meteorological information at field scale and in near real-time, important information for irrigation scheduling and other on-field decision-making. The technology improves smallholder agriculture by facilitating access to information on crop biophysical parameters in near real-time for improved preparedness and operational decision-making. Coupled with accurate meteorological data, the technology allows for precise estimations of crop water requirements and crop evapotranspiration at high spatial resolution. Timely access to crop health information helps inform operational decisions at the farm level, and thus, enhancing rural livelihoods and wellbeing.
Author Chimonyo, Vimbayi G. P.
Sibanda, Mbulisi
Nhamo, Luxon
Mabhaudhi, Tafadzwanashe
Magidi, James
Clulow, Alistair D.
Nyamugama, Adolph
Author_xml – sequence: 1
  givenname: Luxon
  orcidid: 0000-0003-2944-1769
  surname: Nhamo
  fullname: Nhamo, Luxon
– sequence: 2
  givenname: James
  surname: Magidi
  fullname: Magidi, James
– sequence: 3
  givenname: Adolph
  orcidid: 0000-0002-9838-8175
  surname: Nyamugama
  fullname: Nyamugama, Adolph
– sequence: 4
  givenname: Alistair D.
  surname: Clulow
  fullname: Clulow, Alistair D.
– sequence: 5
  givenname: Mbulisi
  orcidid: 0000-0002-4589-7099
  surname: Sibanda
  fullname: Sibanda, Mbulisi
– sequence: 6
  givenname: Vimbayi G. P.
  surname: Chimonyo
  fullname: Chimonyo, Vimbayi G. P.
– sequence: 7
  givenname: Tafadzwanashe
  orcidid: 0000-0002-9323-8127
  surname: Mabhaudhi
  fullname: Mabhaudhi, Tafadzwanashe
BookMark eNp9UU1rGzEQFSWBpo5_QS6CnN3oY62PowltYzA0hyY55CBmtZIts5ZcrTaQf185TkIpoXOZYXjvzZuZL-gkpugQuqDkK-eaXME6Bzv2ZcyOEiIJm4tP6IwRKWekkezkr_ozmg7DltTQlCsiztDjbU7D3tky4OTxcrfP6SnENV68i0KPIXb4AYrLuKK70ZbwFMozLpucxvUG38UdxOg6vHA5VPi92wTbu-EcnXroBzd9zRN09_3br-ub2ernj-X1YjWzXKkyc9T6VrJ2brVQAqQSijZMaOU5-Aa0cMzWPaGVouGcAiiqlehYy5xvLOV8gpZH3S7B1uxz2EF-NgmCeWmkvDaQy8GSmUslubCWUUobqzuwknZKetFq4eu0qnV51KqH-D26oZhtGnOs9g1rGOFEy7msKH1E2Xq9ITtvbChQQoolQ-gNJebwGvPBayqX_8N9c_w_1h8uQ5ip
CitedBy_id crossref_primary_10_3390_rs16040710
crossref_primary_10_1142_S230138502450016X
crossref_primary_10_1080_01431161_2023_2240523
crossref_primary_10_3390_geographies4030024
crossref_primary_10_7745_KJSSF_2024_57_4_272
crossref_primary_10_1007_s40003_024_00829_0
crossref_primary_10_1088_1755_1315_1045_1_012147
crossref_primary_10_3390_agriculture13040780
crossref_primary_10_3390_drones6070169
crossref_primary_10_3390_su15043557
crossref_primary_10_1016_j_jclepro_2021_129099
crossref_primary_10_1590_fst_76321
crossref_primary_10_3390_agriculture11010022
crossref_primary_10_3390_agriengineering5010005
crossref_primary_10_3390_agriengineering5010003
crossref_primary_10_1016_j_jclepro_2022_132735
crossref_primary_10_3390_rs13050876
crossref_primary_10_1088_1755_1315_937_3_032101
crossref_primary_10_1108_AEAT_11_2020_0257
crossref_primary_10_3390_rs14030518
crossref_primary_10_26833_ijeg_1475023
crossref_primary_10_3390_agronomy15030618
crossref_primary_10_1080_01431161_2024_2368933
crossref_primary_10_1109_JSTARS_2022_3204223
crossref_primary_10_3390_w12102673
crossref_primary_10_3390_w13243627
crossref_primary_10_3390_drones8090476
crossref_primary_10_7868_25000640230106
crossref_primary_10_3390_eng5040166
crossref_primary_10_1007_s40808_021_01234_0
