Laterality defects are influenced by timing of treatments and animal model
The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis p...
Saved in:
Published in | Differentiation (London) Vol. 83; no. 1; pp. 26 - 37 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance.
► Treatments affecting cilia produce the most penetrant left−right phenotypes. ► The mouse has higher penetrance of left−right defects compared to other animals. ► Gene expression can predict organ placement in frog, but less so in fish or mouse. ► These results challenge prior ideas about conservation of left−right mechanisms. |
---|---|
AbstractList | The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance. The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance. ► Treatments affecting cilia produce the most penetrant left−right phenotypes. ► The mouse has higher penetrance of left−right defects compared to other animals. ► Gene expression can predict organ placement in frog, but less so in fish or mouse. ► These results challenge prior ideas about conservation of left−right mechanisms. The timing of when the embryonic left-right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across labs, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance. |
Author | Vandenberg, Laura N. |
AuthorAffiliation | 1 Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, Medford MA 02155 |
AuthorAffiliation_xml | – name: 1 Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, Medford MA 02155 |
Author_xml | – sequence: 1 givenname: Laura N. surname: Vandenberg fullname: Vandenberg, Laura N. email: laura.vandenberg@tufts.edu organization: Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, 200 Boston Ave. Suite 4600, Medford, MA 02155, USA |
BookMark | eNp9kc1u3CAUhVGUqpmkfYGuvOxmXC7YGEtVpSpK_zRSN8kaYbgkjGxIgYk0b1_ciSq1iyyABeece-C7JOchBiTkHdAWKIgP-9Z651pGAVoqW0q7M7KBjrMt7bg4JxvKKWw7IeGCXOa8p5RKweA1uWCMjiMM3Yb82OmCSc--HBuLDk3JjU7Y-ODmAwaDtpmOTfGLD_dNdE1JqMuCYZUFW5df9Nws0eL8hrxyes749vm8Indfbm6vv213P79-v_682xouZak7RxQwIePjVIuaHniPDuRonZFgwE1WQC_l0PeUj2yiwgigPQimB8MsvyKfTrmPh2lBa2qZ-gD1mGqVdFRRe_XvTfAP6j4-Kc4Yk31XA94_B6T464C5qMVng_OsA8ZDVjBw3jMxDEOVspPUpJhzQvd3DFC1QlB7tUJQKwRFpaoQqkn-ZzK-6OLjWsfPL1s_nqxYP_DJY1LZ-D8YfKpslI3-JftvS2WjlA |
CitedBy_id | crossref_primary_10_1016_j_ydbio_2014_06_014 crossref_primary_10_1039_c5ib00281h crossref_primary_10_4161_cib_27155 crossref_primary_10_1242_bio_025957 crossref_primary_10_1016_j_ydbio_2013_03_021 crossref_primary_10_1242_dmm_010256 crossref_primary_10_1134_S1062360415060090 crossref_primary_10_1098_rstb_2015_0409 |
Cites_doi | 10.1073/pnas.96.9.5043 10.1016/S0092-8674(01)00385-3 10.1016/j.gde.2007.05.008 10.1002/bies.20545 10.1016/S0070-2153(08)00806-5 10.1101/gad.1053803 10.1186/1471-213X-11-29 10.1371/journal.pbio.0030268 10.1016/j.ydbio.2010.01.003 10.1242/dev.121.5.1467 10.1242/dev.02827 10.1073/pnas.0608118104 10.1016/S0092-8674(00)81472-5 10.1016/j.ydbio.2005.07.038 10.1016/j.mod.2004.08.006 10.1016/j.ydbio.2010.07.013 10.2174/1566524023363031 10.1016/S0959-437X(03)00091-1 10.1038/ncb2183 10.1126/science.285.5426.403 10.1101/gad.13.19.2527 10.1016/j.tig.2004.04.010 10.1038/nature09129 10.1159/000129628 10.1002/dvdy.20509 10.1016/j.ydbio.2009.05.547 10.1002/dvdy.21855 10.1126/science.1103707 10.1002/bies.10339 10.1016/j.devcel.2009.12.023 10.1016/S0960-9822(00)80059-7 10.1159/000088451 10.1242/dev.02341 10.1073/pnas.96.20.11376 10.1371/journal.pgen.1001361 10.1073/pnas.0808328105 10.1016/j.devcel.2008.03.010 10.1006/scdb.1997.0187 10.1006/scdb.1997.0185 10.1091/mbc.E07-06-0537 10.1038/nature00849 10.1242/dev.041798 10.1016/j.cub.2005.03.044 10.1016/j.cell.2006.03.002 10.1002/dvdy.22450 10.1016/j.mod.2007.04.004 10.1242/dev.020735 10.1002/(SICI)1520-6408(1998)23:3<194::AID-DVG5>3.0.CO;2-0 10.1016/S0092-8674(00)81473-7 10.1093/hmg/7.10.1565 10.1242/dev.02642 10.1242/dev.058149 10.1016/0092-8674(95)90477-8 10.1038/nature02190 10.1242/dev.01772 10.1016/S0959-437X(00)00085-X 10.1387/13 10.1126/science.1172478 10.1242/dev.02384 10.1002/bdrc.20078 10.1002/wsbm.31 10.1016/S0092-8674(03)00511-7 10.1242/dev.124.8.1465 10.1002/jez.b.21121 10.1016/j.ydbio.2006.09.001 10.1016/j.cell.2006.09.018 10.1242/dev.109.1.1 10.1016/0012-1606(91)90067-D 10.1371/journal.pone.0008999 10.1006/dbio.1996.0148 10.1046/j.1440-169X.2001.00604.x 10.1016/S0960-9822(02)00869-2 10.1242/dev.00698 10.1111/j.1432-0436.2006.00124.x 10.1016/j.bbrc.2010.05.017 10.1016/j.semcdb.2008.11.010 10.1101/gad.1084703 10.1016/j.ydbio.2007.05.039 10.1016/j.cub.2006.10.067 10.1038/357158a0 10.1016/S0092-8674(02)00939-X 10.1038/381155a0 10.1038/40140 10.1242/dev.124.17.3293 10.1101/gad.14.7.763 10.1002/dvdy.22282 10.1016/j.ydbio.2006.11.020 10.1126/science.1129429 10.1016/j.tcb.2007.04.007 10.1159/000103187 10.1002/1096-8628(20010715)101:4<339::AID-AJMG1442>3.0.CO;2-P 10.1016/j.mod.2007.10.011 |
ContentType | Journal Article |
Copyright | 2011 International Society of Differentiation 2011 Interational Society Of Differentition. Published by Elsevier B.V. All rights reserved. 2011 |
Copyright_xml | – notice: 2011 International Society of Differentiation – notice: 2011 Interational Society Of Differentition. Published by Elsevier B.V. All rights reserved. 2011 |
DBID | AAYXX CITATION 7S9 L.6 5PM |
DOI | 10.1016/j.diff.2011.08.004 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1432-0436 |
EndPage | 37 |
ExternalDocumentID | PMC3222854 10_1016_j_diff_2011_08_004 S0301468111001277 |
GroupedDBID | --- --K --M -~X .3N .GJ .~1 0R~ 1B1 1OC 1RT 1VV 1~. 29G 31~ 36B 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 8-1 8P~ 9JM 9M8 AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACXQS ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFBPY AFEBI AFKWA AFTJW AFXIZ AFZJQ AGHFR AGRDE AGUBO AGYEJ AHEFC AHHHB AI. AIEXJ AIKHN AITUG AJAOE AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BFHJK BKOJK BLXMC CAG CO8 COF CS3 DCZOG DOVZS DU5 EBS EFJIC EFLBG EJD EMB EMOBN F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HLW HVGLF HZ~ H~9 IH2 IHE KOM LAS LH4 LW6 M41 MO0 O-L O9- OAUVE OBS OVD P-8 P-9 P2P PC. Q38 R2- RIG ROL SBG SDF SDH SES SPCBC SSU SSZ SV3 T5K TEORI TN5 UNMZH VH1 W99 WH7 WUQ YFH YUY ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c388t-c33ee61be239b043c5135ef189dfc81c1fbd615887550392b06c6105162a7c2d3 |
IEDL.DBID | .~1 |
ISSN | 0301-4681 |
IngestDate | Thu Aug 21 18:18:22 EDT 2025 Fri Jul 11 16:44:21 EDT 2025 Tue Jul 01 04:21:20 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 Fri Feb 23 02:27:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Ion flux Animal model Left−right asymmetry Regression analysis Cilia Meta-analysis |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-c33ee61be239b043c5135ef189dfc81c1fbd615887550392b06c6105162a7c2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22099174 |
