Hypericin in photobiological assays: An overview
•This review presents some important biological results obtained with hypericin in photodynamic therapy applications.•Highlight reviewed of the hypericin concentration, light dose, and other experimental conditions to evaluate its efficiency in photodynamic treatment.•Hypericin uses in photodynamic...
Saved in:
Published in | Photodiagnosis and photodynamic therapy Vol. 35; p. 102343 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This review presents some important biological results obtained with hypericin in photodynamic therapy applications.•Highlight reviewed of the hypericin concentration, light dose, and other experimental conditions to evaluate its efficiency in photodynamic treatment.•Hypericin uses in photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis.
Hypericin is considered a potent photosensitizer for use in antitumor and antimicrobial photodynamic therapy (PDT). This review presents the primary biological results obtained with hypericin in photodynamic therapy applications, such as photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis. We present a compilation of in vitro results that have been published thus far; for these studies, we highlight the hypericin concentration, light dose, and other experimental conditions to evaluate the efficiency of photodynamic treatment like cell death, cell viability, or cell proliferation. The results indicate that different hypericin phototoxicity levels can be observed according to the specific light dose and concentration. Furthermore, it was shown that cellular localization and cell death mechanisms (apoptosis and necrosis) are dependent on the cell type. |
---|---|
AbstractList | Hypericin is considered a potent photosensitizer for use in antitumor and antimicrobial photodynamic therapy (PDT). This review presents the primary biological results obtained with hypericin in photodynamic therapy applications, such as photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis. We present a compilation of in vitro results that have been published thus far; for these studies, we highlight the hypericin concentration, light dose, and other experimental conditions to evaluate the efficiency of photodynamic treatment like cell death, cell viability, or cell proliferation. The results indicate that different hypericin phototoxicity levels can be observed according to the specific light dose and concentration. Furthermore, it was shown that cellular localization and cell death mechanisms (apoptosis and necrosis) are dependent on the cell type.Hypericin is considered a potent photosensitizer for use in antitumor and antimicrobial photodynamic therapy (PDT). This review presents the primary biological results obtained with hypericin in photodynamic therapy applications, such as photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis. We present a compilation of in vitro results that have been published thus far; for these studies, we highlight the hypericin concentration, light dose, and other experimental conditions to evaluate the efficiency of photodynamic treatment like cell death, cell viability, or cell proliferation. The results indicate that different hypericin phototoxicity levels can be observed according to the specific light dose and concentration. Furthermore, it was shown that cellular localization and cell death mechanisms (apoptosis and necrosis) are dependent on the cell type. •This review presents some important biological results obtained with hypericin in photodynamic therapy applications.•Highlight reviewed of the hypericin concentration, light dose, and other experimental conditions to evaluate its efficiency in photodynamic treatment.•Hypericin uses in photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis. Hypericin is considered a potent photosensitizer for use in antitumor and antimicrobial photodynamic therapy (PDT). This review presents the primary biological results obtained with hypericin in photodynamic therapy applications, such as photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis. We present a compilation of in vitro results that have been published thus far; for these studies, we highlight the hypericin concentration, light dose, and other experimental conditions to evaluate the efficiency of photodynamic treatment like cell death, cell viability, or cell proliferation. The results indicate that different hypericin phototoxicity levels can be observed according to the specific light dose and concentration. Furthermore, it was shown that cellular localization and cell death mechanisms (apoptosis and necrosis) are dependent on the cell type. |
ArticleNumber | 102343 |
Author | Ribeiro, Anderson. Orzari de Souza, Thaiza. Ferreira. Menegassi Pinhal, Maria. Aparecida. da. Silva de Andrade, Gislaine. Patricia Cerchiaro, Giselle Girão, Manoel. João.. Batista. Castello |