crossref_primary_10_17660_ActaHortic_2024_1409_8
crossref_primary_10_3390_agronomy13071729
crossref_primary_10_1016_j_heliyon_2024_e26913
crossref_primary_10_17660_ActaHortic_2024_1409_41
crossref_primary_10_1016_j_paerosci_2024_101005
crossref_primary_10_3390_w13212964
crossref_primary_10_3390_data8050088
crossref_primary_10_3390_rs15164066
crossref_primary_10_3389_frsen_2021_762093
crossref_primary_10_3390_rs13163238
crossref_primary_10_3390_drones9030157
crossref_primary_10_1016_j_jag_2024_103833
crossref_primary_10_1016_j_grets_2025_100192
crossref_primary_10_1111_ppa_14006
crossref_primary_10_1080_10106049_2024_2347935
crossref_primary_10_1080_23311932_2025_2454354
crossref_primary_10_1016_j_agwat_2025_109445
crossref_primary_10_33723_rs_1341624
crossref_primary_10_3390_drones8120783
crossref_primary_10_3390_s21216984
Cites_doi 10.3390/rs2020562
10.1093/jxb/err248
10.1155/2015/431487
10.1016/j.agwat.2015.01.020
10.3390/rs11080945
10.3390/rs6087406
10.1016/j.biosystemseng.2010.11.010
10.1029/2018RG000598
10.1007/s13280-015-0714-0
10.3390/rs6042827
10.3390/rs9111110
10.1504/IJGENVI.2018.091429
10.1111/1365-2745.12184
10.1016/j.worlddev.2015.05.012
10.3390/rs11243012
10.1016/j.compag.2014.02.009
10.1002/2014WR016869
10.3390/s90503801
10.1017/S2040470017000826
10.3389/fpls.2019.00204
10.1590/1678-992x-2017-0158
10.3390/rs10050712
10.1016/j.agsy.2006.11.019
10.3390/rs9101048
10.3390/s19030642
10.3390/rs71013485
10.3390/rs5020539
10.3390/drones2030028
10.3390/drones3020040
10.3390/rs9080828
10.1371/journal.pone.0200288
10.3390/rs71014079
10.1093/jxb/erl165
10.1139/juvs-2015-0026
10.2134/agronj2000.92183x
10.2135/cropsci1995.0011183X003500050023x
10.1007/s11119-014-9355-8
10.1016/0034-4257(88)90106-X
10.3390/rs11060605
10.1016/j.wace.2014.03.003
10.5194/hess-21-6135-2017
10.1155/2015/195308
10.1002/2017GL076521
10.5194/isprsarchives-XL-7-181-2014
10.1016/j.compag.2017.07.026
10.2307/2390165
10.1080/10095020.2017.1325594
10.3390/bios5030537
10.1093/jxb/erv034
10.20944/preprints201803.0097.v1
10.5337/2017.205
10.3389/fpls.2017.00887
10.1016/j.agwat.2014.07.012
10.1371/journal.pone.0086908
10.1104/pp.17.01234
10.1007/s00271-012-0375-8
10.3390/rs10020285
10.1105/tpc.111.094912
10.1002/hyp.8408
10.2489/jswc.73.6.682
10.1016/j.agwat.2006.04.003
10.4314/wsa.v45i1.09
10.1080/01431161.2017.1410300
10.1080/014311602320567955
10.3390/rs70302971
10.1016/j.ijdrr.2013.02.001
10.5772/21279
10.1007/s12205-012-0006-1
10.1080/1573062X.2012.726360
10.2307/2401901
10.3390/w8090411
10.5194/hess-21-3879-2017
10.1155/2017/1353691
10.1080/01431168608948946
10.1016/j.isprsjprs.2017.05.003
10.3390/rs10111682
10.5194/hess-6-85-2002
10.3390/rs61111051
10.1016/j.agrformet.2017.01.009
10.4314/wsa.v42i4.18
10.3390/ijerph13010107
10.3389/fpls.2016.01720
10.3389/fpls.2017.01111
10.1016/j.rse.2017.06.007
10.1371/journal.pone.0159781
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1079/9780851996691.0000
10.3390/rs10071091
10.1126/science.1185383
10.1111/1365-2435.12081
10.1016/j.agwat.2009.03.023
10.5194/hess-20-697-2016
10.1016/j.agsy.2017.01.023
10.1016/j.agsy.2016.09.021
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
DOA
DOI 10.3390/agriculture10070256
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_578736cc21114c9dac71d87f6b96faf4