PQID | 1733526777 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3222854 proquest_miscellaneous_1733526777 crossref_primary_10_1016_j_diff_2011_08_004 crossref_citationtrail_10_1016_j_diff_2011_08_004 elsevier_sciencedirect_doi_10_1016_j_diff_2011_08_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Differentiation (London) |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Danos, Yost (bib21) 1996; 177 Mogi, Goto, Ohno, Azumi, Takeuchi, Toyoizumi (bib57) 2003; 47 Ramsdell, A.F. (2005) Left−right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left−right axis determination. Dev. Biol.. Bunney, De Boer, Levin (bib13) 2003; 130 Levin (bib42) 2003; 25 Morokuma, Blackiston, Adams, Seebohm, Trimmer, Levin (bib58) 2008; 105 Tabin (bib82) 2006; 127 Duboc, Lepage (bib22) 2008; 310 Casey (bib16) 1998; 7 Tsukui, Capdevila, Tamura, Ruiz-Lozano, Rodriguez-Esteban, Yonei-Tamura, Magallon, Chandraratna, Chien, Blumberg, Evans, Belmonte (bib86) 1999; 96 Yasuhiko, Imai, Ookubo, Takakuwa, Shiokawa, Yokoyama (bib92) 2001; 43 Hackett (bib31) 2002; 2 Supp, Witte, Potter, Brueckner (bib81) 1997; 389 Schweickert, Weber, Beyer, Vick, Bogusch, Feistel, Blum (bib74) 2007; 17 Schottenfeld, Sullivan-Brown, Burdine (bib73) 2007; 134 Vandenberg, Levin (bib87) 2009; 20 Field, Riley, Grimes, Hilton, Simon, Powles-Glover, Siggers, Bogani, Greenfield, Norris (bib23) 2011; 138 Takeuchi, Lickert, Bisgrove, Sun, Yamamoto, Chawengsaksophak, Hamada, Yost, Rossant, Bruneau (bib84) 2007; 104 Levin, Thorlin, Robinson, Nogi, Mercola (bib48) 2002; 111 McGrath, Somlo, Makova, Tian, Brueckner (bib54) 2003; 114 Speder, Petzoldt, Suzanne, Noselli (bib79) 2007; 17 Morokuma, Blackiston, Levin (bib59) 2008; 21 Kishimoto, Cao, Park, Sun (bib37) 2008; 14 Gros, Feistel, Viebahn, Blum, Tabin (bib30) 2009; 324 Gaio, Schweickert, Fischer, Garratt, Muller, Ozcelik, Lankes, Strehle, Britsch, Blum, Birchmeier (bib28) 1999; 9 Tabin, Vogan (bib83) 2003; 17 Lohr, Danos, Yost (bib50) 1997; 124 Levin, Palmer (bib47) 2007; 29 Amack, Wang, Yost (bib2) 2007; 310 Blum, Beyer, Weber, Vick, Andre, Bitzer, Schweickert (bib9) 2009; 238 Danos, Yost (bib20) 1995; 121 Houde, Dickinson, Houtzager, Cullum, Montpetit, Metzler, Simpson, Roy, Hayden, Hoodless, Nicholson (bib34) 2006; 300 Levin (bib43) 2005; 122 Levin (bib44) 2006; 78 Danilchik, Brown, Riegert (bib19) 2006; 133 Sakano, Kato, Parikh, McKnight, Terry, Stefanovic, Kato (bib70) 2010; 18 Vandenberg, Levin (bib89) 2010; 239 Brown, Wolpert (bib10) 1990; 109 Adams, Robinson, Fukumoto, Yuan, Albertson, Yelick, Kuo, McSweeney, Levin (bib1) 2006; 133 Oki, Kitajima, Meno (bib63) 2010; 239 Fukumoto, Kema, Levin (bib27) 2005; 15 Gilbert (bib29) 2006 Aw, Adams, Qiu, Levin (bib5) 2008; 125 Collignon, Varlet, Robertson (bib18) 1996; 381 Supp, Brueckner, Kuehn, Witte, Lowe, McGrath, Corrales, Potter (bib80) 1999 Sampath, Cheng, Frisch, Wright (bib71) 1997; 124 Hirokawa, Tanaka, Okada, Takeda (bib33) 2006; 125 Lander, King, Brown (bib41) 1998; 9 Zeng, Hoover, Liu (bib96) 2010; 339 Bunney, De Boer, Levin (bib12) 2003; 130 Vandenberg, Levin (bib88) 2010; 137 Kim, Zaghloul, Bubenshchikova, Oh, Rankin, Katsanis, Obara, Tsiokas (bib36) 2011; 13 Marszalek, Ruiz-Lozano, Roberts, Chien, Goldstein (bib51) 1999; 96 Raya, Kawakami, Rodriguez-Esteban, Ibanes, Rasskin-Gutman, Rodriguez-Leon, Buscher, Feijo, Izpisua Belmonte (bib69) 2004; 427 Pathak, Obara, Mangos, Liu, Drummond (bib65) 2007; 18 Nonaka, Shiratori, Saijoh, Hamada (bib61) 2002; 418 Yost (bib95) 1992; 357 Meyers, Martin (bib56) 1999; 285 Zhang, Ramalho-Santos, McMahon (bib97) 2001; 106 Fukumoto, Blakely, Levin (bib26) 2005; 27 May-Simera, Kai, Hernandez, Osborn, Tada, Beales (bib52) 2010; 345 Shiratori, Hamada (bib77) 2006; 133 Qiu, Cheng, Wozniak, McSweeney, Perrone, Levin (bib67) 2005; 234 Hirokawa, Tanaka, Okada (bib32) 2010 Yost (bib94) 1991; 162 Yan, Gritsman, Ding, Burdine, Corrales, Price, Talbot, Schier, Shen (bib91) 1999; 13 Armakolas, Klar (bib4) 2007; 315 Nonaka, Yoshiba, Watanabe, Ikeuchi, Goto, Marshall, Hamada (bib62) 2005; 3 Burdine, Schier (bib14) 2000; 14 Tan, Rosenthal, Zhao, Francis, Chatterjee, Sabol, Linask, Bracero, Connelly, Daniels, Yu, Omran, Leatherbury, Lo (bib85) 2007; 117 Shimeld (bib76) 2004; 20 Fogelgren, Lin, Zuo, Jaffe, Park, Reichert, Bell, Burdine, Lipschutz (bib24) 2011; 7 Basu, Brueckner (bib7) 2008; 85 Krebs, Iwai, Nonaka, Welsh, Lan, Jiang, Saijoh, O'Brien, Hamada, Gridley (bib40) 2003; 17 Levin, Johnson, Stern, Kuehn, Tabin (bib46) 1995; 82 Lohr, Danos, Groth, Yost (bib49) 1998; 23 Yoshioka, Meno, Koshiba, Sugihara, Itoh, Ishimaru, Inoue, Ohuchi, Semina, Murray, Hamada, Noji (bib93) 1998; 94 Fujinaga, Baden (bib25) 1991; 143 Carneiro, Donnet, Rejtar, Karger, Barisone, Diaz, Kortagere, Lemire, Levin (bib15) 2011; 11 Bajoghli, Aghaallaei, Soroldoni, Czerny (bib6) 2007; 303 Vick, Schweickert, Weber, Eberhardt, Mencl, Shcherbakov, Beyer, Blum (bib90) 2009; 331 Brueckner (bib11) 2001; 101 Ibanes, Izpisua Belmonte (bib35) 2009; 1 Serluca, Xu, Okabe, Baker, Lin, Sullivan-Brown, Konieczkowski, Jaffe, Bradner, Fishman, Burdine (bib75) 2009; 136 Schlueter, Brand (bib72) 2007; 117 Levin (bib45) 2007; 17 Meno, Shimono, Saijoh, Yashiro, Mochida, Ohishi, Noji, Kondoh, Hamada (bib55) 1998; 94 Nagai, Asaoka, Namae, Saito, Momose, Mitani, Furutani-Seiki, Katada, Nishina (bib60) 2010; 396 McGrath, Brueckner (bib53) 2003; 13 Kramer-Zucker, Olale, Haycraft, Yoder, Schier, Drummond (bib39) 2005; 132 Palmer (bib64) 2004; 306 Blum, Andre, Muders, Schweickert, Fischer, Bitzer, Bogusch, Beyer, van Straaten, Viebahn (bib8) 2007; 75 Casey, Hackett (bib17) 2000; 10 Zhao, Malicki (bib98) 2007; 124 Kosaki, Casey (bib38) 1998; 9 Antic, Stubbs, Suyama, Kintner, Scott, Axelrod (bib3) 2010; 5 Song, Hu, Chen, Elliott, Andre, Gao, Yang (bib78) 2010; 466 Pennekamp, Karcher, Fischer, Schweickert, Skryabin, Horst, Blum, Dworniczak (bib66) 2002; 12 Amack (10.1016/j.diff.2011.08.004_bib2) 2007; 310 Kosaki (10.1016/j.diff.2011.08.004_bib38) 1998; 9 McGrath (10.1016/j.diff.2011.08.004_bib54) 2003; 114 Pathak (10.1016/j.diff.2011.08.004_bib65) 2007; 18 Qiu (10.1016/j.diff.2011.08.004_bib67) 2005; 234 Zhang (10.1016/j.diff.2011.08.004_bib97) 2001; 106 Danilchik (10.1016/j.diff.2011.08.004_bib19) 2006; 133 Danos (10.1016/j.diff.2011.08.004_bib20) 1995; 121 Speder (10.1016/j.diff.2011.08.004_bib79) 2007; 17 Nonaka (10.1016/j.diff.2011.08.004_bib61) 2002; 418 Sakano (10.1016/j.diff.2011.08.004_bib70) 2010; 18 Hirokawa (10.1016/j.diff.2011.08.004_bib32) 2010 Takeuchi (10.1016/j.diff.2011.08.004_bib84) 2007; 104 Hirokawa (10.1016/j.diff.2011.08.004_bib33) 2006; 125 Levin (10.1016/j.diff.2011.08.004_bib44) 2006; 78 Ibanes (10.1016/j.diff.2011.08.004_bib35) 2009; 1 Shimeld (10.1016/j.diff.2011.08.004_bib76) 2004; 20 Palmer (10.1016/j.diff.2011.08.004_bib64) 2004; 306 Levin (10.1016/j.diff.2011.08.004_bib46) 1995; 82 Serluca (10.1016/j.diff.2011.08.004_bib75) 2009; 136 Yost (10.1016/j.diff.2011.08.004_bib95) 1992; 357 Mogi (10.1016/j.diff.2011.08.004_bib57) 2003; 47 Adams (10.1016/j.diff.2011.08.004_bib1) 2006; 133 Bunney (10.1016/j.diff.2011.08.004_bib12) 2003; 130 Meyers (10.1016/j.diff.2011.08.004_bib56) 1999; 285 Levin (10.1016/j.diff.2011.08.004_bib45) 2007; 17 Vandenberg (10.1016/j.diff.2011.08.004_bib87) 2009; 20 Yan (10.1016/j.diff.2011.08.004_bib91) 1999; 13 Fogelgren (10.1016/j.diff.2011.08.004_bib24) 2011; 7 Levin (10.1016/j.diff.2011.08.004_bib43) 2005; 122 Antic (10.1016/j.diff.2011.08.004_bib3) 2010; 5 Supp (10.1016/j.diff.2011.08.004_bib81) 1997; 389 Nagai (10.1016/j.diff.2011.08.004_bib60) 2010; 396 Zeng (10.1016/j.diff.2011.08.004_bib96) 2010; 339 Sampath (10.1016/j.diff.2011.08.004_bib71) 1997; 124 Song (10.1016/j.diff.2011.08.004_bib78) 2010; 466 Lander (10.1016/j.diff.2011.08.004_bib41) 1998; 9 Carneiro (10.1016/j.diff.2011.08.004_bib15) 2011; 11 Gros (10.1016/j.diff.2011.08.004_bib30) 2009; 324 Gilbert (10.1016/j.diff.2011.08.004_bib29) 2006 Kishimoto (10.1016/j.diff.2011.08.004_bib37) 2008; 14 Houde (10.1016/j.diff.2011.08.004_bib34) 2006; 300 Danos (10.1016/j.diff.2011.08.004_bib21) 1996; 177 Meno (10.1016/j.diff.2011.08.004_bib55) 1998; 94 Bunney (10.1016/j.diff.2011.08.004_bib13) 2003; 130 Brueckner (10.1016/j.diff.2011.08.004_bib11) 2001; 101 Casey (10.1016/j.diff.2011.08.004_bib16) 1998; 7 Pennekamp (10.1016/j.diff.2011.08.004_bib66) 2002; 12 Burdine (10.1016/j.diff.2011.08.004_bib14) 2000; 14 Duboc (10.1016/j.diff.2011.08.004_bib22) 2008; 310 Vandenberg (10.1016/j.diff.2011.08.004_bib89) 2010; 239 Morokuma (10.1016/j.diff.2011.08.004_bib59) 2008; 21 Krebs (10.1016/j.diff.2011.08.004_bib40) 2003; 17 Vick (10.1016/j.diff.2011.08.004_bib90) 2009; 331 Yasuhiko (10.1016/j.diff.2011.08.004_bib92) 2001; 43 Hackett (10.1016/j.diff.2011.08.004_bib31) 2002; 2 Tsukui (10.1016/j.diff.2011.08.004_bib86) 1999; 96 Fukumoto (10.1016/j.diff.2011.08.004_bib27) 2005; 15 Aw (10.1016/j.diff.2011.08.004_bib5) 2008; 125 Levin (10.1016/j.diff.2011.08.004_bib42) 2003; 25 Armakolas (10.1016/j.diff.2011.08.004_bib4) 2007; 315 Schweickert (10.1016/j.diff.2011.08.004_bib74) 2007; 17 Kramer-Zucker (10.1016/j.diff.2011.08.004_bib39) 2005; 132 Casey (10.1016/j.diff.2011.08.004_bib17) 2000; 10 Schottenfeld (10.1016/j.diff.2011.08.004_bib73) 2007; 134 Supp (10.1016/j.diff.2011.08.004_bib80) 1999 10.1016/j.diff.2011.08.004_bib68 Lohr (10.1016/j.diff.2011.08.004_bib49) 1998; 23 Vandenberg (10.1016/j.diff.2011.08.004_bib88) 2010; 137 Levin (10.1016/j.diff.2011.08.004_bib47) 2007; 29 Schlueter (10.1016/j.diff.2011.08.004_bib72) 2007; 117 Kim (10.1016/j.diff.2011.08.004_bib36) 2011; 13 Nonaka (10.1016/j.diff.2011.08.004_bib62) 2005; 3 Tan (10.1016/j.diff.2011.08.004_bib85) 2007; 117 Brown (10.1016/j.diff.2011.08.004_bib10) 1990; 109 Blum (10.1016/j.diff.2011.08.004_bib9) 2009; 238 Raya (10.1016/j.diff.2011.08.004_bib69) 2004; 427 Lohr (10.1016/j.diff.2011.08.004_bib50) 1997; 124 Basu (10.1016/j.diff.2011.08.004_bib7) 2008; 85 Field (10.1016/j.diff.2011.08.004_bib23) 2011; 138 Zhao (10.1016/j.diff.2011.08.004_bib98) 2007; 124 Marszalek (10.1016/j.diff.2011.08.004_bib51) 1999; 96 Tabin (10.1016/j.diff.2011.08.004_bib83) 2003; 17 Bajoghli (10.1016/j.diff.2011.08.004_bib6) 2007; 303 Fukumoto (10.1016/j.diff.2011.08.004_bib26) 2005; 27 Fujinaga (10.1016/j.diff.2011.08.004_bib25) 1991; 143 Tabin (10.1016/j.diff.2011.08.004_bib82) 2006; 127 Levin (10.1016/j.diff.2011.08.004_bib48) 2002; 111 May-Simera (10.1016/j.diff.2011.08.004_bib52) 2010; 345 Shiratori (10.1016/j.diff.2011.08.004_bib77) 2006; 133 Yoshioka (10.1016/j.diff.2011.08.004_bib93) 1998; 94 Blum (10.1016/j.diff.2011.08.004_bib8) 2007; 75 Oki (10.1016/j.diff.2011.08.004_bib63) 2010; 239 Gaio (10.1016/j.diff.2011.08.004_bib28) 1999; 9 Yost (10.1016/j.diff.2011.08.004_bib94) 1991; 162 Collignon (10.1016/j.diff.2011.08.004_bib18) 1996; 381 McGrath (10.1016/j.diff.2011.08.004_bib53) 2003; 13 Morokuma (10.1016/j.diff.2011.08.004_bib58) 2008; 105 |
References_xml | – volume: 14 start-page: 763 year: 2000 end-page: 776 ident: bib14 article-title: Conserved and divergent mechanisms in left−right axis formation publication-title: Genes Dev. – volume: 133 start-page: 4517 year: 2006 end-page: 4526 ident: bib19 article-title: Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left−right asymmetry? publication-title: Development – volume: 306 start-page: 828 year: 2004 end-page: 833 ident: bib64 article-title: Symmetry breaking and the evolution of development publication-title: Science – volume: 396 start-page: 887 year: 2010 end-page: 893 ident: bib60 article-title: The LIM protein Ajuba is required for ciliogenesis and left−right axis determination in medaka publication-title: Biochem. Biophys. Res. Commun. – volume: 5 start-page: e8999 year: 2010 ident: bib3 article-title: Planar cell polarity enables posterior localization of nodal cilia and left−right axis determination during mouse and Xenopus embryogenesis publication-title: PLoS ONE – reference: Ramsdell, A.F. (2005) Left−right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left−right axis determination. Dev. Biol.. – volume: 124 start-page: 605 year: 2007 end-page: 616 ident: bib98 article-title: Genetic defects of pronephric cilia in zebrafish publication-title: Mech. Dev. – volume: 101 start-page: 339 year: 2001 end-page: 344 ident: bib11 article-title: Cilia propel the embryo in the right direction publication-title: Am J Med Genet – volume: 94 start-page: 287 year: 1998 end-page: 297 ident: bib55 article-title: Lefty-1 is required for left−right determination as a regulator of lefty-2 and nodal publication-title: Cell – volume: 15 start-page: 794 year: 2005 end-page: 803 ident: bib27 article-title: Serotonin signaling is a very early step in patterning of the left−right axis in chick and frog embryos publication-title: Curr. Biol. – volume: 427 start-page: 121 year: 2004 end-page: 128 ident: bib69 article-title: Notch activity acts as a sensor for extracellular calcium during vertebrate left−right determination publication-title: Nature – volume: 85 start-page: 151 year: 2008 end-page: 174 ident: bib7 article-title: Cilia: multifunctional organelles at the center of vertebrate left−right asymmetry publication-title: Curr. Top Dev. Biol. – volume: 418 start-page: 96 year: 2002 end-page: 99 ident: bib61 article-title: Determination of left−right patterning of the mouse embryo by artificial nodal flow publication-title: Nature – volume: 133 start-page: 2095 year: 2006 end-page: 2104 ident: bib77 article-title: The left−right axis in the mouse: from origin to morphology publication-title: Development – volume: 130 start-page: 4847 year: 2003 end-page: 4858 ident: bib12 article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis publication-title: Development (Cambridge, England) – volume: 310 start-page: 196 year: 2007 end-page: 210 ident: bib2 article-title: Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish publication-title: Dev. Biol. – volume: 12 start-page: 938 year: 2002 end-page: 943 ident: bib66 article-title: The ion channel polycystin-2 is required for left−right axis determination in mice publication-title: Curr. Biol. – year: 2006 ident: bib29 article-title: Developmental Biology – volume: 82 start-page: 803 year: 1995 end-page: 814 ident: bib46 article-title: A molecular pathway determining left−right asymmetry in chick embryogenesis publication-title: Cell – volume: 13 start-page: 385 year: 2003 end-page: 392 ident: bib53 article-title: Cilia are at the heart of vertebrate left−right asymmetry publication-title: Curr. Opin. Genet. Dev. – volume: 105 start-page: 16608 year: 2008 end-page: 16613 ident: bib58 article-title: Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 466 start-page: 378 year: 2010 end-page: 382 ident: bib78 article-title: Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning publication-title: Nature – volume: 132 start-page: 1907 year: 2005 end-page: 1921 ident: bib39 article-title: Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis publication-title: Development – volume: 9 start-page: 35 year: 1998 end-page: 41 ident: bib41 article-title: Left−right development: mammalian phenotypes and conceptual models publication-title: Semin. Cell Dev. Biol. – volume: 339 start-page: 418 year: 2010 end-page: 428 ident: bib96 article-title: PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals publication-title: Dev. Biol. – start-page: 5495 year: 1999 end-page: 5504 ident: bib80 article-title: Targeted deletion of the ATP binding domain of left−right dynein confirms its role in specifying development of left−right asymmetries publication-title: Development—supp 126 – volume: 17 start-page: 60 year: 2007 end-page: 66 ident: bib74 article-title: Cilia-driven leftward flow determines laterality in Xenopus publication-title: Curr. Biol. – volume: 17 start-page: 351 year: 2007 end-page: 358 ident: bib79 article-title: Strategies to establish left/right asymmetry in vertebrates and invertebrates publication-title: Curr. Opin. Genet. Dev. – volume: 315 start-page: 100 year: 2007 end-page: 101 ident: bib4 article-title: Left−right dynein motor implicated in selective chromatid segregation in mouse cells publication-title: Science – volume: 122 start-page: 3 year: 2005 end-page: 25 ident: bib43 article-title: Left−right asymmetry in embryonic development: a comprehensive review publication-title: Mech. Dev. – volume: 96 start-page: 5043 year: 1999 end-page: 5048 ident: bib51 article-title: Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II publication-title: Proc. Natl. Acad. Sci. USA – volume: 300 start-page: 523 year: 2006 end-page: 533 ident: bib34 article-title: Hippi is essential for node cilia assembly and Sonic hedgehod signaling publication-title: Dev. Biol. – volume: 234 start-page: 176 year: 2005 end-page: 189 ident: bib67 article-title: Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left−right asymmetry publication-title: Dev. Dyn. – volume: 177 start-page: 96 year: 1996 end-page: 103 ident: bib21 article-title: Role of notochord in specification of cardiac left−right orientation in zebrafish and Xenopus publication-title: Dev. Biol. – volume: 106 start-page: 781 year: 2001 end-page: 792 ident: bib97 article-title: Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node publication-title: Cell – volume: 1 start-page: 210 year: 2009 end-page: 219 ident: bib35 article-title: Left−right axis determination publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med. – start-page: 277 year: 2010 end-page: 292 ident: bib32 article-title: Left−right determination: involvement of molecular motor KIF3, cilia, and nodal flow publication-title: Symmetry breaking in biology – volume: 389 start-page: 963 year: 1997 end-page: 966 ident: bib81 article-title: Mutation of an axonemal dynein affects left−right asymmetry in inversus viscerum mice publication-title: Nature – volume: 324 start-page: 941 year: 2009 end-page: 944 ident: bib30 article-title: Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick publication-title: Science – volume: 21 start-page: 357 year: 2008 end-page: 372 ident: bib59 article-title: KCNQ1 and KCNE1 K+ channel components are involved in early left−right patterning in Xenopus laevis embryos publication-title: Cell Physiol. Biochem. – volume: 96 start-page: 11376 year: 1999 end-page: 11381 ident: bib86 article-title: Multiple left−right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 133 start-page: 1657 year: 2006 end-page: 1671 ident: bib1 article-title: Early, H+-V-ATPase-dependent proton flux is necessary for consistent left−right patterning of non-mammalian vertebrates publication-title: Development (Cambridge, England) – volume: 47 start-page: 15 year: 2003 end-page: 29 ident: bib57 article-title: Xenopus neurula left−right asymmetry is respeficied by microinjecting TGF-beta5 protein publication-title: Int. J. Dev. Biol. – volume: 345 start-page: 215 year: 2010 end-page: 225 ident: bib52 article-title: Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left−right asymmetry in zebrafish publication-title: Dev. Biol. – volume: 18 start-page: 4353 year: 2007 end-page: 4364 ident: bib65 article-title: The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation publication-title: Mol. Biol. Cell – volume: 14 start-page: 954 year: 2008 end-page: 961 ident: bib37 article-title: Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways publication-title: Dev. Cell – volume: 78 start-page: 191 year: 2006 end-page: 223 ident: bib44 article-title: Is the early left−right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry publication-title: Birth Defects Res. C Embryo Today – volume: 130 start-page: 4847 year: 2003 end-page: 4858 ident: bib13 article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis publication-title: Development – volume: 137 start-page: 1095 year: 2010 end-page: 1105 ident: bib88 article-title: Consistent left−right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin publication-title: Development – volume: 13 start-page: 351 year: 2011 end-page: 360 ident: bib36 article-title: Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry publication-title: Nat. Cell Biol. – volume: 20 start-page: 456 year: 2009 end-page: 463 ident: bib87 article-title: Perspectives and open problems in the early phases of left−right patterning publication-title: Semin. Cell Dev. Biol. – volume: 138 start-page: 1131 year: 2011 end-page: 1142 ident: bib23 article-title: Pkd1l1 establishes left−right asymmetry and physically interacts with Pkd2 publication-title: Development – volume: 29 start-page: 271 year: 2007 end-page: 287 ident: bib47 article-title: Left−right patterning from the inside out: widespread evidence for intracellular control publication-title: Bioessays – volume: 111 start-page: 77 year: 2002 end-page: 89 ident: bib48 article-title: Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left−right patterning publication-title: Cell – volume: 13 start-page: 2527 year: 1999 end-page: 2537 ident: bib91 article-title: Conserved requirement for EGF-CFC genes in vertebrate left−right axis formation publication-title: Genes Dev. – volume: 7 start-page: 1565 year: 1998 end-page: 1571 ident: bib16 article-title: Two rights make a wrong: human left−right malformations publication-title: Hum. Mol. Genet. – volume: 117 start-page: 256 year: 2007 end-page: 267 ident: bib72 article-title: Left−right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos publication-title: Cytogent. Genome Res. – volume: 162 start-page: 165 year: 1991 end-page: 176 ident: bib94 article-title: Development of the left−right axis in amphibians publication-title: CIBA Found. Symp. – volume: 125 start-page: 33 year: 2006 end-page: 45 ident: bib33 article-title: Nodal flow and the generation of left−right asymmetry publication-title: Cell – volume: 238 start-page: 1215 year: 2009 end-page: 1225 ident: bib9 article-title: Xenopus, an ideal model system to study vertebrate left−right asymmetry publication-title: Dev. Dyn. – volume: 11 start-page: 29 year: 2011 ident: bib15 article-title: Histone deacetylase activity is necessary for left−right patterning during vertebrate development publication-title: BMC Dev. Biol. – volume: 43 start-page: 671 year: 2001 end-page: 681 ident: bib92 article-title: Calmodulin binds to inv protein: implication for the regulation of inv function publication-title: Dev. Growth Differ. – volume: 381 start-page: 155 year: 1996 end-page: 158 ident: bib18 article-title: Relationship between asymmetric nodal expression and the direction of embryonic turning publication-title: Nature – volume: 117 start-page: 3742 year: 2007 end-page: 3752 ident: bib85 article-title: Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia publication-title: J. Clin. Invest. – volume: 20 start-page: 277 year: 2004 end-page: 280 ident: bib76 article-title: Calcium turns sinister in left−right asymmetry publication-title: Trends Genet. – volume: 9 start-page: 89 year: 1998 end-page: 99 ident: bib38 article-title: Genetics of human left−right axis malformations publication-title: Semin. Cell Dev. Biol. – volume: 303 start-page: 347 year: 2007 end-page: 361 ident: bib6 article-title: The roles of Groucho/Tle in left−right asymmetry and Kupffer's vesicle organogenesis publication-title: Dev. Biol. – volume: 2 start-page: 