Author_xml | – sequence: 1 givenname: Gislaine. Patricia surname: de Andrade fullname: de Andrade, Gislaine. Patricia organization: Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil – sequence: 2 givenname: Thaiza. Ferreira. Menegassi surname: de Souza fullname: de Souza, Thaiza. Ferreira. Menegassi organization: Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil – sequence: 3 givenname: Giselle surname: Cerchiaro fullname: Cerchiaro, Giselle organization: Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil – sequence: 4 givenname: Maria. Aparecida. da. Silva surname: Pinhal fullname: Pinhal, Maria. Aparecida. da. Silva organization: Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, Brasil – sequence: 5 givenname: Anderson. Orzari surname: Ribeiro fullname: Ribeiro, Anderson. Orzari email: anderson.ribeiro@ufabc.edu.br organization: Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil – sequence: 6 givenname: Manoel. João.. Batista. Castello surname: Girão fullname: Girão, Manoel. João.. Batista. Castello organization: Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, Brasil |
BookMark | eNqFkD1PwzAQhi1UJNrCL2DpyJLis_MJYqgqoEiVWGC2HOcMLmkcbLco_56UMHWpdNKdXr3PDc-EjBrbICHXQOdAIb3dzNuqrcKcUQZ9wnjMz8gY8oxHkBTZqL-TjEVAKb0gE-83lPK4oPGY0FXXojPKNLN-2k8bbGlsbT-MkvVMei87fzdbNDO7R7c3-HNJzrWsPV797yl5f3p8W66i9evzy3KxjhTP8xCpIld5ClSnqcxZkWgAyDRLJJYVk1UGyNIUYqnLDDXHIi50FleclQwTrjTnU3Iz_G2d_d6hD2JrvMK6lg3anRcs4ZxDmgPtq3yoKme9d6hF68xWuk4AFQc_YiP-_IiDHzH46aniiFImyGBsE5w09Qn2YWCxN9BbccIrg43CyjhUQVTWnODvj3hVm-ag_Au7k_Qv8CaXQA |
CitedBy_id | crossref_primary_10_1016_j_phymed_2023_154654 crossref_primary_10_5812_jjcmb_135971 crossref_primary_10_1016_j_phymed_2022_154356 crossref_primary_10_1016_j_jphotobiol_2024_113046 crossref_primary_10_1016_j_cej_2024_159141 crossref_primary_10_1016_j_pdpdt_2023_103308 crossref_primary_10_1016_j_pdpdt_2023_103858 crossref_primary_10_1016_j_phymed_2023_155035 crossref_primary_10_5010_JPB_2022_49_3_257 crossref_primary_10_2174_0115680266299409240606062235 crossref_primary_10_1016_j_bse_2023_104702 crossref_primary_10_1080_10286020_2023_2300367 crossref_primary_10_3390_bioengineering11050442 crossref_primary_10_26724_2079_8334_2023_2_84_18_23 crossref_primary_10_3390_pharmaceutics15082124 crossref_primary_10_1016_j_biotechadv_2023_108104 crossref_primary_10_1186_s12951_023_02165_x crossref_primary_10_3389_fphar_2022_991554 crossref_primary_10_3390_pharmaceutics14112364 crossref_primary_10_1016_j_jddst_2022_103961 crossref_primary_10_3390_ijms242316897 crossref_primary_10_1039_D4NR05348F |
Cites_doi | 10.1016/j.pdpdt.2012.01.008 10.1080/10717544.2018.1531954 10.1016/j.ijpharm.2006.07.012 10.1016/j.pdpdt.2013.06.005 10.1016/j.dyepig.2016.05.009 10.1016/j.abb.2006.02.009 10.1021/acs.molpharmaceut.9b01238 10.1016/j.pdpdt.2014.02.010 10.1007/s00784-012-0845-7 10.3109/10520299709082249 10.1016/j.inoche.2015.02.012 10.1016/j.jconrel.2015.09.064 10.1007/s10495-014-1043-7 10.1111/j.1751-1097.1995.tb02382.x 10.1111/j.1751-1097.2008.00392.x 10.2147/IJN.S92336 10.1016/j.ijpharm.2019.118666 10.1562/0031-8655(2001)074<0164:IVSOTP>2.0.CO;2 10.1016/j.jphotobiol.2013.05.010 10.1007/s10616-013-9688-6 10.1016/j.pdpdt.2017.03.018 10.2174/138527207780368229 10.1016/S1572-1000(05)00007-4 10.1016/j.biopha.2016.11.093 10.1016/j.jphotobiol.2020.111889 10.1007/BF00810594 10.1016/j.bbamcr.2014.01.016 10.1016/j.actbio.2018.07.018 10.1016/j.jphotobiol.2012.12.013 10.1039/b202884k 10.1002/(SICI)1521-3773(19991102)38:21<3116::AID-ANIE3116>3.0.CO;2-S 10.1007/s10103-010-0787-8 10.2174/092986706777935267 10.1016/j.pdpdt.2011.09.003 10.1016/j.redox.2017.02.018 10.1016/S1357-2725(01)00126-1 10.1111/j.1768-322X.1986.tb00458.x |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.pdpdt.2021.102343 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1873-1597 |
ExternalDocumentID | 10_1016_j_pdpdt_2021_102343 S1572100021001708 |
GroupedDBID | --- --K --M -RU .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPCBC SSH SSZ T5K Z5R ~G- 0SF AACTN AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c388t-c98c8610f66a8295f1117f25aebd2ad71e26614afb7ef3e949f74d32b2e53cf33 |
IEDL.DBID | .~1 |
ISSN | 1572-1000 1873-1597 |
IngestDate | Fri Jul 11 02:46:10 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Tue Jul 01 01:18:02 EDT 2025 Fri Feb 23 02:43:23 EST 2024 Tue Aug 26 16:33:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phototoxicity Photodynamic therapy Cell death Photosensitizer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-c98c8610f66a8295f1117f25aebd2ad71e26614afb7ef3e949f74d32b2e53cf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2533316810 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2533316810 crossref_primary_10_1016_j_pdpdt_2021_102343 crossref_citationtrail_10_1016_j_pdpdt_2021_102343 elsevier_sciencedirect_doi_10_1016_j_pdpdt_2021_102343 elsevier_clinicalkey_doi_10_1016_j_pdpdt_2021_102343 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Photodiagnosis