Laterality defects are influenced by timing of treatments and animal model

The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis p...

Full description

Saved in:
Bibliographic Details
Published inDifferentiation (London) Vol. 83; no. 1; pp. 26 - 37
Main Author Vandenberg, Laura N.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance. ► Treatments affecting cilia produce the most penetrant left−right phenotypes. ► The mouse has higher penetrance of left−right defects compared to other animals. ► Gene expression can predict organ placement in frog, but less so in fish or mouse. ► These results challenge prior ideas about conservation of left−right mechanisms.
AbstractList The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance.
The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance. ► Treatments affecting cilia produce the most penetrant left−right phenotypes. ► The mouse has higher penetrance of left−right defects compared to other animals. ► Gene expression can predict organ placement in frog, but less so in fish or mouse. ► These results challenge prior ideas about conservation of left−right mechanisms.
The timing of when the embryonic left-right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across labs, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance.
Author Vandenberg, Laura N.
AuthorAffiliation 1 Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, Medford MA 02155
AuthorAffiliation_xml – name: 1 Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, Medford MA 02155
Author_xml – sequence: 1
  givenname: Laura N.
  surname: Vandenberg
  fullname: Vandenberg, Laura N.
  email: laura.vandenberg@tufts.edu
  organization: Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, 200 Boston Ave. Suite 4600, Medford, MA 02155, USA
BookMark eNp9kc1u3CAUhVGUqpmkfYGuvOxmXC7YGEtVpSpK_zRSN8kaYbgkjGxIgYk0b1_ciSq1iyyABeece-C7JOchBiTkHdAWKIgP-9Z651pGAVoqW0q7M7KBjrMt7bg4JxvKKWw7IeGCXOa8p5RKweA1uWCMjiMM3Yb82OmCSc--HBuLDk3JjU7Y-ODmAwaDtpmOTfGLD_dNdE1JqMuCYZUFW5df9Nws0eL8hrxyes749vm8Indfbm6vv213P79-v_682xouZak7RxQwIePjVIuaHniPDuRonZFgwE1WQC_l0PeUj2yiwgigPQimB8MsvyKfTrmPh2lBa2qZ-gD1mGqVdFRRe_XvTfAP6j4-Kc4Yk31XA94_B6T464C5qMVng_OsA8ZDVjBw3jMxDEOVspPUpJhzQvd3DFC1QlB7tUJQKwRFpaoQqkn-ZzK-6OLjWsfPL1s_nqxYP_DJY1LZ-D8YfKpslI3-JftvS2WjlA
CitedBy_id crossref_primary_10_1016_j_ydbio_2014_06_014
crossref_primary_10_1039_c5ib00281h
crossref_primary_10_4161_cib_27155
crossref_primary_10_1242_bio_025957
crossref_primary_10_1016_j_ydbio_2013_03_021
crossref_primary_10_1242_dmm_010256
crossref_primary_10_1134_S1062360415060090
crossref_primary_10_1098_rstb_2015_0409
Cites_doi 10.1073/pnas.96.9.5043
10.1016/S0092-8674(01)00385-3
10.1016/j.gde.2007.05.008
10.1002/bies.20545
10.1016/S0070-2153(08)00806-5
10.1101/gad.1053803
10.1186/1471-213X-11-29
10.1371/journal.pbio.0030268
10.1016/j.ydbio.2010.01.003
10.1242/dev.121.5.1467
10.1242/dev.02827
10.1073/pnas.0608118104
10.1016/S0092-8674(00)81472-5
10.1016/j.ydbio.2005.07.038
10.1016/j.mod.2004.08.006
10.1016/j.ydbio.2010.07.013
10.2174/1566524023363031
10.1016/S0959-437X(03)00091-1
10.1038/ncb2183
10.1126/science.285.5426.403
10.1101/gad.13.19.2527
10.1016/j.tig.2004.04.010
10.1038/nature09129
10.1159/000129628
10.1002/dvdy.20509
10.1016/j.ydbio.2009.05.547
10.1002/dvdy.21855
10.1126/science.1103707
10.1002/bies.10339
10.1016/j.devcel.2009.12.023
10.1016/S0960-9822(00)80059-7
10.1159/000088451
10.1242/dev.02341
10.1073/pnas.96.20.11376
10.1371/journal.pgen.1001361
10.1073/pnas.0808328105
10.1016/j.devcel.2008.03.010
10.1006/scdb.1997.0187
10.1006/scdb.1997.0185
10.1091/mbc.E07-06-0537
10.1038/nature00849
10.1242/dev.041798
10.1016/j.cub.2005.03.044
10.1016/j.cell.2006.03.002
10.1002/dvdy.22450
10.1016/j.mod.2007.04.004
10.1242/dev.020735
10.1002/(SICI)1520-6408(1998)23:3<194::AID-DVG5>3.0.CO;2-0
10.1016/S0092-8674(00)81473-7
10.1093/hmg/7.10.1565
10.1242/dev.02642
10.1242/dev.058149
10.1016/0092-8674(95)90477-8
10.1038/nature02190
10.1242/dev.01772
10.1016/S0959-437X(00)00085-X
10.1387/13
10.1126/science.1172478
10.1242/dev.02384
10.1002/bdrc.20078
10.1002/wsbm.31
10.1016/S0092-8674(03)00511-7
10.1242/dev.124.8.1465
10.1002/jez.b.21121
10.1016/j.ydbio.2006.09.001
10.1016/j.cell.2006.09.018
10.1242/dev.109.1.1
10.1016/0012-1606(91)90067-D
10.1371/journal.pone.0008999
10.1006/dbio.1996.0148
10.1046/j.1440-169X.2001.00604.x
10.1016/S0960-9822(02)00869-2
10.1242/dev.00698
10.1111/j.1432-0436.2006.00124.x
10.1016/j.bbrc.2010.05.017
10.1016/j.semcdb.2008.11.010
10.1101/gad.1084703
10.1016/j.ydbio.2007.05.039
10.1016/j.cub.2006.10.067
10.1038/357158a0
10.1016/S0092-8674(02)00939-X
10.1038/381155a0
10.1038/40140
10.1242/dev.124.17.3293
10.1101/gad.14.7.763
10.1002/dvdy.22282
10.1016/j.ydbio.2006.11.020
10.1126/science.1129429
10.1016/j.tcb.2007.04.007
10.1159/000103187
10.1002/1096-8628(20010715)101:4<339::AID-AJMG1442>3.0.CO;2-P
10.1016/j.mod.2007.10.011
ContentType Journal Article
Copyright 2011 International Society of Differentiation
2011 Interational Society Of Differentition. Published by Elsevier B.V. All rights reserved. 2011
Copyright_xml – notice: 2011 International Society of Differentiation
– notice: 2011 Interational Society Of Differentition. Published by Elsevier B.V. All rights reserved. 2011
DBID AAYXX
CITATION
7S9
L.6
5PM
DOI 10.1016/j.diff.2011.08.004
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1432-0436
EndPage 37
ExternalDocumentID PMC3222854
10_1016_j_diff_2011_08_004
S0301468111001277
GroupedDBID ---
--K
--M
-~X
.3N
.GJ
.~1
0R~
1B1
1OC
1RT
1VV
1~.
29G
31~
36B
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
8-1
8P~
9JM
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACXQS
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFBPY
AFEBI
AFKWA
AFTJW
AFXIZ
AFZJQ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEFC
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJAOE
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BFHJK
BKOJK
BLXMC
CAG
CO8
COF
CS3
DCZOG
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EMB
EMOBN
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HLW
HVGLF
HZ~
H~9
IH2
IHE
KOM
LAS
LH4
LW6
M41
MO0
O-L
O9-
OAUVE
OBS
OVD
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
SBG
SDF
SDH
SES
SPCBC
SSU
SSZ
SV3
T5K
TEORI
TN5
UNMZH
VH1
W99
WH7
WUQ
YFH
YUY
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c388t-c33ee61be239b043c5135ef189dfc81c1fbd615887550392b06c6105162a7c2d3
IEDL.DBID .~1
ISSN 0301-4681
IngestDate Thu Aug 21 18:18:22 EDT 2025
Fri Jul 11 16:44:21 EDT 2025
Tue Jul 01 04:21:20 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Fri Feb 23 02:27:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ion flux
Animal model
Left−right asymmetry
Regression analysis
Cilia
Meta-analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-c33ee61be239b043c5135ef189dfc81c1fbd615887550392b06c6105162a7c2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22099174
PQID 1733526777
PQPubID 24069
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3222854
proquest_miscellaneous_1733526777
crossref_primary_10_1016_j_diff_2011_08_004
crossref_citationtrail_10_1016_j_diff_2011_08_004
elsevier_sciencedirect_doi_10_1016_j_diff_2011_08_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Differentiation (London)
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Danos, Yost (bib21) 1996; 177
Mogi, Goto, Ohno, Azumi, Takeuchi, Toyoizumi (bib57) 2003; 47
Ramsdell, A.F. (2005) Left−right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left−right axis determination. Dev. Biol..