10_3390_agriculture10070256
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
KQ8
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
PUEGO
ID FETCH-LOGICAL-c388t-e1cfb72b5c9686a7868142698f3af4a96e2c390ab764331aa81986d2b2ef4c133
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Wed Aug 27 01:29:37 EDT 2025
Mon Jun 30 13:37:21 EDT 2025
Tue Jul 01 02:12:30 EDT 2025
Thu Apr 24 23:04:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-e1cfb72b5c9686a7868142698f3af4a96e2c390ab764331aa81986d2b2ef4c133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9838-8175
0000-0003-2944-1769
0000-0002-4589-7099
0000-0002-9323-8127
OpenAccessLink https://doaj.org/article/578736cc21114c9dac71d87f6b96faf4
PQID 2420309757
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_578736cc21114c9dac71d87f6b96faf4
proquest_journals_2420309757
crossref_citationtrail_10_3390_agriculture10070256
crossref_primary_10_3390_agriculture10070256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Huete (ref_52) 1988; 25
ref_91
ref_90
Matese (ref_109) 2015; 7
ref_14
ref_13
Allen (ref_86) 2007; 133
ref_99
ref_98
ref_95
Fereres (ref_77) 2006; 58
ref_19
ref_18
ref_16
Barrado (ref_29) 2014; 6
Hunt (ref_61) 2018; 39
Monteith (ref_71) 1972; 9
Gago (ref_58) 2015; 153
Ihuoma (ref_57) 2017; 141
Fang (ref_41) 2015; 5
Mungai (ref_5) 2016; 7
Pavlovic (ref_43) 2015; 29
ref_24
ref_22
Gokool (ref_85) 2016; 42
ref_21
ref_20
Meroni (ref_66) 2013; 5
ref_27
ref_26
Igbadun (ref_92) 2006; 85
Graeub (ref_35) 2016; 87
Craine (ref_72) 2013; 27
Slattery (ref_74) 2018; 176
Zhou (ref_63) 2017; 130
ref_70
Jones (ref_12) 2017; 155
(ref_40) 2017; 8
ref_78
Levidow (ref_7) 2014; 146
ref_76
Mokhtari (ref_87) 2013; 7
Sandbrook (ref_34) 2015; 44
Liu (ref_93) 2007; 94
Hatfield (ref_46) 2010; 2
Naumann (ref_30) 2018; 45
Haxeltine (ref_75) 1996; 10
ref_83
Solh (ref_31) 2014; 3
Singha (ref_105) 2016; 37
Costa (ref_51) 2019; 76
Dalezios (ref_55) 2018; 17
Ishihara (ref_15) 2015; 7
(ref_108) 2017; 8
Hoffmann (ref_17) 2016; 20
Xiang (ref_38) 2011; 108
Cosgrove (ref_3) 2015; 51
Nouri (ref_80) 2013; 10
Madugundu (ref_88) 2017; 21
Du (ref_6) 2015; 66
Mee (ref_42) 2017; 16
Cammarano (ref_56) 2014; 6
Fan (ref_4) 2011; 63
(ref_28) 2014; 103
ref_59
Su (ref_84) 2002; 6
Yang (ref_10) 2017; 8
Huang (ref_25) 2018; 56
Kim (ref_101) 2012; 16
ref_60
ref_68
ref_67
ref_65
Townshend (ref_47) 1986; 7
Fuentes (ref_54) 2012; 30
ref_62
Castillo (ref_104) 2016; 19
Ballesteros (ref_23) 2014; 15
Boken (ref_48) 2002; 23
McCabe (ref_107) 2017; 21
Jin (ref_64) 2017; 198
ref_36
ref_32
Scott (ref_33) 2017; 20
ref_110
ref_113
ref_112
Vriet (ref_69) 2012; 24
Nhamo (ref_11) 2019; 45
Aparicio (ref_50) 2000; 92
ref_39
Molden (ref_96) 2010; 97
ref_37
DeBell (ref_97) 2015; 4
Godfray (ref_2) 2010; 327
She (ref_45) 2015; 7
ref_106
Filella (ref_49) 1995; 35
Gibson (ref_89) 2013; 39
Xu (ref_53) 2018; 73
Li (ref_82) 2009; 9
ref_44
ref_102
ref_1
Ramoelo (ref_100) 2014; 6
ref_9
ref_8
Migliavacca (ref_79) 2017; 236
Wolfert (ref_111) 2017; 153
Allen (ref_81) 2011; 25
Onoda (ref_73) 2014; 102
Jayanthi (ref_103) 2013; 4
References_xml – volume: 2
  start-page: 562
  year: 2010
  ident: ref_46
  article-title: Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices
  publication-title: Remote Sens.