and photodynamic therapy |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sharma, Davids (bib0016) 2012; 9 Dzurová, Petrovajova, Nadova, Huntosova, Miskovsky, Stroffekova (bib0037) 2014; 11 Han, Zhang, Ma, Zhang, Luo, Xu, Zhao, Chen, Kong (bib0040) 2018; 77 Gursoy, Ozcakir-Tomruk, Tanalp, Yilmaz (bib0030) 2013; 17 Lima, Pizzol, Monteiro, Creczynski-Pasa, Andrade, Ribeiro, Perussi (bib0045) 2013; 125 dos Santos, de Almeida, Terra, Baptista, Labriola (bib0018) 2019; 5 Plenagl, Duse, Seitz, Goergen, Pinnapireddy, Jedelska, Brüßler, Bakowsky (bib0041) 2019; 26 Sabnis, Deligeorgiev, Jachak, Dalvi (bib0026) 1997; 72 Mario, Heinz (bib0011) 2007; 11 Theodossiou, Olsen, Jonsson, Kubin, Hothersall, Berg (bib0035) 2017; 12 Han, Taratula, Taratula, Xu, St Lorenz, Moses, Jahangiri, Yu, Farsad (bib0032) 2020; 17 Zeisser-Labouèbe, Lange, Gurny, Delie (bib0051) 2006; 326 Penjweini, Loew, Breit, Kratky (bib0047) 2013; 10 Ali, Olivo (bib0014) 2003; 22 Ronot, Benel, Adolphe, Mounolou (bib0024) 1986; 57 Falk (bib0001) 1999; 38 Delaey, Obermuëller, Zupkó, De Vos, Falk, de Witte (bib0044) 2001; 74 Huntosova, Nadova, Dzurova, Jakusova, Sureau, Miskovsky (bib0043) 2012; 11 Nakajima, Kawashima (bib0002) 2012; 9 Misuth, Horvath, Miskovsky, Huntosova (bib0033) 2017; 18 Penjweini, Deville, D’Olieslaeger, Berden, Ameloot, Ethirajan (bib0050) 2015; 218 Mühleisen, Alev, Unterweger, Subatzus, Pöttler, Friedrich, Alexiou, Janko (bib0038) 2017 Kimáková, Solár, Fecková, Sačková, Solárová, Ilkovičová, Kello (bib0034) 2017; 85 Fadel, Kassab, Youssef (bib0046) 2010; 25 Galanou, Theodossiou, Tsiourvas, Sideratou, Paleos (bib0042) 2008; 84 Vogler (bib0003) 2015; 54 Falk, Meyer, Oberreiter (bib0008) 1993; 124 Plenagl, Seitz, Duse, Pinnapireddy, Jedelska, Brüßler, Bakowsky (bib0031) 2019; 570 Penjweini, Loew, Eisenbauer, Kratky (bib0049) 2013; 120 Dabrowski, Maeda, Zebala, Lu, Mahajan, Kavanagh, Atkins (bib0028) 2006; 449 Dewick (bib0006) 2002 Ali, Olivo (bib0027) 2002; 21 Kılıç Süloğlu, Selmanoğlu, Akay (bib0015) 2015; 67 Mazur, Y.I.,.R.; Bock, H.;. Lavie, D. Preparation of Hypericin. Int. Cl.5 C07C 51/00; CO7C 401/00; C07C 50/36; A61K 31/12 US. Cl. 204/l57.87. Kadish, Smith, Guilard (bib0020) 2003 Miskovsky, Sureau, Chinsky, Turpin (bib0029) 1995; 62 Tobia, Vadlapatla, Connolly (bib0010) 2014; 27 Chazotte (bib0023) 2011 Zhang, Jin, Zheng, Zhang, Liu, Bing, Wei, Wang, Shangguan (bib0004) 2016; 132 Chazotte (bib0025) 2008 Yavari, Andersson-Engels, Segersten, Malmstrom (bib0013) 2011; 18 Unterweger, Subatzus, Tietze, Janko, Poettler, Stiegelschmitt, Schuster, Maake, Boccaccini, Alexiou (bib0039) 2015; 10 Huang, Wang, Chen (bib0007) 2014; 12 Agostinis, Vantieghem, Merlevede, de Witte (bib0005) 2002; 34 Penjweini, Smisdom, Deville, Ameloot (bib0048) 2014; 1843 Castano, Demidova, Hamblin (bib0019) 2004; 1 Shen, Li, Sun, Zhang, Qu, Zhou, Shen, Xu (bib0017) 2020; 207 Siboni, Weitman, Freeman, Mazur, Malik, Ehrenberg (bib0022) 2002; 1 Joniova, Misuth, Sureau, Miskovsky, Nadova (bib0036) 2014; 19 Kiesslich, Krammer, Plaetzer (bib0012) 2006; 13 Fadel (10.1016/j.pdpdt.2021.102343_bib0046) 2010; 25 Unterweger (10.1016/j.pdpdt.2021.102343_bib0039) 2015; 10 Dewick (10.1016/j.pdpdt.2021.102343_bib0006) 2002 Huang (10.1016/j.pdpdt.2021.102343_bib0007) 2014; 12 Galanou (10.1016/j.pdpdt.2021.102343_bib0042) 2008; 84 Kılıç Süloğlu (10.1016/j.pdpdt.2021.102343_bib0015) 2015; 67 Nakajima (10.1016/j.pdpdt.2021.102343_bib0002) 2012; 9 Zhang (10.1016/j.pdpdt.2021.102343_bib0004) 2016; 132 Agostinis (10.1016/j.pdpdt.2021.102343_bib0005) 2002; 34 Ali (10.1016/j.pdpdt.2021.102343_bib0014) 2003; 22 Tobia (10.1016/j.pdpdt.2021.102343_bib0010) 2014; 27 10.1016/j.pdpdt.2021.102343_bib0009 dos Santos (10.1016/j.pdpdt.2021.102343_bib0018) 2019; 5 Sabnis (10.1016/j.pdpdt.2021.102343_bib0026) 1997; 72 Huntosova (10.1016/j.pdpdt.2021.102343_bib0043) 2012; 11 Falk (10.1016/j.pdpdt.2021.102343_bib0001) 1999; 38 Han (10.1016/j.pdpdt.2021.102343_bib0032) 2020; 17 Castano (10.1016/j.pdpdt.2021.102343_bib0019) 2004; 1 Penjweini (10.1016/j.pdpdt.2021.102343_bib0047) 2013; 10 Kiesslich (10.1016/j.pdpdt.2021.102343_bib0012) 2006; 13 Misuth (10.1016/j.pdpdt.2021.102343_bib0033) 2017; 18 Siboni (10.1016/j.pdpdt.2021.102343_bib0022) 2002; 1 Shen (10.1016/j.pdpdt.2021.102343_bib0017) 2020; 207 Mühleisen (10.1016/j.pdpdt.2021.102343_bib0038) 2017 Delaey (10.1016/j.pdpdt.2021.102343_bib0044) 2001; 74 Penjweini (10.1016/j.pdpdt.2021.102343_bib0050) 2015; 218 Plenagl (10.1016/j.pdpdt.2021.102343_bib0041) 2019; 26 Mario (10.1016/j.pdpdt.2021.102343_bib0011) 2007; 11 Zeisser-Labouèbe (10.1016/j.pdpdt.2021.102343_bib0051) 2006; 326 Ali (10.1016/j.pdpdt.2021.102343_bib0027) 2002; 21 Kadish (10.1016/j.pdpdt.2021.102343_bib0020) 2003 Lima (10.1016/j.pdpdt.2021.102343_bib0045) 2013; 125 Falk (10.1016/j.pdpdt.2021.102343_bib0008) 1993; 124 Ronot (10.1016/j.pdpdt.2021.102343_bib0024) 1986; 57 Penjweini (10.1016/j.pdpdt.2021.102343_bib0049) 2013; 120 Dzurová (10.1016/j.pdpdt.2021.102343_bib0037) 2014; 11 Penjweini (10.1016/j.pdpdt.2021.102343_bib0048) 2014; 1843 Chazotte (10.1016/j.pdpdt.2021.102343_bib0023) 2011 Joniova (10.1016/j.pdpdt.2021.102343_bib0036) 2014; 19 Dabrowski (10.1016/j.pdpdt.2021.102343_bib0028) 2006; 449 Gursoy (10.1016/j.pdpdt.2021.102343_bib0030) 2013; 17 Miskovsky (10.1016/j.pdpdt.2021.102343_bib0029) 1995; 62 Plenagl (10.1016/j.pdpdt.2021.102343_bib0031) 2019; 570 Vogler (10.1016/j.pdpdt.2021.102343_bib0003) 2015; 54 Kimáková (10.1016/j.pdpdt.2021.102343_bib0034) 2017; 85 Chazotte (10.1016/j.pdpdt.2021.102343_bib0025) 2008 Theodossiou (10.1016/j.pdpdt.2021.102343_bib0035) 2017; 12 Sharma (10.1016/j.pdpdt.2021.102343_bib0016) 2012; 9 Han (10.1016/j.pdpdt.2021.102343_bib0040) 2018; 77 Yavari (10.1016/j.pdpdt.2021.102343_bib0013) 2011; 18 |
References_xml | – year: 2002 ident: bib0006 article-title: Medicinal Natural Products: A Biosynthetic Approach – year: 2003 ident: bib0020 article-title: Phthalocyanine Aggregation publication-title: The Porphyrin Handbook – volume: 19 start-page: 1779 year: 2014 end-page: 1792 ident: bib0036 article-title: Effect of PKCα expression on Bcl-2 phosphorylation and cell death by hypericin publication-title: Apoptosis : Int. J. Programmed Cell Death – year: 2008 ident: bib0025 article-title: Labeling the Golgi Apparatus with BODIPY-FL-Ceramide (C5-DMB-ceramide) for Imaging publication-title: CSH Protoc. – volume: 11 start-page: 1428 year: 2012 end-page: 1436 ident: bib0043 publication-title: Cell Death Response of U87 Glioma Cells On Hypericin Photoactivation is Mediated By Dynamics of Hypericin Subcellular Distribution and Its Aggregation in Cellular organelles. – volume: 21 start-page: 531 year: 2002 end-page: 540 ident: bib0027 article-title: Bio-distribution and subcellular localization of Hypericin and its role in PDT induced apoptosis in cancer cells publication-title: Int. J. Oncol. – volume: 10 start-page: 591 year: 2013 end-page: 599 ident: bib0047 article-title: Optimizing the antitumor selectivity of PVP-Hypericin re A549 cancer cells and HLF normal cells through pulsed blue light publication-title: Photodiagn. Photodyn. Ther. – volume: 12 start-page: 81 year: 2014 end-page: 88 ident: bib0007 article-title: Hypericin: chemical synthesis and biosynthesis publication-title: Chin. J. Nat. Med. – volume: 18 start-page: 5778 year: 2011 end-page: 5786 ident: bib0013 article-title: An overview on preclinical and clinical experiences with photodynamic therapy for bladder cancer publication-title: Can. J. Urol. – volume: 1843 start-page: 855 year: 2014 end-page: 865 ident: bib0048 article-title: Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques publication-title: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research – volume: 9 start-page: 196 year: 2012 end-page: 203 ident: bib0002 article-title: A basic study on hypericin-PDT publication-title: Photodiagn. Photodyn. Ther. – volume: 449 start-page: 94 year: 2006 end-page: 103 ident: bib0028 article-title: Glutathione S-transferase P1-1 expression modulates sensitivity of human kidney 293 cells to photodynamic therapy with hypericin publication-title: Arch. Biochem. Biophys. – volume: 207 year: 2020 ident: bib0017 article-title: Low-dose photodynamic therapy-induced increase in the metastatic potential of pancreatic tumor cells and its blockade by simvastatin publication-title: J. Photochem. Photobiol. B – volume: 72 start-page: 253 year: 1997 end-page: 258 ident: bib0026 article-title: DiOC6(3): a useful dye for staining the endoplasmic reticulum publication-title: Biotechnic & histochemistry : official publication of the Biological Stain Commission – volume: 1 start-page: 483 year: 2002 end-page: 491 ident: bib0022 article-title: The correlation between hydrophilicity of hypericins and helianthrone: internalization mechanisms, subcellular distribution and photodynamic action in colon carcinoma cells publication-title: Photochem. Photobiol. Sci. – volume: 13 start-page: 2189 year: 2006 end-page: 2204 ident: bib0012 article-title: Cellular mechanisms and prospective applications of hypericin in photodynamic therapy publication-title: Curr. Med. Chem. – volume: 17 start-page: 1113 year: 2013 end-page: 1125 ident: bib0030 article-title: Photodynamic therapy in dentistry: a literature review publication-title: Clin. Oral Investig. – volume: 38 start-page: 3116 year: 1999 end-page: 3136 ident: bib0001 article-title: From the photosensitizer hypericin to the photoreceptor stentorin— the chemistry of phenanthroperylene quinones publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 1 year: 1986 end-page: 7 ident: bib0024 article-title: Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry publication-title: Biol. Cell – volume: 11 start-page: 213 year: 2014 end-page: 226 ident: bib0037 article-title: The role of anti-apoptotic protein kinase Cα in response to hypericin photodynamic therapy in