Bunney, De Boer, Levin (bib13) 2003; 130
Levin (bib42) 2003; 25
Morokuma, Blackiston, Adams, Seebohm, Trimmer, Levin (bib58) 2008; 105
Tabin (bib82) 2006; 127
Duboc, Lepage (bib22) 2008; 310
Casey (bib16) 1998; 7
Tsukui, Capdevila, Tamura, Ruiz-Lozano, Rodriguez-Esteban, Yonei-Tamura, Magallon, Chandraratna, Chien, Blumberg, Evans, Belmonte (bib86) 1999; 96
Yasuhiko, Imai, Ookubo, Takakuwa, Shiokawa, Yokoyama (bib92) 2001; 43
Hackett (bib31) 2002; 2
Supp, Witte, Potter, Brueckner (bib81) 1997; 389
Schweickert, Weber, Beyer, Vick, Bogusch, Feistel, Blum (bib74) 2007; 17
Schottenfeld, Sullivan-Brown, Burdine (bib73) 2007; 134
Vandenberg, Levin (bib87) 2009; 20
Field, Riley, Grimes, Hilton, Simon, Powles-Glover, Siggers, Bogani, Greenfield, Norris (bib23) 2011; 138
Takeuchi, Lickert, Bisgrove, Sun, Yamamoto, Chawengsaksophak, Hamada, Yost, Rossant, Bruneau (bib84) 2007; 104
Levin, Thorlin, Robinson, Nogi, Mercola (bib48) 2002; 111
McGrath, Somlo, Makova, Tian, Brueckner (bib54) 2003; 114
Speder, Petzoldt, Suzanne, Noselli (bib79) 2007; 17
Morokuma, Blackiston, Levin (bib59) 2008; 21
Kishimoto, Cao, Park, Sun (bib37) 2008; 14
Gros, Feistel, Viebahn, Blum, Tabin (bib30) 2009; 324
Gaio, Schweickert, Fischer, Garratt, Muller, Ozcelik, Lankes, Strehle, Britsch, Blum, Birchmeier (bib28) 1999; 9
Tabin, Vogan (bib83) 2003; 17
Lohr, Danos, Yost (bib50) 1997; 124
Levin, Palmer (bib47) 2007; 29
Amack, Wang, Yost (bib2) 2007; 310
Blum, Beyer, Weber, Vick, Andre, Bitzer, Schweickert (bib9) 2009; 238
Danos, Yost (bib20) 1995; 121
Houde, Dickinson, Houtzager, Cullum, Montpetit, Metzler, Simpson, Roy, Hayden, Hoodless, Nicholson (bib34) 2006; 300
Levin (bib43) 2005; 122
Levin (bib44) 2006; 78
Danilchik, Brown, Riegert (bib19) 2006; 133
Sakano, Kato, Parikh, McKnight, Terry, Stefanovic, Kato (bib70) 2010; 18
Vandenberg, Levin (bib89) 2010; 239
Brown, Wolpert (bib10) 1990; 109
Adams, Robinson, Fukumoto, Yuan, Albertson, Yelick, Kuo, McSweeney, Levin (bib1) 2006; 133
Oki, Kitajima, Meno (bib63) 2010; 239
Fukumoto, Kema, Levin (bib27) 2005; 15
Gilbert (bib29) 2006
Aw, Adams, Qiu, Levin (bib5) 2008; 125
Collignon, Varlet, Robertson (bib18) 1996; 381
Supp, Brueckner, Kuehn, Witte, Lowe, McGrath, Corrales, Potter (bib80) 1999
Sampath, Cheng, Frisch, Wright (bib71) 1997; 124
Hirokawa, Tanaka, Okada, Takeda (bib33) 2006; 125
Lander, King, Brown (bib41) 1998; 9
Zeng, Hoover, Liu (bib96) 2010; 339
Bunney, De Boer, Levin (bib12) 2003; 130
Vandenberg, Levin (bib88) 2010; 137
Kim, Zaghloul, Bubenshchikova, Oh, Rankin, Katsanis, Obara, Tsiokas (bib36) 2011; 13
Marszalek, Ruiz-Lozano, Roberts, Chien, Goldstein (bib51) 1999; 96
Raya, Kawakami, Rodriguez-Esteban, Ibanes, Rasskin-Gutman, Rodriguez-Leon, Buscher, Feijo, Izpisua Belmonte (bib69) 2004; 427
Pathak, Obara, Mangos, Liu, Drummond (bib65) 2007; 18
Nonaka, Shiratori, Saijoh, Hamada (bib61) 2002; 418
Yost (bib95) 1992; 357
Meyers, Martin (bib56) 1999; 285
Zhang, Ramalho-Santos, McMahon (bib97) 2001; 106
Fukumoto, Blakely, Levin (bib26) 2005; 27
May-Simera, Kai, Hernandez, Osborn, Tada, Beales (bib52) 2010; 345
Shiratori, Hamada (bib77) 2006; 133
Qiu, Cheng, Wozniak, McSweeney, Perrone, Levin (bib67) 2005; 234
Hirokawa, Tanaka, Okada (bib32) 2010
Yost (bib94) 1991; 162
Yan, Gritsman, Ding, Burdine, Corrales, Price, Talbot, Schier, Shen (bib91) 1999; 13
Armakolas, Klar (bib4) 2007; 315
Nonaka, Yoshiba, Watanabe, Ikeuchi, Goto, Marshall, Hamada (bib62) 2005; 3
Burdine, Schier (bib14) 2000; 14
Tan, Rosenthal, Zhao, Francis, Chatterjee, Sabol, Linask, Bracero, Connelly, Daniels, Yu, Omran, Leatherbury, Lo (bib85) 2007; 117
Shimeld (bib76) 2004; 20
Fogelgren, Lin, Zuo, Jaffe, Park, Reichert, Bell, Burdine, Lipschutz (bib24) 2011; 7
Basu, Brueckner (bib7) 2008; 85
Krebs, Iwai, Nonaka, Welsh, Lan, Jiang, Saijoh, O'Brien, Hamada, Gridley (bib40) 2003; 17
Levin, Johnson, Stern, Kuehn, Tabin (bib46) 1995; 82
Lohr, Danos, Groth, Yost (bib49) 1998; 23
Yoshioka, Meno, Koshiba, Sugihara, Itoh, Ishimaru, Inoue, Ohuchi, Semina, Murray, Hamada, Noji (bib93) 1998; 94
Fujinaga, Baden (bib25) 1991; 143
Carneiro, Donnet, Rejtar, Karger, Barisone, Diaz, Kortagere, Lemire, Levin (bib15) 2011; 11
Bajoghli, Aghaallaei, Soroldoni, Czerny (bib6) 2007; 303
Vick, Schweickert, Weber, Eberhardt, Mencl, Shcherbakov, Beyer, Blum (bib90) 2009; 331
Brueckner (bib11) 2001; 101
Ibanes, Izpisua Belmonte (bib35) 2009; 1
Serluca, Xu, Okabe, Baker, Lin, Sullivan-Brown, Konieczkowski, Jaffe, Bradner, Fishman, Burdine (bib75) 2009; 136
Schlueter, Brand (bib72) 2007; 117
Levin (bib45) 2007; 17
Meno, Shimono, Saijoh, Yashiro, Mochida, Ohishi, Noji, Kondoh, Hamada (bib55) 1998; 94
Nagai, Asaoka, Namae, Saito, Momose, Mitani, Furutani-Seiki, Katada, Nishina (bib60) 2010; 396
McGrath, Brueckner (bib53) 2003; 13
Kramer-Zucker, Olale, Haycraft, Yoder, Schier, Drummond (bib39) 2005; 132
Palmer (bib64) 2004; 306
Blum, Andre, Muders, Schweickert, Fischer, Bitzer, Bogusch, Beyer, van Straaten, Viebahn (bib8) 2007; 75
Casey, Hackett (bib17) 2000; 10
Zhao, Malicki (bib98) 2007; 124
Kosaki, Casey (bib38) 1998; 9
Antic, Stubbs, Suyama, Kintner, Scott, Axelrod (bib3) 2010; 5
Song, Hu, Chen, Elliott, Andre, Gao, Yang (bib78) 2010; 466
Pennekamp, Karcher, Fischer, Schweickert, Skryabin, Horst, Blum, Dworniczak (bib66) 2002; 12