39 year: 2002 end-page: 66 ident: bib31 article-title: Formation and malformation of the vertebrate left−right axis publication-title: Curr. Mol. Med. – volume: 104 start-page: 846 year: 2007 end-page: 851 ident: bib84 article-title: Baf60c is a nuclear Notch signaling component required for the establishment of left−right asymmetry publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 257 year: 2000 end-page: 261 ident: bib17 article-title: Left−right axis malformations in man and mouse publication-title: Curr. Opin. Genet. Dev. – volume: 9 start-page: 1339 year: 1999 end-page: 1342 ident: bib28 article-title: A role of the cryptic gene in the correct establishment of the left−right axis publication-title: Curr. Biol. – volume: 124 start-page: 3293 year: 1997 end-page: 3302 ident: bib71 article-title: Functional differences among Xenopus nodal-related genes in left−right axis determination publication-title: Development – volume: 25 start-page: 1002 year: 2003 end-page: 1010 ident: bib42 article-title: Hypothesis: motor proteins and ion pumps, not ciliary motion, initiate LR asymmetry publication-title: BioEssays – volume: 18 start-page: 450 year: 2010 end-page: 462 ident: bib70 article-title: BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left−right patterning publication-title: Dev. Cell – volume: 239 start-page: 1768 year: 2010 end-page: 1778 ident: bib63 article-title: Dissecting the role of Fgf signaling during gastrulation and left−right axis formation in mouse embryos using chemical inhibitors publication-title: Dev. Dyn. – volume: 125 start-page: 353 year: 2008 end-page: 372 ident: bib5 article-title: H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left−right asymmetry publication-title: Mech. Dev. – volume: 127 start-page: 27 year: 2006 end-page: 32 ident: bib82 article-title: The key to left−right asymmetry publication-title: Cell – volume: 114 start-page: 61 year: 2003 end-page: 73 ident: bib54 article-title: Two populations of node monocilia initiate left−right asymmetry in the mouse publication-title: Cell – volume: 331 start-page: 281 year: 2009 end-page: 291 ident: bib90 article-title: Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis publication-title: Dev. Biol. – volume: 27 start-page: 349 year: 2005 end-page: 363 ident: bib26 article-title: Serotonin transporter function is an early step in left−right patterning in chick and frog embryos publication-title: Dev. Neurosci. – volume: 17 start-page: 1207 year: 2003 end-page: 1212 ident: bib40 article-title: Notch signaling regulates left−right asymmetry determination by inducing Nodal expression publication-title: Genes Dev. – volume: 143 start-page: 203 year: 1991 end-page: 205 ident: bib25 article-title: Evidence for an adrenergic mechanism in the control of body asymmetry publication-title: Dev. Biol. – volume: 310 start-page: 41 year: 2008 end-page: 53 ident: bib22 article-title: A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left−right axes in deuterostomes publication-title: J. Exp. Zool. B Mol. Dev. Evol. – volume: 17 start-page: 262 year: 2007 end-page: 271 ident: bib45 article-title: Large-scale biophysics: ion flows and regeneration publication-title: Trends Cell Biol. – volume: 357 start-page: 158 year: 1992 end-page: 161 ident: bib95 article-title: Regulation of vertebrate left−right asymmetries by extracellular matrix publication-title: Nature – volume: 134 start-page: 1605 year: 2007 end-page: 1615 ident: bib73 article-title: Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw publication-title: Development – volume: 94 start-page: 299 year: 1998 end-page: 305 ident: bib93 article-title: Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left−right asymmetry publication-title: Cell – volume: 7 start-page: e1001361 year: 2011 ident: bib24 article-title: The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes publication-title: PLoS Genet. – volume: 23 start-page: 194 year: 1998 end-page: 202 ident: bib49 article-title: Maintenance of asymmetric nodal expression in Xenopus laevis publication-title: Dev. Genet. – volume: 3 start-page: e268 year: 2005 ident: bib62 article-title: De novo formation of left−right asymmetry by posterior tilt of nodal cilia publication-title: PLoS Biol. – volume: 75 start-page: 133 year: 2007 end-page: 146 ident: bib8 article-title: Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo publication-title: Differentiation – volume: 136 start-page: 1621 year: 2009 end-page: 1631 ident: bib75 article-title: Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left−right patterning publication-title: Development – volume: 17 start-page: 1 year: 2003 end-page: 6 ident: bib83 article-title: A two-cilia model for vertebrate left−right axis specification publication-title: Genes Dev. – volume: 124 start-page: 1465 year: 1997 end-page: 1472 ident: bib50 article-title: Left−right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development publication-title: Development – volume: 239 start-page: 3131 year: 2010 end-page: 3146 ident: bib89 article-title: Far from solved: a perspective on what we know about early mechanisms of left−right asymmetry publication-title: Dev. Dyn. – volume: 285 start-page: 403 year: 1999 end-page: 406 ident: bib56 article-title: Differences in left−right axis pathways in mouse and chick: functions of FGF8 and SHH publication-title: Science – volume: 109 start-page: 1 year: 1990 end-page: 9 ident: bib10 article-title: The development of handedness in left/right asymmetry publication-title: Development – volume: 121 start-page: 1467 year: 1995 end-page: 1474 ident: bib20 article-title: Linkage of cardiac left−right asymmetry and dorsal-anterior development in Xenopus publication-title: Development – volume: 96 start-page: 5043 year: 1999 ident: 10.1016/j.diff.2011.08.004_bib51 article-title: Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.9.5043 – volume: 106 start-page: 781 year: 2001 ident: 10.1016/j.diff.2011.08.004_bib97 article-title: Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node publication-title: Cell doi: 10.1016/S0092-8674(01)00385-3 – volume: 17 start-page: 351 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib79 article-title: Strategies to establish left/right asymmetry in vertebrates and invertebrates publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2007.05.008 – volume: 29 start-page: 271 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib47 article-title: Left−right patterning from the inside out: widespread evidence for intracellular control publication-title: Bioessays doi: 10.1002/bies.20545 – volume: 85 start-page: 151 year: 2008 ident: 10.1016/j.diff.2011.08.004_bib7 article-title: Cilia: multifunctional organelles at the center of vertebrate left−right asymmetry publication-title: Curr. Top Dev. Biol. doi: 10.1016/S0070-2153(08)00806-5 – volume: 17 start-page: 1 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib83 article-title: A two-cilia model for vertebrate left−right axis specification publication-title: Genes Dev. doi: 10.1101/gad.1053803 – volume: 11 start-page: 29 year: 2011 ident: 10.1016/j.diff.2011.08.004_bib15 article-title: Histone deacetylase activity is necessary for left−right patterning during vertebrate development publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-11-29 – volume: 3 start-page: e268 year: 2005 ident: 10.1016/j.diff.2011.08.004_bib62 article-title: De novo formation of left−right asymmetry by posterior tilt of nodal cilia publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030268 – volume: 339 start-page: 418 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib96 article-title: PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.01.003 – volume: 121 start-page: 1467 year: 1995 ident: 10.1016/j.diff.2011.08.004_bib20 article-title: Linkage of cardiac left−right asymmetry and dorsal-anterior development in Xenopus publication-title: Development doi: 10.1242/dev.121.5.1467 – volume: 134 start-page: 1605 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib73 article-title: Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw publication-title: Development doi: 10.1242/dev.02827 – volume: 104 start-page: 846 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib84 article-title: Baf60c is a nuclear Notch signaling component required for the establishment of left−right asymmetry publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0608118104 – volume: 94 start-page: 287 year: 1998 ident: 10.1016/j.diff.2011.08.004_bib55 article-title: Lefty-1 is required for left−right determination as a regulator of lefty-2 and nodal publication-title: Cell doi: 10.1016/S0092-8674(00)81472-5 – ident: 10.1016/j.diff.2011.08.004_bib68 doi: 10.1016/j.ydbio.2005.07.038 – volume: 122 start-page: 3 year: 2005 ident: 10.1016/j.diff.2011.08.004_bib43 article-title: Left−right asymmetry in embryonic development: a comprehensive review publication-title: Mech. Dev. doi: 10.1016/j.mod.2004.08.006 – volume: 345 start-page: 215 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib52 article-title: Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left−right asymmetry in zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.07.013 – volume: 2 start-page: 39 year: 2002 ident: 10.1016/j.diff.2011.08.004_bib31 article-title: Formation and malformation of the vertebrate left−right axis publication-title: Curr. Mol. Med. doi: 10.2174/1566524023363031 – volume: 13 start-page: 385 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib53 article-title: Cilia are at the heart of vertebrate left−right asymmetry publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/S0959-437X(03)00091-1 – volume: 13 start-page: 351 year: 2011 ident: 10.1016/j.diff.2011.08.004_bib36 article-title: Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry publication-title: Nat. Cell Biol. doi: 10.1038/ncb2183 – volume: 285 start-page: 403 year: 1999 ident: 10.1016/j.diff.2011.08.004_bib56 article-title: Differences in left−right axis pathways in mouse and chick: functions of FGF8 and SHH publication-title: Science doi: 10.1126/science.285.5426.403 – volume: 13 start-page: 2527 year: 1999 ident: 10.1016/j.diff.2011.08.004_bib91 article-title: Conserved requirement for EGF-CFC genes in vertebrate left−right axis formation publication-title: Genes Dev. doi: 10.1101/gad.13.19.2527 – volume: 20 start-page: 277 year: 2004 ident: 10.1016/j.diff.2011.08.004_bib76 article-title: Calcium turns sinister in left−right asymmetry publication-title: Trends Genet. doi: 10.1016/j.tig.2004.04.010 – volume: 466 start-page: 378 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib78 article-title: Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning publication-title: Nature doi: 10.1038/nature09129 – volume: 21 start-page: 357 year: 2008 ident: 10.1016/j.diff.2011.08.004_bib59 article-title: KCNQ1 and KCNE1 K+ channel components are involved in early left−right patterning in Xenopus laevis embryos publication-title: Cell Physiol. Biochem. doi: 10.1159/000129628 – volume: 234 start-page: 176 year: 2005 ident: 10.1016/j.diff.2011.08.004_bib67 article-title: Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left−right asymmetry publication-title: Dev. Dyn. doi: 10.1002/dvdy.20509 – volume: 331 start-page: 281 year: 2009 ident: 10.1016/j.diff.2011.08.004_bib90 article-title: Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2009.05.547 – volume: 238 start-page: 1215 year: 2009 ident: 10.1016/j.diff.2011.08.004_bib9 article-title: Xenopus, an ideal model system to study vertebrate left−right asymmetry publication-title: Dev. Dyn. doi: 10.1002/dvdy.21855 – volume: 306 start-page: 828 year: 2004 ident: 10.1016/j.diff.2011.08.004_bib64 article-title: Symmetry breaking and the evolution of development publication-title: Science doi: 10.1126/science.1103707 – volume: 25 start-page: 1002 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib42 article-title: Hypothesis: motor proteins and ion pumps, not ciliary motion, initiate LR asymmetry publication-title: BioEssays doi: 10.1002/bies.10339 – volume: 18 start-page: 450 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib70 article-title: BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left−right patterning publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.12.023 – volume: 9 start-page: 1339 year: 1999 ident: 10.1016/j.diff.2011.08.004_bib28 article-title: A role of the cryptic gene in the correct establishment of the left−right axis publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)80059-7 – volume: 27 start-page: 349 year: 2005 ident: 10.1016/j.diff.2011.08.004_bib26 article-title: Serotonin transporter function is an early step in left−right patterning in chick and frog embryos publication-title: Dev. Neurosci. doi: 10.1159/000088451 – volume: 133 start-page: 1657 year: 2006 ident: 10.1016/j.diff.2011.08.004_bib1 article-title: Early, H+-V-ATPase-dependent proton flux is necessary for consistent left−right patterning of non-mammalian vertebrates publication-title: Development (Cambridge, England) doi: 10.1242/dev.02341 – volume: 96 start-page: 11376 year: 1999 ident: 10.1016/j.diff.2011.08.004_bib86 article-title: Multiple left−right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.20.11376 – volume: 7 start-page: e1001361 year: 2011 ident: 10.1016/j.diff.2011.08.004_bib24 article-title: The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001361 – volume: 105 start-page: 16608 year: 2008 ident: 10.1016/j.diff.2011.08.004_bib58 article-title: Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808328105 – volume: 14 start-page: 954 year: 2008 ident: 10.1016/j.diff.2011.08.004_bib37 article-title: Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.03.010 – volume: 9 start-page: 89 year: 1998 ident: 10.1016/j.diff.2011.08.004_bib38 article-title: Genetics of human left−right axis malformations publication-title: Semin. Cell Dev. Biol. doi: 10.1006/scdb.1997.0187 – volume: 9 start-page: 35 year: 1998 ident: 10.1016/j.diff.2011.08.004_bib41 article-title: Left−right development: mammalian phenotypes and conceptual models publication-title: Semin. Cell Dev. Biol. doi: 10.1006/scdb.1997.0185 – volume: 18 start-page: 4353 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib65 article-title: The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E07-06-0537 – volume: 418 start-page: 96 year: 2002 ident: 10.1016/j.diff.2011.08.004_bib61 article-title: Determination of left−right patterning of the mouse embryo by artificial nodal flow publication-title: Nature doi: 10.1038/nature00849 – volume: 137 start-page: 1095 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib88 article-title: Consistent left−right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin publication-title: Development doi: 10.1242/dev.041798 – volume: 15 start-page: 794 year: 2005 ident: 10.1016/j.diff.2011.08.004_bib27 article-title: Serotonin signaling is a very early step in patterning of the left−right axis in chick and frog embryos publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.03.044 – start-page: 277 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib32 article-title: Left−right determination: involvement of molecular motor KIF3, cilia, and nodal flow – volume: 125 start-page: 33 year: 2006 ident: 10.1016/j.diff.2011.08.004_bib33 article-title: Nodal flow and the generation of left−right asymmetry publication-title: Cell doi: 10.1016/j.cell.2006.03.002 – volume: 239 start-page: 3131 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib89 article-title: Far from solved: a perspective on what we know about early mechanisms of left−right asymmetry publication-title: Dev. Dyn. doi: 10.1002/dvdy.22450 – volume: 124 start-page: 605 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib98 article-title: Genetic defects of pronephric cilia in zebrafish publication-title: Mech. Dev. doi: 10.1016/j.mod.2007.04.004 – volume: 136 start-page: 1621 year: 2009 ident: 10.1016/j.diff.2011.08.004_bib75 article-title: Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left−right patterning publication-title: Development doi: 10.1242/dev.020735 – volume: 23 start-page: 194 year: 1998 ident: 10.1016/j.diff.2011.08.004_bib49 article-title: Maintenance of asymmetric nodal expression in Xenopus laevis publication-title: Dev. Genet. doi: 10.1002/(SICI)1520-6408(1998)23:3<194::AID-DVG5>3.0.CO;2-0 – volume: 94 start-page: 299 year: 1998 ident: 10.1016/j.diff.2011.08.004_bib93 article-title: Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left−right asymmetry publication-title: Cell doi: 10.1016/S0092-8674(00)81473-7 – volume: 7 start-page: 1565 year: 1998 ident: 10.1016/j.diff.2011.08.004_bib16 article-title: Two rights make a wrong: human left−right malformations publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/7.10.1565 – volume: 133 start-page: 4517 year: 2006 ident: 10.1016/j.diff.2011.08.004_bib19 article-title: Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left−right asymmetry? publication-title: Development doi: 10.1242/dev.02642 – volume: 138 start-page: 1131 year: 2011 ident: 10.1016/j.diff.2011.08.004_bib23 article-title: Pkd1l1 establishes left−right asymmetry and physically interacts with Pkd2 publication-title: Development doi: 10.1242/dev.058149 – start-page: 5495 year: 1999 ident: 10.1016/j.diff.2011.08.004_bib80 article-title: Targeted deletion of the ATP binding domain of left−right dynein confirms its role in specifying development of left−right asymmetries publication-title: Development—supp 126 – volume: 82 start-page: 803 year: 1995 ident: 10.1016/j.diff.2011.08.004_bib46 article-title: A molecular pathway determining left−right asymmetry in chick embryogenesis publication-title: Cell doi: 10.1016/0092-8674(95)90477-8 – volume: 427 start-page: 121 year: 2004 ident: 10.1016/j.diff.2011.08.004_bib69 article-title: Notch activity acts as a sensor for extracellular calcium during vertebrate left−right determination publication-title: Nature doi: 10.1038/nature02190 – volume: 132 start-page: 1907 year: 2005 ident: 10.1016/j.diff.2011.08.004_bib39 article-title: Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis publication-title: Development doi: 10.1242/dev.01772 – volume: 10 start-page: 257 year: 2000 ident: 10.1016/j.diff.2011.08.004_bib17 article-title: Left−right axis malformations in man and mouse publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/S0959-437X(00)00085-X – volume: 47 start-page: 15 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib57 article-title: Xenopus neurula left−right asymmetry is respeficied by microinjecting TGF-beta5 protein publication-title: Int. J. Dev. Biol. doi: 10.1387/13 – year: 2006 ident: 10.1016/j.diff.2011.08.004_bib29 – volume: 117 start-page: 3742 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib85 article-title: Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia publication-title: J. Clin. Invest. – volume: 324 start-page: 941 year: 2009 ident: 10.1016/j.diff.2011.08.004_bib30 article-title: Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick publication-title: Science doi: 10.1126/science.1172478 – volume: 133 start-page: 2095 year: 2006 ident: 10.1016/j.diff.2011.08.004_bib77 article-title: The left−right axis in the mouse: from origin to morphology publication-title: Development doi: 10.1242/dev.02384 – volume: 78 start-page: 191 year: 2006 ident: 10.1016/j.diff.2011.08.004_bib44 article-title: Is the early left−right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry publication-title: Birth Defects Res. C Embryo Today doi: 10.1002/bdrc.20078 – volume: 1 start-page: 210 year: 2009 ident: 10.1016/j.diff.2011.08.004_bib35 article-title: Left−right axis determination publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med. doi: 10.1002/wsbm.31 – volume: 114 start-page: 61 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib54 article-title: Two populations of node monocilia initiate left−right asymmetry in the mouse publication-title: Cell doi: 10.1016/S0092-8674(03)00511-7 – volume: 124 start-page: 1465 year: 1997 ident: 10.1016/j.diff.2011.08.004_bib50 article-title: Left−right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development publication-title: Development doi: 10.1242/dev.124.8.1465 – volume: 310 start-page: 41 year: 2008 ident: 10.1016/j.diff.2011.08.004_bib22 article-title: A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left−right axes in deuterostomes publication-title: J. Exp. Zool. B Mol. Dev. Evol. doi: 10.1002/jez.b.21121 – volume: 300 start-page: 523 year: 2006 ident: 10.1016/j.diff.2011.08.004_bib34 article-title: Hippi is essential for node cilia assembly and Sonic hedgehod signaling publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.09.001 – volume: 127 start-page: 27 year: 2006 ident: 10.1016/j.diff.2011.08.004_bib82 article-title: The key to left−right asymmetry publication-title: Cell doi: 10.1016/j.cell.2006.09.018 – volume: 109 start-page: 1 year: 1990 ident: 10.1016/j.diff.2011.08.004_bib10 article-title: The development of handedness in left/right asymmetry publication-title: Development doi: 10.1242/dev.109.1.1 – volume: 143 start-page: 203 year: 1991 ident: 10.1016/j.diff.2011.08.004_bib25 article-title: Evidence for an adrenergic mechanism in the control of body asymmetry publication-title: Dev. Biol. doi: 10.1016/0012-1606(91)90067-D – volume: 5 start-page: e8999 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib3 article-title: Planar cell polarity enables posterior localization of nodal cilia and left−right axis determination during mouse and Xenopus embryogenesis publication-title: PLoS ONE doi: 10.1371/journal.pone.0008999 – volume: 177 start-page: 96 year: 1996 ident: 10.1016/j.diff.2011.08.004_bib21 article-title: Role of notochord in specification of cardiac left−right orientation in zebrafish and Xenopus publication-title: Dev. Biol. doi: 10.1006/dbio.1996.0148 – volume: 43 start-page: 671 year: 2001 ident: 10.1016/j.diff.2011.08.004_bib92 article-title: Calmodulin binds to inv protein: implication for the regulation of inv function publication-title: Dev. Growth Differ. doi: 10.1046/j.1440-169X.2001.00604.x – volume: 12 start-page: 938 year: 2002 ident: 10.1016/j.diff.2011.08.004_bib66 article-title: The ion channel polycystin-2 is required for left−right axis determination in mice publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00869-2 – volume: 130 start-page: 4847 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib12 