U-87 MG cells publication-title: Photodiagn. Photodyn. Ther. – volume: 26 start-page: 23 year: 2019 end-page: 33 ident: bib0041 article-title: Photodynamic therapy - hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity publication-title: Drug Deliv. – volume: 120 start-page: 120 year: 2013 end-page: 129 ident: bib0049 article-title: Modifying excitation light dose of novel photosensitizer PVP-Hypericin for photodynamic diagnosis and therapy publication-title: J. Photochem. Photobiol. B – volume: 34 start-page: 221 year: 2002 end-page: 241 ident: bib0005 article-title: Hypericin in cancer treatment: more light on the way publication-title: Int. J. Biochem. Cell Biol. – year: 2011 ident: bib0023 article-title: Labeling nuclear DNA using DAPI publication-title: Cold Spring Harb. Protoc. – volume: 84 start-page: 1073 year: 2008 end-page: 1083 ident: bib0042 article-title: Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition publication-title: Photochem. Photobiol. – volume: 132 start-page: 405 year: 2016 end-page: 411 ident: bib0004 article-title: Interaction of hypericin with guanine-rich DNA: Preferential binding to parallel G-Quadruplexes publication-title: Dyes Pigm. – volume: 22 year: 2003 ident: bib0014 article-title: Mechanisms of action of phenanthroperylenequinones in photodynamic therapy (review) publication-title: Int. J. Oncol. – volume: 25 start-page: 675 year: 2010 end-page: 683 ident: bib0046 article-title: Photodynamic efficacy of hypericin targeted by two delivery techniques to hepatocellular carcinoma cells publication-title: Lasers Med. Sci. – volume: 124 start-page: 339 year: 1993 end-page: 341 ident: bib0008 article-title: A convenient semisynthetic route to hypericin publication-title: Monatshefte für Chemie /Chemical Monthly – volume: 125 start-page: 146 year: 2013 end-page: 154 ident: bib0045 article-title: Hypericin encapsulated in solid lipid nanoparticles: Phototoxicity and photodynamic efficiency publication-title: J. Photochem. Photobiol. B – volume: 326 start-page: 174 year: 2006 end-page: 181 ident: bib0051 article-title: Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer publication-title: Int. J. Pharm. – reference: Mazur, Y.I.,.R.; Bock, H.;. Lavie, D. Preparation of Hypericin. Int. Cl.5 C07C 51/00; CO7C 401/00; C07C 50/36; A61K 31/12 US. Cl. 204/l57.87. – volume: 54 start-page: 61 year: 2015 end-page: 62 ident: bib0003 article-title: Fluorescence spectra of complexes of hypericin with s2 metal cations publication-title: Inorg. Chem. Commun. – volume: 1 start-page: 279 year: 2004 end-page: 293 ident: bib0019 article-title: Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization publication-title: Photodiagn. Photodyn. Ther. – volume: 67 start-page: 311 year: 2015 end-page: 330 ident: bib0015 article-title: Alterations in dysadherin expression and F-actin reorganization: a possible mechanism of hypericin-mediated photodynamic therapy in colon adenocarcinoma cells publication-title: Cytotechnology – volume: 77 start-page: 268 year: 2018 end-page: 281 ident: bib0040 article-title: Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect publication-title: Acta Biomater. – volume: 74 start-page: 164 year: 2001 end-page: 171 ident: bib0044 article-title: study of the photocytotoxicity of some hypericin analogs on different cell lines publication-title: Photochem. Photobiol. – volume: 9 start-page: 156 year: 2012 end-page: 163 ident: bib0016 article-title: Depigmentation in melanomas increases the efficacy of hypericin-mediated photodynamic-induced cell death publication-title: Photodiagn. Photodyn. Ther. – start-page: 18 year: 2017 ident: bib0038 article-title: Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy publication-title: Int. J. Mol. Sci. – volume: 10 start-page: 6985 year: 2015 end-page: 6996 ident: bib0039 article-title: Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy publication-title: Int. J. Nanomed. – volume: 12 start-page: 191 year: 2017 end-page: 197 ident: bib0035 article-title: The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy publication-title: Redox. Biol. – volume: 218 start-page: 82 year: 2015 end-page: 93 ident: bib0050 article-title: Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy publication-title: J. Control. Release – volume: 27 year: 2014 ident: bib0010 article-title: Methods for preparing hypericin publication-title: Int. Cl. – volume: 62 start-page: 546 year: 1995 end-page: 549 ident: bib0029 article-title: Subcellular distribution of hypericin in human cancer cells publication-title: Photochem. Photobiol. – volume: 85 start-page: 749 year: 2017 end-page: 755 ident: bib0034 article-title: Photoactivated hypericin increases the expression of SOD-2 and makes MCF-7 cells resistant to photodynamic therapy publication-title: Biomed. Pharmacother. – volume: 5 start-page: 25 year: 2019 ident: bib0018 article-title: Photodynamic therapy in cancer treatment - an update review