Amack (10.1016/j.diff.2011.08.004_bib2) 2007; 310
Kosaki (10.1016/j.diff.2011.08.004_bib38) 1998; 9
McGrath (10.1016/j.diff.2011.08.004_bib54) 2003; 114
Pathak (10.1016/j.diff.2011.08.004_bib65) 2007; 18
Qiu (10.1016/j.diff.2011.08.004_bib67) 2005; 234
Zhang (10.1016/j.diff.2011.08.004_bib97) 2001; 106
Danilchik (10.1016/j.diff.2011.08.004_bib19) 2006; 133
Danos (10.1016/j.diff.2011.08.004_bib20) 1995; 121
Speder (10.1016/j.diff.2011.08.004_bib79) 2007; 17
Nonaka (10.1016/j.diff.2011.08.004_bib61) 2002; 418
Sakano (10.1016/j.diff.2011.08.004_bib70) 2010; 18
Hirokawa (10.1016/j.diff.2011.08.004_bib32) 2010
Takeuchi (10.1016/j.diff.2011.08.004_bib84) 2007; 104
Hirokawa (10.1016/j.diff.2011.08.004_bib33) 2006; 125
Levin (10.1016/j.diff.2011.08.004_bib44) 2006; 78
Ibanes (10.1016/j.diff.2011.08.004_bib35) 2009; 1
Shimeld (10.1016/j.diff.2011.08.004_bib76) 2004; 20
Palmer (10.1016/j.diff.2011.08.004_bib64) 2004; 306
Levin (10.1016/j.diff.2011.08.004_bib46) 1995; 82
Serluca (10.1016/j.diff.2011.08.004_bib75) 2009; 136
Yost (10.1016/j.diff.2011.08.004_bib95) 1992; 357
Mogi (10.1016/j.diff.2011.08.004_bib57) 2003; 47
Adams (10.1016/j.diff.2011.08.004_bib1) 2006; 133
Bunney (10.1016/j.diff.2011.08.004_bib12) 2003; 130
Meyers (10.1016/j.diff.2011.08.004_bib56) 1999; 285
Levin (10.1016/j.diff.2011.08.004_bib45) 2007; 17
Vandenberg (10.1016/j.diff.2011.08.004_bib87) 2009; 20
Yan (10.1016/j.diff.2011.08.004_bib91) 1999; 13
Fogelgren (10.1016/j.diff.2011.08.004_bib24) 2011; 7
Levin (10.1016/j.diff.2011.08.004_bib43) 2005; 122
Antic (10.1016/j.diff.2011.08.004_bib3) 2010; 5
Supp (10.1016/j.diff.2011.08.004_bib81) 1997; 389
Nagai (10.1016/j.diff.2011.08.004_bib60) 2010; 396
Zeng (10.1016/j.diff.2011.08.004_bib96) 2010; 339
Sampath (10.1016/j.diff.2011.08.004_bib71) 1997; 124
Song (10.1016/j.diff.2011.08.004_bib78) 2010; 466
Lander (10.1016/j.diff.2011.08.004_bib41) 1998; 9
Carneiro (10.1016/j.diff.2011.08.004_bib15) 2011; 11
Gros (10.1016/j.diff.2011.08.004_bib30) 2009; 324
Gilbert (10.1016/j.diff.2011.08.004_bib29) 2006
Kishimoto (10.1016/j.diff.2011.08.004_bib37) 2008; 14
Houde (10.1016/j.diff.2011.08.004_bib34) 2006; 300
Danos (10.1016/j.diff.2011.08.004_bib21) 1996; 177
Meno (10.1016/j.diff.2011.08.004_bib55) 1998; 94
Bunney (10.1016/j.diff.2011.08.004_bib13) 2003; 130
Brueckner (10.1016/j.diff.2011.08.004_bib11) 2001; 101
Casey (10.1016/j.diff.2011.08.004_bib16) 1998; 7
Pennekamp (10.1016/j.diff.2011.08.004_bib66) 2002; 12
Burdine (10.1016/j.diff.2011.08.004_bib14) 2000; 14
Duboc (10.1016/j.diff.2011.08.004_bib22) 2008; 310
Vandenberg (10.1016/j.diff.2011.08.004_bib89) 2010; 239
Morokuma (10.1016/j.diff.2011.08.004_bib59) 2008; 21
Krebs (10.1016/j.diff.2011.08.004_bib40) 2003; 17
Vick (10.1016/j.diff.2011.08.004_bib90) 2009; 331
Yasuhiko (10.1016/j.diff.2011.08.004_bib92) 2001; 43
Hackett (10.1016/j.diff.2011.08.004_bib31) 2002; 2
Tsukui (10.1016/j.diff.2011.08.004_bib86) 1999; 96
Fukumoto (10.1016/j.diff.2011.08.004_bib27) 2005; 15
Aw (10.1016/j.diff.2011.08.004_bib5) 2008; 125
Levin (10.1016/j.diff.2011.08.004_bib42) 2003; 25
Armakolas (10.1016/j.diff.2011.08.004_bib4) 2007; 315
Schweickert (10.1016/j.diff.2011.08.004_bib74) 2007; 17
Kramer-Zucker (10.1016/j.diff.2011.08.004_bib39) 2005; 132
Casey (10.1016/j.diff.2011.08.004_bib17) 2000; 10
Schottenfeld (10.1016/j.diff.2011.08.004_bib73) 2007; 134
Supp (10.1016/j.diff.2011.08.004_bib80) 1999
10.1016/j.diff.2011.08.004_bib68
Lohr (10.1016/j.diff.2011.08.004_bib49) 1998; 23
Vandenberg (10.1016/j.diff.2011.08.004_bib88) 2010; 137
Levin (10.1016/j.diff.2011.08.004_bib47) 2007; 29
Schlueter (10.1016/j.diff.2011.08.004_bib72) 2007; 117
Kim (10.1016/j.diff.2011.08.004_bib36) 2011; 13
Nonaka (10.1016/j.diff.2011.08.004_bib62) 2005; 3
Tan (10.1016/j.diff.2011.08.004_bib85) 2007; 117
Brown (10.1016/j.diff.2011.08.004_bib10) 1990; 109
Blum (10.1016/j.diff.2011.08.004_bib9) 2009; 238
Raya (10.1016/j.diff.2011.08.004_bib69) 2004; 427
Lohr (10.1016/j.diff.2011.08.004_bib50) 1997; 124
Basu (10.1016/j.diff.2011.08.004_bib7) 2008; 85
Field (10.1016/j.diff.2011.08.004_bib23) 2011; 138
Zhao (10.1016/j.diff.2011.08.004_bib98) 2007; 124
Marszalek (10.1016/j.diff.2011.08.004_bib51) 1999; 96
Tabin (10.1016/j.diff.2011.08.004_bib83) 2003; 17
Bajoghli (10.1016/j.diff.2011.08.004_bib6) 2007; 303
Fukumoto (10.1016/j.diff.2011.08.004_bib26) 2005; 27
Fujinaga (10.1016/j.diff.2011.08.004_bib25) 1991; 143
Tabin (10.1016/j.diff.2011.08.004_bib82) 2006; 127
Levin (10.1016/j.diff.2011.08.004_bib48) 2002; 111
May-Simera (10.1016/j.diff.2011.08.004_bib52) 2010; 345
Shiratori (10.1016/j.diff.2011.08.004_bib77) 2006; 133
Yoshioka (10.1016/j.diff.2011.08.004_bib93) 1998; 94
Blum (10.1016/j.diff.2011.08.004_bib8) 2007; 75
Oki (10.1016/j.diff.2011.08.004_bib63) 2010; 239
Gaio (10.1016/j.diff.2011.08.004_bib28) 1999; 9
Yost (10.1016/j.diff.2011.08.004_bib94) 1991; 162
Collignon (10.1016/j.diff.2011.08.004_bib18) 1996; 381
McGrath (10.1016/j.diff.2011.08.004_bib53) 2003; 13
Morokuma (10.1016/j.diff.2011.08.004_bib58) 2008; 105
References_xml – volume: 14
  start-page: 763
  year: 2000
  end-page: 776
  ident: bib14
  article-title: Conserved and divergent mechanisms in left−right axis formation
  publication-title: Genes Dev.