  doi: 10.3390/rs2020562
– volume: 63
  start-page: 13
  year: 2011
  ident: ref_4
  article-title: Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err248
– ident: ref_70
  doi: 10.1155/2015/431487
– volume: 153
  start-page: 9
  year: 2015
  ident: ref_58
  article-title: UAVs challenge to assess water stress for sustainable agriculture
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.01.020
– ident: ref_27
  doi: 10.3390/rs11080945
– volume: 6
  start-page: 7406
  year: 2014
  ident: ref_100
  article-title: Validation of global evapotranspiration product (MOD16) using flux tower data in the African savanna, South Africa
  publication-title: Remote Sens.
  doi: 10.3390/rs6087406
– volume: 108
  start-page: 174
  year: 2011
  ident: ref_38
  article-title: Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV)
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2010.11.010
– volume: 56
  start-page: 333
  year: 2018
  ident: ref_25
  article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review
  publication-title: Rev. Geophys.
  doi: 10.1029/2018RG000598
– volume: 16
  start-page: 1
  year: 2017
  ident: ref_42
  article-title: Detecting and monitoring plant nutrient stress using remote sensing approaches: A review
  publication-title: Asian J. Plant Sci.
– ident: ref_68
– volume: 44
  start-page: 636
  year: 2015
  ident: ref_34
  article-title: The social implications of using drones for biodiversity conservation
  publication-title: Ambio
  doi: 10.1007/s13280-015-0714-0
– volume: 6
  start-page: 2827
  year: 2014
  ident: ref_56
  article-title: Assessing the robustness of vegetation indices to estimate wheat N in Mediterranean environments
  publication-title: Remote Sens.
  doi: 10.3390/rs6042827
– ident: ref_13
  doi: 10.3390/rs9111110
– ident: ref_1
– volume: 17
  start-page: 262
  year: 2018
  ident: ref_55
  article-title: Water scarcity management: Part 2: Satellite-based composite drought analysis
  publication-title: Int. J. Glob. Environ. Issues
  doi: 10.1504/IJGENVI.2018.091429
– volume: 102
  start-page: 167
  year: 2014
  ident: ref_73
  article-title: Trade-off between light interception efficiency and light use efficiency: Implications for species coexistence in one-sided light competition
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12184
– volume: 87
  start-page: 1
  year: 2016
  ident: ref_35
  article-title: The state of family farms in the world
  publication-title: World Dev.
  doi: 10.1016/j.worlddev.2015.05.012
– ident: ref_110
  doi: 10.3390/rs11243012
– volume: 103
  start-page: 104
  year: 2014
  ident: ref_28
  article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.02.009
– volume: 51
  start-page: 4823
  year: 2015
  ident: ref_3
  article-title: Water management: Current and future challenges and research directions
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016869
– volume: 9
  start-page: 3801
  year: 2009
  ident: ref_82
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors
  doi: 10.3390/s90503801
– volume: 8
  start-page: 267
  year: 2017
  ident: ref_40
  article-title: Mapping Cynodon dactylon in vineyards using UAV images for site-specific weed control
  publication-title: Adv. Anim. Biosci.
  doi: 10.1017/S2040470017000826
– ident: ref_76
  doi: 10.3389/fpls.2019.00204
– volume: 76
  start-page: 93
  year: 2019
  ident: ref_51
  article-title: Spatial variability of coffee plant water consumption based on the SEBAL algorithm
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2017-0158
– ident: ref_9
  doi: 10.3390/rs10050712
– volume: 94
  start-page: 478
  year: 2007
  ident: ref_93
  article-title: GEPIC—Modelling wheat yield and crop water productivity with high resolution on a global scale
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2006.11.019
– ident: ref_106
  doi: 10.3390/rs9101048
– ident: ref_112
  doi: 10.3390/s19030642
– volume: 7
  start-page: 13485
  year: 2015
  ident: ref_45
  article-title: Comparison of the continuity of vegetation indices derived from Landsat 8 OLI and Landsat 7 ETM+ data among different vegetation types
  publication-title: Remote Sens.