publication-title: J. Cancer Metastasis Treat – volume: 18 start-page: 267 year: 2017 end-page: 274 ident: bib0033 article-title: Synergism between PKCδ regulators hypericin and rottlerin enhances apoptosis in U87 MG glioma cells after light stimulation publication-title: Photodiagn. Photodyn. Ther. – volume: 11 start-page: 547 year: 2007 end-page: 558 ident: bib0011 article-title: Towards Second Generation Hypericin Based Photosensitizers for Photodynamic Therapy publication-title: Curr. Org. Chem. – volume: 570 year: 2019 ident: bib0031 article-title: Hypericin inclusion complexes encapsulated in liposomes for antimicrobial photodynamic therapy publication-title: Int. J. Pharm. – volume: 17 start-page: 1538 year: 2020 end-page: 1545 ident: bib0032 article-title: Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging publication-title: Mol. Pharm. – volume: 9 start-page: 196 issue: 3 year: 2012 ident: 10.1016/j.pdpdt.2021.102343_bib0002 article-title: A basic study on hypericin-PDT in vitro publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2012.01.008 – volume: 26 start-page: 23 issue: 1 year: 2019 ident: 10.1016/j.pdpdt.2021.102343_bib0041 article-title: Photodynamic therapy - hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity publication-title: Drug Deliv. doi: 10.1080/10717544.2018.1531954 – volume: 27 year: 2014 ident: 10.1016/j.pdpdt.2021.102343_bib0010 article-title: Methods for preparing hypericin publication-title: Int. Cl. – volume: 22 issue: 6 year: 2003 ident: 10.1016/j.pdpdt.2021.102343_bib0014 article-title: Mechanisms of action of phenanthroperylenequinones in photodynamic therapy (review) publication-title: Int. J. Oncol. – volume: 326 start-page: 174 issue: 1–2 year: 2006 ident: 10.1016/j.pdpdt.2021.102343_bib0051 article-title: Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.07.012 – volume: 10 start-page: 591 issue: 4 year: 2013 ident: 10.1016/j.pdpdt.2021.102343_bib0047 article-title: Optimizing the antitumor selectivity of PVP-Hypericin re A549 cancer cells and HLF normal cells through pulsed blue light publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2013.06.005 – volume: 132 start-page: 405 year: 2016 ident: 10.1016/j.pdpdt.2021.102343_bib0004 article-title: Interaction of hypericin with guanine-rich DNA: Preferential binding to parallel G-Quadruplexes publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2016.05.009 – volume: 449 start-page: 94 issue: 1–2 year: 2006 ident: 10.1016/j.pdpdt.2021.102343_bib0028 article-title: Glutathione S-transferase P1-1 expression modulates sensitivity of human kidney 293 cells to photodynamic therapy with hypericin publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2006.02.009 – volume: 17 start-page: 1538 issue: 5 year: 2020 ident: 10.1016/j.pdpdt.2021.102343_bib0032 article-title: Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b01238 – volume: 11 start-page: 213 issue: 2 year: 2014 ident: 10.1016/j.pdpdt.2021.102343_bib0037 article-title: The role of anti-apoptotic protein kinase Cα in response to hypericin photodynamic therapy in U-87 MG cells publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2014.02.010 – volume: 17 start-page: 1113 issue: 4 year: 2013 ident: 10.1016/j.pdpdt.2021.102343_bib0030 article-title: Photodynamic therapy in dentistry: a literature review publication-title: Clin. Oral Investig. doi: 10.1007/s00784-012-0845-7 – volume: 72 start-page: 253 issue: 5 year: 1997 ident: 10.1016/j.pdpdt.2021.102343_bib0026 article-title: DiOC6(3): a useful dye for staining the endoplasmic reticulum publication-title: Biotechnic & histochemistry : official publication of the Biological Stain Commission doi: 10.3109/10520299709082249 – volume: 54 start-page: 61 year: 2015 ident: 10.1016/j.pdpdt.2021.102343_bib0003 article-title: Fluorescence spectra of complexes of hypericin with s2 metal cations publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2015.02.012 – year: 2008 ident: 10.1016/j.pdpdt.2021.102343_bib0025 article-title: Labeling the Golgi Apparatus with BODIPY-FL-Ceramide (C5-DMB-ceramide) for Imaging publication-title: CSH Protoc. – volume: 218 start-page: 82 year: 2015 ident: 10.1016/j.pdpdt.2021.102343_bib0050 article-title: Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.09.064 – volume: 19 start-page: 1779 issue: 12 year: 2014 ident: 10.1016/j.pdpdt.2021.102343_bib0036 article-title: Effect of PKCα expression on Bcl-2 phosphorylation and cell death by hypericin publication-title: Apoptosis : Int. J. Programmed Cell Death doi: 10.1007/s10495-014-1043-7 – volume: 62 start-page: 546 issue: 3 year: 1995 ident: 10.1016/j.pdpdt.2021.102343_bib0029 article-title: Subcellular distribution of hypericin in human cancer cells publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1995.tb02382.x – volume: 18 start-page: 5778 issue: 4 year: 2011 ident: 10.1016/j.pdpdt.2021.102343_bib0013 article-title: An overview on preclinical and