– volume: 133
  start-page: 4517
  year: 2006
  end-page: 4526
  ident: bib19
  article-title: Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left−right asymmetry?
  publication-title: Development
– volume: 306
  start-page: 828
  year: 2004
  end-page: 833
  ident: bib64
  article-title: Symmetry breaking and the evolution of development
  publication-title: Science
– volume: 396
  start-page: 887
  year: 2010
  end-page: 893
  ident: bib60
  article-title: The LIM protein Ajuba is required for ciliogenesis and left−right axis determination in medaka
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 5
  start-page: e8999
  year: 2010
  ident: bib3
  article-title: Planar cell polarity enables posterior localization of nodal cilia and left−right axis determination during mouse and Xenopus embryogenesis
  publication-title: PLoS ONE
– reference: Ramsdell, A.F. (2005) Left−right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left−right axis determination. Dev. Biol..
– volume: 124
  start-page: 605
  year: 2007
  end-page: 616
  ident: bib98
  article-title: Genetic defects of pronephric cilia in zebrafish
  publication-title: Mech. Dev.
– volume: 101
  start-page: 339
  year: 2001
  end-page: 344
  ident: bib11
  article-title: Cilia propel the embryo in the right direction
  publication-title: Am J Med Genet
– volume: 94
  start-page: 287
  year: 1998
  end-page: 297
  ident: bib55
  article-title: Lefty-1 is required for left−right determination as a regulator of lefty-2 and nodal
  publication-title: Cell
– volume: 15
  start-page: 794
  year: 2005
  end-page: 803
  ident: bib27
  article-title: Serotonin signaling is a very early step in patterning of the left−right axis in chick and frog embryos
  publication-title: Curr. Biol.
– volume: 427
  start-page: 121
  year: 2004
  end-page: 128
  ident: bib69
  article-title: Notch activity acts as a sensor for extracellular calcium during vertebrate left−right determination
  publication-title: Nature
– volume: 85
  start-page: 151
  year: 2008
  end-page: 174
  ident: bib7
  article-title: Cilia: multifunctional organelles at the center of vertebrate left−right asymmetry
  publication-title: Curr. Top Dev. Biol.
– volume: 418
  start-page: 96
  year: 2002
  end-page: 99
  ident: bib61
  article-title: Determination of left−right patterning of the mouse embryo by artificial nodal flow
  publication-title: Nature
– volume: 133
  start-page: 2095
  year: 2006
  end-page: 2104
  ident: bib77
  article-title: The left−right axis in the mouse: from origin to morphology
  publication-title: Development
– volume: 130
  start-page: 4847
  year: 2003
  end-page: 4858
  ident: bib12
  article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis
  publication-title: Development (Cambridge, England)
– volume: 310
  start-page: 196
  year: 2007
  end-page: 210
  ident: bib2
  article-title: Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish
  publication-title: Dev. Biol.
– volume: 12
  start-page: 938
  year: 2002
  end-page: 943
  ident: bib66
  article-title: The ion channel polycystin-2 is required for left−right axis determination in mice
  publication-title: Curr. Biol.
– year: 2006
  ident: bib29
  article-title: Developmental Biology
– volume: 82
  start-page: 803
  year: 1995
  end-page: 814
  ident: bib46
  article-title: A molecular pathway determining left−right asymmetry in chick embryogenesis
  publication-title: Cell
– volume: 13
  start-page: 385
  year: 2003
  end-page: 392
  ident: bib53
  article-title: Cilia are at the heart of vertebrate left−right asymmetry
  publication-title: Curr. Opin. Genet. Dev.
– volume: 105
  start-page: 16608
  year: 2008
  end-page: 16613
  ident: bib58
  article-title: Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 466
  start-page: 378
  year: 2010
  end-page: 382
  ident: bib78
  article-title: Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning
  publication-title: Nature
– volume: 132
  start-page: 1907
  year: 2005
  end-page: 1921
  ident: bib39
  article-title: Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis
  publication-title: Development
– volume: 9
  start-page: 35
  year: 1998
  end-page: 41
  ident: bib41
  article-title: Left−right development: mammalian phenotypes and conceptual models
  publication-title: Semin. Cell Dev. Biol.
– volume: 339
  start-page: 418
  year: 2010
  end-page: 428
  ident: bib96
  article-title: PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals
  publication-title: Dev. Biol.
– start-page: 5495
  year: 1999
  end-page: 5504
  ident: bib80
  article-title: Targeted deletion of the ATP binding domain of left−right dynein confirms its role in specifying development of left−right asymmetries
  publication-title: Development—supp 126
– volume: 17
  start-page: 60
  year: 2007
  end-page: 66
  ident: bib74
  article-title: Cilia-driven leftward flow determines laterality in Xenopus
  publication-title: Curr. Biol.
– volume: 17
  start-page: 351
  year: 2007
  end-page: 358
  ident: bib79
  article-title: Strategies to establish left/right asymmetry in vertebrates and invertebrates
  publication-title: Curr. Opin. Genet. Dev.
– volume: 315
  start-page: 100
  year: 2007
  end-page: 101
  ident: bib4
  article-title: Left−right dynein motor implicated in selective chromatid segregation in mouse cells
  publication-title: Science
– volume: 122
  start-page: 3
  year: 2005
  end-page: 25
  ident: bib43
  article-title: Left−right asymmetry in embryonic development: a comprehensive review
  publication-title: Mech. Dev.
– volume: 96
  start-page: 5043
  year: 1999
  end-page: 5048
  ident: bib51
  article-title: Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 300
  start-page: 523
  year: 2006
  end-page: 533
  ident: bib34
  article-title: Hippi is essential for node cilia assembly and Sonic hedgehod signaling
  publication-title: Dev. Biol.
– volume: 234
  start-page: 176
  year: 2005
  end-page: 189
  ident: bib67
  article-title: Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left−right asymmetry
  publication-title: Dev. Dyn.
– volume: 177
  start-page: 96
  year: 1996
  end-page: 103
  ident: bib21
  article-title: Role of notochord in specification of cardiac left−right orientation in zebrafish and Xenopus
  publication-title: Dev. Biol.
– volume: 106
  start-page: 781
  year: 2001
  end-page: 792
  ident: bib97
  article-title: Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node
  publication-title: Cell
– volume: 1
  start-page: 210
  year: 2009
  end-page: 219
  ident: bib35
  article-title: Left−right axis determination
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
– start-page: 277
  year: 2010
  end-page: 292
  ident: bib32
  article-title: Left−right determination: involvement of molecular motor KIF3, cilia, and nodal flow
  publication-title: Symmetry breaking in biology
– volume: 389
  start-page: 963
  year: 1997
  end-page: 966
  ident: bib81
  article-title: Mutation of an axonemal dynein affects left−right asymmetry in inversus viscerum mice
  publication-title: Nature
– volume: 324
  start-page: 941
  year: 2009
  end-page: 944
  ident: bib30
  article-title: Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick
  publication-title: Science
– volume: 21
  start-page: 357
  year: 2008
  end-page: 372
  ident: bib59
  article-title: KCNQ1 and KCNE1 K+ channel components are involved in early left−right patterning in Xenopus laevis embryos
  publication-title: Cell Physiol. Biochem.
– volume: 96
  start-page: 11376
  year: 1999
  end-page: 11381
  ident: bib86
  article-title: Multiple left−right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 133
  start-page: 1657
  year: 2006
  end-page: 1671
  ident: bib1
  article-title: Early, H+-V-ATPase-dependent proton flux is necessary for consistent left−right patterning of non-mammalian vertebrates
  publication-title: Development (Cambridge, England)
– volume: 47
  start-page: 15
  year: 2003
  end-page: 29
  ident: bib57
  article-title: Xenopus neurula left−right asymmetry is respeficied by microinjecting TGF-beta5 protein
  publication-title: Int. J. Dev. Biol.