  doi: 10.3390/rs71013485
– volume: 5
  start-page: 539
  year: 2013
  ident: ref_66
  article-title: Remote sensing-based yield estimation in a stochastic framework—Case study of durum wheat in Tunisia
  publication-title: Remote Sens.
  doi: 10.3390/rs5020539
– ident: ref_60
  doi: 10.3390/drones2030028
– ident: ref_16
  doi: 10.3390/drones3020040
– ident: ref_98
  doi: 10.3390/rs9080828
– ident: ref_21
  doi: 10.1371/journal.pone.0200288
– volume: 7
  start-page: 14079
  year: 2015
  ident: ref_15
  article-title: The impact of sunlight conditions on the consistency of vegetation indices in croplands—Effective usage of vegetation indices from continuous ground-based spectral measurements
  publication-title: Remote Sens.
  doi: 10.3390/rs71014079
– volume: 58
  start-page: 147
  year: 2006
  ident: ref_77
  article-title: Deficit irrigation for reducing agricultural water use
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl165
– volume: 4
  start-page: 7
  year: 2015
  ident: ref_97
  article-title: Water resource management at catchment scales using lightweight UAVs: Current capabilities and future perspectives
  publication-title: J. Unmanned Veh. Syst.
  doi: 10.1139/juvs-2015-0026
– volume: 92
  start-page: 83
  year: 2000
  ident: ref_50
  article-title: Spectral vegetation indices as nondestructive tools for determining durum wheat yield
  publication-title: Agron. J.
  doi: 10.2134/agronj2000.92183x
– volume: 35
  start-page: 1400
  year: 1995
  ident: ref_49
  article-title: Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1995.0011183X003500050023x
– volume: 29
  start-page: 14
  year: 2015
  ident: ref_43
  article-title: Chlorophyll as a measure of plant health: Agroecological aspects
  publication-title: Pestic. Phytomed.
– volume: 15
  start-page: 579
  year: 2014
  ident: ref_23
  article-title: Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-014-9355-8
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_52
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– ident: ref_59
  doi: 10.3390/rs11060605
– volume: 3
  start-page: 62
  year: 2014
  ident: ref_31
  article-title: Drought preparedness and drought mitigation in the developing world׳ s drylands
  publication-title: Weather Clim. Extrem.
  doi: 10.1016/j.wace.2014.03.003
– volume: 21
  start-page: 6135
  year: 2017
  ident: ref_88
  article-title: Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-6135-2017
– ident: ref_14
  doi: 10.1155/2015/195308
– volume: 45
  start-page: 3285
  year: 2018
  ident: ref_30
  article-title: Global changes in drought conditions under different levels of warming
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL076521
– ident: ref_67
– ident: ref_65
  doi: 10.5194/isprsarchives-XL-7-181-2014
– volume: 141
  start-page: 267
  year: 2017
  ident: ref_57
  article-title: Recent advances in crop water stress detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.07.026
– volume: 37
  start-page: 125
  year: 2016
  ident: ref_105
  article-title: Land suitability evaluation criteria for agricultural crop selection: A review
  publication-title: Agric. Rev.
– volume: 10
  start-page: 551
  year: 1996
  ident: ref_75
  article-title: A general model for the light-use efficiency of primary production
  publication-title: Funct. Ecol.
  doi: 10.2307/2390165
– volume: 20
  start-page: 59
  year: 2017
  ident: ref_33
  article-title: Sustainable development and geospatial information: A strategic framework for integrating a global policy agenda into national geospatial capabilities
  publication-title: Geo-Spat. Inf. Sci.