clinical experiences with photodynamic therapy for bladder cancer publication-title: Can. J. Urol. – year: 2011 ident: 10.1016/j.pdpdt.2021.102343_bib0023 article-title: Labeling nuclear DNA using DAPI – volume: 84 start-page: 1073 issue: 5 year: 2008 ident: 10.1016/j.pdpdt.2021.102343_bib0042 article-title: Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2008.00392.x – volume: 11 start-page: 1428 year: 2012 ident: 10.1016/j.pdpdt.2021.102343_bib0043 – volume: 10 start-page: 6985 year: 2015 ident: 10.1016/j.pdpdt.2021.102343_bib0039 article-title: Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S92336 – volume: 570 year: 2019 ident: 10.1016/j.pdpdt.2021.102343_bib0031 article-title: Hypericin inclusion complexes encapsulated in liposomes for antimicrobial photodynamic therapy publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118666 – volume: 74 start-page: 164 issue: 2 year: 2001 ident: 10.1016/j.pdpdt.2021.102343_bib0044 article-title: In vitro study of the photocytotoxicity of some hypericin analogs on different cell lines publication-title: Photochem. Photobiol. doi: 10.1562/0031-8655(2001)074<0164:IVSOTP>2.0.CO;2 – volume: 125 start-page: 146 year: 2013 ident: 10.1016/j.pdpdt.2021.102343_bib0045 article-title: Hypericin encapsulated in solid lipid nanoparticles: Phototoxicity and photodynamic efficiency publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2013.05.010 – volume: 12 start-page: 81 issue: 2 year: 2014 ident: 10.1016/j.pdpdt.2021.102343_bib0007 article-title: Hypericin: chemical synthesis and biosynthesis publication-title: Chin. J. Nat. Med. – volume: 67 start-page: 311 issue: 2 year: 2015 ident: 10.1016/j.pdpdt.2021.102343_bib0015 article-title: Alterations in dysadherin expression and F-actin reorganization: a possible mechanism of hypericin-mediated photodynamic therapy in colon adenocarcinoma cells publication-title: Cytotechnology doi: 10.1007/s10616-013-9688-6 – volume: 18 start-page: 267 year: 2017 ident: 10.1016/j.pdpdt.2021.102343_bib0033 article-title: Synergism between PKCδ regulators hypericin and rottlerin enhances apoptosis in U87 MG glioma cells after light stimulation publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2017.03.018 – year: 2002 ident: 10.1016/j.pdpdt.2021.102343_bib0006 – volume: 11 start-page: 547 issue: 6 year: 2007 ident: 10.1016/j.pdpdt.2021.102343_bib0011 article-title: Towards Second Generation Hypericin Based Photosensitizers for Photodynamic Therapy publication-title: Curr. Org. Chem. doi: 10.2174/138527207780368229 – volume: 1 start-page: 279 issue: 4 year: 2004 ident: 10.1016/j.pdpdt.2021.102343_bib0019 article-title: Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/S1572-1000(05)00007-4 – volume: 85 start-page: 749 year: 2017 ident: 10.1016/j.pdpdt.2021.102343_bib0034 article-title: Photoactivated hypericin increases the expression of SOD-2 and makes MCF-7 cells resistant to photodynamic therapy publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.11.093 – volume: 207 year: 2020 ident: 10.1016/j.pdpdt.2021.102343_bib0017 article-title: Low-dose photodynamic therapy-induced increase in the metastatic potential of pancreatic tumor cells and its blockade by simvastatin publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2020.111889 – volume: 21 start-page: 531 issue: 3 year: 2002 ident: 10.1016/j.pdpdt.2021.102343_bib0027 article-title: Bio-distribution and subcellular localization of Hypericin and its role in PDT induced apoptosis in cancer cells publication-title: Int. J. Oncol. – volume: 124 start-page: 339 issue: 3 year: 1993 ident: 10.1016/j.pdpdt.2021.102343_bib0008 article-title: A convenient semisynthetic route to hypericin publication-title: Monatshefte für Chemie /Chemical Monthly doi: 10.1007/BF00810594 – ident: 10.1016/j.pdpdt.2021.102343_bib0009 – volume: 1843 start-page: 855 issue: 5 year: 2014 ident: 10.1016/j.pdpdt.2021.102343_bib0048 article-title: Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques publication-title: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research doi: 10.1016/j.bbamcr.2014.01.016 – volume: 77 start-page: 268 year: 2018 ident: 10.1016/j.pdpdt.2021.102343_bib0040 article-title: Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.07.018 – volume: 120 start-page: 120 year: 2013 ident: 10.1016/j.pdpdt.2021.102343_bib0049 article-title: Modifying excitation light dose of novel photosensitizer PVP-Hypericin for photodynamic diagnosis and therapy publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2012.12.013 – volume: 1 start-page: 483 issue: 7 year: 2002 ident: 10.1016/j.pdpdt.2021.102343_bib0022 article-title: The correlation between hydrophilicity of hypericins and helianthrone: internalization mechanisms, subcellular distribution and photodynamic action in colon carcinoma cells publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b202884k – start-page: 18 issue: 7 year: 2017 ident: 10.1016/j.pdpdt.2021.102343_bib0038 