– volume: 345
  start-page: 215
  year: 2010
  end-page: 225
  ident: bib52
  article-title: Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left−right asymmetry in zebrafish
  publication-title: Dev. Biol.
– volume: 18
  start-page: 4353
  year: 2007
  end-page: 4364
  ident: bib65
  article-title: The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation
  publication-title: Mol. Biol. Cell
– volume: 14
  start-page: 954
  year: 2008
  end-page: 961
  ident: bib37
  article-title: Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways
  publication-title: Dev. Cell
– volume: 78
  start-page: 191
  year: 2006
  end-page: 223
  ident: bib44
  article-title: Is the early left−right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry
  publication-title: Birth Defects Res. C Embryo Today
– volume: 130
  start-page: 4847
  year: 2003
  end-page: 4858
  ident: bib13
  article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis
  publication-title: Development
– volume: 137
  start-page: 1095
  year: 2010
  end-page: 1105
  ident: bib88
  article-title: Consistent left−right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin
  publication-title: Development
– volume: 13
  start-page: 351
  year: 2011
  end-page: 360
  ident: bib36
  article-title: Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry
  publication-title: Nat. Cell Biol.
– volume: 20
  start-page: 456
  year: 2009
  end-page: 463
  ident: bib87
  article-title: Perspectives and open problems in the early phases of left−right patterning
  publication-title: Semin. Cell Dev. Biol.
– volume: 138
  start-page: 1131
  year: 2011
  end-page: 1142
  ident: bib23
  article-title: Pkd1l1 establishes left−right asymmetry and physically interacts with Pkd2
  publication-title: Development
– volume: 29
  start-page: 271
  year: 2007
  end-page: 287
  ident: bib47
  article-title: Left−right patterning from the inside out: widespread evidence for intracellular control
  publication-title: Bioessays
– volume: 111
  start-page: 77
  year: 2002
  end-page: 89
  ident: bib48
  article-title: Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left−right patterning
  publication-title: Cell
– volume: 13
  start-page: 2527
  year: 1999
  end-page: 2537
  ident: bib91
  article-title: Conserved requirement for EGF-CFC genes in vertebrate left−right axis formation
  publication-title: Genes Dev.
– volume: 7
  start-page: 1565
  year: 1998
  end-page: 1571
  ident: bib16
  article-title: Two rights make a wrong: human left−right malformations
  publication-title: Hum. Mol. Genet.
– volume: 117
  start-page: 256
  year: 2007
  end-page: 267
  ident: bib72
  article-title: Left−right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos
  publication-title: Cytogent. Genome Res.
– volume: 162
  start-page: 165
  year: 1991
  end-page: 176
  ident: bib94
  article-title: Development of the left−right axis in amphibians
  publication-title: CIBA Found. Symp.
– volume: 125
  start-page: 33
  year: 2006
  end-page: 45
  ident: bib33
  article-title: Nodal flow and the generation of left−right asymmetry
  publication-title: Cell
– volume: 238
  start-page: 1215
  year: 2009
  end-page: 1225
  ident: bib9
  article-title: Xenopus, an ideal model system to study vertebrate left−right asymmetry
  publication-title: Dev. Dyn.
– volume: 11
  start-page: 29
  year: 2011
  ident: bib15
  article-title: Histone deacetylase activity is necessary for left−right patterning during vertebrate development
  publication-title: BMC Dev. Biol.
– volume: 43
  start-page: 671
  year: 2001
  end-page: 681
  ident: bib92
  article-title: Calmodulin binds to inv protein: implication for the regulation of inv function
  publication-title: Dev. Growth Differ.
– volume: 381
  start-page: 155
  year: 1996
  end-page: 158
  ident: bib18
  article-title: Relationship between asymmetric nodal expression and the direction of embryonic turning
  publication-title: Nature
– volume: 117
  start-page: 3742
  year: 2007
  end-page: 3752
  ident: bib85
  article-title: Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia
  publication-title: J. Clin. Invest.
– volume: 20
  start-page: 277
  year: 2004
  end-page: 280
  ident: bib76
  article-title: Calcium turns sinister in left−right asymmetry
  publication-title: Trends Genet.
– volume: 9
  start-page: 89
  year: 1998
  end-page: 99
  ident: bib38
  article-title: Genetics of human left−right axis malformations
  publication-title: Semin. Cell Dev. Biol.
– volume: 303
  start-page: 347
  year: 2007
  end-page: 361
  ident: bib6
  article-title: The roles of Groucho/Tle in left−right asymmetry and Kupffer's vesicle organogenesis
  publication-title: Dev. Biol.
– volume: 2
  start-page: 39
  year: 2002
  end-page: 66
  ident: bib31
  article-title: Formation and malformation of the vertebrate left−right axis
  publication-title: Curr. Mol. Med.
– volume: 104
  start-page: 846
  year: 2007
  end-page: 851
  ident: bib84
  article-title: Baf60c is a nuclear Notch signaling component required for the establishment of left−right asymmetry
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 257
  year: 2000
  end-page: 261
  ident: bib17
  article-title: Left−right axis malformations in man and mouse
  publication-title: Curr. Opin. Genet. Dev.
– volume: 9
  start-page: 1339
  year: 1999
  end-page: 1342
  ident: bib28
  article-title: A role of the cryptic gene in the correct establishment of the left−right axis
  publication-title: Curr. Biol.
– volume: 124
  start-page: 3293
  year: 1997
  end-page: 3302
  ident: bib71
  article-title: Functional differences among Xenopus nodal-related genes in left−right axis determination
  publication-title: Development
– volume: 25
  start-page: 1002
  year: 2003
  end-page: 1010
  ident: bib42
  article-title: Hypothesis: motor proteins and ion pumps, not ciliary motion, initiate LR asymmetry
  publication-title: BioEssays
– volume: 18
  start-page: 450
  year: 2010
  end-page: 462
  ident: bib70
  article-title: BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left−right patterning
  publication-title: Dev. Cell
– volume: 239
  start-page: 1768
  year: 2010
  end-page: 1778
  ident: bib63
  article-title: Dissecting the role of Fgf signaling during gastrulation and left−right axis formation in mouse embryos using chemical inhibitors
  publication-title: Dev. Dyn.
– volume: 125
  start-page: 353
  year: 2008
  end-page: 372
  ident: bib5
  article-title: H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left−right asymmetry
  publication-title: Mech. Dev.
– volume: 127
  start-page: 27
  year: 2006
  end-page: 32
  ident: bib82
  article-title: The key to left−right asymmetry
  publication-title: Cell
– volume: 114
  start-page: 61
  year: 2003
  end-page: 73
  ident: bib54
  article-title: Two populations of node monocilia initiate left−right asymmetry in the mouse
  publication-title: Cell
– volume: 331
  start-page: 281
  year: 2009
  end-page: 291
  ident: bib90
  article-title: Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis
  publication-title: Dev. Biol.
– volume: 27
  start-page: 349
  year: 2005
  end-page: 363
  ident: bib26
  article-title: Serotonin transporter function is an early step in left−right patterning in chick and frog embryos
  publication-title: Dev. Neurosci.
– volume: 17
  start-page: 1207
  year: 2003
  end-page: 1212
  ident: bib40
  article-title: Notch signaling regulates left−right asymmetry determination by inducing Nodal expression
  publication-title: Genes Dev.
– volume: 143
  start-page: 203
  year: 1991
  end-page: 205
  ident: bib25
  article-title: Evidence for an adrenergic mechanism in the control of body asymmetry
  publication-title: Dev. Biol.
– volume: 310
  start-page: 41
  year: 2008
  end-page: 53
  ident: bib22
  article-title: A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left−right axes in deuterostomes
  publication-title: J. Exp. Zool. B Mol. Dev. Evol.
– volume: 17
  start-page: 262
  year: 2007
  end-page: 271
  ident: bib45
  article-title: Large-scale biophysics: ion flows and regeneration
  publication-title: Trends Cell Biol.
– volume: 357
  start-page: 158
  year: 1992
  end-page: 161
  ident: bib95
  article-title: Regulation of vertebrate left−right asymmetries by extracellular matrix
  publication-title: Nature
– volume: 134
  start-page: 1605
  year: 2007
  end-page: 1615
  ident: bib73
  article-title: Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw
  publication-title: Development
– volume: 94
  start-page: 299
  year: 1998
  end-page: 305
  ident: bib93
  article-title: Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left−right asymmetry
  publication-title: Cell
– volume: 7
  start-page: e1001361
  year: 2011
  ident: bib24
  article-title: The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes
  publication-title: PLoS Genet.