article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis publication-title: Development (Cambridge, England) doi: 10.1242/dev.00698 – volume: 75 start-page: 133 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib8 article-title: Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo publication-title: Differentiation doi: 10.1111/j.1432-0436.2006.00124.x – volume: 396 start-page: 887 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib60 article-title: The LIM protein Ajuba is required for ciliogenesis and left−right axis determination in medaka publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.05.017 – volume: 20 start-page: 456 year: 2009 ident: 10.1016/j.diff.2011.08.004_bib87 article-title: Perspectives and open problems in the early phases of left−right patterning publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2008.11.010 – volume: 17 start-page: 1207 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib40 article-title: Notch signaling regulates left−right asymmetry determination by inducing Nodal expression publication-title: Genes Dev. doi: 10.1101/gad.1084703 – volume: 162 start-page: 165 year: 1991 ident: 10.1016/j.diff.2011.08.004_bib94 article-title: Development of the left−right axis in amphibians publication-title: CIBA Found. Symp. – volume: 310 start-page: 196 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib2 article-title: Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2007.05.039 – volume: 17 start-page: 60 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib74 article-title: Cilia-driven leftward flow determines laterality in Xenopus publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.10.067 – volume: 357 start-page: 158 year: 1992 ident: 10.1016/j.diff.2011.08.004_bib95 article-title: Regulation of vertebrate left−right asymmetries by extracellular matrix publication-title: Nature doi: 10.1038/357158a0 – volume: 111 start-page: 77 year: 2002 ident: 10.1016/j.diff.2011.08.004_bib48 article-title: Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left−right patterning publication-title: Cell doi: 10.1016/S0092-8674(02)00939-X – volume: 381 start-page: 155 year: 1996 ident: 10.1016/j.diff.2011.08.004_bib18 article-title: Relationship between asymmetric nodal expression and the direction of embryonic turning publication-title: Nature doi: 10.1038/381155a0 – volume: 389 start-page: 963 year: 1997 ident: 10.1016/j.diff.2011.08.004_bib81 article-title: Mutation of an axonemal dynein affects left−right asymmetry in inversus viscerum mice publication-title: Nature doi: 10.1038/40140 – volume: 130 start-page: 4847 year: 2003 ident: 10.1016/j.diff.2011.08.004_bib13 article-title: Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left−right patterning during amphibian embryogenesis publication-title: Development doi: 10.1242/dev.00698 – volume: 124 start-page: 3293 year: 1997 ident: 10.1016/j.diff.2011.08.004_bib71 article-title: Functional differences among Xenopus nodal-related genes in left−right axis determination publication-title: Development doi: 10.1242/dev.124.17.3293 – volume: 14 start-page: 763 year: 2000 ident: 10.1016/j.diff.2011.08.004_bib14 article-title: Conserved and divergent mechanisms in left−right axis formation publication-title: Genes Dev. doi: 10.1101/gad.14.7.763 – volume: 239 start-page: 1768 year: 2010 ident: 10.1016/j.diff.2011.08.004_bib63 article-title: Dissecting the role of Fgf signaling during gastrulation and left−right axis formation in mouse embryos using chemical inhibitors publication-title: Dev. Dyn. doi: 10.1002/dvdy.22282 – volume: 303 start-page: 347 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib6 article-title: The roles of Groucho/Tle in left−right asymmetry and Kupffer's vesicle organogenesis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.11.020 – volume: 315 start-page: 100 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib4 article-title: Left−right dynein motor implicated in selective chromatid segregation in mouse cells publication-title: Science doi: 10.1126/science.1129429 – volume: 17 start-page: 262 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib45 article-title: Large-scale biophysics: ion flows and regeneration publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2007.04.007 – volume: 117 start-page: 256 year: 2007 ident: 10.1016/j.diff.2011.08.004_bib72 article-title: Left−right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos publication-title: Cytogent. Genome Res. doi: 10.1159/000103187 – volume: 101 start-page: 339 year: 2001 ident: 10.1016/j.diff.2011.08.004_bib11 article-title: Cilia propel the embryo in the right direction publication-title: Am J Med Genet doi: 10.1002/1096-8628(20010715)101:4<339::AID-AJMG1442>3.0.CO;2-P – volume: 125 start-page: 353 year: 2008 ident: 10.1016/j.diff.2011.08.004_bib5 article-title: H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left−right asymmetry publication-title: Mech. Dev. doi: 10.1016/j.mod.2007.10.011 |
SSID | ssj0008621 |
Score | 2.0175023 |
Snippet | The timing of when the embryonic left−right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups... The timing of when the embryonic left-right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26 |
SubjectTerms | Animal model animal models chicks Cilia fish frogs gene expression Ion flux Left−right asymmetry Meta-analysis mice penetrance phenotype Regression analysis |
Title | Laterality defects are influenced by timing of treatments and animal model |
URI | https://dx.doi.org/10.1016/j.diff.2011.08.004 https://www.proquest.com/docview/1733526777 https://pubmed.ncbi.nlm.nih.gov/PMC3222854 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ64vIniTupu0SdrjIi7r86ILewvNY7Wi3UXXw1787c70sQ-QPXhooU1awkw6-aaZmY-Qc87BTTaCBVbINAAEzoMUVpEAnA3voCmxKeY7PzzKbi-67Yv-Crmqc2EwrLKy_aVNL6x1dadZSbM5yrLmU-ENyJhh0TPGFWaUR5HCWX75MwvzAMTOyp0E8JWgd5U4U8Z4IQnJrIxnRdb2x-I0Bz4XQyfn1qLOFtmsQCRtl-PcJis-3yHrJa3kZJfc3qeYV4wAmzpfxGvQ9NPTrCYkcdRM6Bj5vF7ocECnwebQLXdwZB_w9oIjZ4_0OtfPV92g4kwIbBjHYziH3ktmPA8T04pCK1go_IDFiRvYmFk2MA5ADJgWcE0AG5mWtICgBJM8VZa7cJ-s5sPcHxDKhQNNAUTwxkY-TkzKrEyc9NJJ5W3YIKwWlrZVQXHktXjXdeTYm0YBaxSwRrLLVtQgF9NnRmU5jaW9Ra0DvTApNNj7pc-d1QrT8LXgFkia--H3l2YKc8ykUqpB1IImp8PBetuLLXn2WtTdxk2pWESH_xzVEdmAK17-vzkmq-PPb38CiGZsTospe0rW2jd33cdfvLD16A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEYIF8RTlaSQ2FLV2YjsZEQIVKF0Aic2KH4UgSCsoA_-ec-IUKiEGhmSI7ci6c87fxXf3ARwzhm6y5jQyXOQRInAW5biLROhsOItNmcl9vvPNQPTuk6sH_jAHZ00ujA-rDLa_tumVtQ5POkGanXFRdG4rb0Ck1Bc9o0zKeVjw1al4CxZOL697g6lBRtBO68MEdJdwQMidqcO8PA_JdyXPwNf2y_70A3_ORk_-2I4uVmEl4EhyWk91DeZcuQ6LNbPk5wZc9XOfWuwxNrGuCtkg-ZsjRcNJYon-JBNP6fVIRkMyjTfHbqXFq3jFt1c0OZtwf3F-d9aLAm1CZOI0neA9dk5Q7Vic6W4SG05j7oY0zezQpNTQobaIY9C6oHeC8Eh3hUEQxalguTTMxlvQKkel2wbCuEVlIUpw2iQuzXROjciscMIK6UzcBtoIS5lQU9xTW7yoJnjsWXkBKy9g5fkuu0kbTqZjxnVFjT9780YHamZdKDT5f447ahSm8IPxpyB56UYf74pKn2YmpJRtkDOanE7Hl9yebSmLp6r0tj-XSnmy889ZHcJS7-6mr_qXg-tdWMYWVv_O2YPW5O3D7SPAmeiDsIC_ACbV-Jk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laterality+defects+are+influenced+by+timing+of+treatments+and+animal+model&rft.jtitle=Differentiation+%28London%29&rft.au=Vandenberg%2C+Laura+N.&rft.date=2012-01-01&rft.issn=0301-4681&rft.volume=83&rft.issue=1&rft.spage=26&rft.epage=37&rft_id=info:doi/10.1016%2Fj.diff.2011.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_diff_2011_08_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4681&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4681&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4681&client=summon |