article-title: Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy publication-title: Int. J. Mol. Sci. – volume: 38 start-page: 3116 issue: 21 year: 1999 ident: 10.1016/j.pdpdt.2021.102343_bib0001 article-title: From the photosensitizer hypericin to the photoreceptor stentorin— the chemistry of phenanthroperylene quinones publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3116::AID-ANIE3116>3.0.CO;2-S – year: 2003 ident: 10.1016/j.pdpdt.2021.102343_bib0020 article-title: Phthalocyanine Aggregation – volume: 25 start-page: 675 issue: 5 year: 2010 ident: 10.1016/j.pdpdt.2021.102343_bib0046 article-title: Photodynamic efficacy of hypericin targeted by two delivery techniques to hepatocellular carcinoma cells publication-title: Lasers Med. Sci. doi: 10.1007/s10103-010-0787-8 – volume: 5 start-page: 25 year: 2019 ident: 10.1016/j.pdpdt.2021.102343_bib0018 article-title: Photodynamic therapy in cancer treatment - an update review publication-title: J. Cancer Metastasis Treat – volume: 13 start-page: 2189 issue: 18 year: 2006 ident: 10.1016/j.pdpdt.2021.102343_bib0012 article-title: Cellular mechanisms and prospective applications of hypericin in photodynamic therapy publication-title: Curr. Med. Chem. doi: 10.2174/092986706777935267 – volume: 9 start-page: 156 issue: 2 year: 2012 ident: 10.1016/j.pdpdt.2021.102343_bib0016 article-title: Depigmentation in melanomas increases the efficacy of hypericin-mediated photodynamic-induced cell death publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2011.09.003 – volume: 12 start-page: 191 year: 2017 ident: 10.1016/j.pdpdt.2021.102343_bib0035 article-title: The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy publication-title: Redox. Biol. doi: 10.1016/j.redox.2017.02.018 – volume: 34 start-page: 221 issue: 3 year: 2002 ident: 10.1016/j.pdpdt.2021.102343_bib0005 article-title: Hypericin in cancer treatment: more light on the way publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(01)00126-1 – volume: 57 start-page: 1 issue: 1 year: 1986 ident: 10.1016/j.pdpdt.2021.102343_bib0024 article-title: Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry publication-title: Biol. Cell doi: 10.1111/j.1768-322X.1986.tb00458.x |
SSID | ssj0034904 |
Score | 2.357744 |
SecondaryResourceType | review_article |
Snippet | •This review presents some important biological results obtained with hypericin in photodynamic therapy applications.•Highlight reviewed of the hypericin... Hypericin is considered a potent photosensitizer for use in antitumor and antimicrobial photodynamic therapy (PDT). This review presents the primary biological... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102343 |
SubjectTerms | Cell death Photodynamic therapy Photosensitizer Phototoxicity |
Title | Hypericin in photobiological assays: An overview |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1572100021001708 https://dx.doi.org/10.1016/j.pdpdt.2021.102343 https://www.proquest.com/docview/2533316810 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL17ET5wfI4J6sm7NR9N6G8MxFXfQDXYLaZvgRLritsMu_u2-pO1wghOEXlrySvtL8j7Ie7-H0IXQYBbiiHkJ5cJjfso9JWLtGdhdEIGYNHAV3k_9oDdkDyM-qqFOVQtj0ypL3V_odKetyyfNEs1mPh43X3wO0UvLBS2WBMYW_DIm7Cq_-VymeVAWuRaCdrBnR1fMQy7HK0_z1CZUEt9RGDD6m3X6oaed8enuoO3Sa8Tt4sN2UU1ne-jyO0MwHhT0APgKP6-Qb--jVm9h6YyTcYbhyl8ns5J6yc4PBudZLaa3uJ1hm81pTwoO0LB7N-j0vLJRAiAchjMvicIkBD_IBIEKScQNKDBhCFc6TolKha-dGVYmFtpQHbHICJZSEhPNaWIoPUQb2STTRwgzPzQhYEUoNyAQxFGL81CA20VVzJVfR6QCSCblj9hmFu-yShd7kw5VaVGVBap1dL0UygsSjfXDWYW8rOpDQaNJUPLrxYKl2MoS-lvwvJpeCZvLnpioTE_mU0nAGbadvfzW8X9ffoK27F2RlnaKNmYfc30GfswsbriF2kCb7fvHXv8LSTHwLA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHvQifuL8jKCerGvz0abeRJSpmwfdwFtI2wQn0hU3D178231J26GCE4Se2rzS_pL83gt5-T2EDiMNbiGJmZdSHnksyLinokR7BmYXrEBMFroT3r27sDNgN4_8sYEu6rMwNq2y4v6S0x1bV3faFZrtYjhsPwQcVi--W7RYERgxh-YZTF9bxuD0Y5rnQVnsagja1p5tXksPuSSvIisym1FJAqdhwOhv7ukHUTvvc7WMlqqwEZ-XX7aCGjpfRUdfJYJxv9QHwMf4_pv69hryO-9Wzzgd5hiu4mk0qbSXbAdhiJ7V-_gMn-fYpnParYJ1NLi67F90vKpSAkAsxMRLY5EKCIRMGCpBYm6AwSJDuNJJRlQWBdr5YWWSSBuqYxabiGWUJERzmhpKN1AzH-V6E2EWCCMAK0K5AYMwiX3ORQRxF1UJV0ELkRogmVY_YqtZvMg6X-xZOlSlRVWWqLbQydSoKFU0ZjdnNfKyPiAKlCaB5WebhVOzb2Pob8ODunslzC67ZaJyPXobSwLRsC3tFfhb_335Plro9Htd2b2-u91Gi_ZJmaO2g5qT1ze9C0HNJNlzg_YTy8Txug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypericin+in+photobiological+assays%3A+An+overview&rft.jtitle=Photodiagnosis+and+photodynamic+therapy&rft.au=de+Andrade%2C+Gislaine.+Patricia&rft.au=de+Souza%2C+Thaiza.+Ferreira.+Menegassi&rft.au=Cerchiaro%2C+Giselle&rft.au=Pinhal%2C+Maria.+Aparecida.+da.+Silva&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1572-1000&rft.eissn=1873-1597&rft.volume=35&rft_id=info:doi/10.1016%2Fj.pdpdt.2021.102343&rft.externalDocID=S1572100021001708 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-1000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-1000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-1000&client=summon |