– volume: 23
  start-page: 194
  year: 1998
  end-page: 202
  ident: bib49
  article-title: Maintenance of asymmetric nodal expression in Xenopus laevis
  publication-title: Dev. Genet.
– volume: 3
  start-page: e268
  year: 2005
  ident: bib62
  article-title: De novo formation of left−right asymmetry by posterior tilt of nodal cilia
  publication-title: PLoS Biol.
– volume: 75
  start-page: 133
  year: 2007
  end-page: 146
  ident: bib8
  article-title: Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo
  publication-title: Differentiation
– volume: 136
  start-page: 1621
  year: 2009
  end-page: 1631
  ident: bib75
  article-title: Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left−right patterning
  publication-title: Development
– volume: 17
  start-page: 1
  year: 2003
  end-page: 6
  ident: bib83
  article-title: A two-cilia model for vertebrate left−right axis specification
  publication-title: Genes Dev.
– volume: 124
  start-page: 1465
  year: 1997
  end-page: 1472
  ident: bib50
  article-title: Left−right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development
  publication-title: Development
– volume: 239
  start-page: 3131
  year: 2010
  end-page: 3146
  ident: bib89
  article-title: Far from solved: a perspective on what we know about early mechanisms of left−right asymmetry
  publication-title: Dev. Dyn.
– volume: 285
  start-page: 403
  year: 1999
  end-page: 406
  ident: bib56
  article-title: Differences in left−right axis pathways in mouse and chick: functions of FGF8 and SHH
  publication-title: Science
– volume: 109
  start-page: 1
  year: 1990
  end-page: 9
  ident: bib10
  article-title: The development of handedness in left/right asymmetry
  publication-title: Development
– volume: 121
  start-page: 1467
  year: 1995
  end-page: 1474
  ident: bib20
  article-title: Linkage of cardiac left−right asymmetry and dorsal-anterior development in Xenopus
  publication-title: Development
– volume: 96
  start-page: 5043
  year: 1999
  ident: 10.1016/j.diff.2011.08.004_bib51
  article-title: Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.9.5043
– volume: 106
  start-page: 781
  year: 2001
  ident: 10.1016/j.diff.2011.08.004_bib97
  article-title: Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00385-3
– volume: 17
  start-page: 351
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib79
  article-title: Strategies to establish left/right asymmetry in vertebrates and invertebrates
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2007.05.008
– volume: 29
  start-page: 271
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib47
  article-title: Left−right patterning from the inside out: widespread evidence for intracellular control
  publication-title: Bioessays
  doi: 10.1002/bies.20545
– volume: 85
  start-page: 151
  year: 2008
  ident: 10.1016/j.diff.2011.08.004_bib7
  article-title: Cilia: multifunctional organelles at the center of vertebrate left−right asymmetry
  publication-title: Curr. Top Dev. Biol.
  doi: 10.1016/S0070-2153(08)00806-5
– volume: 17
  start-page: 1
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib83
  article-title: A two-cilia model for vertebrate left−right axis specification
  publication-title: Genes Dev.
  doi: 10.1101/gad.1053803
– volume: 11
  start-page: 29
  year: 2011
  ident: 10.1016/j.diff.2011.08.004_bib15
  article-title: Histone deacetylase activity is necessary for left−right patterning during vertebrate development
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-11-29
– volume: 3
  start-page: e268
  year: 2005
  ident: 10.1016/j.diff.2011.08.004_bib62
  article-title: De novo formation of left−right asymmetry by posterior tilt of nodal cilia
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030268
– volume: 339
  start-page: 418
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib96
  article-title: PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.01.003
– volume: 121
  start-page: 1467
  year: 1995
  ident: 10.1016/j.diff.2011.08.004_bib20
  article-title: Linkage of cardiac left−right asymmetry and dorsal-anterior development in Xenopus
  publication-title: Development
  doi: 10.1242/dev.121.5.1467
– volume: 134
  start-page: 1605
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib73
  article-title: Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw
  publication-title: Development
  doi: 10.1242/dev.02827
– volume: 104
  start-page: 846
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib84
  article-title: Baf60c is a nuclear Notch signaling component required for the establishment of left−right asymmetry
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0608118104
– volume: 94
  start-page: 287
  year: 1998
  ident: 10.1016/j.diff.2011.08.004_bib55
  article-title: Lefty-1 is required for left−right determination as a regulator of lefty-2 and nodal
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81472-5
– ident: 10.1016/j.diff.2011.08.004_bib68
  doi: 10.1016/j.ydbio.2005.07.038
– volume: 122
  start-page: 3
  year: 2005
  ident: 10.1016/j.diff.2011.08.004_bib43
  article-title: Left−right asymmetry in embryonic development: a comprehensive review
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2004.08.006
– volume: 345
  start-page: 215
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib52
  article-title: Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left−right asymmetry in zebrafish
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.07.013
– volume: 2
  start-page: 39
  year: 2002
  ident: 10.1016/j.diff.2011.08.004_bib31
  article-title: Formation and malformation of the vertebrate left−right axis
  publication-title: Curr. Mol. Med.
  doi: 10.2174/1566524023363031
– volume: 13
  start-page: 385
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib53
  article-title: Cilia are at the heart of vertebrate left−right asymmetry
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(03)00091-1
– volume: 13
  start-page: 351
  year: 2011
  ident: 10.1016/j.diff.2011.08.004_bib36
  article-title: Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2183
– volume: 285
  start-page: 403
  year: 1999
  ident: 10.1016/j.diff.2011.08.004_bib56
  article-title: Differences in left−right axis pathways in mouse and chick: functions of FGF8 and SHH
  publication-title: Science
  doi: 10.1126/science.285.5426.403
– volume: 13
  start-page: 2527
  year: 1999
  ident: 10.1016/j.diff.2011.08.004_bib91
  article-title: Conserved requirement for EGF-CFC genes in vertebrate left−right axis formation
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.19.2527
– volume: 20
  start-page: 277
  year: 2004
  ident: 10.1016/j.diff.2011.08.004_bib76
  article-title: Calcium turns sinister in left−right asymmetry
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2004.04.010
– volume: 466
  start-page: 378
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib78
  article-title: Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning
  publication-title: Nature
  doi: 10.1038/nature09129
– volume: 21
  start-page: 357
  year: 2008
  ident: 10.1016/j.diff.2011.08.004_bib59
  article-title: KCNQ1 and KCNE1 K+ channel components are involved in early left−right patterning in Xenopus laevis embryos
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000129628
– volume: 234
  start-page: 176
  year: 2005
  ident: 10.1016/j.diff.2011.08.004_bib67
  article-title: Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left−right asymmetry
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20509
– volume: 331
  start-page: 281
  year: 2009
  ident: 10.1016/j.diff.2011.08.004_bib90
  article-title: Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2009.05.547
– volume: 238
  start-page: 1215
  year: 2009
  ident: 10.1016/j.diff.2011.08.004_bib9
  article-title: Xenopus, an ideal model system to study vertebrate left−right asymmetry
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21855
– volume: 306
  start-page: 828
  year: 2004
  ident: 10.1016/j.diff.2011.08.004_bib64
  article-title: Symmetry breaking and the evolution of development
  publication-title: Science
  doi: 10.1126/science.1103707
– volume: 25
  start-page: 1002
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib42
  article-title: Hypothesis: motor proteins and ion pumps, not ciliary motion, initiate LR asymmetry
  publication-title: BioEssays
  doi: 10.1002/bies.10339
– volume: 18
  start-page: 450
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib70
  article-title: BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left−right patterning
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.12.023
– volume: 9
  start-page: 1339
  year: 1999
  ident: 10.1016/j.diff.2011.08.004_bib28
  article-title: A role of the cryptic gene in the correct establishment of the left−right axis
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)80059-7
– volume: 27
  start-page: 349
  year: 2005
  ident: 10.1016/j.diff.2011.08.004_bib26
  article-title: Serotonin transporter function is an early step in left−right patterning in chick and frog embryos
  publication-title: Dev. Neurosci.