  doi: 10.1080/10095020.2017.1325594
– volume: 5
  start-page: 537
  year: 2015
  ident: ref_41
  article-title: Current and prospective methods for plant disease detection
  publication-title: Biosensors
  doi: 10.3390/bios5030537
– volume: 66
  start-page: 2253
  year: 2015
  ident: ref_6
  article-title: Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv034
– ident: ref_22
  doi: 10.20944/preprints201803.0097.v1
– ident: ref_32
  doi: 10.5337/2017.205
– volume: 8
  start-page: 887
  year: 2017
  ident: ref_108
  article-title: Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00887
– volume: 146
  start-page: 84
  year: 2014
  ident: ref_7
  article-title: Improving water-efficient irrigation: Prospects and difficulties of innovative practices
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.07.012
– ident: ref_37
  doi: 10.1371/journal.pone.0086908
– volume: 176
  start-page: 990
  year: 2018
  ident: ref_74
  article-title: The impacts of fluctuating light on crop performance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01234
– ident: ref_36
– ident: ref_19
– volume: 30
  start-page: 523
  year: 2012
  ident: ref_54
  article-title: Computational water stress indices obtained from thermal image analysis of grapevine canopies
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-012-0375-8
– ident: ref_39
  doi: 10.3390/rs10020285
– volume: 24
  start-page: 842
  year: 2012
  ident: ref_69
  article-title: Boosting crop yields with plant steroids
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.094912
– volume: 25
  start-page: 4011
  year: 2011
  ident: ref_81
  article-title: Satellite-based ET estimation in agriculture using SEBAL and METRIC
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8408
– volume: 73
  start-page: 682
  year: 2018
  ident: ref_53
  article-title: The feasibility of satellite remote sensing and spatial interpolation to estimate cover crop biomass and nitrogen uptake in a small watershed
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.73.6.682
– ident: ref_78
– ident: ref_113
– volume: 85
  start-page: 141
  year: 2006
  ident: ref_92
  article-title: Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2006.04.003
– volume: 45
  start-page: 20
  year: 2019
  ident: ref_11
  article-title: Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa
  publication-title: Water SA
  doi: 10.4314/wsa.v45i1.09
– volume: 39
  start-page: 5345
  year: 2018
  ident: ref_61
  article-title: What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1410300
– volume: 23
  start-page: 4155
  year: 2002
  ident: ref_48
  article-title: Improving an operational wheat yield model using phenological phase-based Normalized Difference Vegetation Index
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311602320567955
– volume: 7
  start-page: 2971
  year: 2015
  ident: ref_109
  article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs70302971
– volume: 4
  start-page: 71
  year: 2013
  ident: ref_103
  article-title: Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2013.02.001
– ident: ref_83
  doi: 10.5772/21279
– volume: 16
  start-page: 229
  year: 2012
  ident: ref_101
  article-title: Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-012-0006-1
– volume: 10
  start-page: 247
  year: 2013
  ident: ref_80
  article-title: A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2012.726360
– volume: 7
  start-page: 407
  year: 2013
  ident: ref_87
  article-title: Sensitivity analysis of METRIC–based evapotranspiration algorithm
  publication-title: Int. J. Environ. Res.
– volume: 9
  start-page: 747
  year: 1972
  ident: ref_71
  article-title: Solar radiation and productivity in tropical ecosystems
  publication-title: J. Appl. Ecol.
  doi: 10.2307/2401901
– ident: ref_8
  doi: 10.3390/w8090411
– volume: 21
  start-page: 3879
  year: 2017
  ident: ref_107
  article-title: The future of Earth observation in hydrology
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-3879-2017
– volume: 19
  start-page: 93
  year: 2016
  ident: ref_104
  article-title: Index insurance: Using public data to benefit small-scale agriculture
  publication-title: Int. Food Agribus. Manag. Rev.
– ident: ref_44
  doi: 10.1155/2017/1353691
– volume: 7
  start-page: 1435
  year: 1986
  ident: ref_47
  article-title: Analysis of the dynamics of African vegetation using the normalized difference vegetation index
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168608948946
– volume: 130
  start-page: 246
  year: 2017
  ident: ref_63
  article-title: Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.003
– ident: ref_90
  doi: 10.3390/rs10111682
– volume: 6
  start-page: 85
  year: 2002
  ident: ref_84
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-85-2002
– ident: ref_20
– volume: 6
  start-page: 11051
  year: 2014
  ident: ref_29
  article-title: UAV flight experiments applied to the remote sensing of vegetated areas
  publication-title: Remote Sens.