  doi: 10.1159/000088451
– volume: 133
  start-page: 1657
  year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib1
  article-title: Early, H+-V-ATPase-dependent proton flux is necessary for consistent left−right patterning of non-mammalian vertebrates
  publication-title: Development (Cambridge, England)
  doi: 10.1242/dev.02341
– volume: 96
  start-page: 11376
  year: 1999
  ident: 10.1016/j.diff.2011.08.004_bib86
  article-title: Multiple left−right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.20.11376
– volume: 7
  start-page: e1001361
  year: 2011
  ident: 10.1016/j.diff.2011.08.004_bib24
  article-title: The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001361
– volume: 105
  start-page: 16608
  year: 2008
  ident: 10.1016/j.diff.2011.08.004_bib58
  article-title: Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0808328105
– volume: 14
  start-page: 954
  year: 2008
  ident: 10.1016/j.diff.2011.08.004_bib37
  article-title: Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.03.010
– volume: 9
  start-page: 89
  year: 1998
  ident: 10.1016/j.diff.2011.08.004_bib38
  article-title: Genetics of human left−right axis malformations
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1006/scdb.1997.0187
– volume: 9
  start-page: 35
  year: 1998
  ident: 10.1016/j.diff.2011.08.004_bib41
  article-title: Left−right development: mammalian phenotypes and conceptual models
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1006/scdb.1997.0185
– volume: 18
  start-page: 4353
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib65
  article-title: The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E07-06-0537
– volume: 418
  start-page: 96
  year: 2002
  ident: 10.1016/j.diff.2011.08.004_bib61
  article-title: Determination of left−right patterning of the mouse embryo by artificial nodal flow
  publication-title: Nature
  doi: 10.1038/nature00849
– volume: 137
  start-page: 1095
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib88
  article-title: Consistent left−right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin
  publication-title: Development
  doi: 10.1242/dev.041798
– volume: 15
  start-page: 794
  year: 2005
  ident: 10.1016/j.diff.2011.08.004_bib27
  article-title: Serotonin signaling is a very early step in patterning of the left−right axis in chick and frog embryos
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.03.044
– start-page: 277
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib32
  article-title: Left−right determination: involvement of molecular motor KIF3, cilia, and nodal flow
– volume: 125
  start-page: 33
  year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib33
  article-title: Nodal flow and the generation of left−right asymmetry
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.002
– volume: 239
  start-page: 3131
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib89
  article-title: Far from solved: a perspective on what we know about early mechanisms of left−right asymmetry
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22450
– volume: 124
  start-page: 605
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib98
  article-title: Genetic defects of pronephric cilia in zebrafish
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2007.04.004
– volume: 136
  start-page: 1621
  year: 2009
  ident: 10.1016/j.diff.2011.08.004_bib75
  article-title: Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left−right patterning
  publication-title: Development
  doi: 10.1242/dev.020735
– volume: 23
  start-page: 194
  year: 1998
  ident: 10.1016/j.diff.2011.08.004_bib49
  article-title: Maintenance of asymmetric nodal expression in Xenopus laevis
  publication-title: Dev. Genet.
  doi: 10.1002/(SICI)1520-6408(1998)23:3<194::AID-DVG5>3.0.CO;2-0
– volume: 94
  start-page: 299
  year: 1998
  ident: 10.1016/j.diff.2011.08.004_bib93
  article-title: Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left−right asymmetry
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81473-7
– volume: 7
  start-page: 1565
  year: 1998
  ident: 10.1016/j.diff.2011.08.004_bib16
  article-title: Two rights make a wrong: human left−right malformations
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/7.10.1565
– volume: 133
  start-page: 4517
  year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib19
  article-title: Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left−right asymmetry?
  publication-title: Development
  doi: 10.1242/dev.02642
– volume: 138
  start-page: 1131
  year: 2011
  ident: 10.1016/j.diff.2011.08.004_bib23
  article-title: Pkd1l1 establishes left−right asymmetry and physically interacts with Pkd2
  publication-title: Development
  doi: 10.1242/dev.058149
– start-page: 5495
  year: 1999
  ident: 10.1016/j.diff.2011.08.004_bib80
  article-title: Targeted deletion of the ATP binding domain of left−right dynein confirms its role in specifying development of left−right asymmetries
  publication-title: Development—supp 126
– volume: 82
  start-page: 803
  year: 1995
  ident: 10.1016/j.diff.2011.08.004_bib46
  article-title: A molecular pathway determining left−right asymmetry in chick embryogenesis
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90477-8
– volume: 427
  start-page: 121
  year: 2004
  ident: 10.1016/j.diff.2011.08.004_bib69
  article-title: Notch activity acts as a sensor for extracellular calcium during vertebrate left−right determination
  publication-title: Nature
  doi: 10.1038/nature02190
– volume: 132
  start-page: 1907
  year: 2005
  ident: 10.1016/j.diff.2011.08.004_bib39
  article-title: Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis
  publication-title: Development
  doi: 10.1242/dev.01772
– volume: 10
  start-page: 257
  year: 2000
  ident: 10.1016/j.diff.2011.08.004_bib17
  article-title: Left−right axis malformations in man and mouse
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(00)00085-X
– volume: 47
  start-page: 15
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib57
  article-title: Xenopus neurula left−right asymmetry is respeficied by microinjecting TGF-beta5 protein
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/13
– year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib29
– volume: 117
  start-page: 3742
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib85
  article-title: Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia
  publication-title: J. Clin. Invest.
– volume: 324
  start-page: 941
  year: 2009
  ident: 10.1016/j.diff.2011.08.004_bib30
  article-title: Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick
  publication-title: Science
  doi: 10.1126/science.1172478
– volume: 133
  start-page: 2095
  year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib77
  article-title: The left−right axis in the mouse: from origin to morphology
  publication-title: Development
  doi: 10.1242/dev.02384
– volume: 78
  start-page: 191
  year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib44
  article-title: Is the early left−right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry
  publication-title: Birth Defects Res. C Embryo Today
  doi: 10.1002/bdrc.20078
– volume: 1
  start-page: 210
  year: 2009
  ident: 10.1016/j.diff.2011.08.004_bib35
  article-title: Left−right axis determination
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.31
– volume: 114
  start-page: 61
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib54
  article-title: Two populations of node monocilia initiate left−right asymmetry in the mouse
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00511-7
– volume: 124
  start-page: 1465
  year: 1997
  ident: 10.1016/j.diff.2011.08.004_bib50
  article-title: Left−right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development
  publication-title: Development
  doi: 10.1242/dev.124.8.1465
– volume: 310
  start-page: 41
  year: 2008
  ident: 10.1016/j.diff.2011.08.004_bib22
  article-title: A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left−right axes in deuterostomes
  publication-title: J. Exp. Zool. B Mol. Dev. Evol.
  doi: 10.1002/jez.b.21121
– volume: 300
  start-page: 523
  year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib34
  article-title: Hippi is essential for node cilia assembly and Sonic hedgehod signaling
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.09.001
– volume: 127
  start-page: 27
  year: 2006
  ident: 10.1016/j.diff.2011.08.004_bib82
  article-title: The key to left−right asymmetry
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.018
– volume: 109
  start-page: 1
  year: 1990
  ident: 10.1016/j.diff.2011.08.004_bib10
  article-title: The development of handedness in left/right asymmetry
  publication-title: Development
  doi: 10.1242/dev.109.1.1
– volume: 143
  start-page: 203
  year: 1991
  ident: 10.1016/j.diff.2011.08.004_bib25
  article-title: Evidence for an adrenergic mechanism in the control of body asymmetry
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(91)90067-D
– volume: 5
  start-page: e8999
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib3
  article-title: Planar cell polarity enables posterior localization of nodal cilia and left−right axis determination during mouse and Xenopus embryogenesis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008999
– volume: 177
  start-page: 96
  year: 1996
  ident: 10.1016/j.diff.2011.08.004_bib21
  article-title: Role of notochord in specification of cardiac left−right orientation in zebrafish and Xenopus
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1996.0148
– volume: 43
  start-page: 671
  year: 2001
  ident: 10.1016/j.diff.2011.08.004_bib92
  article-title: Calmodulin binds to inv protein: implication for the regulation of inv function
  publication-title: Dev. Growth Differ.
  doi: 10.1046/j.1440-169X.2001.00604.x
– volume: 12
  start-page: 938
  year: 2002
  ident: 10.1016/j.diff.2011.08.004_bib66
  article-title: The ion channel polycystin-2 is required for left−right axis determination in mice
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00869-2
– volume: 130
  start-page: 4847
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib12
  article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis
  publication-title: Development (Cambridge, England)
  doi: 10.1242/dev.00698
– volume: 75
  start-page: 133
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib8
  article-title: Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.2006.00124.x
– volume: 396
  start-page: 887
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib60
  article-title: The LIM protein Ajuba is required for ciliogenesis and left−right axis determination in medaka
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.05.017
– volume: 20
  start-page: 456
  year: 2009
  ident: 10.1016/j.diff.2011.08.004_bib87
  article-title: Perspectives and open problems in the early phases of left−right patterning
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2008.11.010
– volume: 17
  start-page: 1207
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib40
  article-title: Notch signaling regulates left−right asymmetry determination by inducing Nodal expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.1084703
– volume: 162
  start-page: 165
  year: 1991
  ident: 10.1016/j.diff.2011.08.004_bib94
  article-title: Development of the left−right axis in amphibians
  publication-title: CIBA Found. Symp.
– volume: 310
  start-page: 196
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib2
  article-title: Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.05.039
– volume: 17
  start-page: 60
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib74
  article-title: Cilia-driven leftward flow determines laterality in Xenopus
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.10.067
– volume: 357
  start-page: 158
  year: 1992
  ident: 10.1016/j.diff.2011.08.004_bib95
  article-title: Regulation of vertebrate left−right asymmetries by extracellular matrix
  publication-title: Nature
  doi: 10.1038/357158a0
– volume: 111
  start-page: 77
  year: 2002
  ident: 10.1016/j.diff.2011.08.004_bib48
  article-title: Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left−right patterning
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00939-X
– volume: 381
  start-page: 155
  year: 1996
  ident: 10.1016/j.diff.2011.08.004_bib18
  article-title: Relationship between asymmetric nodal expression and the direction of embryonic turning
  publication-title: Nature
  doi: 10.1038/381155a0
– volume: 389
  start-page: 963
  year: 1997
  ident: 10.1016/j.diff.2011.08.004_bib81
  article-title: Mutation of an axonemal dynein affects left−right asymmetry in inversus viscerum mice
  publication-title: Nature
  doi: 10.1038/40140
– volume: 130
  start-page: 4847
  year: 2003
  ident: 10.1016/j.diff.2011.08.004_bib13
  article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis
  publication-title: Development
  doi: 10.1242/dev.00698
– volume: 124
  start-page: 3293
  year: 1997
  ident: 10.1016/j.diff.2011.08.004_bib71
  article-title: Functional differences among Xenopus nodal-related genes in left−right axis determination
  publication-title: Development
  doi: 10.1242/dev.124.17.3293
– volume: 14
  start-page: 763
  year: 2000
  ident: 10.1016/j.diff.2011.08.004_bib14
  article-title: Conserved and divergent mechanisms in left−right axis formation
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.7.763
– volume: 239
  start-page: 1768
  year: 2010
  ident: 10.1016/j.diff.2011.08.004_bib63
  article-title: Dissecting the role of Fgf signaling during gastrulation and left−right axis formation in mouse embryos using chemical inhibitors
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22282
– volume: 303
  start-page: 347
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib6
  article-title: The roles of Groucho/Tle in left−right asymmetry and Kupffer's vesicle organogenesis
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.11.020
– volume: 315
  start-page: 100
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib4
  article-title: Left−right dynein motor implicated in selective chromatid segregation in mouse cells
  publication-title: Science
  doi: 10.1126/science.1129429
– volume: 17
  start-page: 262
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib45
  article-title: Large-scale biophysics: ion flows and regeneration
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2007.04.007
– volume: 117
  start-page: 256
  year: 2007
  ident: 10.1016/j.diff.2011.08.004_bib72
  article-title: Left−right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos
  publication-title: Cytogent. Genome Res.
  doi: 10.1159/000103187
– volume: 101
  start-page: 339
  year: 2001
  ident: 10.1016/j.diff.2011.08.004_bib11
  article-title: Cilia propel the embryo in the right direction
  publication-title: Am J Med Genet
  doi: 10.1002/1096-8628(20010715)101:4<339::AID-AJMG1442>3.0.CO;2-P
– volume: 125
  start-page: 353
  year: 2008
  ident: 10.1016/j.diff.2011.08.004_bib5
  article-title: H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left−right asymmetry
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2007.10.011
SSID ssj0008621
Score 2.0175023
Snippet The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups...
The timing of when the embryonic left-right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Animal model
animal models
chicks
Cilia
fish
frogs
gene expression
Ion flux
Left−right asymmetry
Meta-analysis
mice
penetrance
phenotype
Regression analysis
Title Laterality defects are influenced by timing of treatments and animal model
URI https://dx.doi.org/10.1016/j.diff.2011.08.004
https://www.proquest.com/docview/1733526777
https://pubmed.ncbi.nlm.nih.gov/PMC3222854
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ64vIniTupu0SdrjIi7r86ILewvNY7Wi3UXXw1787c70sQ-QPXhooU1awkw6-aaZmY-Qc87BTTaCBVbINAAEzoMUVpEAnA3voCmxKeY7PzzKbi-67Yv-Crmqc2EwrLKy_aVNL6x1dadZSbM5yrLmU-ENyJhh0TPGFWaUR5HCWX75MwvzAMTOyp0E8JWgd5U4U8Z4IQnJrIxnRdb2x-I0Bz4XQyfn1qLOFtmsQCRtl-PcJis-3yHrJa3kZJfc3qeYV4wAmzpfxGvQ9NPTrCYkcdRM6Bj5vF7ocECnwebQLXdwZB_w9oIjZ4_0OtfPV92g4kwIbBjHYziH3ktmPA8T04pCK1go_IDFiRvYmFk2MA5ADJgWcE0AG5mWtICgBJM8VZa7cJ-s5sPcHxDKhQNNAUTwxkY-TkzKrEyc9NJJ5W3YIKwWlrZVQXHktXjXdeTYm0YBaxSwRrLLVtQgF9NnRmU5jaW9Ra0DvTApNNj7pc-d1QrT8LXgFkia--H3l2YKc8ykUqpB1IImp8PBetuLLXn2WtTdxk2pWESH_xzVEdmAK17-vzkmq-PPb38CiGZsTospe0rW2jd33cdfvLD16A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEYIF8RTlaSQ2FLV2YjsZEQIVKF0Aic2KH4UgSCsoA_-ec-IUKiEGhmSI7ci6c87fxXf3ARwzhm6y5jQyXOQRInAW5biLROhsOItNmcl9vvPNQPTuk6sH_jAHZ00ujA-rDLa_tumVtQ5POkGanXFRdG4rb0Ck1Bc9o0zKeVjw1al4CxZOL697g6lBRtBO68MEdJdwQMidqcO8PA_JdyXPwNf2y_70A3_ORk_-2I4uVmEl4EhyWk91DeZcuQ6LNbPk5wZc9XOfWuwxNrGuCtkg-ZsjRcNJYon-JBNP6fVIRkMyjTfHbqXFq3jFt1c0OZtwf3F-d9aLAm1CZOI0neA9dk5Q7Vic6W4SG05j7oY0zezQpNTQobaIY9C6oHeC8Eh3hUEQxalguTTMxlvQKkel2wbCuEVlIUpw2iQuzXROjciscMIK6UzcBtoIS5lQU9xTW7yoJnjsWXkBKy9g5fkuu0kbTqZjxnVFjT9780YHamZdKDT5f447ahSm8IPxpyB56UYf74pKn2YmpJRtkDOanE7Hl9yebSmLp6r0tj-XSnmy889ZHcJS7-6mr_qXg-tdWMYWVv_O2YPW5O3D7SPAmeiDsIC_ACbV-Jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laterality+defects+are+influenced+by+timing+of+treatments+and+animal+model&rft.jtitle=Differentiation+%28London%29&rft.au=Vandenberg%2C+Laura+N.&rft.date=2012-01-01&rft.issn=0301-4681&rft.volume=83&rft.issue=1&rft.spage=26&rft.epage=37&rft_id=info:doi/10.1016%2Fj.diff.2011.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_diff_2011_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4681&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4681&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4681&client=summon