  doi: 10.3390/rs61111051
– volume: 236
  start-page: 87
  year: 2017
  ident: ref_79
  article-title: Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.01.009
– volume: 42
  start-page: 673
  year: 2016
  ident: ref_85
  article-title: Estimating total evaporation at the field scale using the SEBS model and data infilling procedures
  publication-title: Water SA
  doi: 10.4314/wsa.v42i4.18
– ident: ref_95
  doi: 10.3390/ijerph13010107
– ident: ref_24
– volume: 7
  start-page: 1720
  year: 2016
  ident: ref_5
  article-title: Smallholder farms and the potential for sustainable intensification
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01720
– volume: 39
  start-page: 477
  year: 2013
  ident: ref_89
  article-title: Estimating evapotranspiration using remote sensing and the Surface Energy Balance System—A South African perspective
  publication-title: Water SA
– ident: ref_102
– volume: 8
  start-page: 1111
  year: 2017
  ident: ref_10
  article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01111
– volume: 198
  start-page: 105
  year: 2017
  ident: ref_64
  article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.007
– ident: ref_18
– ident: ref_62
  doi: 10.1371/journal.pone.0159781
– volume: 133
  start-page: 380
  year: 2007
  ident: ref_86
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– ident: ref_94
  doi: 10.1079/9780851996691.0000
– ident: ref_26
  doi: 10.3390/rs10071091
– volume: 327
  start-page: 812
  year: 2010
  ident: ref_2
  article-title: Food security: The challenge of feeding 9 billion people
  publication-title: Science
  doi: 10.1126/science.1185383
– ident: ref_91
– volume: 27
  start-page: 833
  year: 2013
  ident: ref_72
  article-title: Mechanisms of plant competition for nutrients, water and light
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12081
– volume: 97
  start-page: 528
  year: 2010
  ident: ref_96
  article-title: Improving agricultural water productivity: Between optimism and caution
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2009.03.023
– volume: 20
  start-page: 697
  year: 2016
  ident: ref_17
  article-title: Estimating evaporation with thermal UAV data and two-source energy balance models
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-697-2016
– volume: 153
  start-page: 69
  year: 2017
  ident: ref_111
  article-title: Big data in smart farming—A review
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.01.023
– volume: 155
  start-page: 269
  year: 2017
  ident: ref_12
  article-title: Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2016.09.021
– ident: ref_99
SSID ssj0000913806
Score 2.395089
SecondaryResourceType review_article
Snippet Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 256
SubjectTerms Access to information
Accuracy
Adaptation
Agricultural management
Agricultural production
Agriculture
Altitude
Anomalies
Cameras
Climate change
crop health
Crop production
Crop yield
Crops
Decision making
Developing countries
Disaster management
Disaster risk
Drones
Emergency preparedness
Evapotranspiration
Farmers
Food security
Freshwater resources
Global positioning systems
GPS
High resolution
Information dissemination
Irrigated areas
irrigation
Irrigation scheduling
LDCs
Meteorological data
Normalized difference vegetative index
Productivity
Remote sensing
resilience
Risk management
Risk reduction
Satellites
Sensors
Spatial analysis
Spatial discrimination
Spatial resolution
Unmanned aerial vehicles
Water management
water productivity
Water requirements
Water stress
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGG4ULnowfkYUTQ8ebYCt67qTAQMhHggxoiQelrZr8aAbDvz_9u3KiNF43bom68fzfvTp8yJ0I5JY6cxoQlWUEWqkIIL2BKHcArKIOLjQwLaYsPGMPsyjuU-4rTytcoOJDqizQkGOvGNNCZwGxFF8t_wkUDUKTld9CY1d1LQQzHkDNQfDyfSxzrKA6iXvskpuKLTxfUcsSi9qoYEgACb_h0lyyv2_gNlZm9EhOvBuIu5X83qEdnR-jPb7215P0Ou0LNw9yRUuDK6TA3jbyHYg8gy_WHeyxNNK2tXVisC-Og-e5R8CgBb33ULEz_rN0eRO0Ww0fLofE18qgaiQ8zXRPWVkHMhIJYwzEXPGe3BJlZtQGCoSpgNl_17ImMEVKSGsI8BZFshAG6psnHqGGnmR63OEmfVgaGgSJy2fRCJRQGQLMymt5yBZt4WCzWilyuuIQzmL99TGEzDE6R9D3EK39UfLSkbj_-YDmIa6KWhguwdFuUj9lkoBa0KgfVu4pirJhIp7GY8Nkwkz9q9bqL2ZxNRvzFW6XUYX_7--RHsBhNaOmdtGjXX5pa-s_7GW136RfQMrSN4p
  priority: 102
  providerName: ProQuest
Title Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles
URI https://www.proquest.com/docview/2420309757
https://doaj.org/article/578736cc21114c9dac71d87f6b96faf4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEWhVB4Yidq8_Bhb1KpiqCpEoRJDdHZsGCBFafn_-Jy0BYFgYY0cJzlf7r5LPn9HyCVIrk1uTZDoNA8SqyCAJIQgES4gQyoQQiPbYsxG0-Rmls4-tfpCTlglD1wZroMeFSO5172UiZY5aB7mglumJLNgvRKoy3mfiikfg2UYiy6rZIZiV9d34KmsxSwMEgMw1X9JRV6x_1tA9llmuE_2anhIe9VtHZAtUxyS3d5m1iPyOCnnfn_kgs4tXX8UoJtBbgIocvrgYGRJJ5Wkq-8RQeuuPHRavAIGWNrzDkjvzbOnxx2T6XBwdz0K6hYJgY6FWAYm1FbxSKVaMsGACyZC3JwqbOxsA5KZSLunB8UZbo0CcABAsDxSkbGJdvXpCWkU88KcEsocckliK72kvExBaiSwxblSDjEo1m2SaGWtTNf64djG4iVzdQSaOPvBxE1ytT7prZLP-H14H5dhPRS1r_0B5xFZ7RHZXx7RJK3VImb1C7nIHBLBn0k85Wf_cY1zshNh4e15uy3SWJbv5sKhk6Vqk-3-YDy5bXuH_ADSXOcX
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwEB2h5dD2UJXSqlug9aHciNg4jmMfKrQU0FJgtarYFqmH1HZseigJzW6F-Cm-EY-T7KpqxY1rYlvKeDIzHs-8B_BByczYwtmImbSImNMqUixWERPeIKtUYAiN1RZjPpqyzxfpxQrcdb0wWFbZ2cRgqIvKYI5817sSvA3I0mzv-neErFF4u9pRaDRqcWJvb_yRbfbx-MDv7zalR4fnn0ZRyyoQmUSIeWRj43RGdWokF1xlgosY-zmFS5RjSnJLTSIHSmccu4mU8j5T8IJqah0zMSZAvclfZQkf0B6s7h-OJ18WWR1E2RQD3sAbJX6ZXXVZtyAaFgsSMMT4ywUGpoB_HEHwbkcv4HkblpJho0drsGLLl_BsuFx1Hb5P6ir0Zc5I5cgiGUGWg_wCqizINx--1mTSQMkGbgrSsgGRaXml0LCTYVB88tX-DGV5r2D6KEJ8Db2yKu0bINxHTCxxMkDZy1RJg4VzSaG1j1Q0H_SBdtLKTYtbjvQZv3J_fkER5_8RcR92FpOuG9iOh4fv4zYshiLmdnhQ1Zd5-wvnaNsSLDP37oEZWSiTxYXIHNeSO__VfdjsNjFvDcEsX6rt24dfv4cno_Oz0_z0eHyyAU8pHutDVfAm9Ob1H7vlY5-5ftcqHIEfj63j92XFGkc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEUCwV8gBtRN4nj2AeEtrSrlqLVCrFQiUOwHbscICnZRYi_xq9jxnF2hUC99Zo4lmKP5-VvvgF4plVpXe1dwm1RJ9wbnWie6oRLVMi6kORCE9piLo6X_M1ZcbYDv4daGIJVDjoxKOq6tZQj30dTQrcBJQbwPsIiFoezVxffE-ogRTetQzuNXkRO3a-fGL6tXp4c4l4_z7LZ0fvXx0nsMJDYXMp14lLrTZmZwiohhS6lkCnVdkqfa8-1Ei6zuZpoUwqqLNIa7acUdWYy57lNKRmK6n-3pKhoBLsHR_PFu02Ghxg35UT0VEc5TrOvz7tIqOEInEDuxl_mMHQN-McoBEs3uwU3o4vKpr1M3YYd19yBG9PtrHfh06JrQ43mirWebRITbDsIJ9BNzT6iK9uxRU8rG_pUsNgZiC2bb5qUPJuGQ8A-uC8BoncPlleyiPdh1LSNewBMoPfEc68Crb0qtLIEostrY9BrMWIyhmxYrcpGDnNqpfG1wliGlrj6zxKP4cXmo4uewuPy4Qe0DZuhxL8dHrTdeRWPc0V6LifIOZoKblWtbZnWsvTCKOHxr8ewN2xiFZXCqtqK8MPLXz-Fayjb1duT-ekjuJ5RhB8AwnswWnc_3GN0g9bmSZQ3Bp-vWsT_ADiYHnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+of+Improving+Agricultural+and+Water+Productivity+through+Unmanned+Aerial+Vehicles&rft.jtitle=Agriculture+%28Basel%29&rft.au=Luxon+Nhamo&rft.au=James+Magidi&rft.au=Adolph+Nyamugama&rft.au=Alistair+D.+Clulow&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=10&rft.issue=7&rft.spage=256&rft_id=info:doi/10.3390%2Fagriculture10070256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_578736cc21114c9dac71d87f6b96faf4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon